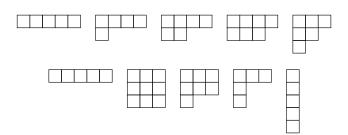
Core partitions into distinct parts and an analog of Euler's theorem

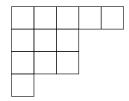
International Conference on Number Theory in honor of Krishna Alladi's 60th birthday

Armin Straub

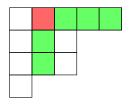
Mar 19, 2016

University of South Alabama



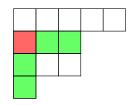


• The integer partition (5,3,3,1) has Young diagram:



• To each cell u in the diagram is assigned its hook.

• The integer partition (5,3,3,1) has Young diagram:



• To each cell u in the diagram is assigned its hook.

8	6	5	2	1
5	3	2		
4	2	1		
1				

- ullet To each cell u in the diagram is assigned its hook.
- ullet The hook length of u is the number of cells in its hook.

8	6	5	2	1
5	3	2		
4	2	1		
1				

- To each cell u in the diagram is assigned its hook.
- ullet The hook length of u is the number of cells in its hook.
- A partition is t-core if no cell has hook length t.
 For instance, the above partition is 7-core.

8	6	5	2	1
5	3	2		
4	2	1		
1				

- To each cell u in the diagram is assigned its hook.
- ullet The hook length of u is the number of cells in its hook.
- A partition is t-core if no cell has hook length t.
 For instance, the above partition is 7-core.
- A partition is (s,t)-core if it is both s-core and t-core.

• The integer partition (5,3,3,1) has Young diagram:

8	6	5	2	1
5	3	2		
4	2	1		
1				

- To each cell u in the diagram is assigned its hook.
- ullet The hook length of u is the number of cells in its hook.
- A partition is *t*-core if no cell has hook length *t*. For instance, the above partition is 7-core.
- A partition is (s,t)-core if it is both s-core and t-core.

LEM If a partition is *t*-core, then it is also rt-core for $r = 1, 2, 3 \dots$

• Using the theory of modular forms, Granville and Ono (1996) showed: (The case t=p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \ge 0$ there exists a t-core partition of n whenever $t \ge 4$.

• Using the theory of modular forms, Granville and Ono (1996) showed: (The case t=p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \ge 0$ there exists a t-core partition of n whenever $t \ge 4$.

• If $c_t(n)$ is the number of t-core partitions of n, then

$$\sum_{n=0}^{\infty} c_t(n)q^n = \prod_{n=1}^{\infty} \frac{(1 - q^{tn})^t}{1 - q^n}.$$

$$\sum_{n=0}^{\infty} c_2(n)q^n = \sum_{n=0}^{\infty} q^{\frac{1}{2}n(n+1)}, \quad \sum_{n=0}^{\infty} c_3(n)q^n = 1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + \dots$$

• Using the theory of modular forms, Granville and Ono (1996) showed: (The case t=p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \ge 0$ there exists a t-core partition of n whenever $t \ge 4$.

• If $c_t(n)$ is the number of t-core partitions of n, then

$$\sum_{n=0}^{\infty} c_t(n) q^n = \prod_{n=1}^{\infty} \frac{(1 - q^{tn})^t}{1 - q^n}.$$

$$\sum_{n=0}^{\infty} c_2(n)q^n = \sum_{n=0}^{\infty} q^{\frac{1}{2}n(n+1)}, \quad \sum_{n=0}^{\infty} c_3(n)q^n = 1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + \dots$$

Q Can we give a combinatorial proof of the Granville-Ono result?

• Using the theory of modular forms, Granville and Ono (1996) showed: (The case t=p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any $n \ge 0$ there exists a t-core partition of n whenever $t \ge 4$.

• If $c_t(n)$ is the number of t-core partitions of n, then

$$\sum_{n=0}^{\infty} c_t(n) q^n = \prod_{n=1}^{\infty} \frac{(1 - q^{tn})^t}{1 - q^n}.$$

$$\sum_{n=0}^{\infty} c_2(n)q^n = \sum_{n=0}^{\infty} q^{\frac{1}{2}n(n+1)}, \quad \sum_{n=0}^{\infty} c_3(n)q^n = 1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + \dots$$

- Q Can we give a combinatorial proof of the Granville-Ono result?
- **COR** The total number of t-core partitions is infinite.

Though this is probably the most complicated way possible to see that...

The number of (s,t)-core partitions is finite if and only if s and t are coprime.

The number of (s,t)-core partitions is finite if and only if s and t are coprime. In that case, this number is

$$\frac{1}{s+t} \binom{s+t}{s}.$$

The number of (s,t)-core partitions is finite if and only if s and t are coprime. In that case, this number is

$$\frac{1}{s+t} \binom{s+t}{s}.$$

• Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.

The number of (s,t)-core partitions is finite if and only if s and t are coprime. In that case, this number is

$$\frac{1}{s+t} \binom{s+t}{s}.$$

- Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.
- ullet Note that the number of (s,s+1)-core partitions is the Catalan number

$$C_s = \frac{1}{s+1} {2s \choose s} = \frac{1}{2s+1} {2s+1 \choose s},$$

which also counts the number of Dyck paths of order s.

The number of (s,t)-core partitions is finite if and only if s and t are coprime. In that case, this number is

$$\frac{1}{s+t} \binom{s+t}{s}.$$

- Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.
- ullet Note that the number of (s,s+1)-core partitions is the Catalan number

$$C_s = \frac{1}{s+1} {2s \choose s} = \frac{1}{2s+1} {2s+1 \choose s},$$

which also counts the number of Dyck paths of order s.

• Amdeberhan and Leven (2015) give generalizations to $(s,s+1,\ldots,s+p)$ -core partitions, including a relation to generalized Dyck paths.

The number of (s,t)-core partitions is finite if and only if s and t are coprime. In that case, this number is

$$\frac{1}{s+t} \binom{s+t}{s}.$$

- Olsson and Stanton (2007): the largest size of such partitions is $\frac{1}{24}(s^2-1)(t^2-1)$.
- ullet Note that the number of (s,s+1)-core partitions is the Catalan number

$$C_s = \frac{1}{s+1} {2s \choose s} = \frac{1}{2s+1} {2s+1 \choose s},$$

which also counts the number of Dyck paths of order s.

- Amdeberhan and Leven (2015) give generalizations to $(s,s+1,\ldots,s+p)$ -core partitions, including a relation to generalized Dyck paths.
- ullet Ford, Mai and Sze (2009) show that the number of self-conjugate (s,t)-core partitions is

$$\begin{pmatrix} \lfloor s/2 \rfloor + \lfloor t/2 \rfloor \\ \lfloor s/2 \rfloor \end{pmatrix}.$$

 Amdeberhan raises the interesting problem of counting the number of special partitions which are t-core for certain values of t.

 Amdeberhan raises the interesting problem of counting the number of special partitions which are t-core for certain values of t.

- He further conjectured that the largest possible size of an (s,s+1)-core partition into distinct parts is $\lfloor s(s+1)/6 \rfloor$, and that there is a unique such largest partition unless $s\equiv 1$ modulo 3, in which case there are two partitions of maximum size.
- Amdeberhan also conjectured that the total size of these partitions is

$$\sum_{i+j+k=s+1} F_i F_j F_k.$$

 Amdeberhan raises the interesting problem of counting the number of special partitions which are t-core for certain values of t.

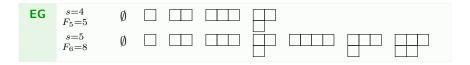
- He further conjectured that the largest possible size of an (s,s+1)-core partition into distinct parts is $\lfloor s(s+1)/6 \rfloor$, and that there is a unique such largest partition unless $s\equiv 1$ modulo 3, in which case there are two partitions of maximum size.
- Amdeberhan also conjectured that the total size of these partitions is

$$\sum_{i+j+k=s+1} F_i F_j F_k.$$

 Amdeberhan raises the interesting problem of counting the number of special partitions which are t-core for certain values of t.

- He further conjectured that the largest possible size of an (s,s+1)-core partition into distinct parts is $\lfloor s(s+1)/6 \rfloor$, and that there is a unique such largest partition unless $s\equiv 1$ modulo 3, in which case there are two partitions of maximum size.
- Amdeberhan also conjectured that the total size of these partitions is

$$\sum_{i+j+k=s+1} F_i F_j F_k.$$



A two-parameter generalization

S 2016

THM Let $N_d(s)$ be the number of (s, ds - 1)-core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and

$$N_d(s) = N_d(s-1) + dN_d(s-2).$$

- The case d = 1 settles Amdeberhan's conjecture.
- This special case was independently also proved by Xiong, who further shows the other claims by Amdeberhan.

A two-parameter generalization

S 2016

THM Let $N_d(s)$ be the number of (s, ds - 1)-core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and

$$N_d(s) = N_d(s-1) + dN_d(s-2).$$

- The case d = 1 settles Amdeberhan's conjecture.
- This special case was independently also proved by Xiong, who further shows the other claims by Amdeberhan.
- The case d=2 shows that there are 2^{s-1} many (s,2s-1)-core partitions into distinct parts.

A two-parameter generalization

S 2016

THM Let $N_d(s)$ be the number of (s, ds - 1)-core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and

$$N_d(s) = N_d(s-1) + dN_d(s-2).$$

- The case d = 1 settles Amdeberhan's conjecture.
- This special case was independently also proved by Xiong, who further shows the other claims by Amdeberhan.
- The case d=2 shows that there are 2^{s-1} many (s,2s-1)-core partitions into distinct parts.

EG

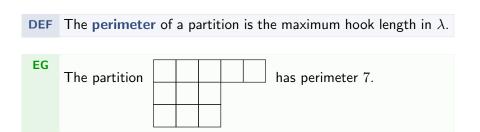
The first few generalized Fibonacci polynomials $N_d(s)$ are

1,
$$d$$
, $2d$, $d(d+2)$, $d(3d+2)$, $d(d^2+5d+2)$,...

For d=1, we recover the usual Fibonacci numbers.

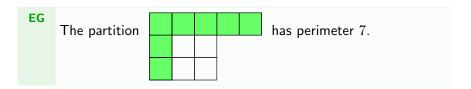
For d = 2, we find $N_2(s) = 2^{s-1}$.

The perimeter of a partition



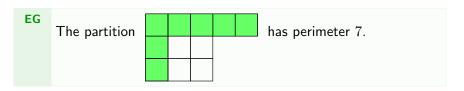
The perimeter of a partition

DEF The **perimeter** of a partition is the maximum hook length in λ .



The perimeter of a partition

DEF The **perimeter** of a partition is the maximum hook length in λ .

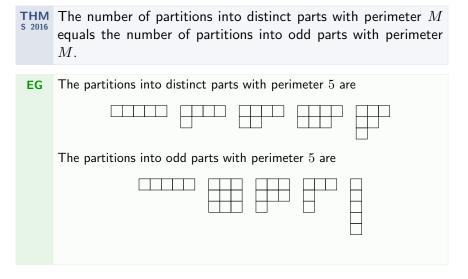


- Introduced (up to a shift by 1) by Corteel and Lovejoy (2004) in their study of overpartitions.
- The perimeter is the largest part plus the number of parts (minus 1).
- The rank is the largest part minus the number of parts.

An analog of Euler's theorem

The number of partitions into distinct parts with perimeter M equals the number of partitions into odd parts with perimeter M.

An analog of Euler's theorem

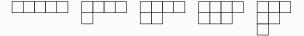


 While it appears natural and is easily proved, we have been unable to find this result in the literature.

An analog of Euler's theorem

THM S 2016 The number of partitions into distinct parts with perimeter M equals the number of partitions into odd parts with perimeter M. Both are enumerated by the Fibonacci number F_M .

EG The partitions into distinct parts with perimeter 5 are



The partitions into odd parts with perimeter 5 are

In each case, there are $F_5=5$ many of these partitions.

 While it appears natural and is easily proved, we have been unable to find this result in the literature.

Euler's theorem

THM The number D(n) of partitions of n into distinct parts equals the number O(n) of partitions of n into odd parts.

proof Euler famously proved his claim using a very elegant manipulation of generating functions:

$$\sum_{n\geqslant 0} D(n)x^n = (1+x)(1+x^2)(1+x^3)\cdots$$

$$= \frac{1-x^2}{1-x} \frac{1-x^4}{1-x^2} \frac{1-x^6}{1-x^3}\cdots$$

$$= \frac{1}{1-x} \frac{1}{1-x^3} \frac{1}{1-x^5} \cdots = \sum_{n\geqslant 0} O(n)x^n.$$

Bijective proofs for instance by Sylvester.

• Bousquet-Mélou and Eriksson (1997): the number of partitions of n into distinct parts with sign-alternating sum k is equal to the number of partitions of n into k odd parts.

Kim and Yee (1997): combinatorial proof through Sylvester's bijection.

- Bousquet-Mélou and Eriksson (1997): the number of partitions of n into distinct parts with sign-alternating sum k is equal to the number of partitions of n into k odd parts.
 - Kim and Yee (1997): combinatorial proof through Sylvester's bijection.
- The number of partitions of n into distinct parts with maximum part M is equal to the number of partitions of n into odd parts such that the maximum part plus twice the number of parts is 2M+1.

- Bousquet-Mélou and Eriksson (1997): the number of partitions of n into distinct parts with sign-alternating sum k is equal to the number of partitions of n into k odd parts.
 - Kim and Yee (1997): combinatorial proof through Sylvester's bijection.
- The number of partitions of n into distinct parts with maximum part M is equal to the number of partitions of n into odd parts such that the maximum part plus twice the number of parts is 2M+1.
- The number of partitions of n into odd parts with maximum part equal to 2M+1 is equal to the number of partitions of n into distinct parts with rank 2M or 2M+1. [both taken from Fine's book]

- Bousquet-Mélou and Eriksson (1997): the number of partitions of n into distinct parts with sign-alternating sum k is equal to the number of partitions of n into k odd parts.
 - Kim and Yee (1997): combinatorial proof through Sylvester's bijection.
- The number of partitions of n into distinct parts with maximum part M is equal to the number of partitions of n into odd parts such that the maximum part plus twice the number of parts is 2M+1.
- The number of partitions of n into odd parts with maximum part equal to 2M+1 is equal to the number of partitions of n into distinct parts with rank 2M or 2M+1. [both taken from Fine's book]
 - Q Do similarly interesting refinements exist for partitions into distinct (respectively odd) parts with perimeter M?

• The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is (s, s + 1)-core if and only if it has perimeter strictly less than s.

• The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is (s, s + 1)-core if and only if it has perimeter strictly less than s.

proof Let λ be a partition into distinct parts.

• The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is (s, s + 1)-core if and only if it has perimeter strictly less than s.

proof Let λ be a partition into distinct parts.

• Assume λ has a cell u with hook length $t \geqslant s$.

 The following very simple observation connects core partitions with partitions of bounded perimeter.

A partition into distinct parts is (s, s+1)-core if and only if it has perimeter strictly less than s.

proof Let λ be a partition into distinct parts.

- Assume λ has a cell u with hook length $t \geqslant s$.
- Since λ has distinct parts, the cell to the right of u has hook length t-1 or t-2.

 The following very simple observation connects core partitions with partitions of bounded perimeter.

LEM A partition into distinct parts is (s,s+1)-core if and only if it has perimeter strictly less than s.

proof Let λ be a partition into distinct parts.

- Assume λ has a cell u with hook length $t \geqslant s$.
- Since λ has distinct parts, the cell to the right of u has hook length t-1 or t-2.
- It follows that λ has a hook of length s or s+1.

 The following very simple observation connects core partitions with partitions of bounded perimeter.

LEM A partition into distinct parts is (s,s+1)-core if and only if it has perimeter strictly less than s.

proof Let λ be a partition into distinct parts.

- Assume λ has a cell u with hook length $t \geqslant s$.
- Since λ has distinct parts, the cell to the right of u has hook length t-1 or t-2.
- It follows that λ has a hook of length s or s+1.

COR An (s, ds - 1)-core partition into distinct parts has perimeter at most ds - 2.

Summary

The number of (s,t)-core partitions is finite if and only if s and t are coprime. In that case, this number is

$$\frac{1}{s+t} \binom{s+t}{s}.$$

S 2016

Let $N_d(s)$ be the number of (s, ds - 1)-core partitions into distinct parts. Then, $N_d(1) = 1$, $N_d(2) = d$ and

$$N_d(s) = N_d(s-1) + dN_d(s-2).$$

- In particular, there are F_s many (s-1,s)-core partitions into distinct parts,
- and 2^{s-1} many (s, 2s-1)-core partitions into distinct parts.
 - What is the number of (s,t)-core partitions into distinct parts Q in general?

$s \setminus t$	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	∞	2	∞	3	∞	4	∞	5	∞	6	∞
3	1	2	∞	3	4	∞	5	6	∞	7	8	∞
4	1	∞	3	∞	5	∞	8	∞	11	∞	15	∞
5	1	3	4	5	∞	8	16	18	16	∞	21	38
6	1	∞	∞	∞	8	∞	13	∞	∞	∞	32	∞
7	1	4	5	8	16	13	∞	21	64	50	64	114
8	1	∞	6	∞	18	∞	21	∞	34	∞	101	∞
9	1	5	∞	11	16	∞	64	34	∞	55	256	∞
10	1	∞	7	∞	∞	∞	50	∞	55	∞	89	∞
11	1	6	8	15	21	32	64	101	256	89	∞	144
12	1	∞	∞	∞	38	∞	114	∞	∞	∞	144	∞

$s \setminus t$	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	∞	2	∞	3	∞	4	∞	5	∞	6	∞
3	1	2	∞	3	4	∞	5	6	∞	7	8	∞
4	1	∞	3	∞	5	∞	8	∞	11	∞	15	∞
5	1	3	4	5	∞	8	16	18	16	∞	21	38
6	1	∞	∞	∞	8	∞	13	∞	∞	∞	32	∞
7	1	4	5	8	16	13	∞	21	64	50	64	114
8	1	∞	6	∞	18	∞	21	∞	34	∞	101	∞
9	1	5	∞	11	16	∞	64	34	∞	55	256	∞
10	1	∞	7	∞	∞	∞	50	∞	55	∞	89	∞
11	1	6	8	15	21	32	64	101	256	89	∞	144
12	1	∞	∞	∞	38	∞	114	∞	∞	∞	144	∞

$s \setminus t$	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	∞	2	∞	3	∞	4	∞	5	∞	6	∞
3	1	2	∞	3	4	∞	5	6	∞	7	8	∞
4	1	∞	3	∞	5	∞	8	∞	11	∞	15	∞
5	1	3	4	5	∞	8	16	18	16	∞	21	38
6	1	∞	∞	∞	8	∞	13	∞	∞	∞	32	∞
7	1	4	5	8	16	13	∞	21	64	50	64	114
8	1	∞	6	∞	18	∞	21	∞	34	∞	101	∞
9	1	5	∞	11	16	∞	64	34	∞	55	256	∞
10	1	∞	7	∞	∞	∞	50	∞	55	∞	89	∞
11	1	6	8	15	21	32	64	101	256	89	∞	144
12	1	∞	∞	∞	38	∞	114	∞	∞	∞	144	∞

s t	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	∞	2	∞	3	∞	4	∞	5	∞	6	∞
3	1	2	∞	3	4	∞	5	6	∞	7	8	∞
4	1	∞	3	∞	5	∞	8	∞	11	∞	15	∞
5	1	3	4	5	∞	8	16	18	16	∞	21	38
6	1	∞	∞	∞	8	∞	13	∞	∞	∞	32	∞
7	1	4	5	8	16	13	∞	21	64	50	64	114
8	1	∞	6	∞	18	∞	21	∞	34	∞	101	∞
9	1	5	∞	11	16	∞	64	34	∞	55	256	∞
10	1	∞	7	∞	∞	∞	50	∞	55	∞	89	∞
11	1	6	8	15	21	32	64	101	256	89	∞	144
12	1	∞	∞	∞	38	∞	114	∞	∞	∞	144	∞

CONJ If s is odd, then the number of (s,s+2)-core partitions into distinct parts equals 2^{s-1} .

CONJ If s is odd, then the number of (s,s+2)-core partitions into distinct parts equals 2^{s-1} .

EG (s=3) The four (3,5)-core partitions into distinct parts are:

CONJ If s is odd, then the number of (s,s+2)-core partitions into distinct parts equals 2^{s-1} .

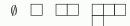
EG (s=3) The four (3,5)-core partitions into distinct parts are:

(s=5) The sixteen (5,7)-core partitions into distinct parts are:

 $\{5,4,2,1\}, \{8,4,3,1\}, \{9,5,4,2,1\}$

CONJ If s is odd, then the number of (s,s+2)-core partitions into distinct parts equals 2^{s-1} .

EG (s=3) The four (3,5)-core partitions into distinct parts are:



(s=5) The sixteen (5,7)-core partitions into distinct parts are:

$$\{\}, \quad \{1\}, \quad \{2\}, \quad \{3\}, \quad \{4\}, \quad \{2,1\}, \quad \{3,1\}, \quad \{5,1\}, \\ \{3,2\}, \quad \{4,2,1\}, \quad \{6,2,1\}, \quad \{4,3,1\}, \quad \{7,3,2\}, \\ \{5,4,2,1\}, \quad \{8,4,3,1\}, \quad \{9,5,4,2,1\}$$

- The largest size of such partitions appears to be ¹/₃₈₄(s² 1)(s + 3)(5s + 17).
 There appears to be a unique partition of that size (with ¹/₈(s 1)(s + 5) many parts and largest part ³/₉(s² 1)).
- Next ones: $\{18, 12, 11, 7, 6, 5, 3, 2, 1\}$, $\{30, 22, 21, 15, 14, 13, 9, 8, 7, 6, 4, 3, 2, 1\}$.

$s \setminus t$	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	2	2	2	2	2	2	2	2	2	2
3	1	2	∞	4	4	∞	6	6	∞	8	8	∞
4	1	2	4	∞	7	6	9	∞	11	10	13	∞
5	1	2	4	7	∞	17	12	17	25	∞	41	31
6	1	2	∞	6	17	∞	31	21	∞	34	62	∞
7	1	2	6	9	12	31	∞	80	43	78	87	97
8	1	2	6	∞	17	21	80	∞	152	78	124	∞
9	1	2	∞	11	25	∞	43	152	∞	404	166	∞
10	1	2	8	10	∞	34	78	78	404	∞	790	308
11	1	2	8	13	41	62	87	124	166	790	∞	2140
12	1	2	∞	∞	31	∞	97	∞	∞	308	2140	∞

s t	1	2	3	4	5	6	7	8	9	10	11	12
- 1.	_	_	_		ŭ							
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	2	2	2	2	2	2	2	2	2	2
3	1	2	∞	4	4	∞	6	6	∞	8	8	∞
4	1	2	4	∞	7	6	9	∞	11	10	13	∞
5	1	2	4	7	∞	17	12	17	25	∞	41	31
6	1	2	∞	6	17	∞	31	21	∞	34	62	∞
7	1	2	6	9	12	31	∞	80	43	78	87	97
8	1	2	6	∞	17	21	80	∞	152	78	124	∞
9	1	2	∞	11	25	∞	43	152	∞	404	166	∞
10	1	2	8	10	∞	34	78	78	404	∞	790	308
11	1	2	8	13	41	62	87	124	166	790	∞	2140
12	1	2	∞	∞	31	∞	97	∞	∞	308	2140	∞

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

Huan Xiong
Core partitions with distinct parts
Preprint, 2015. arXiv:1508.07918