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• How Apple uses LLVM to build a GPU Compiler 

• Factors that affect GPU performance  

• The Apple GPU compiler 

• Pipeline passes  

• Challenges
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Agenda



• Live on Trunk and merge continuously 

• Benefit from latest improvements on trunk 

• Identify any regressions immediately and report back 

• Minimize changes to open source llvm code 

• Reuse as much as possible
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How Apple uses LLVM



Continuous Integration
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• Regression testing involves:  

• register count 

• instruction count 

• FileCheck : correctness  

• compile time  

• compiler size 

• runtime performance 
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Testing
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About GPUs
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GPUs are massively parallel vector processors 

Threads are grouped together and execute in lockstep (they share the same PC)

About GPUs
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Shader Core
PC

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7



The parallelism is implicit, a single thread looks like normal CPU code

float kernel(float a, float b) { 
    float c = a + b; 
    return c; 
}
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About GPUs

Shader Core
PC

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7



The parallelism is implicit, a single thread looks like normal CPU code

float8 kernel(float8 a, float8 b) { 
    float8 c = add_v8(a, b); 
    return c; 
}
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About GPUs

Shader Core
PC

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7



Multiple groups of threads are resident on the GPU at the same time for latency hiding

Shader Core

About GPUs : Latency hiding

float kernel(struct In_PS ) { 
   float4 color = texture_fetch(); 

 float4 c =  In_PS.a * In_PS.b; 
 … 
 float4 d =  c + color; 

   … 
}

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7

PCPC
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PC PC



The GPU picks up work from the various different groups of threads to hide the 
latency from the other groups

Shader Core

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7

PCPCPC
float kernel(struct In_PS ) { 
   float4 color = texture_fetch(); 

 float4 c =  In_PS.a * In_PS.b; 
 … 
 float4 d =  c + color; 

   … 
}

14

About GPUs : Latency hiding

PC



The GPU picks up work from the various different groups of threads to hide the 
latency from the other groups

Shader Core

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7

PCPCPC
float kernel(struct In_PS ) { 
   float4 color = texture_fetch(); 

 float4 c =  In_PS.a * In_PS.b; 
 … 
 float4 d =  c + color; 

   … 
}
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About GPUs : Latency hiding

PC



The GPU picks up work from the various different groups of threads to hide the 
latency from the other groups

Shader Core

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7

float kernel(struct In_PS ) { 
   float4 color = texture_fetch(); 

 float4 c =  In_PS.a * In_PS.b; 
 … 
 float4 d =  c + color; 

   … 
}
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About GPUs : Latency hiding

PCPCPC PC



Shader Core

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7

PCPCPC PC
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About GPUs : Latency hiding

The GPU picks up work from the various different groups of threads to hide the 
latency from the other groups

float kernel(struct In_PS ) { 
   float4 color = texture_fetch(); 

 float4 c =  In_PS.a * In_PS.b; 
 … 
 float4 d =  c + color; 

   … 
}



Shader Core

Registers per  
lane

Registers per  
thread
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About GPUs: Register file

The groups of threads share a big register file that is split between the threads

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7

PCPCPC PC

0b0a 0c 0d

4b4a 4c 4d

6b6a 6c 6d

2b2a 2c 2d

1b1a 1c 1d

3b3a 3c 3d

5b5a 5c 5d

7b7a 7c 7d

Register File

ba c d
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About GPUs: Register file

The number of registers used per-thread impact the number of resident group of 
threads on the machine (occupancy)

Shader Core

Registers per 
 thread

PC

2 3

6 7

0 1

4 5

Register File

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7



This in turn will impact the latency hiding capability
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About GPUs: Register file

Shader Core

Registers per 
 thread

PC

2 3

6 7

0 1

4 5

Register File

LANE 0 LANE 1 LANE 2 LANE 3 LANE 4 LANE 5 LANE 6 LANE 7

VERY IMPORTANT!



The huge register file and number of concurrent threads makes spilling pretty costly
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About GPUs: Spilling

Register File L1$



Example (spilling 1 register): 1024 threads x  32-bit register = 4 KB !

Register File L1$
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About GPUs: Spilling

The huge register file and number of concurrent threads makes spilling pretty costly 

Spilling is typically not an effective way of reducing register pressure to increase 
occupancy and should be avoided at all costs



Pipeline
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We support function calls and we try to exploit them 

Like most GPU programming models though, we can inline everything if we want

Unoptimized IR

Inlining
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Inlining

All functions + main kernel linked 
together in a single module



I-Cache savings!
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Not inlining showed significant speedup on some shaders where big functions were 
called multiple times

Inlining



Dead Arg Elimination

Get rid of dead arguments to functions
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Inlining



Convert to pass by value as many 
objects as we can
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Dead Arg Elimination

Argument Promotion

Inlining



Proceed to the actual inlining

28

Inlining

Dead Arg Elimination

Argument Promotion

Inlining



Inlining decision based on standard LLVM 
inlining policy + custom threshold + 
additional constraints
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Inlining

Dead Arg Elimination

Argument Promotion

Inlining



Inlining

int function(int addrspace(stack)* v) { 
  … 
}

int function(int addrspace(constant)* v) { 
  … 
}

We force inline these cases
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Objective of our inlining policy is to be very conservative while trying exploit cases where we 
can keep a function call can benefit us potentially a lot 

Custom policies try to minimize the impact that not inlining could have on other key 
optimizations for performance (SROA, Buffer preloading)



int callee() { 
  add r1, r2, r3 
  ret 
} 

int caller () { 
  mul r4, r1, r3 
  push r4 
  call callee() 
  pop r4 
  add r1, r1, r4 
}

int callee() { 
  add r1, r2, r3 
  ret 
} 

int caller () { 
  mul r4, r1, r3 
  push r4 
  call callee() 
  pop r4 
  add r1, r1, r4 
}

Without IPRA With IPRA
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The new IPRA support in LLVM has been key in avoiding pointless calling convention 
register store/reload

Inlining



Inlining

SROA
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SROA

Argument Promotion
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Inlining

SROA

SROA

We run it multiple times in our pipeline in 
order to be sure that we promote as many 
allocas to register values as possibleInlining

SROA

Argument Promotion



Inlining

SROA

Alloca Opt

int function(int i) { 
    int a[4] = { x, y, z, w }; 
    … 
    … = a[i];  
}
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Alloca Opt

Argument Promotion



Inlining

SROA

Alloca Opt

int function(int i) { 
    int a[4] = { x, y, z, w }; 
    … 
    … = i == 0 ? x : 
        (i == 1 ? y : i == 2 ? z : w); 
}

Less stack 
accesses!
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Alloca Opt

Argument Promotion



SROA

Alloca Opt

Loop Unrolling
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Loop Unrolling



Completely unrolling loops allows SROA to remove stack accesses 

If we have dynamic memory access to stack or constant memory that we can promote to 
uniform memory we want to greatly increase the unrolling thresholds

int a[5] = { x, y, z, w, q }; 
int b = 0; 

for (int i = 0; i < 5; ++i) { 
  b += a[i]; 
}

int a[5] = { x, y, z, w, q }; 
int b = x; 
b += y; 
b += z; 
b += w; 
b += q;
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Loop Unrolling



We also keep track of register pressure 

Our scheduler is very eager to try and help latency hiding by moving most of memory 
accesses at the top of the shader (and is difficult to teach it otherwise) so we limit 
unrolling when we detect we could blow up the register pressure

for (int i = 0; i < 5; ++i) { 
  float4 a = texture_fetch(); 
  float4 b = texture_fetch(); 
  float4 c = texture_fetch(); 
  float4 d = texture_fetch(); 
  float4 e = texture_fetch(); 

  // Math involving the above 
}
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Loop Unrolling



We allow partial unrolling if we detect a static loop count and the loop would be bigger 
than our unrolling threshold

for (int i = 0; i < 16; ++i) { 
  float4 a = texture_fetch(); 

  // Math involving the above 
}

for (int i = 0; i < 4; ++i) { 
  float4 a1 = texture_fetch(); 
  float4 a2 = texture_fetch(); 
  float4 a3 = texture_fetch(); 
  float4 a4 = texture_fetch(); 
  … 
  // Unrolled 4 times 
}
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Loop Unrolling



Loop Unrolling

Flatten CFG
if (val == x) { 
  a = v + z; 
  c = q + a; 
} else { 
   b = v * z; 
   c = q * b; 
}  
… = c;
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Flatten CFG

Speculation helps in creating bigger blocks for the scheduler to do a better job 

and reduces the total overhead introduced by small blocks



Loop Unrolling

Flatten CFG

Speculation helps in creating bigger blocks for the scheduler to do a better job 

and reduces the total overhead introduced by small blocks
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Flatten CFG

a = v + z; 
c1 = q + a; 
b = v * z; 
c2 = q * b; 
c = (val == x) ? c1 : c2; 
… = c;

if (val == x) { 
  a = v + z; 
  c = q + a; 
} else { 
   b = v * z; 
   c = q * b; 
}  
… = c;



Flatten CFG

Uniformity Hoisting

42

GPUs are massively parallel, but often some computation in shader can be statically 
determined to be the same for all the threads 

Some of these patterns are really convenient or difficult for the shader writer to extract from 
the program

Uniformity Hoisting



Flatten CFG

Uniformity Hoisting
void kernel(constant float4 *A, 
                       constant bool *b 
                       global float *C) { 
    float4 f_vec = *b ? *A : float4(1.0); 
    … = f_vec * C[tid]; 
}
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GPUs are massively parallel, but often some computation in shader can be statically 
determined to be the same for all the threads 

Some of these patterns are really convenient or difficult for the shader writer to extract from 
the program

Uniformity Hoisting



Flatten CFG

Uniformity Hoisting

void uniform_kernel(constant float4 *A, 
                                         constant bool *b) { 
    // uni_f_vec lives in uniform memory 
    uni_f_vec = *b ? *A : float4(1.0); 
} 
void kernel(constant float4 *A, 
                       constant bool *b 
                       global float *C) { 
    … = uni_f_vec * C[tid]; 
}
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We can move such computation to a program that runs at a lower rate (once) 

Even one instruction is a lot of parallel work saved

Uniformity Hoisting



Flatten CFG

Uniformity Hoisting

void kernel(constant float4 *A, 
                       constant bool *b 
                       global float *C) { 
    const int a[5] = { 3, 2, 1, 4, 2 }; 
     
    … = a[i]; 
}

Never stored to
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Some stack arrays that are initialized and never stored to (and haven’t been optimized 
away previously) can be turned into global loads instead

Uniformity Hoisting



Flatten CFG

Uniformity Hoisting

const int a[5] = { 3, 2, 1, 4, 2 }; 

void kernel(constant float4 *A, 
                       constant bool *b 
                       global float *C) { 
    … = a[i]; 
}
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File scope constants can be initialized more efficiently before running the program 

In the stack also the array is replicated for every thread, while in global memory the 
array memory is shared by all the threads

Uniformity Hoisting



Uniformity Hoisting

CFG Structurization

A

B C

D
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When control-flow is unstructured (e.g., a block is controlled by multiple 
predecessors) execution on GPUs require some special handling

CFG Structurization



Uniformity Hoisting

CFG Structurization

A

B C

D
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Our backend supports full execution of unstructured control-flow handled at MI-level with 
little overhead 

So we need only limited structurization (we require loops to be transformed in LoopSimplify 
form though)

CFG Structurization



For relatively small unstructured blocks employ structurization based on duplication

Uniformity Hoisting

CFG Structurization

A

B C

D

C’
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CFG Structurization



Uniformity Hoisting

CFG Structurization
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A

B C

D

C’

We thought about employing the LLVM StructurizeCFG pass, but the way it translated 
control-flow wasn’t optimal for us (Higher register pressure on avg, more control 
instructions)

CFG Structurization



We run a bunch of optimizations (multiple times) in between passes

InstCombine
DCE

SCCP

CSE

SimplifyCFG

Reassociate
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Misc. optimizations



Instruction Selection is one of the most expensive steps of our compilation pipeline 

We use lots of custom combines to extract performance from our hardware
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Instruction Selection

SelectionDAG FastISel



Takes between 15% to 35% 
of our compile time!
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Instruction Selection is one of the most expensive steps of our compilation pipeline 

We use lots of custom combines to extract performance from our hardware

Instruction Selection

SelectionDAG FastISel



SelectionDAG FastISel

Takes between 15% to 35% 
of our compile time!

On some devices FastISel 
helps keeping compile time in check
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Instruction Selection is one of the most expensive steps of our compilation pipeline 

We use lots of custom combines to extract performance from our hardware

Instruction Selection



SelectionDAGFastISelGlobalISel

Plan is to switch to GlobalISel in the near future as our main compiler ISel 

The switch should give us a better infrastructure while improving compile time
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Instruction Selection



Scheduling is key for exploiting ILP,  improve latency hiding and reducing power 
consumption by reducing register accesses 

We try to achieve the above while being very careful at not to cause register pressure 
problems

add r5, r0, r3 
mul r7, r3, r4 
sub r6, r5, r4 
load r1 
add r3, r1, r6 
load r2 
mul r4, r2, r3
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Scheduling



Adding unrelated after memory accesses helps with in-thread latency hiding so that 
other instructions can be executed while the load or texture fetch results are ready

load r1 
load r2 
add r5, r0, r3 
mul r7, r3, r4 
sub r6, r5, r4 
add r3, r1, r6 
mul r4, r2, r3

Wait here for the loads

Independent operations 
here
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Scheduling



load r1 
load r2 
add r5, r0, r3 
mul r7, r3, r4 
sub r6, r5, r4 
add r3, r1, r6 
mul r4, r2, r3
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Interleaving independent operations to improve ILP 

Forwarding instruction results help reducing register file traffic (lower power) 

This is pretty standard scheduling

Scheduling



load r1 
load r2 
add r5, r0, r3 
mul r7, r3, r4 
sub r6, r5, r4 
add r3, r1, r6 
mul r4, r2, r3
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Many other target specific policies are enforced, all aimed at improving ILP, latency hiding 
and power (for example grouping instructions by type), all of this while battling with register 
pressure 

We are willing to spend a lot of compile time on scheduling

Scheduling
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Challenges



• Being JITs GPU compilers care about compile time very much
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Compile-time and being a JIT



• Being JITs GPU compilers care about compile time very much 

• We optimize our pipeline to obtain the best results with the least wasted compile 
time
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Compile-time and being a JIT



Main offenders: 

• Instruction Selection: 15% - 35% compile-time 

• Scheduling: 5% - 15% compile-time 

• Instruction combining: ~10% compile-time 

• Register Allocation/Register Coalescing: ~10% compile-time
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Compile-time and being a JIT



• Being JITs GPU compilers care about compile time very much 

• We optimize our pipeline to obtain the best results with the least wasted compile 
time 

• Having a custom pipeline often times creates problems as changing the order of 
the passes can unveil nasty bugs that used to be hidden …
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Compile-time and being a JIT



• Being JITs GPU compilers care about compile time very much 

• We optimize our pipeline to obtain the best results with the least wasted compile 
time 

• Having a custom pipeline often times creates problems as changing the order of 
the passes can unveil nasty bugs that used to be hidden … 

• We also reuse a single compiler instance for multiple compilations … this also 
uncovered some nasty bugs!
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Compile-time and being a JIT
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Register definitions

Tuples of 4

Tuples of 2
r0 r1

r0 r1 r2 r3

r0 r1 r2 r3 r4 r5 r6 r7 r8

r2 r3 r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7 r8

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7 r8



Some instructions support complex input/output operands loaded in contiguous 
registers 

GPUs typically support register tuples with overlapping tuple elements sharing many RUs
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Register definitions

Tuples of 4

Tuples of 2
r0 r1

r0 r1 r2 r3

r0 r1 r2 r3 r4 r5 r6 r7 r8

r2 r3 r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7 r8

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7 r8



This kind of register hierarchy generates a substantial amount of LLVM register 
definitions (one per each element of each tuple)  

Tuples can go up to 16-wide on some architectures!
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Register definitions

Tuples of 4

Tuples of 2
r0 r1

r0 r1 r2 r3

r0 r1 r2 r3 r4 r5 r6 r7 r8

r2 r3 r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7 r8

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7 r8



Algorithms that scale with the number or registers or iterate over all the registers containing 
a RU can take a hit 

We had problem with IPRA implementation for example where in our case for determining 
the registers used by a function was O(N2) on the number of registers
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Register definitions

Tuples of 4

Tuples of 2
r0 r1

r0 r1 r2 r3

r0 r1 r2 r3 r4 r5 r6 r7 r8

r2 r3 r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7 r8

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7 r8



• LLVM has limited support for register pressure awareness 

• IR passes largely ignore register pressure (example LICM) 

• Machine-level has some register pressure estimation, but most passes care only if 
they are running out of registers 

• For us increasing register pressure is potentially bad even if we don’t end up 
spilling as it reduces occupancy
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Register pressure awareness



Q&A
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