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Abstract

We investigate the classical social choice question of how to aggre-
gate utility functions to make a decision. Following Harsanyi’s theo-
rem, if the method is Pareto it consists of taking sums of normalised
functions. We explore formal approaches to normalising.

We present a geometric view of the space of utility functions. We
explain how this picture makes the variance of a function the most
natural notion of size, and hence normalising the variance the most
obvious aggregation rule.

We define the expected utility of voting, and explain that it is a
generalisation of voting power to the case with more than two out-
comes. We show that as the number of preferences aggregated be-
comes large (and with mild extra assumptions), normalising variance
is the only method which gives equal utility of voting to all sets of
preferences.

We explore the distinction between tactical and strategic voting,
where the latter captures the way people will vote not holding any
expectations about how others will vote. With the same assumptions
as before we prove that variance normalisation is the only weighted
sum method which is immune to strategic voting.

1 Introduction

In this paper we are concerned with the classic problem of how to aggregate
preferences. We will use some standard assumptions to frame this problem
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formally. Within this framework, the question arises how best to normalise
utility functions to make them scale-comparable (see Section 2).

It has often been assumed that the only sensible formal method available
here is to normalise the utility functions so that they have equal ranges: a
minimum of 0 and a maximum of 1, for example. We will challenge this
assumption, and present results which suggest that instead normalising the
utility functions so that they have equal variances (or equivalently equal
standard deviations) is the correct approach.

By constructing the space of utility functions, and considering it as a geo-
metric object, we find very natural normalisation rules (Section 3). Different
geometries on the space give rise to different normalisations.

The familiar Euclidean geometry tells us to normalise the utility func-
tions so that they have equal variances. The chessboard geometry (where
the distance between two points is the maximum of the differences in the co-
ordinates) recovers the range normalisation rule. And the taxicab geometry
(where the distance between two points is the sum of the differences of the
coordinates) gives rise to a third normalisation, which equalises the average
difference between the value of the utility function and the median of that
function.

We will then make the additional assumptions that our normalisations de-
pend only on the function being normalised, that the number of preferences
being aggregated is large compared to the number of options available, and
that the aggregated preferences will be used to select an outcome (Section
4). These assumptions are justified at greater length in Appendix A. We use
these assumptions to compute the expected utility of voting – that is, of hav-
ing preferences counted in the aggregation. This is a natural generalisation
of the notion of voting power (well established in the theory of simple voting
games, where there are only two outcomes). In Theorem 14 we show that
the only normalisation method which is fair in the sense that the expected
utility of voting is the same for everyone is the variance normalisation.

Finally we will consider the implications of tactical voting for different
normalisation methods (Section 5). We say an aggregation method based on
a normalisation is susceptible to strategic voting if it is possible to improve
the expected utility of voting by misstating your preferences, even without
knowing anything about how others will vote. In Theorem 19 we prove that
with the same assumptions as before variance normalisation is not susceptible
to strategic voting, and moreover that it is the only normalisation method
with this property.
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2 Establishing problem

We will consider the following general problem:

Problem 1 Given differing preferences about the best course of action, how
should one decide?

Versions of this question arise in different fields, and some have attracted
considerable study. The two most well-known cases are:

1. (Social Welfare) Given preferences representing what is good for the
individuals comprising a society, how should a decision be chosen to
maximise societal good?

2. (Voting) Given a set of individuals who will be asked to state their
preferences, how should this information be used to reach a decision?

These two have differences – for instance in the voting scenario there is an
extra complication in that stated preferences may differ from actual prefer-
ences – but the structures of the problems are similar. In each case there are
several sets of preferences, and we are trying to combine them in a sensible
way to give aggregate preferences.

We restrict ourselves to scenarios where there is an isolated decision to
make (it is not embedded in a longer chain of decisions). Moreover we are pri-
marily interested in cases with more than two outcomes, as the two-outcome
scenario is simpler and more studied. We will explain how some of our ideas
generalise well-known techniques in the two-outcome case.

2.1 Assumptions

We will consider scenarios with a finite set of alternatives O = {o1, . . . , on},
a finite set of individuals I, and for each i ∈ I some preferences over the
alternatives.1

We restrict our consideration to preferences which satisfy the von Neumann–
Morgenstern axioms for rationality. These are seemingly fairly weak and
obvious criteria about preferences over lotteries of alternatives; we will call
preferences satisfying these rational. Von Neumann and Morgenstern showed

1Though we limit ourselves here to the case with finitely many alternatives, with some
choices of measure this restriction may be dropped.
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that they are equivalent to what appears to be a much stronger condition:
they proved that any rational set of preferences can be represented by a
utility function [7]:

Definition 1 A utility function u is a function O → R (which extends lin-
early to lotteries over O). It represents a collection of preferences if it assigns
higher values to preferred outcomes.

If utility functions u, u′ differ by a positive affine transformation (i.e.
∃c > 0, k ∈ R such that cu+k = u′) then they represent the same preferences.
Moreover if they represent the same preferences then they only differ by such
a positive affine transformation.

Definition 2 The utility class [u] of a utility function u is the equivalence
class of u under the relation which sets as equivalent all utility functions rep-
resenting the same preferences. We denote by U the space of utility functions
on O, and by U the space of utility classes on O.

Thus we assume that for each i ∈ I, the preferences of i are captured by a
utility function ui ∈ U (really the preferences correspond to an element [ui] ∈
U , but it is convenient to represent the utility class by a utility function).

We are looking for methods which somehow combine these utility func-
tions to give an aggregate set of preferences. If such a set of aggregate pref-
erences is rational, then again (by the von Neumann–Morgenstern theorem)
it will be expressible by a utility function.

Definition 3 A choice method is a function f : Um → U , where m = |I|. It
is said to be anonymous if it is invariant under permutation of the labels of
the individuals, and neutral if it is invariant under permutation of the labels
of the outcomes.

We will at times abuse notation and refer to a choice method as a function
from Um, or to U , or both. This is always with the understanding that a
choice method from Um factors through the quotient Um → Um, and if it
takes value u∗ ∈ U this is just a convenient way of specifying the point
[u∗] ∈ U .
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2.2 The case for weighted sums

A choice method (u1, . . . , um) 7→ u∗ is said to be Pareto if for any two
lotteries A,B, if ∀i ∈ I, ui(A) ≥ ui(B) and ∃i ∈ I : ui(A)  ui(B), then
u∗(A)  u∗(B). In other words, if nobody prefers B to A and someone
prefers A to B, then collectively the group prefers A to B.

There are different ways one could interpret the social choice problem.
We will be concerned with the following version:

Question 4 Social Choice Given a set I of individuals with utility functions
ui(i ∈ I) over an option set O, what is the fairest Pareto choice method?

This still isn’t a purely technical question, since the word fairest is doing
some work. Later in this paper we will consider two possible interpretations
of this, and see that they lead to the same answer.

Before we develop the idea of fairness, we consider the other restriction;
that the method be Pareto. This seems like a very obvious requirement, and
a weak one. A remarkable theorem of Harsanyi places strong restrictions on
the type of method which can be Pareto:

Theorem 5 (Harsanyi’s aggregation theorem) If u∗ is a Pareto preference
aggregation which is rational, then there exist weights λi ∈ [0,∞) such that
[u∗] = [

∑
i λiui].

This theorem was originally proved in [5], but there have been various
proofs since then, some of which are quite geometric in nature (e.g. [2]).

So if we want to make rational Pareto aggregates of rational preferences
we are restricted to methods which are equivalent to taking weighted sums.
Since choice methods are really functions on Um, this must also involve a
choice ūi of normalised representatives of each utility class [ui] as well the
weighting factor λi; but so long as they are non-zero we can simply absorb
the λi into the choice of ūi.

Corollary 6 Any rational Pareto choice method f may be decomposed as a
collection {fi}i∈I of normalisation functions Um → U such that f = [

∑
fi]

and [fi([u1], . . . , [um])] = [ui].

Given this result, one route to understanding rational Pareto choice meth-
ods is to explore possible normalisation methods. This is the course the rest
of this paper will take. We will look for natural normalisation methods,
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as these might lead to natural aggregations. We will also investigate how
properties of normalisations interact with properties of the resulting choice
methods.

We make one more definition.

Definition 7 The normalisation functions fi are intrinsic if fi factors through
projection to the ith factor of Um; i.e. they depend only on the utility function
being normalised, not on the utility functions of other individuals.

All of the normalisation methods we mention will be intrinsic.
At one point later we will have to restrict our consideration to just in-

trinsic functions, and some of our results follow this restriction. However
this is not so obviously correct as our assumptions that the choice methods
be rational and Pareto, for example. The best defence I can offer for the
assumption is that the concept that each set of preferences has a natural
weight is appealing. I also observe that (as far as I am aware) no author
has proposed a normalisation method which is not intrinsic. Otherwise this
assumption may have to be treated as a matter of convenience, to facilitate
our analysis, and our conclusions limited to its domain.

2.3 Existing approaches

For simplicity we henceforth assume that each ui is non-constant; otherwise it
expresses no preferences, and all normalisations lead to the same utility class
for the weighted sum (including the ‘zero normalisation’, which is equivalent
to ignoring it).

Despite the fact that the assumptions we have made so far are relatively
weak, the results well-known, and their conclusions clear, there has been
relatively little exploration of the merits of different normalisation methods.
However, a few methods have been suggested. One is particularly widely
known:

Example 8 Range normalisation is the intrinsic normalisation where ūi is
the transformed version of ui such that its highest value is 1 and its lowest
value is 0 (so the range of the utility function has been normalised to be [0, 1].
This has enjoyed widespread use in economics.

Range normalisation certainly has some nice properties. It is neutral,
anonymous, and intrinsic.

6



Indeed Hausman has argued that if there is any natural normalisation is
must be range normalisation [6], but his arguments are really in favour of
normalisations which equalise the size of the utility functions, and he seems
to assume that range is the only sensible measure of size in this context.
We will see in Section 3 that there are some others at least as natural, and
in Section 4 we provide theorems which give reasons to prefer to normalise
variance in particular.

Example 9 It has also been suggested, for example by Sen [9], to normalise
utility functions such that the difference between the average utility and the
worst utility is a constant (1, say).

We will see in Section 3.3 that the range normalisation does capture a
very reasonable notion of size, which Sen’s alternative does not. However it
is not the only normalisation to capture size, and it does not seem the most
natural.

3 Geometric motivation: the space of utility

functions

We have seen that rational preferences may be expressed by a unique choice
of utility class. The problem is that they do not come with canonical scales,
which would allow comparisons between different utility functions. We are
seeking to impose a scale given only the information of the utility class, and
matters of scale and size can often be most clearly understood geometrically.
In this section we explore this idea.

The space U of utility functions on {o1, . . . , on} is in a natural one-to-one
correspondence with Rn, where u corresponds to (u(11), . . . , u(on)). We will
use this correspondence to inform our intuitions about what makes normal-
isations natural. The purpose of normalising is to be fair by making all of
the functions the same size before adding, and notions of size and distance
are much closer to the surface in Rn.

First we will give a picture of the utility classes in this space.

Definition 10 A utility function is nihilistic if it assigns the same value to
every outcome. The line of nihilism, L, is the line {(λ, . . . , λ) : λ ∈ R} ⊂ Rn
corresponding to nihilistic functions.
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The line of nihilism is a special utility class; the one corresponding to
the belief that all outcomes are equally good. If u ∈ U and l ∈ L then
[u] = [u+ l], so elements of L function as a kind of zero in the space. So while
our normalisation should pick out a normalised representative of each utility
class, this normalised representative need only be defined up to addition of
nihilistic functions. That is, instead of a normalised point in U we may look
for a normalised line K parallel to L.

Two utility functions u, u′ lie in the same utility class if there exist c >
0, k ∈ R such that ∀o ∈ O, u′(o) = cu(o) + k. If they are not nihilistic, this
happens precisely when u′ lies in the plane spanned by u and l (where l is the
nihilistic function assigning value 1 to everything), and u and u′ lie on the
same side of L in this plane. Thus the non-nihilistic utility classes correspond
to half-planes in Rn, each with boundary L. The other half of the half-plane
associated with [u] is associated with [−u] (see for example Figure 1).

L

[u]

[-u]

o

o1

2

Figure 1: A picture of U when n = 2. In this case there are just two non-
nihilistic utility classes corresponding to the half-planes on either side of L.

There is a reasonable sense in which the size of a utility function is its dis-
tance from nihilism. We will use obvious notions of distance on U to capture
this size, and hence normalisation methods (since the idea of normalisation
is that all normalised theories should have the same size).

There is more than one metric which we might consider on U , coming
from its Rn structure. The Euclidean (or l2) metric is the most standard,
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and the most homogeneous. Admittedly it is not immediately obvious that
we should seek a homogeneous metric, as there are some distinguished direc-
tions in U corresponding to changing opinion of one outcome while leaving
other preferences fixed. We will briefly investigate two others: the l1 metric
defines the distance between two points to be the sum of the differences in
each coordinate; and the l∞ metric defines it to be the greatest coordinate
difference.

For ease of thought and to aid diagrams, we will for the time being work in
the hyperplane H = {(x1, . . . , xn) ∈ U :

∑n
i=1 xi = 0 which is perpendicular

(in the Euclidean metric) to L. We imbue H not with the subspace metric,
however, but with the quotient metric where the distance between two points
h, h′ ∈ H is equal to the distance between the lines h+L and h′+L in U which
correspond to the normalised utility classes of h and h′. Each normalised
utility class K has a single representative in H, and L intersects H at the
origin. Each non-nihilistic utility class corresponds to a ray in H with its
end at L.

3.1 Euclidean Normalisation

With the Euclidean metric, the shortest path from any point to the line of
nihilism will run perpendicular to the line. Given a point p = (p1, . . . , pn) ∈
U , we may replace it by p̄ = (p1 −m, . . . , pn −m), where m is the mean of
p1, . . . , pn. Since p̄ is just a translation of p parallel to the line of nihilism,
it will lie at the same distance from that line. Moreover p̄ lies in the plane
through the origin {(x1, . . . , xn) :

∑
xi = 0} which is perpendicular to the

line of nihilism, so the closest point to p̄ on L is the origin. The distance
between these two points is (

∑
(pi−m)2)1/2, which is nothing other than the

standard deviation σ(p̄) = σ(p).
Thus to normalise the Euclidean distance from nihilism one normalises

standard deviation, or, equivalently, the variance σ2.

3.2 Normalising using l1

With the l1 metric we consider the distance from p to the point x = (x, . . . , x) ∈
L as a function of x; this will be equal to

∑
|pi − x|. This is a continuous

function, and the derivative of this with respect to x is defined except at
values pi, and equal to the number of points in the tuple (p1, . . . , pn) which
lie above x minus the number of points in the tuple which lie below x. It
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Figure 2: Four instances of H when n = 3; the 3 lines meeting at the
centre are the projections of the axes of U onto H. The shapes show the
normalised representatives (one in each ray from the origin) coming from
different methods. In A we have the unit circle coming from the Euclidean
(l2) metric on U ; B and C have unit hexagons coming from the l1 and l∞

metrics respectively; and D has the triangle which would be normalised to
under the rule mentioned in Example 9. The hexagons in B and C are
the same because the metrics on H induced by l1 and l∞ coincide up to
a multiplicative constant when n ≤ 3. They diverge in higher dimensions.
When n = 4, H is 3-dimensional, and the corresponding figures would be a
sphere in A, a cube in B, a rhombic dodecahedron in C, and a tetrahedron
in D.

is easily seen that this takes its minimum value when the same number of
points among (p1, . . . , pn) lie above x as lie below.

Thus a closest point on the line of nihilism lies at x, where x is the median
value of the pi, at distance equal to the sum of coordinate distances to the
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median. Normalising with respect to the l1 metric corresponds to normalising
the average distance to the median.

3.3 Normalising using l∞

With the l∞ metric the distance from p to x will be maxpi |pi−x| = max{|max(pi)−
x|, |min(pi)−x|}. This is obviously minimised when x = (max(pi)+min(pi))/2,
with distance (max(pi)−min(pi))/2. Thus normalising with respect to this
recovers the traditional range normalisation.

3.4 Comparison of metrics

We remarked that since our space does have distinguished axes, it is not
automatic that we should seek a homogeneous metric. The l∞ metric gives a
strange notion of distance here, though. It implies that two utility functions
agreeing precisely except on one pair of outcomes, which are transposed, are
as far apart from each other as if one of them is further disturbed so that
they disagree everywhere, but nowhere by more than the transposed pair.

Intuitively, the disturbance feels like it should move them further apart.
We are therefore inclined to prefer the l1 and the Euclidean distances in this
space.

3.4.1 Canonical forms

Although from an aggregation perspective it is irrelevant what the respective
quantities are normalised to, or which representative of the normalised utility
class is chosen to be summed, in practice it can be helpful to have a canonical
choice. Range normalisation has just such a default, with the unique choice
of representative being that such that the worst option has utility 0 and the
best option has utility 1.

It would be useful to establish such defaults for the other normalisation
methods here. Fortunately there are some obvious choices.

In the remainder of this paper we will give additional reasons for preferring
the variance normalisation, and we will not return to the normalisation given
by the l1 metric beyond this brief comment: it seems natural to map the
median value to 0 and have the mean distance from the median be 1.

For variance normalisation, we suggest that it is most canonical to nor-
malise to a variance of 1 and choose a representative with a mean of 0. This
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is, for example, the form of the standard normal distribution. It has the nice
property that the 0 point is meaningful, representing the value of the uniform
lottery over the outcomes, so everything with a positive value is preferred to
a (uniform) random choice.

4 Voting utility and the large electorate as-

sumption

In Section 3 we explored geometric interpretations of size. These led us to
conclude that a few normalisation methods, in particular normalising vari-
ance, are particularly natural. This was suggestive, but as we could not
find strong reasons to prefer any one geometry, it was not conclusive. In
this Section and Section 5 we present some simple desirable properties for
normalisation rules and show that under mild assumptions normalising the
variance is the only rule which has these properties.

We will now change our language slightly, and refer to aggregation meth-
ods as voting systems, and the sets of preferences being aggregated as be-
longing to voters. This is because it is convenient to compare our set-up with
existing theory which uses this language. We are not at this point restricting
the scope of aggregation situations we consider. In Section 5 we will focus on
the extra structure present in voting scenarios where voters may misrepresent
their preferences in the expectation of a better outcome.

A key notion in the study of simple voting games, which have an assembly
of voters and some rule for passing motions according to who votes for them,
is voting power. It expresses the a priori likelihood that an individual’s vote
will make a difference to the outcome [3].

We would like to measure a similar concept in the context of making
decisions by taking normalised sums of utility functions. The main difference
is that, since we have a utility function for each voter, we are interested in
not just whether they can affect the outcome, but by how much. Certainly
this is what the voters care about: preferring a fair chance of a significant
improvement (in their eyes) to a slightly larger chance of a much smaller one.

Definition 11 The voting utility of a voter is the expected utility gained by
voting.

This is not quite a complete definition, because to take an expectation
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you must have a prior over the results with your vote counted or not (and
hence probably over how others will vote). However it is reasonable to assume
that in most situations you have some prior, and given a prior it is a natural
quantity to consider. In Section 4.1 we will explore the consequences of some
assumptions about the prior.

Voting utility has been studied in the context of whether it’s rational for
people to make the effort to vote[8], but although it captures precisely what
people care about, it doesn’t seem to have been used as a measure of the
fairness of different voting methods.

Of course as voting utilities are expectations of individuals’ utility func-
tions, to compare them we must be able to compare these utility functions –
which in some sense is the whole problem we have set out to address! But if
we assume that we have a sensible normalisation method, the purpose of the
normalisations is to provide a reasonable way to make the functions com-
parable. We will therefore use the same normalisation to compare voting
utilities.

Earlier we made an analogy with voting power, used in the case of simple
voting games where there are just two outcomes. With this last assump-
tion voting utility is actually a generalisation of voting power, since in the
case with just two outcomes there are only two utility classes, depending
on which outcome is preferred, as we saw in Figure 1. So the voting util-
ity is determined entirely by the expected chance of changing the outcome;
when others are assumed to vote uniformly at random this is the definition
of voting power.

4.1 Large electorate assumption

Henceforth we will assume that our normalisation methods are intrinsic (see
Definition 7). This is a non-trivial assumption, but it is both intuitive,
and useful in facilitating analysis. The assumption is intuitive in expressing
that the degree to which a vote is counted does not depend on other votes;
indeed all of the previously suggested normalisation methods discussed above
in Section 2.3 are intrinsic. It is useful in considering voting utility, for
if the normalisation method is intrinsic then adding a single vote consists
of adding a known vector (representing the normalised vote) in U to one
drawn from a distribution depending on the prior beliefs about others’ votes
(representing the sum of the other normalised votes). If the method is not
intrinsic then each of these vectors may depend on the other, potentially in
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some complicated manner.
As we saw, the definition of voting utility is dependent on the choice of a

prior over the votes of others. Rather than specify such a prior at this stage,
we reason about a class of non-pathological priors.

Since our normalisation method is intrinsic, a prior over the votes of
others will lead to a prior over vectors in U , representing the sum of the other
normalised votes. Essentially we will assume that the number of other voters
is large compared to the number of outcomes available (so the expected size
of the vector in U is large compared to the size of the vector which represents
the vote we will add in), and that our prior does not have a precise idea of
how the voting will go, hence has a degree of continuity.

We suggest this assumption is reasonable since if a method is correct it
should at least work in the limiting case with many voters.

Assumption 12 (Large Electorate Assumption) In considering voting util-
ity it is enough to consider pairs of outcomes. Moreover the chance that
a voter will switch the chosen outcome from b to a is proportional to the
difference in the utilities of a and b in their normalised vote.

A technical justification for this assumption is given in Appendix A.
Roughly speaking, as the number of voters grows large, the chance that
the outcome is close enough that a single vote can move it to any side of a
tie between three or more outcomes becomes small compared to the chance
that it will be close between two outcomes. This explains the first part of
the assumption. The second condition, local linearity, comes from the fact
that having many voters will smooth out any uncertainty.

4.2 Computing voting utility

We will now use these assumptions to compute the voting utility for a utility
function.

Given a prior distribution µ over pairs of outcomes, the voting utility for
a voter with utility function u and (normalised) vote v is:

VUu(v) =
∑

{a,b}∈O2

µ({a, b})(v(a)− v(b))(u(a)− u(b)). (1)

Here the factor µ({a, b})(v(a) − v(b)) is the chance that the vote makes
us switch to a from b (where a negative value is understood to mean a chance
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of switching to b from a), and the factor of u(a) − u(b) captures the utility
value of such a switch.

4.2.1 A priori voting utility

Voting power is an a priori measurement of how likely a vote is to affect
an outcome, computed by assuming that all the possible ways for other peo-
ple to vote are equally likely. When voters submit a utility function to be
normalised there are no longer finitely many possible ballots, so we cannot
weight them all equally. One should still be able to use an analogous defini-
tion by choosing an appropriate measure on U , but to avoid having to make a
choice of measure we will just note that, at least, an a priori method should
be symmetric in its expectations between the different outcomes.

So if we want to find the a priori voting utility we may assume that
µ(a, b) is constant (=k) across all pairs a 6= b ∈ O. This assumption allows
us to simplify our expression of voting utility:

Lemma 13 With the large electorate assumption, the a priori voting util-
ity VUu(v) for a voter with utility function u and normalised vote v is
k(
∑

a∈O(nv(a)u(a))−
∑

a∈O(v(a)
∑

b∈O u(b)), where k is a constant depend-
ing on the scenario but not on u or v.

Proof Putting the assumption about µ into Equation 1 gives:

VUu(v) =
∑

{a,b}∈O2

k(v(a)− v(b))(u(a)− u(b)). (2)

Now we’ll take some algebraic steps to simplify this slightly. First, de-
composing the sum over pairs into two sums over individual outcomes gives

VUu(v) = k/2
∑
a∈O

∑
b∈O

(v(a)− v(b))(u(a)− u(b)), (3)

where it’s irrelevant that we’ve introduced terms for a = b, since these will
all vanish, and a factor of 1/2 has been introduced to balance the fact that
each pair {a, b} is now counted twice, once in either order.

Now we expand, to get:

VUu(v) = k/2
∑
a∈O

∑
b∈O

(v(a)u(a) + v(b)u(b))− (v(a)u(b) + v(b)u(a)). (4)
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Since u(a) and v(a) are independent of b, and likewise in reverse, this
gives:

VUu(v) = k/2(
∑
a∈O

(nv(a)u(a))+
∑
b∈O

(nv(b)u(b))−
∑
a∈O

∑
b∈O

(v(a)u(b)+v(b)u(a)),

(5)
where the coefficients of n arise because we are summing over a set of size n.
Then since a and b are just indexing letters we can combine the first terms
and reorder the later ones to get

VUu(v) = k/2(2
∑
a∈O

(nv(a)u(a))−
∑
a∈O

((v(a)
∑
b∈O

u(b))+(u(a)
∑
b∈O

v(b)))). (6)

Finally, this reduces to

VUu(v) = k(
∑
a∈O

(nv(a)u(a))−
∑
a∈O

(v(a)
∑
b∈O

u(b)). (7)

�

As a corollary we have the following theorem.

Theorem 14 If an intrinsic normalisation method is used to produce a vot-
ing method and to measure the voting utility of voters, it gives everyone
equal voting utility under the condition of the large electorate assumption if
and only if it is variance normalisation.

Proof We take v = u in the conclusion of Lemma 13 to get: VUu(u) =
nk(

∑
a∈O((u(a))2) − (

∑
a∈O(u(a))2. This expression is simply nk times the

variance of u. �

It is often seen as desirable that voting systems be fair, and neutrality
captures an important component of this: it means that a person’s vote is
counted the same regardless of the person making it. Equalising voting utility
adds an extra dimension to fairness, meaning that (as best we can measure)
the value of each vote to the person making it is the same, regardless of their
preferences.

5 Tactical voting and strategic voting

In Section 4 we introduced the concept of voting utility and explored some
of the consequences in abstract cases. We now restrict to voting scenarios
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with the additional complication that although we would like to maximise
a weighted sum of the voter’s preferences, we cannot necessarily expect the
voters to truthfully report these.

Rather, we should in general expect voters to vote so as to maximise their
voting utility. For a fixed voting method, if there exist scenarios where by
reporting a utility function u′ instead of their true utility function u some
voter can lead to a strictly preferred scenario, we say that the voting method
is susceptible to tactical voting.

Since Arrow’s celebrated theorem [1] there have been a number of results
about the susceptibility of different systems to tactical voting. In particular
the Gibbard–Satterthwaite theorem presents a strong obstruction to escaping
tactical voting altogether [4]:

Theorem 15 If a voting system with more than two outcomes is Pareto and
not susceptible to tactical voting, it is a dictatorship.

It seems that trying to avoid tactical voting is too much, then. But there
is a similar, weaker condition.

Definition 16 A voting system is susceptible to strategic voting if it is pos-
sible for a voter to increase their a priori voting utility by falsely stating their
preferences.

Remark 17 Some authors use strategic voting to refer to what we have here
called tactical voting, but it is less common. The clash with our usage here
is unfortunate, but we feel the distinction between ‘strategic’ and ‘tactical’ is
natural and helpful enough to justify our appropriation of the term.

A system which is immune to tactical voting is said to be preference reveal-
ing ; immunity to strategic voting corresponds to being preference revealing
under restricted conditions. Specifically, when the voter has no expectations
that other voters will favour or disfavour particular outcomes.

This seems like a weak requirement, and in the context of preference
aggregation obviously a desirable one. For Harsanyi’s theorem tells us that
if we are not maximising some weighted sum of the true utility functions we
may not even manage a Pareto outcome. And if voters will vote strategically
even in the case where they have no information about others, we cannot ever
expect a true representation of their preferences, so will have no guarantee
of Pareto outcomes.
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In light of this, we might hope at least that the normalisations the ge-
ometries in Section 3 suggested as natural would be immune to strategic
voting. However this is not true of all of them. Range voting is well known
to be susceptible to strategic voting, and we recapitulate the argument in
our terms:

Example 18 Let v, v′ be utility functions differing only on outcome o, where
v takes a higher value. Then applying Lemma 13 we see that VUu(v) >
VUu(v′) if and only if u(o) is higher than the mean value of u over O.

With the range normalisation rule, the utility function may be altered by
moving the non-extremal values freely while remaining normalised (so long
as they do not become new extremes). Therefore strategic range voting de-
generates to the case where all outcomes which are better than the mean are
ranked equally top (at 1, say), and all which are worse than the mean are
ranked equally bottom.

Excepting the case where one outcome has exactly the mean utility (in
which case the voting utility will be the same regardless of where it is placed),
this means that strategic voting recovers the system known as approval voting.

It turns out that the normalisation suggested by the l1 metric is also
susceptible to strategic voting. A strategic voter will rank equally all of the
options except the one they find furthest from the mean utility, which will be
correspondingly above or below. The proof is straightforward and we leave
it as an exercise for the interested reader. If everyone is assumed to vote
strategically, this recovers the system where each person gets one vote and
they choose a candidate and give either +1 or −1 to their score.

It is not just bad luck that these two methods are susceptible to strategic
voting. Our next theorem shows that our third geometric notion of size,
variance normalisation, is the only intrinsic normalisation method which is
immune to strategic voting.

Theorem 19 Under the large electorate assumption, a weighted sum voting
method is immune to strategic voting if and only if for each individual i there
is a constant ki such that all normalised utility classes for that individual
have variance ki. In particular, an anonymous weighted sum voting method
is immune to strategic voting if and only if there is some constant k such
that for all individuals all normalised utility classes have variance k

Proof First we will prove that if such ki exist the method is immune to
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strategic voting. For if an individual has utility function u and declares a
normalised function v, we know from Section 4.2 that their voting utility will
be:

VUu(v) = k(
∑
a∈O

(nv(a)u(a))−
∑
a∈O

(v(a)
∑
b∈O

u(b)). (8)

Without loss of generality we may assume that u and v are representatives
of their respective utility classes lying in H, the hyperplane in U of functions
with zero mean. Then the last term disappears, and we have:

VUu(v) = kn(
∑
a∈O

(v(a)u(a)), (9)

which is kn times the standard inner product of u and v. Now the Cauchy-
Schwartz inequality tells us that if v has fixed norm in the space in question
(which corresponds to fixed variance), then this quantity is maximised when
v is in the same direction as u.

Now let us assume we have a method which is immune to strategic vot-
ing. Let f be the normalisation function. Then for any u, v it must be
that f(u).u ≥ f(v).u (equivalently f(u).f(u) ≥ f(v).f(u)), or it would be
strategically better to declare v when holding view u. It turns out that
this condition is strong enough that we can apply this condition locally and
promote it to a global one.

We will use the characterisation of the inner product u.v = |u||v| cos θ,
where θ is the angle between u and v. If u and v are any two vectors, then
the angle between them, measured in radians, is no more than π. So for any
ε > 0 we can find a sequence of vectors u = u0, u1, . . . , un−1, un = v such
that the angle between ui and ui+1 is no greater than ε, and n ≤ (π/ε) + 1
(for instance by projecting u and v to the unit sphere, and placing the ui as
evenly spaced points along the geodesic arc joining u and v in the sphere).

Since we are immune to strategic voting, for every i we have f(ui).f(ui) ≥
f(ui+1).f(ui) ⇒ |f(ui)| ≥ |f(ui+1)| cos ε (as cos is a decreasing function on
[0, π]). By combining these inequalities we have |f(u0)| ≥ |f(un)|(cos ε)n.
Now we use the well known inequality cos θ ≥ 1− θ2 (this is a good approx-
imation when θ is small), to get

|f(u)| ≥ |f(v)|(1− ε2)n. (10)

When ε is small, (1−ε2)n ≥ 1−nε2 (by the binomial expansion, for example).
But since n ≤ (π/ε) + 1, we have nε2 ≤ πε + ε2. Putting this together we
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have:
|f(u)| ≥ |f(v)|(1− πε− ε2), (11)

but since this holds for every positive ε, by letting it tend towards zero we
can see that |f(u)| ≥ |f(v)|. By a symmetric argument, |f(v)| ≥ |f(u)|, and
hence ∀u, v, |f(u)| = |f(v)|. Since the modulus is just equal to the variance,
we can conclude that every (intrinsic) normalisation method which is immune
to strategic voting normalises variance. �

Of course this immunity to strategic voting is somewhat restricted in its
application, since in many scenarios voters do have some idea of how others
will vote.

Remark 20 If a voter has a probability prior ν over O expressing how likely
they think each candidate is to be at the top among other voters, and that the
relative placements of any two candidates will be independent of others, then
a variation of the above proof tells us that an intrinsic normalisation method
will reveal that voter’s preferences if and only if it normalises the variance of
their utility function calculated with the outcomes weighted by ν.

6 Conclusions

Exploring the idea that normalisation is supposed to capture size, we found
that normalising the variance of a utility function corresponds to our most
familiar notion of size. We proceeded to use the concept of voting utility to
show that if there is any natural and fair intrinsic normalisation method, it
must be variance normalisation. Finally we showed that in a voting context
(with many voters), unlike all other intrinsic normalisation methods, variance
normalisation does not invite strategic voting.

Taken together we believe that these results provide a compelling case
that when a formal intrinsic normalisation method is desired, it is correct
to normalise the variance (at least if this is practical; the widely used range
normalisation benefits from simplicity).

One might ask what happens if we drop the assumption of a large number
of voters, or the assumption that the method is intrinsic. Either of these
would complicate the analysis.

In the first case, dropping the assumption of a large electorate, there
cannot simply be some other ultimately better normalisation method, for it
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would have to converge to variance normalisation as the number of voters
increased, and if it is intrinsic it cannot depend on the number of voters so
must already be variance normalisation.

If we drop the second assumption and allow non-intrinsic methods, it
would be necessary to form a more complicated model before we can even
speak of voting utility. It is possible that this could be done and another
method with desirable properties could be found, but we are inclined to think
of being intrinsic as to some degree a desirable property in itself.

In some practical situations the simple variance normalisation is not per-
fect. It is not independent of cloning, for example (this is easy to understand:
in our workings we assumed a symmetry between the outcomes, and this is
exploited in adding clones). We speculate that varying it in the direction
suggested in Remark 20 might address some of these issues.
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A Justifying the Large Electorate Assump-

tion

In this appendix we’ll explain why the Large Electorate Assumption will
approximately hold when the number of voters is large. This is a relatively
technical background section.

A normalisation function f carries the same information as the function
f̄ : S → R+ taking a utility function u in the unit sphere S in H to the length
of the normalised utility function f(u). We need a very mild assumption on
f̄ .

Assumption 21 There is a constant d such that the function f̄ is bounded
by d.

Assumption 21 excludes some pathological cases from our analysis. If f̄
is continuous then since S is compact f̄ is automatically bounded, so this
assumption is strictly weaker than continuity. Moreover if the assumption is
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not satisfied, there are some normalised utility functions which are arbitrarily
large in favour of some outcome and against some other. If there is also
symmetry between the different outcomes in the normalisation function (so
the aggregation method is neutral), voting would become a game of ‘name
the largest number’.

Assumption 22 Our distribution µ considers each vote to be drawn inde-
pendently from an identical non-discrete distribution ν which is symmetric
with respect to any permutation of the outcomes.

Assumption 22 is a collection of conditions which express the fact that µ
is supposed to be in some sense ignorant. We use it to get to Assumption
12:

Proposition 23 Let our prior µ satisfy Assumption 22 and our normalisa-
tion function f satisfy Assumption 21. Then for a fixed number of outcomes
Assumption 12 holds in the limit as the number of voters increases.

We will prove this using the central limit theorem to get that µ con-
verges to a normal distribution. The non-discrete condition in Assumption
22 merely rules out strong knowledge of how others will vote.
Proof Since ν is symmetric between the different outcomes, the mean will
be 0 and the covariance matrix of µ will be a scalar multiple λ of the identity
(where our space is the hyperplane H). By the (multivariate) central limit
theorem, as the number of voters increases the sum of these votes satisfying
Assumption 22 converges to a (mutivariate) normal distribution with likeli-
hood function p, say. With m voters this normal distribution will have mean
0 and covariance matrix mλ times the identity.

The likelihood p of a point will then be proportional to e−(l
2)/2mλ, where

l is the distance to the origin, as for a normal distribution in one variable.
Let x, y ∈ H be not more than distance d apart. If |x| = |y| + c, then

p(x)/p(y) = e−(2c|y|+c
2)/2mλ (the other terms cancel). Since |c| ≤ d, if |y|/m

is small and m is large this ratio is close to 1. And as the normal distri-
bution scales with its standard deviation, which is the square root of the
variance, for sufficiently high m an arbitrarily high percentage of points y in
the distribution will have arbitrarily small values of |y|/m.

So for large numbers of voters µ is almost everywhere almost constant at
the scale of d. The two statements of Assumption 12 are a consequence of
this.
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From any point in H which gives a tie between three or more outcomes
you can travel along the boundary between just two of them. Since the prior
is close to locally constant, by travelling far enough you can see that the
points within the distance d of a tie between more than two outcomes are
of negligibly small measure compared to points within distance d of a tie
between precisely two outcomes. While points which are close to no ties
have a larger measure again, in these cases the normalised vote cannot affect
the outcome, so it irrelevant for comparing voting utility.

The linearity of voting utility with the size of vote follows directly from
µ being locally constant. �

In fact the conditions of Assumption 22 may be partially relaxed and
the results of Proposition 23 still hold. For example if the population is
split into several large groups, and voters from each satisfy these conditions,
the resulting distribution will still approximate normal. And the symmetry
between outcomes may be dropped so long as the covariance matrix of ν is
positive definite (covariance matrices are always positive semidefinite, and
the requirement that it be positive definite roughly speaking excludes cases
where the distribution lies in a proper subspace; this is fine in the generic
case). The proofs are fairly straightforward but a little more technical, and
we omit them here.
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