
Valhall Instruction Set Reference

Portions of this work derive from ISA.xml, which is SPDX-MIT:

Copyright ©2021 Collabora Ltd.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files

(the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to

do so, subject to the following conditions:

The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial

portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”,WITHOUTWARRANTYOFANYKIND, EXPRESSOR IMPLIED, INCLUDING

BUT NOT LIMITED TO THEWARRANTIES OF MERCHANTABILITY, FITNESS FORAPARTICULAR PURPOSEAND

NONINFRINGEMENT. IN NO EVENT SHALL THEAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FORANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER INANACTION OF CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Arm Limited has registered trademarks and uses trademarks. For a list of trademarks ofArm, please see their Trade-

mark list page at https://www.arm.com/company/policies/trademarks/arm-trademark-list. Arm®is a registered

trademark of Arm. Mali™is a trademark of Arm.

This work was produced by Collabora, Ltd. independent of Arm with no affiliation.

The work is provided “as is”, without warranty of any kind, express or implied, including but not limited to the

warranties of merchantability, fitness for a particular purpose and noninfringement. in no event shall the authors

or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or

otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.

Copyright ©2021 Collabora, Ltd.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (SPDX-CC-

BY-SA-4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

1

https://www.arm.com/company/policies/trademarks/arm-trademark-list

Intro

Valhall is the instruction set used in the latest generation of Arm Mali GPUs, including:

Name Codename Major Minor

Mali G77 Trym 9 0

Mali G57 Natt-A 9 1

Mali G78 Borr 9 2

Mali G57 Natt-B 9 3

Mali G68 Ottr 9 4

Mali G78AE Borr-AE 9 5

Overview

Valhall is a linearization of Bifrost, its predecessor instruction set. Recall Bifrost has instructions paired in tuples,

tuples grouped in clauses, and machine state specified in the header of each clause. In Bifrost, it is the compiler’s

responsibility to group instructions as part of scheduling. This simplifies the hardware, at the expense of a much

more complicated compiler and worse utilization of hardware resources on real workloads.

Valhall replaces Bifrost’s static scheduling with a dynamic hardware scheduler, making it a superscalar architecture.

At the instruction level, it is a simple evolution of Bifrost.

Valhall retains Bifrost’s SIMD-within-a-word semantics. The hardware natively supports 8-bit, 16-bit, and 32-bit

operations. While 32-bit operations are scalar, 16-bit operations are vectorized in pairs, and 8-bit operations are

vectorized in quads. In theory, this permits 16-bit operations to have doubled throughput compared to 32-bit

operations.

Valhall improves on Bifrost’s 16-bit support by properly supporting write masks on most 16-bit destinations, so

programs using 16-bit operations get register pressure halved even when vectorization is impossible. Additionally,

write masks on 32-bit floating point operations have the semantic of converting the result to 16-bit.

Dependencies

Valhall executes new instructions while prior high-latency instructions are still in flight. This allows the architecture

to hide the latency of memory accesses, by issuing multiple memory accesses together or executing unrelated

arithmetic while the results are pending. When the results of a memory access are required, the compiler must

explicitly wait on the previous instruction, inserting a dependency.

Recall on Bifrost, every clause is assigned one of eight “dependency slots”, and every clause can wait on any

subset of these slots. Rather than specifying in every instruction, Bifrost specifies this information in the clause

header, as a compromise between precision and code size.

Valhall has no clauses (and hence no clause headers), so it must specify this information in the instructions

themselves. This becomes practical by making two simplifications to Bifrost:

First, general instructions only need to specify the dependencies. Arithmetic instructions do not need a dependency

slot assigned. The few instructions that do need dependency slots can specify their slot in another part of the

instruction.

Second, Valhall uses only 4 slots instead of 8, saving 4-bits for every instruction. This simplication is practical, as

the performance gain from adding extra slots levels off quickly.

Obscurely, instructions that store to memory also require dependency slots assigned. Waiting on these slots allows

subgroup memory barriers to be implemented inexpensively.

2

Branching

Valhall has a single general-purpose branch instruction, branching to a relative offset (in instructions) if its source

is nonzero. Higher level control flow is created by chained together branches with comparison instructions. This

simplification represents a departure from Bifrost, which specified conditions within the many branch instructions.

Valhall is a warp-based architecture, grouping 16 threads into warps. Divergence of threads within a warp carries

a performance penalty. Divergence is handled in hardware, but the compiler must insert some hints to ensure

divergence is handled correctly. Namely, the .reconverge action is required on any instruction whose successor

may be executed with a different execution mask than it. That includes all divergent branches, as well as the last

instruction of blocks with divergent fallthrough.

Indirect access to attributes and texture handles must not be divergent. If divergent access is required, the compiler

must lower to an if-chain predicated on lane ID:

value = 0;

if (lane == 0)

value = load()

else if (lane == 1)

value = load()

...

else if (lane == MAX_LANE)

value = load()

As Valhall warps are 16 threads, this requires about 100 instructions! Indirect access should be avoided on Valhall,

unless the compiler can prove the index is not divergent.

Texture instructions

Texture instructions are unique in their register requirements; depending on the specific texturing operation, up to

a dozen registers can be used on some GPUs. As Valhall is limited in instruction size, there is no room to encode

each source register separately. Instead, the base register is specified in the instruction, and sources are found in

the subsequent registers in the following order:

1. X coordinate (floating-point)

2. Y coordinate (floating-point)

3. Z coordinate (floating-point)

4. Shadow comparison value (floating-point)

5. Texel offset (as a packed 8-bit vector, X in the bottom byte, Y in the second byte)

6. Explicit level-of-detail (as a 16-bit fixed-point, encoding 8:8)

7. Level-of-detail bias (as a 16-bit fixed-point, encoding 8:8)

Shading languages require the use of helper threads, which contribute to screen-space derivative calculations

(including the level-of-detail selection in texture instructions), but do not correspond to rasterized pixels. Usually,

helper threads do not need to execute texture instructions once the level-of-detail has been selected. Skipping

texturing on helper threads can save memory bandwidth. Valhall skips texturing for helper threads if the .skip

bit is set. .skip should be set if the results of texturing do not contribute to future texture, derivative, or subgroup

operations as determined by data flow analysis. Once helper invocations are no longer required, the .td action

should be used to terminate the execution of the unused threads.

Texture projection is not supported by Valhall. Lower to FRCP.f32 and FMA.f32 and then do the non-projection

texture operation.

3

Cube maps

Before texturing from a cube map, the coordinates must be transformed using the Valhall instructions CUBE_SSEL,

CUBE_TSEL, CUBEFACE1, and CUBEFACE2. These act as their Bifrost counterparts:

• CUBEFACE1 takes the X, Y, and Z coordinates, and computes max { |X|, |Y|, |Z| }.

• CUBEFACE2 takes the X, Y, and Z coordinates, and selects the cube face

• CUBE_SSEL takes the Z and X coordinates and the cube face, and selects the S coordinate.

• CUBE_TSEL takes the Y and Z coordinates and the cube face, and selects the T coordinate.

These operations are used as building blocks for the full cube face transformation. OpenGL specifies that an input

vector (𝑥, 𝑦, 𝑧) is transformed to the vector

[
1
2 (𝑠

max {𝑥,𝑦,𝑧} + 1)
1
2 (𝑡

max {𝑥,𝑦,𝑧} + 1)
]

This may be rewritten as

𝑟 = 1
2

⋅ (max {𝑥, 𝑦, 𝑧})−1

𝑥′ = 𝑠 ⋅ 𝑟 + 1
2

𝑦′ = 𝑡 ⋅ 𝑟 + 1
2

𝑟 is computed by CUBEFACE1, FRCP.f32, and FMA.f32. 𝑥′, 𝑦′ are each computed as FMA.f32. To workaround
numerical issues, it’s additionally required to clamp 𝑥′, 𝑦′ to [0, 1]; this saturation is free as an output modifier on
the FMA.f32 instructions.

Once the face index and coordinates are computed, they must be packed into Valhall’s Cube Map Descriptor:

Table 2: Cube Map Descriptor

Bits Value

0-28 S coordinate

29-31 Face index

32-63 T coordinate

Storing only the bottom 29-bits of the 32-bit floating point S coordinate suffices, since the hardware may infer the

top 3-bits given the range restrictions of the output of the cube map transform.

The Cube Map Descriptor may be packed efficiently with a bitwise MUX.i32 instruction, which acts as a per-bit

conditional select. By fixing the mask of bits that the S coordinates occupies, the bottom word may be constructed

by muxing between the S coordinate and the face index. The upper word requires no packing.

Putting it together, we get the full code sequence for the cubeface transform:

CUBEFACE1.f32 m, x, y, z

CUBEFACE2.f32 f, x, y, z

FRCP.f32 n, m

4

FMA.f32 r, n, 0.5, -0.0

CUBE_SSEL.f32 s, z, x, f

CUBE_TSEL.f32 t, y, z, f

FMA.f32.clamp_0_1 x', s, r, 0.5

FMA.f32.clamp_0_1 y', t, r, 0.5

MUX.i32 x', x', f, #0x1FFFFFFF

Register file

Like Bifrost, Valhall has 64 registers available, each 32-bits. There is a trade off between register usage and thread

count:

Register usage Threads

≤ 32 Full

> 32 Half

Due to the hardware preloading some state in high registers, the register file is discontiguous with full threads: the

32 available registers are [𝑅0, 𝑅15] and [𝑅48, 𝑅63].
Access to the register file has a power cost. Previous Mali generations provided “temporary” or “bypass” registers,

to pass data within a clause or VLIW bundle without touching the register file. Valhall does not have architecturally-

visible temporary registers, as it lacks clauses or VLIW bundles. Instead, Valhall passes register access through

a forwarding buffer, offering a dynamic alternative to static temporaries. Although this mechanism is managed

in hardware, most instruction sources have a .discard hint indicating they WILL NOT be used in any later

instructions. The .discard hint indicates the hardware MAY evict the referenced register from the forwarding

buffer. The register’s value after a discard is undefined and should not be read. As short-hand, the discard hint is

indicated in Mesa’s disassembler by prefixing register sources with a backtick ‘.

Programmatic blending is implemented via blend shaders, which use the following ABI:

Table 4: ABI for blend shaders

Register Value

R0 Colour component #0

R1 Colour component #1

R2 Colour component #2

R3 Colour component #3

R52 Stack pointer, low word

R53 Stack pointer, high word

R54 Return address, low word

The stack pointer may be calculated by adding the amount of stack used by the caller (the fragment shader) to the

base thread local storage pointer, with a sequence like:

IADD_IMM.i32.ts r52, tls_ptr, #0x10

MOV.i32.ts r53, tls_ptr.hi

The return address may be calculated by adding the current program counter with the length of an instruction (8)

times the number of instructions to the next BLEND intsruction minus 1. Then when the blend shader jumps back

to this address (plus a single instruction), it will blend the next render target.

5

IADD_IMM.i32.id r54, program_counter, #0x8

The final render target should set r54 to zero to terminate execution early.

This interface improves on Bifrost’s handling of blend shaders by:

• Enabling both the blend shader and the fragment shader to use the stack

• Allowing position-independent blend shaders without passing return offsets in a side channel.

The following registers may be preloaded with hardware state by setting the appropriate flags in the preload

descriptor:

Table 5: Preloaded registers in vertex shaders

Register Value

R59 Linear (unfolded) ID

R60 Vertex ID

R61 Instance ID

Table 6: Preloaded registers in fragment shaders

Register Value

R58 Facingness, bottom bit set for front facing

R59 Fragment coordinates X/Y packed as 16-bit integers

R60 Sample coverage mask

R61 Sample coverage mask input in lower half, sample ID in byte 3

Table 7: Preloaded registers in compute shaders

Register Value

R55 Local invocation ID (dimensions #0 and #1, low/high halves)

R56 Local invocation ID (dimension #2, low half)

R57 Work group ID (dimension #0)

R58 Work group ID (dimension #1)

R59 Work group ID (dimension #2)

R60 Global invocation ID (dimension #0)

R61 Global invocation ID (dimension #1)

R62 Global invocation ID (dimension #2)

Transcendental operations

Transcendental operations on Valhall match Bifrost, using the same building block instructions pieced together

by the compiler in the same way. Common operations are explained below. See Mesa’s Bifrost compiler as a

reference.

Exponentials

Valhall provides fast computation of base-2 exponents with the FEXP2.f32 insturction. However, there is a catch:

it requires its input in as an 8:24 fixed-point. The floating-point itself is passed as a second argument and used

6

only for numerical compliance in special cases.

Converting a 32-bit floating-point input to 8:24 fixed-point may be done by multiplying by 224 (adding 24 to the

exponent via RSCALE) and converting to integer. The full code sequence to compute 𝑦 = 2𝑥 is therefore

RSCALE.f32 scaled, x, #24

F32_TO_S32 fixed, scaled

FEXP2.f32 y, fixed, x

To compute arbitrary exponents, recall the identity

𝑏𝑥 = (2log2(𝑏))
𝑥

= 2𝑥⋅log2(𝑏)

For constant base, the log-2 of the base may be precomputed. Naively computing exponents this way would

require an extra multiplication, but we may make two simplifications:

• Valhall has a four-source FMA_RSCALE.f32 instruction performing a multiply-add in its first three sources

and an exponent adjust given by the fourth.

• Multiplying by 224 does not affect the special cases of exp2, so we may choose to pass the scaled argument
to FEXP2.f32 instead of the original one, allowing us to fuse the multiply.

Putting it together gives the code for other bases:

FMA_RSCALE.f32 scaled, x, #log2(base), #0.neg, #24

F32_TO_S32 fixed, scaled

FEXP2.f32 y, fixed, scaled

Sine and cosine

For sin, cos, Valhall contains coarse lookup tables accessible with the FSIN_TABLE.u6, FCOS_TABLE.u6 in-

structions. These instructions multiply the bottom 6-bits of their input by 𝜋/32 and return the resulting sin or cos

value. They are used to calculate sin, cos via a Taylor approximation:

𝑓(𝑥 + 𝑒) = 𝑓(𝑥) + 𝑒𝑓 ′(𝑥) + 𝑒2

2
𝑓″(𝑥)

sin(𝑥 + 𝑒) = sin(𝑥) + 𝑒 cos(𝑥) − 𝑒2

2
sin(𝑥)

cos(𝑥 + 𝑒) = cos(𝑥) − 𝑒 sin(𝑥) − 𝑒2

2
cos(𝑥)

As a numerical trick, we introduce the magic constant 0x49400000, with the curious property that – when

interpreted as a floating-point and added to a floating-point value 𝑥 ⋅ 2
𝜋 – approximately equals 32

𝜋 (𝑥 mod 2𝜋) in
the bottom 6-bits. This allows the domain transformation to be done as a single fused floating-point multiply-add

with the magic constants.

As one more trick, we use the special FMA_RSCALE.f32 instruction, which acts like FMA.f32 in its first three

sources but biases the exponent by the value of the fourth source. Recalling that a floating-point is encoded as𝑚⋅2𝑒

for mantissa 𝑚 and exponent 𝑒, we may divide by two by biasing the exponent by −1, i.e. 1
2(𝑚 ⋅ 2𝑒) = 𝑚 ⋅ 2𝑒−1.

Note that we require four magic constants that are not directly encodable. These constants must be lowered to

FAU slots. No FAU slot is needed for the first addition, however, as the FADD_IMM.f32 operation is available.

Putting it together gives a code sequence for sin:

7

FMA.f32 x_u6, x, #TWO_OVER_PI, #SINCOS_BIAS

FADD_IMM.f32 temp, x_u6, #-SINCOS_BIAS

FMA.f32 e, temp, #MPI_OVER_TWO, x

FSIN_TABLE.u6 sinx, x_u6

FCOS_TABLE.u6 cosx, x_u6

FMA_RSCALE.f32 e2_over_2, e, e, -0.0, #-1

FMA.f32 quadratic, e2_over_2.neg, sinx, -0.0

FMA.f32.m1_1 temp2, e, cosx, quadratic

FADD.f32 dst, temp2, sinx

and similarly for cos:

FMA.f32 x_u6, x, #TWO_OVER_PI, #SINCOS_BIAS

FADD.f32 temp, x_u6, #-SINCOS_BIAS

FMA.f32 e, temp, #MPI_OVER_TWO, x

FSIN_TABLE.u6 sinx, x_u6

FCOS_TABLE.u6 cosx, x_u6

FMA_RSCALE.f32 e2_over_2, e, e, -0.0, #-1

FMA.f32 quadratic, e2_over_2.neg, cosx, -0.0

FMA.f32.m1_1 temp2, e, sinx.neg, quadratic

FADD.f32 dst, temp2, cosx

Sources

Regular sources are specified as an 8-bit structure.

Name Bits

Value 0:5

Mode 6:7

Mode is an enumeration with the following values.

Index Name

0 Register

1 Register with discard

2 Uniform

3 Immediate

Value is the index of 32-bit register in a register mode, the index of a 32-bit uniform in uniform mode, or an index

into an immediate table in an immediate mode. The discard mode is used to discard the register after reading.

Destinations

Regular destinations are specified as an 8-bit structure.

Name Bits

Register 0:5

Write low half 6

8

Name Bits

Write high half 7

The write low/high acts as a 16-bit write mask. At least one half MUST be written in instruction. Therefore,

instructions with no destinations still require a placeholder where the destination otherwise would be; this should

be the constant 0xC0.

Staging registers

Message-passing instructions have special register access requirements compared to arithmetic instructions. In

particular, they can write multiple subsequent registers, and they may need to reuse a register base as both a read

and write due to encoding limitations. These instructions do not use the regular source/destination mechanism,

and instead use the following 8-bit staging register structure.

Name Bits

Register 0:5

Read 6

Write 7

The read/write flags specify the direction of transfer; both may be set simultaneously, but at least one MUST be

set. In a few cases, both are set even when transferring only in a single logical direction. In a few other cases, only

the first 6-bits are stored, and the access flags are implied.

Instruction metadata

The last 7-bits of every instruction contains metadata for the instruction, playing a similar role to the Bifrost clause

header.

Name Bits

Immediate mode 0:1

Action 2:5

Action mode 6

Reserved 7

The immediate mode is an enumeration controlling how immediates sources are interpreted. Leaving it zero allows

the instruction to access the immediate table, but it can be set to access various state of the shader core. See the

corresponding enumerations.

If the action mode bit is set, then action is an enumeration controlling machine behaviour around the instruction’s

execution. If the action mode bit is clear, then action is a bitfield specifying dependencies to wait on before

executing the next instruction.

Name Bits

Wait on slot #0 0

Wait on slot #1 1

Wait on slot #2 2

9

Table of immediates in the Valhall ISA

This immediates are accessible in (almost) any instruction, provided the immediate mode is kept to the default.

They optimize for the most common immediate values; any immediate listed here may be used without taking

up a uniform slot or a register. Most integer instructions can access separate half-words and individual bytes via

swizzles on the source.

Index Value Description

0 0x00000000 Zero

1 0xFFFFFFFF All ones; integer −1
2 0x7FFFFFFF Maximum integer; floating-point NaN

3 0xFAFCFDFE Integers (−2, −3, −4, −5)
4 0x01000000 16-bit integer 28

5 0x80002000 Multiples of 16 (0, 32, 0, 128)
6 0x70605030 Multiples of 16 (48, 80, 96, 112)
7 0xC0B0A090 Multiples of 16 (144, 160, 176, 192)
8 0x03020100 Integers (0, 1, 2, 3)
9 0x07060504 Integers (4, 5, 6, 7)
10 0x0B0A0908 Integers (8, 9, 10, 11)
11 0x0F0E0D0C Integers (12, 13, 14, 15)
12 0x13121110 Integers (16, 17, 18, 19)
13 0x17161514 Integers (20, 21, 22, 23)
14 0x1B1A1918 Integers (24, 25, 26, 27)
15 0x1F1E1D1C Integers (28, 29, 30, 31)
16 0x3F800000 Float 1.0
17 0x3DCCCCCD Float 0.1
18 0x3EA2F983 Float 1/𝜋
19 0x3F317218 Float log(2)
20 0x40490FDB Float 𝜋
21 0x00000000 Float 0.0
22 0x477FFF00 Float 65535.0 = 216 − 1
23 0x5C005BF8 Half-float (255.0, 256.0) = (28 − 1, 28)
24 0x2E660000 Half-float 0.1 = 1/10
25 0x34000000 Half-float 0.25 = 2−2

26 0x38000000 Half-float 0.5 = 2−1

27 0x3C000000 Half-float 1.0 = 20

28 0x40000000 Half-float 2.0 = 21

29 0x44000000 Half-float 4.0 = 22

30 0x48000000 Half-float 8.0 = 23

31 0x42480000 Half-float 𝜋

10

Enumerations

This section describes each enumeration used in the Valhall ISA. Enumerations are found in the instruction

metadata and as modifiers in individual instructions.

11

Action

Every Valhall instruction can perform an action, like wait on dependency slots. A few special actions are available,

specified in the instruction metadata from this enum. The wait0126 action is required to wait on dependency slot

#6 and should be set on the instruction immediately preceding ATEST. The barrier action may be set on any

instruction for subgroup barriers, and should particularly be set with the BARRIER instruction for global barriers.

The td action only applies to fragment shaders and is used to terminate helper invocations, it should be set as

early as possible after helper invocations are no longer needed as determined by data flow analysis. The return

action is used to terminate the shader, although it may be overloaded by the BLEND instruction.

The reconverge action is required on any instruction immediately preceding a possible change to the mask of

active threads in a subgroup. This includes all divergent branches, but it also includes the final instruction at the

end of any basic block where the immediate successor (fallthrough) is the target of a divergent branch.

Index Value

0 wait0126

1 barrier

2 reconverge

3 Reserved

4 Reserved

5 td

6 Reserved

7 return

12

Immediate mode

Selects how immediates sources are interpreted.

The default value is none.

Index Value Description

0 none No special immediates

1 ts Thread storage pointers

2 Reserved

3 id Thread identification

13

Thread storage pointers

Situated between the immediates hard-coded in the hardware and the uniforms defined purely in software, Valhall

has a some special “constants” passing through data structures. These are encoded like the table of immediates, as

if special constant 𝑖 were lookup table entry 32 + 𝑖. These special values are selected with the .ts modifier.

Index Value Description

0 Reserved

1 Reserved

2 tls_ptr Thread local storage base pointer (low word)

3 tls_ptr_hi Thread local storage base pointer (high word)

4 Reserved

5 Reserved

6 wls_ptr Workgroup local storage base pointer (low word)

7 wls_ptr_hi Workgroup local storage base pointer (high word)

14

Thread identification

Situated between the immediates hard-coded in the hardware and the uniforms defined purely in software, Valhall

has a some special “constants” passing through data structures. These are encoded like the table of immediates, as

if special constant 𝑖 were lookup table entry 32 + 𝑖. These special values are selected with the .id modifier.

Index Value Description

0 Reserved

1 Reserved

2 lane_id Lane ID

3 Reserved

4 Reserved

5 Reserved

6 core_id Core ID

7 Reserved

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved

16 Reserved

17 Reserved

18 Reserved

19 Reserved

20 Reserved

21 Reserved

22 Reserved

23 Reserved

24 Reserved

25 Reserved

26 Reserved

27 Reserved

28 Reserved

29 Reserved

30 program_counter Program counter

31 Reserved

15

Swizzles (8-bit)

The default value is b0123.

Index Value

0 b0123

1 b3210

2 b0101

3 b2323

4 b0000

5 b1111

6 b2222

7 b3333

8 b2301

9 b1032

10 b0011

11 b2233

12 Reserved

13 Reserved

14 Reserved

15 Reserved

16

Lanes (8-bit)

Used to select the 2 bytes for shifts of 16-bit vectors

Index Value

0 b02

1 Reserved

2 Reserved

3 Reserved

4 b00

5 b11

6 b22

7 b33

8 Reserved

9 Reserved

10 b01

11 b23

12 Reserved

13 Reserved

14 Reserved

15 Reserved

17

Swizzles (16-bit)

The default value is h01.

Index Value

0 h00

1 h10

2 h01

3 h11

4 b00

5 b20

6 b02

7 b22

8 b11

9 b31

10 b13

11 b33

12 b01

13 b23

14 Reserved

15 Reserved

18

Swizzles (32-bit)

The default value is none.

Index Value

0 none

1 Reserved

2 h0

3 h1

4 b0

5 b1

6 b2

7 b3

19

Swizzles (64-bit)

The default value is none.

Index Value

0 none

1 Reserved

2 h0

3 h1

4 b0

5 b1

6 b2

7 b3

8 w0

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved

20

Load lane (8-bit)

The default value is b0.

Index Value Description

0 b0

1 b1

2 b2

3 b3

4 h0 Zero-extend to 16-bit, low-half

5 h1 Zero-extend to 16-bit, high-half

6 w0 Zero-extend to 32-bit

7 d0 Zero-extend to 32-bit

21

Load lane (16-bit)

The default value is h0.

Index Value Description

0 h0 Low half

1 h1 High half

2 w0 Zero-extend to 32-bit

3 d0 Zero-extend to 64-bit

4 Reserved

5 Reserved

6 Reserved

7 Reserved

22

Load lane (32-bit)

The default value is w0.

Index Value Description

0 w0

1 d0 Zero-extend to 64-bit

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved

23

Load lane (48-bit)

The default value is identity.

Index Value

0 Reserved

1 Reserved

2 Reserved

3 Reserved

4 identity

5 Reserved

6 Reserved

7 Reserved

24

Load lane (64-bit)

The default value is identity.

Index Value

0 Reserved

1 Reserved

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 identity

25

Load lane (96-bit)

The default value is identity.

Index Value

0 Reserved

1 Reserved

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 identity

7 Reserved

26

Load lane (128-bit)

The default value is identity.

Index Value

0 Reserved

1 Reserved

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 identity

27

Round mode

Corresponds to IEEE 754 rounding modes

The default value is rte.

Index Value Description

0 rte Round to nearest even

1 rtp Round to positive infinity

2 rtn Round to negative infinity

3 rtz Round to zero

28

Result type

Comparison instructions like FCMP return a boolean but may encode this boolean in a variety of ways. i1 gives

a OpenGL style 0/1 boolean. m1 gives a Direct3D style 0/~0 boolean. f1 gives a floating-point 0.0f / 1.0f

boolean. Switching between these modes is useful to fold a boolean type convert into a comparison. u1 is used

internally to implement 64-bit comparisons.

Index Value Description

0 i1 Integer 1

1 f1 Float 1

2 m1 Minus 1

3 u1 Low half of 64-bit compare

29

Widen

The default value is none.

Index Value

0 none

1 h0

2 h1

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved

30

Clamp

Clamp applied to the destination of a floating-point instruction. Note the clamps may be decomposed as two

independent bits for clamp_0_inf and clamp_m1_1, with clamp_0_1 arising as the composition of clamp_0_inf

and clamp_m1_1 in either order.

The default value is none.

Index Value Description

0 none Identity

1 clamp_0_inf Clamp positive

2 clamp_m1_1 Clamp to [−1, 1]
3 clamp_0_1 Clamp to [0, 1]

31

Condition

Condition code. Type must be inferred from the instruction. IEEE 754 total ordering only applies to floating point

compares. “Not equal” and “greater than or less than” are distinguished by NaN behaviour conforming to the

IEEE 754 specification.

Index Value Description

0 eq Equal

1 gt Greater than

2 ge Greater than or equal

3 ne Not equal

4 lt Less than

5 le Less than or equal

6 gtlt Greater than or less than

7 total Totally ordered

32

Dimension

Texture dimension.

Index Value Description

0 1d 1D or buffer

1 2d 2D or 2D array

2 3d 3D or 3D array

3 cube Cube map or cube map array

33

LOD mode

Level-of-detail selection mode in a texture instruction.

Index Value Description

0 zero Set to zero

1 computed Computed based on neighboring fragments

2 Reserved

3 Reserved

4 explicit Explicitly specified in a register

5 computed_bias Computed based on neighboring fragments added

with bias in a register

6 grdesc Derived from a gradient descriptor in registers

7 Reserved

34

Register format

Format of data loaded to / stored from registers for general memory access.

Index Value Description

0 Reserved

1 Reserved

2 f32 32-bit floats

3 f16 16-bit floats

4 u32 32-bit unsigned integers

5 Reserved

6 Reserved

7 Reserved

35

Vector size

Number of channels loaded/stored for general memory access.

The default value is none.

Index Value Description

0 none Scalar

1 v2 2 channels

2 v3 3 channels

3 v4 4 channels

36

Memory size

Number of bits loaded/stored for general memory access.

Index Value Description

0 i8 8-bits

1 i16 16-bits

2 i24 24-bits

3 i32 32-bits

4 i48 48-bits

5 i64 64-bits

6 i96 96-bits

7 i128 128-bits

37

Slot

Dependency slot set on a message-passing instruction that writes to registers. Before reading the destination, a

future instruction must wait on the specified slot. Slot #7 is for BARRIER instructions only.

Index Value Description

0 slot0 Slot #0

1 slot1 Slot #1

2 slot2 Slot #2

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 slot7 Slot #7

38

Store segment

Memory segment written to by a STORE instruction.

Index Value Description

0 global Global or workgroup local memory

1 pos Position output (in a position shader)

2 vary Varyings with LEA_ATTR computed addresses

3 tl Thread local storage

39

Subgroup size

Selects the effective subgroup size from subgroup operations. The hardware warps are sixteen threads on Valhall,

but subdividing a warp may be useful for API requirements. In particular, derivatives may be calculated with

quads (four threads).

The default value is subgroup16.

Index Value Description

0 subgroup2 Two threads

1 subgroup4 Four threads

2 subgroup8 Eight threads

3 subgroup16 Sixteen threads

40

Lane operation

Acts as a modifier on the lane specificier for a CLPER instruction. The accumulate mode is required for efficient

subgroup reductions.

The default value is none.

Index Value

0 none

1 xor

2 accumulate

3 shift

41

Inactive result

Accesses to inactive lanes (due to divergence) in a subgroup is generally undefined in APIs. However, the results

of permuting with an inactive lane with CLPER.i32 are well-defined in Valhall: they return one of the following

values, as specified in the CLPER.i32 instructions. Sometimes certain values enable small optimizations.

The default value is zero.

Index Value

0 zero

1 umax

2 i1

3 v2i1

4 smin

5 smax

6 v2smin

7 v2smax

8 v4smin

9 v4smax

10 f1

11 v2f1

12 infn

13 inf

14 v2infn

15 v2inf

42

Instruction reference

The following section each known instruction in the Valhall ISA. It contains the instruction name, syntax, and bit

pattern.

Related instructions are grouped together if they share an encoding and semantics. In these cases, multiple syntax

specifiers are shown but only one representative bit pattern is given.

43

NOP

No operation.

Do nothing. Useful at the start of a block for waiting on slots required by the first actual instruction of the block,

to reconcile dependencies after a branch. Also useful as the sole instruction of an empty shader.

NOP

Opcode 0x0

Name Bits

Reserved 0:39

Placeholder 40:47

Opcode 48:56

Metadata 57:63

44

BRANCHZ

Compare to zero and branch.

Branches to a specified relative offset if its source is nonzero (default) or if its source is zero (if .eq is set).

The offset is 27-bits and sign-extended, giving an effective range of ±26-bits. The offset is specified in units of

instructions, relative to the next instruction. Positive offsets may be interpreted as “number of instructions to skip”.

Since Valhall instructions are 8 bytes, this operates as:

𝑃𝐶 ∶= {𝑃𝐶 + 8 ⋅ (offset + 1) if src
?= 0

𝑃𝐶 + 8 otherwise

Used with comparison instructions to implement control flow. Tie the source to a nonzero constant to implement a

jump. May introduce divergence, so generally requires .reconverge flow control.

BRANCHZ{.eq} src, #offset

Opcode 0x1F

Name Bits

Source: Value to compare against zero 0:7

offset 8:34

Reserved 35

eq 36

Reserved 37:39

Placeholder 40:47

Opcode 48:56

Metadata 57:63

45

DISCARD

Discard fragment.

Evaluates the given condition, and if it passes, discards the current fragment and terminates the thread. The

destination should be set to R60. Only valid in a frgment shader.

DISCARD{.cond} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}

Opcode 0x20

Name Bits

Source: Left value to compare 0:7

Source: Right value to compare 8:15

Reserved 16:25

swizzle 1 26:27

swizzle 0 28:29

Reserved 30:31

condition 32:34

Reserved 35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination: Updated coverage mask (set to R60) 40:47

Opcode 48:56

Metadata 57:63

46

BRANCHZI

Compare to zero and branch indirect.

Jump to an indirectly specified address. Used to jump to blend shaders at the end of a fragment shader.

BRANCHZI{.eq} src0, src1

Opcode 0x2F

Name Bits

Source: Value to compare against zero 0:7

Source: Branch target 8:15

Reserved 16:35

eq 36

Reserved 37:39

Placeholder 40:47

Opcode 48:56

Metadata 57:63

47

BARRIER

Execution and memory barrier.

General-purpose barrier. Must use slot #7. Must be paired with a .barrier action on the instruction.

BARRIER{.slot}

Opcode 0x45

Name Bits

Reserved 0:29

slot 30:32

Reserved 33:39

Placeholder 40:47

Opcode 48:56

Metadata 57:63

48

CSEL

Floating-point conditional select.

Evaluates the given condition and outputs either the true source or the false source.

CSEL.f32{.cond} dest, src0, src1, src2, src3

CSEL.v2f16{.cond} dest, src0, src1, src2, src3

Mnemonic Opcode

CSEL.f32 0x154

CSEL.v2f16 0x155

Name Bits

Source: Left value to compare 0:7

Source: Right value to compare 8:15

Source: Return value if true 16:23

Source: Return value if false 24:31

condition 32:34

Reserved 35:39

Destination 40:47

Opcode 48:56

Metadata 57:63

49

CSEL

Integer conditional select.

Evaluates the given condition and outputs either the true source or the false source.

Valhall lacks integer minimum/maximum instructions. CSEL instructions with tied operands form the canonical

implementations of these instructions. Similarly, the integer sign function is canonically implemented with a pair

of CSEL instructions.

CSEL.u32{.cond} dest, src0, src1, src2, src3

CSEL.v2u16{.cond} dest, src0, src1, src2, src3

CSEL.i32{.cond} dest, src0, src1, src2, src3

CSEL.v2i16{.cond} dest, src0, src1, src2, src3

Mnemonic Opcode

CSEL.u32 0x150

CSEL.v2u16 0x151

CSEL.i32 0x158

CSEL.v2i16 0x159

Name Bits

Source: Left value to compare 0:7

Source: Right value to compare 8:15

Source: Return value if true 16:23

Source: Return value if false 24:31

condition 32:34

Reserved 35:39

Destination 40:47

Opcode 48:56

Metadata 57:63

50

LD_VAR_SPECIAL

Load special varying.

LD_VAR_SPECIAL{.vector_size}{.register_format}{.slot} @w, src, #index

Opcode 0x56

Name Bits

Source 0:7

Reserved 8:11

index 12:15

Reserved 16:23

register_format 24:26

Reserved 27

vector_size 28:29

slot 30:32

staging_register_count 33:35

Reserved 36:39

Staging 40:47

Opcode 48:56

Metadata 57:63

51

LD_VAR_IMM_F32

Load immediate varying.

Interpolates a given varying

LD_VAR_IMM_F32{.vector_size}{.register_format}{.slot} @w, src0, src1, #index

LD_VAR_IMM_F16{.vector_size}{.register_format}{.slot} @w, src0, src1, #index

Mnemonic Opcode

LD_VAR_IMM_F32 0x5C

LD_VAR_IMM_F16 0x5D

Name Bits

Source 0 0:7

Source 1 8:15

Reserved 16:19

index 20:23

register_format 24:26

Reserved 27

vector_size 28:29

slot 30:32

staging_register_count 33:35

Reserved 36:39

Staging 40:47

Opcode 48:56

Metadata 57:63

52

LD_ATTR_IMM

Load immediate attribute.

LD_ATTR_IMM{.vector_size}{.register_format}{.slot} @w, src0, src1, #index

Opcode 0x66

Name Bits

Source: Vertex ID 0:7

Source: Instance ID 8:15

Reserved 16:19

index 20:23

register_format 24:26

Reserved 27

vector_size 28:29

slot 30:32

staging_register_count 33:35

Reserved 36:39

Staging 40:47

Opcode 48:56

Metadata 57:63

53

LD_ATTR

Load indirect attribute.

The index must not diverge within a warp.

LD_ATTR{.vector_size}{.register_format}{.slot} @w, src0, src1, src2

Opcode 0x67

Name Bits

Source: Vertex ID 0:7

Source: Instance ID 8:15

Source: Index 16:23

register_format 24:26

Reserved 27

vector_size 28:29

slot 30:32

staging_register_count 33:35

Reserved 36:39

Staging 40:47

Opcode 48:56

Metadata 57:63

54

LEA_ATTR

Load effective address.

Loads the effective address of the position buffer (in a position shader) or the varying buffer (in a varying shader).

That is, the base pointer plus the vertex’s linear ID (the first source) times the buffer’s per-vertex stride. LEA_ATTR

should be executed once in a position/varying shader, with the linear ID preloaded as r59. Each position/varying

store can then be constructed as STORE with the base address sourced from the 64-bit destination of LEA_ATTR

and an appropriately computed offset. Varying stores bypass the usual conversion hardware for attributes; this

diverges from earlier Mali hardware.

LEA_ATTR{.slot} @w, src, #unk

Opcode 0x5E

Name Bits

Source: Linear ID 0:7

unk 8:11

Reserved 12:29

slot 30:32

staging_register_count 33:35

Reserved 36:39

Staging 40:47

Opcode 48:56

Metadata 57:63

55

LOAD.i8

Global memory load.

Loads from main memory

LOAD.i8{.load_lane_8_bit}{.unsigned}{.slot} @w, src, #offset

Opcode 0x60

Secondary opcode 0x0

Name Bits

Source: Address to load from after adding offset 0:7

offset 8:23

Reserved 24:26

Secondary opcode 27:29

slot 30:32

staging_register_count 33:35

load_lane_8_bit 36:38

unsigned 39

Staging 40:47

Opcode 48:56

Metadata 57:63

56

LOAD.i16

Global memory load.

Loads from main memory

LOAD.i16{.load_lane_16_bit}{.unsigned}{.slot} @w, src, #offset

Opcode 0x60

Secondary opcode 0x1

Name Bits

Source: Address to load from after adding offset 0:7

offset 8:23

Reserved 24:26

Secondary opcode 27:29

slot 30:32

staging_register_count 33:35

load_lane_16_bit 36:38

unsigned 39

Staging 40:47

Opcode 48:56

Metadata 57:63

57

LOAD.i24

Global memory load.

Loads from main memory

LOAD.i24{.load_lane_24_bit}{.unsigned}{.slot} @w, src, #offset

Opcode 0x60

Secondary opcode 0x2

Name Bits

Source: Address to load from after adding offset 0:7

offset 8:23

Reserved 24:26

Secondary opcode 27:29

slot 30:32

staging_register_count 33:35

load_lane_24_bit 36:38

unsigned 39

Staging 40:47

Opcode 48:56

Metadata 57:63

58

LOAD.i32

Global memory load.

Loads from main memory

LOAD.i32{.load_lane_32_bit}{.unsigned}{.slot} @w, src, #offset

Opcode 0x60

Secondary opcode 0x3

Name Bits

Source: Address to load from after adding offset 0:7

offset 8:23

Reserved 24:26

Secondary opcode 27:29

slot 30:32

staging_register_count 33:35

load_lane_32_bit 36:38

unsigned 39

Staging 40:47

Opcode 48:56

Metadata 57:63

59

LOAD.i48

Global memory load.

Loads from main memory

LOAD.i48{.load_lane_48_bit}{.unsigned}{.slot} @w, src, #offset

Opcode 0x60

Secondary opcode 0x4

Name Bits

Source: Address to load from after adding offset 0:7

offset 8:23

Reserved 24:26

Secondary opcode 27:29

slot 30:32

staging_register_count 33:35

load_lane_48_bit 36:38

unsigned 39

Staging 40:47

Opcode 48:56

Metadata 57:63

60

LOAD.i64

Global memory load.

Loads from main memory

LOAD.i64{.load_lane_64_bit}{.unsigned}{.slot} @w, src, #offset

Opcode 0x60

Secondary opcode 0x5

Name Bits

Source: Address to load from after adding offset 0:7

offset 8:23

Reserved 24:26

Secondary opcode 27:29

slot 30:32

staging_register_count 33:35

load_lane_64_bit 36:38

unsigned 39

Staging 40:47

Opcode 48:56

Metadata 57:63

61

LOAD.i96

Global memory load.

Loads from main memory

LOAD.i96{.load_lane_96_bit}{.unsigned}{.slot} @w, src, #offset

Opcode 0x60

Secondary opcode 0x6

Name Bits

Source: Address to load from after adding offset 0:7

offset 8:23

Reserved 24:26

Secondary opcode 27:29

slot 30:32

staging_register_count 33:35

load_lane_96_bit 36:38

unsigned 39

Staging 40:47

Opcode 48:56

Metadata 57:63

62

LOAD.i128

Global memory load.

Loads from main memory

LOAD.i128{.load_lane_128_bit}{.unsigned}{.slot} @w, src, #offset

Opcode 0x60

Secondary opcode 0x7

Name Bits

Source: Address to load from after adding offset 0:7

offset 8:23

Reserved 24:26

Secondary opcode 27:29

slot 30:32

staging_register_count 33:35

load_lane_128_bit 36:38

unsigned 39

Staging 40:47

Opcode 48:56

Metadata 57:63

63

STORE

Global memory store.

Stores to main memory

STORE{.memory_size}{.store_segment}{.slot} @r, src, #offset

Opcode 0x61

Name Bits

Source: Address to store to after adding offset 0:7

offset 8:23

store_segment 24:25

Reserved 26

memory_size 27:29

slot 30:32

staging_register_count 33:35

Reserved 36:39

Staging 40:47

Opcode 48:56

Metadata 57:63

64

ST_IMAGE

Image store.

Stores to images

ST_IMAGE{.slot} @r, src

Opcode 0x71

Name Bits

Source: Address to store to after adding offset 0:7

Reserved 8:29

slot 30:32

staging_register_count 33:35

Reserved 36:39

Staging 40:47

Opcode 48:56

Metadata 57:63

65

LD_TILE

Load from tilebuffer.

Loads a given render target, specified in the pixel indices descriptor, at a given location and sample, and convert

to the format specified in the internal conversion descriptor. Used to implement EXT_framebuffer_fetch and

internally in blend shaders.

LD_TILE{.slot} @w, src0, src1, src2

Opcode 0x78

Name Bits

Source: Pixel indices descriptor 0:7

Source: Coverage mask 8:15

Source: Conversion descriptor 16:23

Reserved 24:29

slot 30:32

staging_register_count 33:35

Reserved 36:39

Staging 40:47

Opcode 48:56

Metadata 57:63

66

BLEND

Blend render target.

Blends a given render target. This loads the API-specified blend state for the render target from the first source.

Blend descriptors are available as special immediates. It then reads the colour to be blended from the first staging

register, with the specified vector size and register format as desired. The resulting coverage mask is stored to the

second set of staging registers.

In the fixed-function path, BLEND sends the colour to the blender to be written to the tilebuffer. Then, if the

instruction’s flow control specifies termination, the fragment program is ended. If it does not specify termination,

BLEND acts as a relative branch, branching with the offset specified as target. This allows the subsequent

instructions to be skipped when fixed-function blending is used. Note this implicit branch can never introduce

divergence, so .reconverge is not required.

In the blend shader path, BLEND ignores the specified flow control and does not branch to the specified offset.

Instead, execution considers normally with the next instruction. The compiler should insert code for calling a

blend shader after the BLEND instruction unless it is known that a blend shader will never be required.

The indirection is required to support both fixed-function and blend shaders efficiently and without shader variants.

BLEND{.slot}{.vector_size}{.register_format} @r, @w, src, #target

Opcode 0x7F

Name Bits

Source: Blend descriptor 0:7

target 8:15

Staging 1 16:17

Reserved 18:23

register_format 24:26

Reserved 27

vector_size 28:29

slot 30:32

staging_register_count 33:35

Reserved 36:39

Staging 0 40:47

Opcode 48:56

Metadata 57:63

67

ATEST

Alpha test.

Does alpha-to-coverage testing, updating the sample coverage mask. ATEST does not do an implicit discard. It

should be executed before the first ZS_EMIT or BLEND instruction.

ATEST@w, src0, src1, src2

Opcode 0x7D

Name Bits

Source: Input coverage mask 0:7

Source: Alpha value (render target 0) 8:15

Source 2 16:23

Reserved 24:32

staging_register_count 33:35

Reserved 36:39

Staging: Updated coverage mask 40:47

Opcode 48:56

Metadata 57:63

68

ZS_EMIT

Depth/stencil write.

Programatically writes out depth, stencil, or both, depending on which modifiers are set. Used to implement

gl_FragDepth and gl_FragStencil.

ZS_EMIT{.z}{.stencil} dest, src0, src1, src2

Opcode 0x7E

Name Bits

Source: Depth value 0:7

Source: Stencil value 8:15

Source: Input coverage mask 16:23

stencil 24

z 25

Reserved 26:39

Destination: Updated coverage mask 40:47

Opcode 48:56

Metadata 57:63

69

CONVERT

Data conversions.

Performs the given data conversion. Note that floating-point rounding is handled via the same hardware and

therefore shares an encoding. Round mode is specified where it makes sense.

S16_TO_S32{.round} dest, src{.widen}

S16_TO_F32{.round} dest, src{.widen}

V2S16_TO_V2F16{.round} dest, src{.widen}

S32_TO_F32{.round} dest, src{.widen}

F32_TO_S32{.round} dest, src{.widen}

V2F16_TO_V2S16{.round} dest, src{.widen}

U16_TO_U32{.round} dest, src{.widen}

U16_TO_F32{.round} dest, src{.widen}

V2U16_TO_V2F16{.round} dest, src{.widen}

U32_TO_F32{.round} dest, src{.widen}

F32_TO_U32{.round} dest, src{.widen}

V2F16_TO_V2U16{.round} dest, src{.widen}

Primary opcode 0x90

Mnemonic Secondary opcode

S16_TO_S32 0x4

S16_TO_F32 0x5

V2S16_TO_V2F16 0x7

S32_TO_F32 0x9

F32_TO_S32 0xC

V2F16_TO_V2S16 0xE

U16_TO_U32 0x14

U16_TO_F32 0x15

V2U16_TO_V2F16 0x17

U32_TO_F32 0x19

F32_TO_U32 0x1C

V2F16_TO_V2U16 0x1E

Name Bits

Source: Value to convert 0:7

Reserved 8:15

Secondary opcode 16:20

Reserved 21:29

round_mode 30:31

Reserved 32:35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

70

F16_TO_F32

16-bit float to 32-bit float conversion.

Converts up with the specified round mode.

F16_TO_F32{.round} dest, src{.lane}

Opcode 0x90

Secondary opcode 0xB

Name Bits

Source: Value to convert 0:7

Reserved 8:15

Secondary opcode 16:20

Reserved 21:27

lane 0 28

Reserved 29

round_mode 30:31

Reserved 32:39

Destination 40:47

Opcode 48:56

Metadata 57:63

71

CONVERT

8-bit data conversions.

Performs the given data conversion.

S8_TO_S32dest, src{.lane}

S8_TO_F32dest, src{.lane}

S8_TO_S16dest, src{.lane}

S8_TO_F16dest, src{.lane}

U8_TO_U32dest, src{.lane}

U8_TO_F32dest, src{.lane}

U8_TO_U16dest, src{.lane}

U8_TO_F16dest, src{.lane}

Primary opcode 0x90

Mnemonic Secondary opcode

S8_TO_S32 0x0

S8_TO_F32 0x1

S8_TO_S16 0x2

S8_TO_F16 0x3

U8_TO_U32 0x10

U8_TO_F32 0x11

U8_TO_U16 0x12

U8_TO_F16 0x13

Name Bits

Source: Value to convert 0:7

Reserved 8:15

Secondary opcode 16:20

Reserved 21:27

lane 0 28:29

Reserved 30:39

Destination 40:47

Opcode 48:56

Metadata 57:63

72

FROUND

Floating-point rounding.

Performs the given rounding, using the convert unit.

FROUND.f32{.round} dest, src{.swz}

FROUND.v2f16{.round} dest, src{.swz}

Primary opcode 0x90

Mnemonic Secondary opcode

FROUND.f32 0xD

FROUND.v2f16 0xF

Name Bits

Source: Value to convert 0:7

Reserved 8:15

Secondary opcode 16:20

Reserved 21:27

swizzle 0 28:29

round_mode 30:31

Reserved 32:39

Destination 40:47

Opcode 48:56

Metadata 57:63

73

MOV.i32

Register move.

Canonical register-to-register move.

MOV.i32dest, src

Opcode 0x91

Secondary opcode 0x0

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

74

CLZ.i32

Count leading zeroes.

Used as a primitive for various bitwise operations.

CLZ.i32dest, src

Opcode 0x91

Secondary opcode 0x4

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

75

CLZ.v2i16

Count leading zeroes.

Used as a primitive for various bitwise operations.

CLZ.v2i16dest, src

Opcode 0x91

Secondary opcode 0x5

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

76

CLZ.v4i8

Count leading zeroes.

Used as a primitive for various bitwise operations.

CLZ.v4i8dest, src

Opcode 0x91

Secondary opcode 0x6

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

77

ABS.i32

Absolute value.

64-bit abs may be constructed in 4 instructions (5 clocks) by checking the sign with ICMP.s32.lt.m1 hi, 0

and negating based on the result with IADD.s64 and LSHIFT_XOR.i32 on each half.

ABS.i32dest, src{.widen}

Opcode 0x91

Secondary opcode 0x8

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

78

ABS.v2i16

Absolute value.

ABS.v2i16dest, src{.widen}

Opcode 0x91

Secondary opcode 0x9

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

79

ABS.v4i8

Absolute value.

ABS.v4i8dest, src

Opcode 0x91

Secondary opcode 0xA

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

80

POPCOUNT.i32

Population count.

Only available as 32-bit. Smaller bitsizes require explicit conversions. 64-bit popcount may be constructed in 3

clocks by separate 32-bit popcounts of each half and a 32-bit add, which is guaranteed not to overflow.

POPCOUNT.i32dest, src

Opcode 0x91

Secondary opcode 0xC

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

81

BITREV.i32

Bitwise reverse.

Only available as 32-bit. Other bitsizes may be derived with swizzles.

BITREV.i32dest, src

Opcode 0x91

Secondary opcode 0xD

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

82

NOT.i32

Bitwise complement.

For fully featured bitwise operation, see the shift opcodes.

NOT.i32dest, src

Opcode 0x91

Secondary opcode 0xE

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

83

NOT.i64

Bitwise complement.

For fully featured bitwise operation, see the shift opcodes.

NOT.i64dest, src

Opcode 0x191

Secondary opcode 0xE

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

84

WMASK

Warp mask.

Returns the mask of lanes ever active within the warp (subgroup), such that the source is nonzero. The number of

work-items in a subgroup is given as the popcount of this value with a nonzero input.

An all() subgroup operation may be constructed as WMASK of the input compared for equality with WMASK of an

nonzero value.

An any() subgroup operation may be constructed as WMASK of the input compared against zero.

WMASK{.subgroup_size} dest, src

Opcode 0x95

Name Bits

Source 0:7

Reserved 8:35

subgroup_size 36:37

Reserved 38:39

Destination 40:47

Opcode 48:56

Metadata 57:63

85

FREXP

Fraction/exponent extract.

Breaks up the floating-point input into its fractional (mantissa) and exponent parts. By default, this is compatible

with the frexp() function in APIs. With the log modifier, the floating point format is adjusted to be compatible

with Valhall’s argument reduction for logarithm computation.

FREXPM.f32{.log} dest, src{.swz}

FREXPM.v2f16{.log} dest, src{.swz}

FREXPE.f32{.log} dest, src{.swz}

FREXPE.v2f16{.log} dest, src{.swz}

Primary opcode 0x99

Mnemonic Secondary opcode

FREXPM.f32 0x0

FREXPM.v2f16 0x1

FREXPE.f32 0x2

FREXPE.v2f16 0x3

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:24

log 25

Reserved 26:27

swizzle 0 28:29

Reserved 30:39

Destination 40:47

Opcode 48:56

Metadata 57:63

86

SFU

Special function unit.

Performs a given special function. The floating-point reciprocal (FRCP) and reciprocal square root (FRSQ) in-

structions may be freely used as-is. The trigonometric tables (FSIN_TABLE.u6 and FCOS_TABLE.u6) are crude,

requiring both an argument reduction and postprocessing. Likewise the logarithm instruction (FLOGD.f32) requires

an argument reduction. See the transcendentals section for more information.

FRCP.f32dest, src

FRCP.f16dest, src

FRSQ.f32dest, src

FRSQ.f16dest, src

FSIN_TABLE.u6dest, src

FCOS_TABLE.u6dest, src

FLOGD.f32dest, src

Primary opcode 0x9C

Mnemonic Secondary opcode

FRCP.f32 0x0

FRCP.f16 0x1

FRSQ.f32 0x2

FRSQ.f16 0x3

FSIN_TABLE.u6 0x4

FCOS_TABLE.u6 0x5

FLOGD.f32 0x8

Name Bits

Source 0:7

Reserved 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

87

FADD

Floating-point add.

𝐴 + 𝐵
FADD.f32{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}

FADD.v2f16{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}

Mnemonic Opcode

FADD.f32 0xA4

FADD.v2f16 0xA5

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:25

swizzle 1 26:27

swizzle 0 28:29

Reserved 30:31

clamp 32:33

Reserved 34:35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

88

FMIN

Floating-point minimum.

min{𝐴, 𝐵}
FMIN.f32{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}

FMIN.v2f16{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}

Mnemonic Opcode

FMIN.f32 0xA4

FMIN.v2f16 0xA5

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:25

swizzle 1 26:27

swizzle 0 28:29

Reserved 30:31

clamp 32:33

Reserved 34:35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

89

FMAX

Floating-point maximum.

max{𝐴, 𝐵}
FMAX.f32{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}

FMAX.v2f16{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}

Mnemonic Opcode

FMAX.f32 0xA4

FMAX.v2f16 0xA5

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:25

swizzle 1 26:27

swizzle 0 28:29

Reserved 30:31

clamp 32:33

Reserved 34:35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

90

V2F32_TO_V2F16

Vectorized floating-point conversion.

Given a pair of 32-bit floats, output a pair of 16-bit floats packed into a 32-bit destination.

V2F32_TO_V2F16dest, src0, src1

Mnemonic Opcode

V2F32_TO_V2F16 0xA5

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:39

Destination 40:47

Opcode 48:56

Metadata 57:63

91

FRSCALE

Floating-point rescaling.

Computes 𝐴 ⋅ 2𝐵 by adding B to the exponent of A. Used to calculate various special functions, particularly base-2

exponents. Special case handling differs from an actual floating-point multiply, so this should not be used outside

fixed instruction sequences.

FRSCALE.f32{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}

FRSCALE.v2f16{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}

Mnemonic Opcode

FRSCALE.f32 0xA4

FRSCALE.v2f16 0xA5

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:25

swizzle 1 26:27

swizzle 0 28:29

Reserved 30:31

clamp 32:33

Reserved 34:35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

92

FEXP.f32

Floating-point exponent.

Calculates the base-2 exponent of an argument specified as a 8:24 fixed-point. The original argument is passed as

well for correct handling of special cases.

FEXP.f32{.clamp} dest, src0, src1{.abs}{.neg}

Opcode 0xA4

Secondary opcode 0x8

Name Bits

Source: Input as 8:24 fixed-point 0:7

Source: Input as 32-bit float 8:15

Secondary opcode 16:19

Reserved 20:31

clamp 32:33

Reserved 34:35

neg 1 36

abs 1 37

Reserved 38:39

Destination 40:47

Opcode 48:56

Metadata 57:63

93

FADD_LSCALE.f32

Floating-point add with logarithm scale.

Performs a floating-point addition specialized for logarithm computation.

FADD_LSCALE.f32{.clamp} dest, src0{.abs}{.neg}, src1{.abs}{.neg}

Opcode 0xA4

Secondary opcode 0x9

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:31

clamp 32:33

Reserved 34:35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

94

IADD

Integer addition.

𝐴 + 𝐵 with optional saturation.

As Valhall lacks swizzle instructions, IADD.v2i16 with zero is the canonical lowering for swizzles.

IADD.u32{.saturate} dest, src0{.widen}, src1{.widen}

IADD.v2u16{.saturate} dest, src0{.widen}, src1{.widen}

IADD.v4u8{.saturate} dest, src0{.widen}, src1{.widen}

IADD.s32{.saturate} dest, src0{.widen}, src1{.widen}

IADD.v2s16{.saturate} dest, src0{.widen}, src1{.widen}

IADD.v4s8{.saturate} dest, src0{.widen}, src1{.widen}

IADD.u64{.saturate} dest, src0{.widen}, src1{.widen}

IADD.s64{.saturate} dest, src0{.widen}, src1{.widen}

Mnemonic Opcode

IADD.u32 0xA0

IADD.v2u16 0xA1

IADD.v4u8 0xA2

IADD.s32 0xA8

IADD.v2s16 0xA9

IADD.v4s8 0x1A2

IADD.u64 0x1A3

IADD.s64 0x1AB

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:25

widen 1 26:29

saturate 30

Reserved 31:35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

95

MKVEC.v2i16

Make 16-bit vector.

Calculates 𝐴|(𝐵 ≪ 16). Used to implement (ushort2)(A, B)

MKVEC.v2i16dest, src0{.widen}, src1{.widen}

Opcode 0xA1

Secondary opcode 0x5

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:25

widen 1 26:29

Reserved 30:35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

96

ISUB

Integer subtract.

𝐴 − 𝐵 with optional saturation

ISUB.u32{.saturate} dest, src0{.widen}, src1{.widen}

ISUB.v2u16{.saturate} dest, src0{.widen}, src1{.widen}

ISUB.v4u8{.saturate} dest, src0{.widen}, src1{.widen}

ISUB.s32{.saturate} dest, src0{.widen}, src1{.widen}

ISUB.v2s16{.saturate} dest, src0{.widen}, src1{.widen}

ISUB.v4s8{.saturate} dest, src0{.widen}, src1{.widen}

ISUB.u64{.saturate} dest, src0{.widen}, src1{.widen}

ISUB.s64{.saturate} dest, src0{.widen}, src1{.widen}

Mnemonic Opcode

ISUB.u32 0xA0

ISUB.v2u16 0xA1

ISUB.v4u8 0xA2

ISUB.s32 0xA8

ISUB.v2s16 0xA9

ISUB.v4s8 0x1A2

ISUB.u64 0x1A3

ISUB.s64 0x1AB

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:25

widen 1 26:29

saturate 30

Reserved 31:35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

97

SHADDX

Shift, extend, and 64-bit add.

Sign or zero extend B to 64-bits, left-shift by shift, and add the 64-bit value A. These instructions accelerate

address arithmetic, but may be used in full generality for 64-bit integer arithmetic.

SHADDX.u64dest, src0, src1{.widen}, #shift

SHADDX.s64dest, src0, src1{.widen}, #shift

Mnemonic Opcode

SHADDX.u64 0x1A3

SHADDX.s64 0x1AB

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

shift 20:22

Reserved 23:25

widen 1 26:29

Reserved 30:39

Destination 40:47

Opcode 48:56

Metadata 57:63

98

IMUL

Integer multiply.

𝐴 ⋅ 𝐵 with optional saturation. Note the multipliers can only handle up to 32-bit by 32-bit multiplies. The 64-bit

“multiply” acts like IMUL.u32 but additionally writes the high half of the product to the high half of the 64-bit

destination. Along with IADD.u32 and IADD.u64, this allows the construction of a 64-bit multiply in 5 instructions

(6 clocks).

IMUL.u32{.saturate} dest, src0{.widen}, src1{.widen}

IMUL.v2u16{.saturate} dest, src0{.widen}, src1{.widen}

IMUL.v4u8{.saturate} dest, src0{.widen}, src1{.widen}

IMUL.s32{.saturate} dest, src0{.widen}, src1{.widen}

IMUL.v2s16{.saturate} dest, src0{.widen}, src1{.widen}

IMUL.v4s8{.saturate} dest, src0{.widen}, src1{.widen}

IMULD.u64{.saturate} dest, src0{.widen}, src1{.widen}

Mnemonic Opcode

IMUL.u32 0xA0

IMUL.v2u16 0xA1

IMUL.v4u8 0xA2

IMUL.s32 0xA8

IMUL.v2s16 0xA9

IMUL.v4s8 0x1A2

IMULD.u64 0x1A3

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:25

widen 1 26:29

saturate 30

Reserved 31:35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

99

HADD

Integer half-add.

(𝐴 + 𝐵) ≫ 1 without intermediate overflow, corresponding to hadd() in OpenCL. With the .rhadd modifier

set, it instead calculates (𝐴 + 𝐵 + 1) ≫ 1 corresponding to rhadd() in OpenCL.

HADD.u32{.rhadd} dest, src0{.widen}, src1{.widen}

HADD.v2u16{.rhadd} dest, src0{.widen}, src1{.widen}

HADD.v4u8{.rhadd} dest, src0{.widen}, src1{.widen}

HADD.s32{.rhadd} dest, src0{.widen}, src1{.widen}

HADD.v2s16{.rhadd} dest, src0{.widen}, src1{.widen}

HADD.v4s8{.rhadd} dest, src0{.widen}, src1{.widen}

Mnemonic Opcode

HADD.u32 0xA0

HADD.v2u16 0xA1

HADD.v4u8 0xA2

HADD.s32 0xA8

HADD.v2s16 0xA9

HADD.v4s8 0x1A2

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:25

widen 1 26:29

rhadd 30

Reserved 31:35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

100

CLPER

Cross-lane permute.

Selects the value of A in the subgroup lane given by B. This implements subgroup broadcasts. It may be used as a

primitive for screen space derivatives in fragment shaders.

CLPER.u32{.subgroup_size}{.lane_op}{.inactive_res} dest, src0, src1{.widen}

CLPER.v2u16{.subgroup_size}{.lane_op}{.inactive_res} dest, src0, src1{.widen}

CLPER.v4u8{.subgroup_size}{.lane_op}{.inactive_res} dest, src0, src1{.widen}

CLPER.s32{.subgroup_size}{.lane_op}{.inactive_res} dest, src0, src1{.widen}

CLPER.v2s16{.subgroup_size}{.lane_op}{.inactive_res} dest, src0, src1{.widen}

CLPER.v4s8{.subgroup_size}{.lane_op}{.inactive_res} dest, src0, src1{.widen}

CLPER.u64{.subgroup_size}{.lane_op}{.inactive_res} dest, src0, src1{.widen}

CLPER.s64{.subgroup_size}{.lane_op}{.inactive_res} dest, src0, src1{.widen}

Mnemonic Opcode

CLPER.u32 0xA0

CLPER.v2u16 0xA1

CLPER.v4u8 0xA2

CLPER.s32 0xA8

CLPER.v2s16 0xA9

CLPER.v4s8 0x1A2

CLPER.u64 0x1A3

CLPER.s64 0x1AB

Name Bits

Source: A 0:7

Source: B 8:15

Secondary opcode 16:19

Reserved 20:21

inactive_result 22:25

widen 1 26:29

Reserved 30:31

lane_operation 32:33

Reserved 34:35

subgroup_size 36:37

Reserved 38:39

Destination 40:47

Opcode 48:56

Metadata 57:63

101

FMA

Fused floating-point multiply add.

𝐴 ⋅ 𝐵 + 𝐶
FMA.f32{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}, src2{.abs}{.neg}

FMA.v2f16{.clamp} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz}, src2{.abs}{.neg}

Mnemonic Opcode

FMA.f32 0xB2

FMA.v2f16 0xB3

Name Bits

Source: A 0:7

Source: B 8:15

Source: C 16:23

Reserved 24:25

swizzle 1 26:27

swizzle 0 28:29

Reserved 30:31

clamp 32:33

neg 2 34

abs 2 35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

102

LSHIFT_AND

Left shift and bitwise AND.

Left shifts its first source by a specified amount and bitwise ANDs it with the second source, optionally inverting

the second source or the result.

LSHIFT_AND.i32{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

LSHIFT_AND.v2i16{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

LSHIFT_AND.v4i8{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

LSHIFT_AND.i64{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

Mnemonic Opcode

LSHIFT_AND.i32 0xB4

LSHIFT_AND.v2i16 0xB5

LSHIFT_AND.v4i8 0xB6

LSHIFT_AND.i64 0x1B7

Name Bits

Source: A 0:7

Source: shift 8:15

Source: B 16:23

Secondary opcode 24:25

widen 1 26:29

not_result 30

Reserved 31

Secondary opcode 32

Reserved 33:34

not 2 35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

103

RSHIFT_AND

Right shift and bitwise AND.

Right shifts its first source by a specified amount and bitwise ANDs it with the second source, optionally inverting

the second source or the result.

RSHIFT_AND.i32{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

RSHIFT_AND.v2i16{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

RSHIFT_AND.v4i8{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

RSHIFT_AND.i64{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

Mnemonic Opcode

RSHIFT_AND.i32 0xB4

RSHIFT_AND.v2i16 0xB5

RSHIFT_AND.v4i8 0xB6

RSHIFT_AND.i64 0x1B7

Name Bits

Source: A 0:7

Source: shift 8:15

Source: B 16:23

Secondary opcode 24:25

widen 1 26:29

not_result 30

Reserved 31

Secondary opcode 32

Reserved 33:34

not 2 35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

104

LSHIFT_OR

Left shift and bitwise OR.

Left shifts its first source by a specified amount and bitwise ORs it with the second source, optionally inverting

the second source or the result.

LSHIFT_OR.i32{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

LSHIFT_OR.v2i16{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

LSHIFT_OR.v4i8{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

LSHIFT_OR.i64{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

Mnemonic Opcode

LSHIFT_OR.i32 0xB4

LSHIFT_OR.v2i16 0xB5

LSHIFT_OR.v4i8 0xB6

LSHIFT_OR.i64 0x1B7

Name Bits

Source: A 0:7

Source: shift 8:15

Source: B 16:23

Secondary opcode 24:25

widen 1 26:29

not_result 30

Reserved 31

Secondary opcode 32

Reserved 33:34

not 2 35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

105

RSHIFT_OR

Right shift and bitwise OR.

Right shifts its first source by a specified amount and bitwise ORs it with the second source, optionally inverting

the second source or the result.

RSHIFT_OR.i32{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

RSHIFT_OR.v2i16{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

RSHIFT_OR.v4i8{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

RSHIFT_OR.i64{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

Mnemonic Opcode

RSHIFT_OR.i32 0xB4

RSHIFT_OR.v2i16 0xB5

RSHIFT_OR.v4i8 0xB6

RSHIFT_OR.i64 0x1B7

Name Bits

Source: A 0:7

Source: shift 8:15

Source: B 16:23

Secondary opcode 24:25

widen 1 26:29

not_result 30

Reserved 31

Secondary opcode 32

Reserved 33:34

not 2 35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

106

LSHIFT_XOR

Left shift and bitwise XOR.

Left shifts its first source by a specified amount and bitwise XORs it with the second source, optionally inverting

the second source or the result.

LSHIFT_XOR.i32{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

LSHIFT_XOR.v2i16{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

LSHIFT_XOR.v4i8{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

LSHIFT_XOR.i64{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

Mnemonic Opcode

LSHIFT_XOR.i32 0xB4

LSHIFT_XOR.v2i16 0xB5

LSHIFT_XOR.v4i8 0xB6

LSHIFT_XOR.i64 0x1B7

Name Bits

Source: A 0:7

Source: shift 8:15

Source: B 16:23

Secondary opcode 24:25

widen 1 26:29

not_result 30

Reserved 31

Secondary opcode 32

Reserved 33:34

not 2 35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

107

RSHIFT_XOR

Right shift and bitwise XOR.

Right shifts its first source by a specified amount and bitwise XORs it with the second source, optionally inverting

the second source or the result.

RSHIFT_XOR.i32{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

RSHIFT_XOR.v2i16{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

RSHIFT_XOR.v4i8{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

RSHIFT_XOR.i64{.not_result} dest, src0{.widen}, src1{.lanes}, src2{.not}

Mnemonic Opcode

RSHIFT_XOR.i32 0xB4

RSHIFT_XOR.v2i16 0xB5

RSHIFT_XOR.v4i8 0xB6

RSHIFT_XOR.i64 0x1B7

Name Bits

Source: A 0:7

Source: shift 8:15

Source: B 16:23

Secondary opcode 24:25

widen 1 26:29

not_result 30

Reserved 31

Secondary opcode 32

Reserved 33:34

not 2 35

widen 0 36:39

Destination 40:47

Opcode 48:56

Metadata 57:63

108

MUX.i32

Mux.

Mux between A and B based on the provided mask. Equivalent to bitselect() in OpenCL. (A & mask) | (A

& ~mask)

MUX.i32dest, src0, src1, src2

Opcode 0xB8

Name Bits

Source: A 0:7

Source: B 8:15

Source: Mask 16:23

Reserved 24:39

Destination 40:47

Opcode 48:56

Metadata 57:63

109

CUBE_SSEL

Cube S-coordinate select.

During a cube map transform, select the S coordinate given a selected face.

CUBE_SSELdest, src0{.abs}{.neg}, src1{.abs}{.neg}, src2

Opcode 0xBC

Secondary opcode 0x0

Name Bits

Source: Z coordinate as 32-bit floating point 0:7

Source: X coordinate as 32-bit floating point 8:15

Source: Cube face index 16:23

Secondary opcode 24:27

Reserved 28:35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

110

CUBE_TSEL

Cube T-coordinate select.

During a cube map transform, select the T coordinate given a selected face.

CUBE_TSELdest, src0{.abs}{.neg}, src1{.abs}{.neg}, src2

Opcode 0xBC

Secondary opcode 0x1

Name Bits

Source: Y coordinate as 32-bit floating point 0:7

Source: Z coordinate as 32-bit floating point 8:15

Source: Cube face index 16:23

Secondary opcode 24:27

Reserved 28:35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

111

MKVEC.v4i8

Make 8-bit vector.

Calculates 𝐴|(𝐵 ≪ 8)|(𝐶𝐷 ≪ 16) for 8-bit A and B and 16-bit CD.

To implement (uchar4) (A, B, C, D) in full generality, use the sequence MKVEC.v4i8 CD, C, D, #0;

MKVEC.v4i8 out, A, B, CD

MKVEC.v4i8 also allows zero extending arbitrary 8-bit lanes. For example, to extend r0.b3 to r1, use MKVEC.v4i8

r1, r0.b3, 0x0.b0, 0x0.

MKVEC.v4i8dest, src0{.lane}, src1{.lane}, src2

Opcode 0xBD

Name Bits

Source: A 0:7

Source: B 8:15

Source: CD 16:23

Reserved 24:35

lane 1 36:37

lane 0 38:39

Destination 40:47

Opcode 48:56

Metadata 57:63

112

CUBEFACE1

Cube map transform step 1.

Select the maximum absolute value of its arguments.

CUBEFACE1dest, src0{.abs}{.neg}, src1{.abs}{.neg}, src2{.abs}{.neg}

Opcode 0xC0

Name Bits

Source: X coordinate as 32-bit floating point 0:7

Source: Y coordinate as 32-bit floating point 8:15

Source: Z coordinate as 32-bit floating point 16:23

Reserved 24:33

neg 2 34

abs 2 35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

113

CUBEFACE2

Cube map transform step 2.

Select the cube face index corresponding to the arguments.

CUBEFACE2dest, src0{.abs}{.neg}, src1{.abs}{.neg}, src2{.abs}{.neg}

Opcode 0xC1

Name Bits

Source: X coordinate as 32-bit floating point 0:7

Source: Y coordinate as 32-bit floating point 8:15

Source: Z coordinate as 32-bit floating point 16:23

Reserved 24:33

neg 2 34

abs 2 35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

114

IDP

8-bit dot product.

8-bit integer dot product between 4 channel vectors, intended for machine learning. Available in both unsigned and

signed variants, controlling sign-extension/zero-extension behaviour to the final 32-bit destination. Saturation is

available. Corresponds to the cl_arm_integer_dot_product_* family of OpenCL extensions. Not for actual

use, just for completeness. Instead, use your platform’s neural accelerator.

For 𝐴, 𝐵 ∈ {0, … , 255}4 and Accumulator ∈ ℤ, calculates (𝐴 ⋅ 𝐵) + Accumulator and optionally saturates.

IDP.v4s8{.saturate} dest, src0, src1, src2

IDP.v4u8{.saturate} dest, src0, src1, src2

Primary opcode 0xC2

Mnemonic Secondary opcode

IDP.v4s8 0x0

IDP.v4u8 0x1

Name Bits

Source: A 0:7

Source: B 8:15

Source: Accumulator 16:23

Secondary opcode 24:27

Reserved 28:29

saturate 30

Reserved 31:39

Destination 40:47

Opcode 48:56

Metadata 57:63

115

ICMP

Unsigned integer compare.

Evaluates the given condition, do a logical and/or with the condition in the result source, and return in the given

result type (integer one, integer minus one, or floating-point one). The third source is useful for chaining together

conditions without intermediate bitwise arithmetic; when this is not desired, tie it to zero and use the OR combine

mode (do not set the .and modifier).

The sequence modifier .seq is used to construct 64-bit compares in 2 ICMP.u32 instructions, in conjunction with

the u1 result type on the low half, the m1 result type on the high half, and the result of the low half comparison

passed as the third source. For comparisons other than 64-bit, do not set the .seq modifier and do not use the u1

result type.

ICMP.u32{.cond}{.result_type}{.and}{.seq} dest, src0, src1{.widen}, src2

ICMP.v2u16{.cond}{.result_type}{.and}{.seq} dest, src0, src1{.widen}, src2

ICMP.v2u16{.cond}{.result_type}{.and}{.seq} dest, src0, src1{.widen}, src2

Mnemonic Opcode

ICMP.u32 0xF0

ICMP.v2u16 0xF1

ICMP.v2u16 0xF2

Name Bits

Source: A 0:7

Source: B 8:15

Source: C 16:23

and 24

seq 25

widen 1 26:29

result_type 30:31

condition 32:34

Reserved 35:39

Destination 40:47

Opcode 48:56

Metadata 57:63

116

FCMP

Floating-point compare.

Evaluates the given condition, do a logical and/or with the condition in the result source, and return in the given

result type (integer one, integer minus one, or floating-point one). The third source is useful for chaining together

conditions without intermediate bitwise arithmetic; when this is not desired, tie it to zero and use the OR combine

mode (do not set the .and modifier).

FCMP.f32{.cond}{.result_type}{.and} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz},

src2

FCMP.v2f16{.cond}{.result_type}{.and} dest, src0{.abs}{.neg}{.swz}, src1{.abs}{.neg}{.swz},

src2

Mnemonic Opcode

FCMP.f32 0xF4

FCMP.v2f16 0xF5

Name Bits

Source: A 0:7

Source: B 8:15

Source: C 16:23

and 24

Reserved 25

swizzle 1 26:27

swizzle 0 28:29

result_type 30:31

condition 32:34

Reserved 35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

117

ICMP

Signed integer compare.

Evaluates the given condition, do a logical and/or with the condition in the result source, and return in the given

result type (integer one, integer minus one, or floating-point one). The third source is useful for chaining together

conditions without intermediate bitwise arithmetic; when this is not desired, tie it to zero and use the OR combine

mode (do not set the .and modifier).

The sequencemodifier .seq is used to construct signed 64-bit compares in 1 ICMP.u32 and 1 ICMP.s32 instruction,

in conjunction with the u1 result type on the low half, the m1 result type on the high half, and the result of the low

half comparison passed as the third source. For comparisons other than 64-bit, do not set the .seq modifier and

do not use the u1 result type.

ICMP.s32{.cond}{.result_type}{.and}{.seq} dest, src0, src1{.widen}, src2

ICMP.v2s16{.cond}{.result_type}{.and}{.seq} dest, src0, src1{.widen}, src2

ICMP.v2s16{.cond}{.result_type}{.and}{.seq} dest, src0, src1{.widen}, src2

Mnemonic Opcode

ICMP.s32 0xF8

ICMP.v2s16 0xF9

ICMP.v2s16 0xFA

Name Bits

Source: A 0:7

Source: B 8:15

Source: C 16:23

and 24

seq 25

widen 1 26:29

result_type 30:31

condition 32:34

Reserved 35:39

Destination 40:47

Opcode 48:56

Metadata 57:63

118

IADD_IMM.i32

Integer addition with immediate.

Adds an arbitrary 32-bit immediate embedded within the instruction stream. If no modifiers are required, this

is preferred to IADD.i32 with a constant accessed as a uniform. However, if the constant is available inline,

IADD.f32 is preferred.

IADD_IMM.i32 with the source tied to zero is the canonical immediate move.

IADD_IMM.i32dest, src, #constant

Opcode 0x110

Name Bits

Source: A 0:7

constant 8:39

Destination 40:47

Opcode 48:56

Metadata 57:63

119

IADD_IMM.v2i16

Integer addition with immediate.

Adds an arbitrary pair of 16-bit immediates embedded within the instruction stream. If no modifiers are required,

this is preferred to IADD.v2i16 with a constant accessed as a uniform. However, if the constant is available inline,

IADD.v2i16 is preferred. Adding only a single 16-bit constant requires replication of the constant.

IADD_IMM.v2i16dest, src, #constant

Opcode 0x111

Name Bits

Source: A 0:7

constant 8:39

Destination 40:47

Opcode 48:56

Metadata 57:63

120

IADD_IMM.v4i8

Integer addition with immediate.

Adds an arbitrary quad of 8-bit immediates embedded within the instruction stream. If no modifiers are required,

this is preferred to IADD.v4i8 with a constant accessed as a uniform. However, if the constant is available inline,

IADD.v4i8 is preferred. Adding only a single 8-bit constant requires replication of the constant.

IADD_IMM.v4i8dest, src, #constant

Opcode 0x112

Name Bits

Source: A 0:7

constant 8:39

Destination 40:47

Opcode 48:56

Metadata 57:63

121

FADD_IMM.f32

Floating-point addition with immediate.

Adds an arbitrary 32-bit immediate embedded within the instruction stream. If no modifiers are required, this

is preferred to FADD.f32 with a constant accessed as a uniform. However, if the constant is available inline,

FADD.f32 is preferred.

FADD_IMM.f32dest, src, #constant

Opcode 0x114

Name Bits

Source: A 0:7

constant 8:39

Destination 40:47

Opcode 48:56

Metadata 57:63

122

FADD_IMM.v2f16

Floating-point addition with immediate.

Adds an arbitrary pair of 16-bit immediates embedded within the instruction stream. If no modifiers are required,

this is preferred to FADD.v2f16 with a constant accessed as a uniform. However, if the constant is available inline,

FADD.v2f16 is preferred. Adding only a single 16-bit constant requires replication of the constant.

FADD_IMM.v2f16dest, src, #constant

Opcode 0x115

Name Bits

Source: A 0:7

constant 8:39

Destination 40:47

Opcode 48:56

Metadata 57:63

123

TEX_FETCH

Texel fetch.

Unfiltered textured instruction.

TEX_FETCH{.explicit_offset}{.dim}{.skip}{.slot} @r, @w, src

Opcode 0x125

Name Bits

Source: Image to read from 0:7

Reserved 8:10

explicit_offset 11

Reserved 12:15

Staging 1 16:23

Reserved 24:27

dimension 28:29

slot 30:32

staging_register_count 33:35

Reserved 36:38

skip 39

Staging 0 40:47

Opcode 48:56

Metadata 57:63

124

TEX

Texture load.

Ordinary texturing instruction using a sampler.

TEX{.explicit_offset}{.shadow}{.lod}{.dim}{.skip}{.slot} @r, @w, src

Opcode 0x128

Name Bits

Source: Image to read from 0:7

Reserved 8:10

explicit_offset 11

shadow 12

lod_mode 13:15

Staging 1 16:23

Reserved 24:27

dimension 28:29

slot 30:32

staging_register_count 33:35

Reserved 36:38

skip 39

Staging 0 40:47

Opcode 48:56

Metadata 57:63

125

FMA_RSCALE.f32

Fused floating-point multiply add with exponent bias.

First calculates 𝐴⋅𝐵 +𝐶 and then biases the exponent by D. Used in special transcendental function sequences. It

should not be used for general code as its special case handling differs from two back-to-back FMA.f32 operations.

Equivalent to FMA.f32 back-to-back with RSCALE.f32

FMA_RSCALE.f32{.clamp} dest, src0{.abs}{.neg}, src1{.abs}{.neg}, src2{.abs}{.neg},

src3

Opcode 0x160

Name Bits

Source: A 0:7

Source: B 8:15

Source: C 16:23

Source: D 24:31

clamp 32:33

neg 2 34

abs 2 35

neg 1 36

abs 1 37

neg 0 38

abs 0 39

Destination 40:47

Opcode 48:56

Metadata 57:63

126

Appendix A - Mali Gxx reference

Mali Gxx covers both Bifrost (major 6, 7) and Valhall (major 9). Architecture major 8 did not ship in any products.

It was likely an intermediate step in between Bifrost and Valhall, perhaps implementing the Bifrost instruction set

with an early version of Valhall’s data structures.

Name Codename Major Minor

Mali G71 Mimir 6 0

Mali G72 Heimdall 6 1

Mali G51 Sigurd 7 0

Mali G76 Norr 7 1

Mali G52 Gondul 7 2

Mali G31 Dvalin 7 3

Mali G77 Trym 9 0

Mali G57 Natt-A 9 1

Mali G78 Borr 9 2

Mali G57 Natt-B 9 3

Mali G68 Ottr 9 4

Mali G78AE Borr-AE 9 5

Appendix B - Performance characteristics

Mali G78 attains the following normalized peak performance, as reported by the Mali Offline Compiler:

• 64 FMA instructions per cycle

• 64 CVT instructions per cycle

• 16 SFU instructions per cycle

• 8 x 32-bit varying channels interpolated per cycle

• 4 texture instruction per cycle

• 1 load/store operation per cycle

Depending on the cache hit rate, instructions accessing memory can be significantly slower than reported here.

Depending on the exact texture instruction issued and the corresponding sampler state, texture instructions can be

additionally slower.

127

	Intro
	Overview
	Dependencies
	Branching
	Texture instructions
	Cube maps

	Register file
	Transcendental operations
	Exponentials
	Sine and cosine

	Sources
	Destinations
	Staging registers
	Instruction metadata
	Table of immediates in the Valhall ISA
	Enumerations
	Action
	Immediate mode
	Thread storage pointers
	Thread identification
	Swizzles (8-bit)
	Lanes (8-bit)
	Swizzles (16-bit)
	Swizzles (32-bit)
	Swizzles (64-bit)
	Load lane (8-bit)
	Load lane (16-bit)
	Load lane (32-bit)
	Load lane (48-bit)
	Load lane (64-bit)
	Load lane (96-bit)
	Load lane (128-bit)
	Round mode
	Result type
	Widen
	Clamp
	Condition
	Dimension
	LOD mode
	Register format
	Vector size
	Memory size
	Slot
	Store segment
	Subgroup size
	Lane operation
	Inactive result

	Instruction reference
	NOP
	BRANCHZ
	DISCARD
	BRANCHZI
	BARRIER
	CSEL
	CSEL
	LD_VAR_SPECIAL
	LD_VAR_IMM_F32
	LD_ATTR_IMM
	LD_ATTR
	LEA_ATTR
	LOAD.i8
	LOAD.i16
	LOAD.i24
	LOAD.i32
	LOAD.i48
	LOAD.i64
	LOAD.i96
	LOAD.i128
	STORE
	ST_IMAGE
	LD_TILE
	BLEND
	ATEST
	ZS_EMIT
	CONVERT
	F16_TO_F32
	CONVERT
	FROUND
	MOV.i32
	CLZ.i32
	CLZ.v2i16
	CLZ.v4i8
	ABS.i32
	ABS.v2i16
	ABS.v4i8
	POPCOUNT.i32
	BITREV.i32
	NOT.i32
	NOT.i64
	WMASK
	FREXP
	SFU
	FADD
	FMIN
	FMAX
	V2F32_TO_V2F16
	FRSCALE
	FEXP.f32
	FADD_LSCALE.f32
	IADD
	MKVEC.v2i16
	ISUB
	SHADDX
	IMUL
	HADD
	CLPER
	FMA
	LSHIFT_AND
	RSHIFT_AND
	LSHIFT_OR
	RSHIFT_OR
	LSHIFT_XOR
	RSHIFT_XOR
	MUX.i32
	CUBE_SSEL
	CUBE_TSEL
	MKVEC.v4i8
	CUBEFACE1
	CUBEFACE2
	IDP
	ICMP
	FCMP
	ICMP
	IADD_IMM.i32
	IADD_IMM.v2i16
	IADD_IMM.v4i8
	FADD_IMM.f32
	FADD_IMM.v2f16
	TEX_FETCH
	TEX
	FMA_RSCALE.f32

	Appendix A - Mali Gxx reference
	Appendix B - Performance characteristics

