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1 Introduction

Paul Romer’s widely cited endogenous growth theory casts knowledge rather than physical assets in

a central role for producing economic growth (Romer (1990)). However, Romer’s model is predicated

on the notion that “anyone engaged in research has free access to the entire stock of knowledge.” In

reality, access to new knowledge is highly imperfect (Griliches (1957)). For example, prior empirical

research has shown that, contrary to the notion of “free access,” knowledge is more likely to flow

between individuals who are located more closely together (Jaffe et al. (1993); Zucker et al. (1998)).

Yet geographic distance is just one of many forms of distance that can impede the transfer of

knowledge. Conversely, one can find ways to be “near” sources of knowledge while being physically

separated. For example, social or professional networks may lower the cost of accessing knowledge

between members (Sorenson et al. (2006)). Thus, to fully understand economic growth, we must

consider not only the factors that influence the production of knowledge but also those that influence

access to knowledge.

In this paper, we study knowledge access by examining whether spatial and social proximity are

complements or substitutes in terms of enhancing knowledge flows between individuals. The social

capital literature highlights both possibilities. Membership in multiple overlapping networks (one

defined by spatial proximity and another defined by social proximity, for example) helps reinforce the

deep bonds of trust that facilitate exchange of tacit knowledge (Coleman (1988)); yet an influential

literature also stresses the importance of “structural holes” between networks and “weak ties” across

networks in accessing non-redundant knowledge (Burt (1992); Granovetter (1973)).

Prior research has shown that spatial proximity enhances access to knowledge between inventors

(Jaffe et al. (1993); Thompson and Fox-Kean (2005). A common explanation for this finding is that

latent knowledge is more accessible by those who are located in the same geographic region as

the inventor.1 The inventor may be more willing to share knowledge with co-located individuals

because they trust them more and/or because they perceive a greater likelihood of reciprocation.

Similarly, social proximity through membership in a social network (e.g., ethnic, professional) may

also enhance trust and the chance of reciprocation. For example, co-ethnic networks, such as
1“Latent knowledge” is known by the inventor, is useful for the application or further development of the inventor’s

invention, but is not codified in patents or publications (Agrawal (2006)). The knowledge is not codified because either
incentives to publish this knowledge are missing (e.g., knowledge embodied in failed experiments) or the knowledge
is tacit such that it is particularly costly to codify.
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Indians in the U.S., are often characterized as rich in social capital (Kalnins and Chung (2006);

Saxenian (1999)), lowering the cost of establishing trust between members. Even if members of

a community do not know each other directly, they are more likely to be indirectly connected by

knowing someone in common. In her study of Indian and Chinese engineers and entrepreneurs in

Silicon Valley, Saxenian emphasizes the role of trust and reciprocity in ethnic communities that

facilitate the sharing of knowledge and other resources among members, noting that: “The initial

social connections often have a basis in shared educational experiences, technical backgrounds,

language, culture, and history” (p. 37). Conceptually, we remain agnostic in this paper to the

actual knowledge-sharing mechanisms facilitated through social proximity. In other words, we do

not differentiate between knowledge sharing based on direct relationships (e.g., family, former work

colleagues or school mates), indirect relationships (e.g., graduates of the same university but not

the same cohort, common friends), reputation (e.g., status of particular universities or firms in the

home country), or cultural cues (e.g., inferences based on knowledge about caste or culture-specific

personality characteristics).2

How might we consider the influence of spatial and social proximity on knowledge flows simul-

taneously? One way is to construct and estimate a simple Knowledge Flow Production Function

(KFPF). The intuition is that the likelihood of a knowledge flow between a given pair of inventors

depends on the structure of relationships between those inventors - spatial, social, professional, etc.

Furthermore, we pay particular attention to how different types of relationships interact.

We construct a KFPF in which only two factors mediate the probability of a knowledge flow

between individuals, one spatial and one social. Specifically, we focus on whether individuals are co-

located (in the same city) and/or are co-ethnic (of the same ethnic background). We then estimate

this function using patent citation data and employing a matched sample method developed by

Jaffe et al. (1993) and refined by Thompson and Fox-Kean (2005) to control for the underlying

distribution of field-specific technological activity across geographic and ethnic space.

We find that both spatial and social proximity mediate knowledge flows. Co-location and co-

ethnicity increase the probability of a knowledge flow between inventors; co-location increases the

probability of a knowledge flow by 24% (assuming non-co-ethnic inventors) and co-ethnicity increases
2Although we allow for social proximity to affect knowledge flows through any mechanism in this paper, in the

conclusion section we return to this topic and highlight the need to understand the specific mechanisms actually used
to access knowledge in an ethnic community in order to draw general conclusions.
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the probability by 14% (assuming non-co-located inventors). Furthermore, we find that co-location

and co-ethnicity are substitutes rather than complements in the way their interaction influences

knowledge flows; for example, co-location increases the probability of a knowledge flow by 24% for

non-co-ethnic inventors but only by 2% for co-ethnic inventors. In other words, the marginal benefit

of co-location is approximately 12 times larger for individuals who are not co-ethnic. Thus, in terms

of facilitating access to knowledge, co-location appears to offer much greater benefits to individuals

who are not otherwise socially connected.3

We also find that co-location increases knowledge flows to a greater extent between inventors

working in different fields as compared to those working in the same field. Specifically, for inventors

working in different fields, co-location increases the probability of a citation by approximately 30%

compared to an increase of only 20% for inventors working in the same field. This result once again

implies that social proximity, this time manifested through membership in a community of practice,

substitutes for rather than complements spatial proximity with respect to the effect on knowledge

flows.

Finally, we replace our binary measure of spatial proximity, co-location, with a continuous mea-

sure of distance measured in thousands of miles. Consistent with our prior findings, our results

indicate that knowledge flows between inventors diminishes with distance. A 1000-mile increase

in distance results in an approximately 2% reduction in the probability of a knowledge flow. Fur-

thermore, the marginal impact of co-ethnicity increases with distance between inventors. While

the marginal effect of co-ethnicity between inventors that are 1000 miles apart is to increase the

likelihood of a knowledge flow by only 5%, the effect between inventors that are 3000 miles apart is

more than double that (13%).

Our paper builds on recent work that has also stressed the role that ethnic networks play in

facilitating knowledge exchange and other valuable economic interactions (Rauch (2001)).4 In par-
3We focus on co-ethnicity as one particular grouping for which membership raises the likelihood of sharing social

capital. Of course, many such possible groupings exist. The social capital literature provides a useful framework
for understanding knowledge-sharing networks more generally. This research has been impressively multidisciplinary,
with important contributions by sociologists (Granovetter (1973); Coleman (1988); Burt (1992)), political scientists
(Putnam (2002)), and economists (Knack and Keefer (1997); Glaeser et al. (2002)).

4A related literature focuses on the costs and benefits of ethnic diversity. Alesina and Ferrara (2005) provide a
useful survey of how ethnic diversity affects economic performance. A major focus of this literature is on the damage
done by ethnic conflict in heterogeneous societies (Easterly and Levine (1997)). At a more micro level, Borjas (1995)
shows that ethnicity-based segregation at the level of neighborhoods slows down intergenerational wage convergence.
But Alesina and La Ferrara point out that some diverse societies are highly effective; work is continuing on the factors
that make diversity an asset. Working in the tradition of Jacobs (1961), Ottaviano and Peri (2004) provide evidence

4



ticular, Kerr (2005) reports results indicating that ethnic scientific communities play an important

role in international technology diffusion. His findings suggest that a larger ethnic research com-

munity in the US improves technology diffusion to less advanced countries of the same ethnicity. In

addition, Kalnins and Chung (2006) provide evidence from the U.S. lodging industry that Gujarati

immigrant entrepreneurs benefit from their ethnic group’s social capital when already-successful

members are co-located and in the same industry. Furthermore, these papers also suggest that

their findings may extend beyond ethnicity to other social groupings.

Our paper proceeds as follows. In Section 2 we describe the U.S. resident Indian diaspora, the

socially connected network that is the basis of our empirical study. In Section 3 we define the

KFPF and describe the methodology and data we employ for estimating the function’s parameters.

In Section 4 we present empirical results, and Section 5 discusses the welfare implications of our

findings.

2 The U.S. Resident Indian Diaspora

The U.S. resident Indian diaspora is particularly suitable for the purposes of our study because,

on average, the members: 1) are reasonably identifiable (by last name), 2) are highly active in

technological innovation (we use patent citations to measure knowledge flows), 3) identify strongly

with their ethnicity (we use co-ethnicity as a proxy for social proximity), and 4) are active across a

broad range of geographies (many co-located and non-co-located observations in the sample).

Members of the U.S. resident Indian diaspora are highly active in technological innovation, which

is evident by their employment and patenting output. They are disproportionately concentrated in

engineering (7%) and mathematical/computing professions (16%). As a comparison, roughly 1% of

the native-born population works in each of these professions.5,6 In addition, not only is the share

of the Indian-American population working in technology significant, its role in the U.S. innovation

system has increased over time (Table 1).7 The share of total USPTO-issued patents that have at

of positive effects of diversity on the performance of U.S. cities.
5Source: U.S. Census Bureau and authors’ calculations.
6In related work, Levin and Stephan (1999) and Stephan and Levin (2001) report that foreign-born and foreign-

educated scientists and engineers (not necessarily from India) contribute disproportionately in terms of “exceptional
contributions to US science” relative to what would be expected given their underlying distribution in the scientific
labor force in the U.S.

7We describe our method for identifying Indian inventors in detail in the data section. Here we are measuring all
inventors with Indian last names.
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least one Indian-named inventor has been rising steadily, approximately in line with the expanding

Indian-born population.

Members of the U.S. resident Indian diaspora identify strongly with their ethnicity, perhaps

partly because many are of a recent vintage. Of the 2001 Indian-American population residing

in the U.S., those born in the U.S. were fewer than those born in India (0.7 million versus one

million).8 Furthermore, more than one third of the Indian-born came after 1996 and more than

half after 1990.9 Survey evidence underlines the strong ethnic identification: 53% visit India at

least once every two years, 97% watch Indian TV channels several times a week, 94% view Indian

Internet sites several times a week, 92% read an Indian newspaper or magazine several times a week,

and 90% have an Indian meal several times a week.10

The Indian diaspora is active across multiple geographic areas. Table 2 provides a snapshot

of the Metropolitan Statistical Area (MSA) locations of patenting activity by U.S.- and Canada-

resident Indian inventors. The table also shows the total level of patenting activity in each location

and finally the share of patenting activity by Indian inventors in each MSA. For example, the San

Francisco MSA received the largest number of patents by Indian inventors (and by all inventors).

Indian inventors also received a relatively high share (11%) of the overall patents issued in that

MSA.

These data illustrate that although inventive activity by the diaspora is geographically dispersed,

it is not uniformly distributed (relative to the underlying distribution of overall patenting activity)

but rather somewhat concentrated in particular cities such as San Francisco, New York, Chicago,

and Austin. The Herfindahl index of concentration, calculated as
∑N

i=1(S
L
i )2, where SL

i is the

percentage share of patents issued in MSA i and N is the total number of MSAs, has a value of 667

for “Indian Patents” and 385 for “All Patents.”

Finally, as we will discuss in the methodology section below, our identification strategy will

need to address technological concentration by ethnicity. We offer descriptive data on this issue
8Source: U.S. Census Bureau, Current Population Survey, March Supplement, various years.
9The Indian-born population in the U.S. numbered only 12,296 in the 1960 census. The population has grown

dramatically in the last four decades, reaching 51,000 in 1970, 206,087 in 1980, 450,406 in 1990, and 1,022,552 in 2000.
H-1B visas provided a major route of legal access to the U.S. labor market in the 1990s for highly skilled individuals
with job offers. Highly skilled Indians, especially those working in the computer industry, have been by far the largest
beneficiaries of the H-1B visas. In fiscal year 2001, Indian-born individuals received almost half of all H-1Bs issued,
58% of which were in computer-related fields.

10Kapur (2004).
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here. Table 3 shows the number of patents issued in each two-digit National Bureau of Economic

Research (NBER) technology subcategory where at least one of the inventors is Indian.11 The table

also shows the total number of patents issued in each technology class and the share of patents

where at least one of the inventors is Indian. Not surprisingly, computer hardware and software

have the largest number of patents issued to Indians, who also have a relatively high share of the

total number of patents issued in this class.

However, the table also shows that the impact of Indian inventors goes well beyond computers.

Indeed, the highest Indian share is for organic compounds. Even so, Indian inventors are more

technologically concentrated than overall inventors although the difference in concentration is less

pronounced than for geographic concentration. The value of the Herfindahl index for technological

concentration, for example, is 677 for patents with “One or More Indian Inventor” compared with

422 for “All Patents.”

3 Estimating the Knowledge Flow Production Function

3.1 Definition of the KFPF

The KFPF measures the probability of a non-redundant knowledge flow to any inventor, i, from any

other inventor, j (where j 6= i), based on well-defined structural relationships between the inventor

pair (e.g., co-located, co-ethnic, co-specialist, etc.). We focus on the case where the existence of

a given relationship is an all-or-nothing phenomenon (and thus can be measured by a dummy

variable) but allow for a completely unrestricted set of interactions between the various types of

relationships. We assume, however, that total knowledge flow from j to i is independent of both i’s

and j’s relationships to other inventors and so abstract from issues of indirect access to knowledge

through a network.12

Letting R represent the total number of relationship types (e.g., co-located, co-member), Kij ,

the probability of a knowledge flow from j to i is given by the general KFPF:

Kij = β0 +
S∑

s=1

βsDs (1)

11The three-digit patent classifications provided by the USPTO are mapped to 36 two-digit “subcategory codes”
in Jaffe et al. (2002), pp. 452-454.

12See, for example, Burt (1992).
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The intercept in equation (1) is the probability of a knowledge flow when none of the relationships

are present. S is the number of dummy variables required to represent all possible relationship types

and all possible interactions between those relationship types.13 Suppose, for example, three types

of relationships are possible between an inventor pair. The number of dummy variables (S) required

for a completely unrestricted model is then seven (three to capture the existence of each relationship,

three to capture the interactions between each possible pair of relationships, and one to capture the

interaction when all three of the relationships are present).

In this paper we focus on two types of relationships that potentially play an important role in

facilitating knowledge flows between inventors: co-location and co-ethnicity. In this case, R = 2,

S = 3, and the KFPF is given by:

Kij = β0 + β1(Co− Locationij) + β2(Co−Ethnicityij)+

β3(Co− Locationij × Co− Ethnicityij), j 6= i
(2)

The parameter on the interaction term determines whether co-location and co-ethnicity are

complements or substitutes in the production of a knowledge flow. When β3 is positive, the affect

of co-location on the probability of a knowledge flow is greater for co-ethnic inventors; that is, co-

location and co-ethnicity are complements. Conversely, co-location and co-ethnicity are substitutes

when β3 is negative. Later, we extend our analysis to consider distance between inventors rather than

the binary measure of co-location and also explore whether communities of practice are complements

to or substitutes for co-location.

3.2 Empirical Methodology

Our objective is to identify the separate and joint effects of inventor co-location and inventor co-

ethnicity on technological knowledge flows between inventors. The identification challenge is that

inventive activity in particular technological areas is likely to be concentrated by location and

ethnicity (Tables 2 and 3 show evidence of this). If this is true, we will observe a high incidence

of citations among co-located and co-ethnic inventors even if co-location and co-ethnicity exert no

causal influence on knowledge flows. Our identification strategy is to match each actual cited patent
13With R relationship types, the number of dummy variables needed, S, equals the number of possible combinations

of relationship types from the set R, taken r = 1, 2, ..., R at a time. This is given by the combinatorial formula:
S =

PR
r=1

R!
r!(R−r)!

= 2R − 1
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with a control patent that comes from the same technological class and time period as the actual

cited patent. Assuming that the classes are sufficiently narrowly defined, the controls will have the

same distribution across technologies as the actual citations, allowing us to control for incidental

co-location and co-ethnicity effects.

With the controls selected, we estimate the effects of interest from the following simple regression

using citations as a proxy for knowledge flows:14

P (Citationij) = β0 + β1Co− Locationij + β2Co− Ethnicityij+

β3(Co− Locationij × Co−Ethnicityij) + εij

i 6= j

Citation, our dependent variable, is a dummy that takes a value of one when the observation

relates to an actual citation and zero when it relates to a control. We index the citing inventor by

i and the cited (or control) inventor by j. By construction, our sample contains an equal number

of actual and control observations.15 Co-location is a dummy variable that takes a value of one

when the original and cited (or control) inventors are located in the same MSA and zero otherwise.

Co-Ethnicity is a dummy variable that takes a value of one when the cited (or control) inventor

has an Indian surname (the original inventor always has an Indian surname, by construction). We

exclude all self cites (i = j).16

To see how this regression allows us to identify the causal effects of interest, note that if the

control matching procedure is effective and no causal link exists from co-location and co-ethnicity

to citations, the coefficients on β1, β2, and β3 should all be zero. Put differently, if we have well-
14Citations are not, however, straightforward to interpret. Patents cite other patents as “prior art,” with citations

serving to delineate the property rights conferred. Some citations are supplied by the applicant, others by the patent
examiner (Alcacer and Gittelman (2006); Hegde and Sampat (2005)), and some patents may be cited more frequently
than others because they are more salient in terms of satisfying legal definitions of prior art rather than because
they have greater technological significance. Cockburn et al. (2002) report, for example, that some examiners have
“favorite” patents that they cite preferentially because they “teach the art” particularly well. Nonetheless, we are of
the opinion that even examiner-added citations may reflect a knowledge flow. Jaffe et al. (2002) surveyed cited and
citing inventors to explore the “meaning of patent citations” and find that approximately one-quarter of the survey
responses correspond to a “fairly clear spillover,” approximately one-half indicate no spillover, and the remaining
quarter indicate some possibility of a spillover. Based on their survey data, the authors conclude that “these results
are consistent with the notion that citations are a noisy signal of the presence of spillovers. This implies that aggregate
citation flows can be used as proxies for knowledge-spillover intensity, for example, between categories of organizations
or between geographic regions” (p. 400).

15Recall that we match each cited patent with a control patent. Although we disaggregate inventors when there
are more than one on the focal patent, we treat multiple inventors as a set in the context of cited and control patents.

16We also conduct robustness checks where we remove examiner-added citations. The results become slightly
stronger.
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matched controls and if no causal relationships are present, then information on co-location and

co-ethnicity would not be helpful in predicting whether a given observation is an actual citation or

a control.

What economic interpretation can be given to the coefficients? Suppose we observe a particular

citation. For the cited patent, we can identify the entire set of patents from the same technological

area and time period as the actual cited patent, what we call the control set. The coefficients allow

us to calculate the increase in the probability of a citation relative to a random patent from the

control set for various combinations of co-location and co-ethnicity between the inventors of the

focal and cited patent. For example, suppose we are dealing with a citation where the focal and

cited inventors are co-located but not co-ethnic. Suppose further that the estimated values of β0

and β1 are 0.50 and 0.25, respectively. These estimates imply that co-location is associated with a

50% increase in the probability of a citation relative to a random (non-co-ethnic) member of the

control set.

The results allow us to test for statistically significant co-location effects (separately for both co-

ethnic and non-co-ethnic inventors) and also for co-ethnicity effects (again separately for co-located

and non-co-located inventors). A test of the significance of the interaction coefficient, β3, provides

a very direct way to determine whether co-location and co-ethnicity are significant complements

or substitutes. For example, we would not be able to reject the null of complementarity if β3 is

statistically significant and positive.

The foregoing discussion underlines the key challenge associated with our method. A test of the

null hypothesis of no co-location effect for non-co-ethnic inventors (β1 = 0), for example, is actually

a test of the joint hypothesis that we have effectively matched the controls and that no causal link

is present from co-location to knowledge flows. A rejection of this null could follow from ineffective

matching and/or the presence of a causal relationship. For this reason, we focus in detail in the

next section on the method we use to make the control matches and discuss in the results section

the likely robustness of particular findings to residual inadequacies in the matching procedure.

3.3 Data and Sample Construction

Data Source

We use the “front page” bibliographic data for patents published by the USPTO as the basis of
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the empirical work. These data contain the application and issue dates of each patent, the names

and locations of the inventor(s), a technology classification, and a list of patents cited. We augment

these data with a list of Indian names and the NBER Patent-Citations data file for additional fields,

including the two-digit technology classification subcategory code.

We generate Indian name data from a list of 213,622 unique last names compiled by merging the

phone directories of four of the six largest cities in India: Bangalore, Delhi, Mumbai (Bombay), and

Hyderabad. Of these, 38,386 names appeared with a frequency of five or more. Of these, 13,418

matched a proprietary database of US consumers.17 Finally, one of the authors and an outside

expert coded each of these names as: 1) extremely likely to be Indian, 2) extremely unlikely to be

Indian, or 3) could be either. The list of names used for this study includes only the 6,885 last

names that were coded as “extremely likely to be Indian.”18

Unit of Analysis

Our unit of analysis is the inventor-patent-citation. Thus, a single patent that has two inventors

and cites five prior patents will generate ten unique observations. We employ this unit of analysis

rather than simply patents since we are interested in the flow of knowledge between individuals

rather than between inventions.

Control Patents

As noted above, the main methodological challenge in identifying the effects of co-ethnicity and

co-location on knowledge flows is to control for the ethnic and locational clustering of inventive

activity in particular technological areas at particular points in time. For example, we might

observe Indian inventors in computer-related technologies residing in Silicon Valley citing a large

number of other Indian inventors working in computer-related technologies and residing in Silicon

Valley. This high level of co-ethnic and co-located cites could simply reflect the law of averages,

as a relatively large fraction of inventors employed in Silicon Valley are of Indian origin and are
17InfoUSA prepared this database.
18We do not expect the frequency of false positives in our name data to be large. In a random phone survey

(N=2256), 97% of the individuals with last names from our sample list responded “yes” to the question: “Are you of
Indian origin?” (Kapur, 2004). Nor do we expect the frequency of false negatives to be particularly large. Although
we constructed our name set from the phone books of large metropolitan cities, the vast majority of Indian overseas
migration to the United States is an urban phenomenon; the likelihood of an urban household in India having a family
member in the US is more than an order of magnitude greater than a rural household. A different problem arises when
people change their last name after migration. This is more likely with Indian women due to marriage. However,
even among second-generation Asian-Americans, Indian-American women are least likely to marry outside the ethnic
group (62.5% marry within the ethnic group (Le, 2004)). Noise in our name data will bias our result downwards.
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working on computer-related technologies. Conversely, it could be because the combined effects of

co-ethnicity and co-location are facilitating knowledge flows between inventors in this sector.

To address this issue, we build on a procedure developed by Jaffe et al. (1993) and refined by

Thompson and Fox-Kean (2005) to identify a control patent for each observation.19 We select a

control patent for each observation that matches the cited patent on the following dimensions: 1)

application year and 2) technology classification. While Jaffe et al. select controls from the set that

matches the three-digit primary classification of the citing patent and Thompson and Fox Kean

enhance the methodology by selecting controls from the set that match on a single primary and

secondary six-digit classification, we further refine the process and select from the set that matches

on the highest possible number of six-digit classifications.20

In addition, we confirm that the control patent does not cite the original patent. If it does, we

remove the patent from the set of potential controls and select the next best control patent. Finally,

if no patents match the cited patent in at least the application year and the three-digit primary

classification without being cited by the original patent, we remove the observation (original patent)

from the data set.

We identify co-ethnic and co-localization effects as the extent to which the frequency of citations

to co-ethnic or co-located inventors is over and above what we would expect given the ethnic

and geographic distributions of inventive activity in the particular technological area of the cited

patent.21 The geographic or ethnic clustering of innovative activity in certain technology areas itself

may be due to the lowered cost of establishing social relationships but also to something else such

as thicker factor markets. Thus, focusing on knowledge flows that are more concentrated than the

innovative activity in that particular field is a conservative approach.
19The Jaffe et al. and Thompson and Fox Kean approaches involve the analysis of forward citations. To take

advantage of the substantial growth in the Indian-born population in the U.S. post-1990, our approach is to look
backward to prior patents that are being cited by the patents granted to Indian inventors between 2001 and 2003.
One can use either approach (backwards or forwards citations) to test for a disproportionate incidence of co-located
or co-ethnic knowledge flows.

20We are able to find controls that match on more than one six-digit classification for approximately 60% of the
observations in the sample (37% match on one six-digit classification and only 2% match on the three-digit primary
classification). We only use observations for which we are able to find a control patent that matches on at least one
six-digit classification. As a result, approximately 40% of our sample has controls that are as closely matched as those
in Thompson and Fox Kean and 60% of our sample has controls that are more closely matched.

21We also check whether “Indian patents” are cited more frequently than their non-Indian counterparts. Specifically,
within cited patents with the same application year and three-digit classification code, we compare the total number
of all citations received by Indian versus non-Indian patents. We do the same within control patents. The difference
is not statistically significant.

12



Co-ethnicity Metrics

We examine the last name(s) of the inventors(s) on the cited patent associated with each obser-

vation. If at least one inventor has an Indian name, the inventor is designated as “of Indian origin”

and we define the original and cited patents as “co-ethnic” (the former is Indian by construction).

We do the same for control patents. Thus, although we disaggregate inventors on the focal patent if

there are more than one, we consider multiple inventors as a set in the context of cited and control

patents (i.e., a cited or control patent is Indian if any inventor in the set is Indian).

Co-location Metrics

We also examine the home address of the inventor for each observation. We assign inventors

to an MSA based on their city and state information.22 There are 268 U.S. MSAs and consoli-

dated metropolitan statistical areas (CMSAs) and 25 Canadian census metropolitan areas (CMAs),

hereafter collectively referred to as “MSAs.”23 We also create 63 “phantom MSAs” for individuals

located in one of the 50 states or 13 provinces or territories that are in cities not assigned to one

of the Census Bureau-defined MSAs. Once again we disaggregate inventors on the focal patent if

there are more than one but consider multiple inventors as a set in the context of cited and control

patents. Thus, we define the focal and cited (control) patents as co-located if the focal inventor is

assigned to the same MSA as any inventor on the cited (control) patent.

Distance Metrics

In addition to the binary co-location measure, we calculate the distance between inventors

measured in miles. To construct this measure, we collect the coordinates (longitude and latitude)

of the focal inventor at the city-state level. If the inventor did not reside in the US or Canada,

we use the coordinates of the capital city of her country. If an inventor did reside in the US

or Canada but coordinates could not be found for her city/region, we use the coordinates of the

capital city of her state or province (the results are robust to dropping these observations). We use
22We use city and country information to assign Canadian inventors to a CMA.
23While MSAs and CMAs are similar in spirit, they are defined slightly differently. The Canadian criterion requires

that the urban core have a population of at least 100,000 for a metropolitan area to exist. In contrast, for the period
1990-2000, the United States had two criteria to determine whether or not a metropolitan area existed: 1) where
there is either a city of 50,000 or more inhabitants or 2) where there is a Census Bureau-defined urban area, i.e.,
a population of at least 50,000 and a total metropolitan population of at least 100,000 (75,000 in New England).
Thus, the Canadian approach is the more restrictive of the two. We include Canada since this nation’s Indian-
born population follows similar patterns to that of the U.S. and our prior research on knowledge flows and social
relationships included Canadian MSA data (Agrawal et al., 2006), facilitating comparison between the two studies.
Also, the results presented remain almost identical when only U.S. MSAs are included.
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an identical approach for generating the coordinates of inventors on the cited and control patents.

However, when cited or control patents have multiple inventors, we collect separate coordinates for

each inventor, calculate distances from the focal inventor, and select the minimum as our value for

distance. Finally, we use the great circle formula to calculate the distance between each pair of

inventors.24

Sample Construction

We generate our sample by identifying all patents issued by the USPTO during the period 2001-

2003, which totals 555,741. From this set, we identify those patents that have at least one inventor

of Indian origin, which totals 19,612. On average, each of these patents has approximately 3.5

inventors and cites 16 prior patents. Since our unit of observation is the inventor-patent-citation,

this results in 1,072,684 observations. Next, we remove those observations for which the inventor of

the focal patent does not have an Indian name (although they co-invented with somebody who does)

and those observations for which we are unable to identify a control for the cited patent. Finally,

we remove actual-control pairs that do not match on the primary classification (even though they

match on one or more six-digit classifications as described above); after following these procedures

our sample includes 130,944 citing-cited pairs and an equal number of citing-control pairs for a total

of 261,888 observations.

4 Results

Table 4 records the means of the variables that enter into our estimated KFPFs. The means are

recorded separately for the actual and control citations. A comparison of the means shows that

inventors of cited patents are more often co-located with focal inventors than are inventors of control

patents. Similarly, the mean distance between cited and focal inventors is smaller than between

control and focal inventors. Also, cited inventors have a higher incidence of co-ethnicity than do

the control inventors.

The table also records the means of the interaction terms that will be a central focus of our

regression analysis. The two-way interaction means provide a measure of the joint occurrence of

three forms of relationships. In all cases, the joint occurrence of any pair of the three relationships
24Distance = 3962.6 ∗ acos((sin(lat1) ∗ sin(lat2)) + (cos(lat1) ∗ cos(lat2) ∗ cos(long1− long2)))
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– co-technology, co-location, co-technology – is higher for the actual citations than for the controls.

For example, the joint occurrence of co-location and co-ethnicity occurs for 1.5% of the actual

citations compared with 1.1% for the controls, a difference that is statistically significant at the 1%

level. However, these simple mean comparisons do not allow us to identify how the various forms

of knowledge-flow facilitating relationships complement or substitute for one another. For that we

need to estimate the parameters of the KFPF.

Table 5 records our estimated KFPFs wherewe use co-location as the single measure of ge-

ographic proximity. We explore two specifications. The first includes a co-location dummy, a

co-ethnicity dummy, and the interaction between the two. The second adds two-way and three-way

interactions with the co-technology dummy. We do not include a direct technology variable in the

regressions because the technology classes of the actual citations and control citations are the same

by construction. We estimate each specification using both Ordinary Least Squares (OLS) and

Logit.25 We concentrate on the OLS results in our discussion since both methods produce identical

probabilities of an actual citation conditional on any given set of relationships.

The results show that both co-location and co-ethnicity significantly increase the probability that

a “citation” is an actual citation rather than a control citation. Focusing on the first regression,

co-location increases the probability that the observation is an actual citation by just under 12

percentage points, and co-ethnicity increases the probability of a citation by 7 percentage points.

Thus, being co-located increases the probability of a patent being the one cited from a given control

set by (0.1187/0.4853) or 24% relative to a non-co-ethnic inventor in the control set.26 Using a

similar calculation, being co-ethnic increases the probability of a patent being cited from a given

control set by (0.0701/0.4343) or 14% relative to a non-co-located member of the control set. To

the extent that our method of choosing the controls is effective (more on that below), these results

are consistent with the hypotheses that co-location and co-ethnicity play strong causal roles in

facilitating knowledge flows between inventors.

The most interesting finding is the large negative and statistically significant coefficient on the
25The reported standard errors are robust to the non-independence of observations drawn from clusters of observa-

tions based on the same citing patent. To see the potential for non-independence, take the example of two co-located
Indian inventors on a given citing patent. A single citation made by this patent will generate four observations in
our data set (two actual citations and two control citations). The value of the dependent variable (and thus the error
term in the regression) will be the same for the two actual citations and also for the two control citations.

26Recall that the control set for a citation is the set of all patents occurring in the same technological field and time
period as the actual cited patent.
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interaction term, β̂3. This result can be interpreted as evidence that co-location and co-ethnicity

are substitutes in facilitating knowledge flows. In terms of the difference in marginal impact, co-

location increases the probability of a knowledge flow by 24% for non-co-ethnic inventors but only

by (0.0127/0.5554) or 2% for co-ethnic inventors. In other words, the marginal effect of co-location

is much smaller for inventors who are already connected through some other mechanism.

We offer two caveats with respect to the interpretation of these data. First, while Thompson and

Fox-Kean (2005) demonstrate the benefits of refining the procedure for choosing controls (which we

have further refined here), they also express concern that an adequate control selection procedure

can ever be found. Although we have made significant efforts to select control patents that closely

match cited patents in terms of technology class and year, concerns may remain that the controls

are not matched closely enough. If the matches are not close enough such that innovative activity

is concentrated by technology areas that are more finely defined than our controls, our co-ethnicity

estimates may be biased upwards. In other words, β2 will be biased if innovative activity is ethnically

concentrated in technological areas more narrowly defined than those captured by the controls,

perhaps for reasons other than localized knowledge flows.

We recognize this concern and therefore consider the co-ethnicity results (β2 > 0) with caution.

However, imperfect controls are less likely to bias the main result that co-ethnicity substitutes for

co-location. Substitution is reflected in β3, the negative and statistically significant coefficient on the

interaction between co-location and co-ethnicity. Imperfect controls would only bias this estimate if

the controls for citations that are co-ethnic and co-located are systematically better or worse than

the average control. If the selected controls are systematically worse for co-ethnic and co-located

inventors (one might imagine this is possible in a scenario where co-located and co-ethnic inventors

are working in a very specialized technology area), this would bias our estimate upwards, in the

opposite direction of our finding. However, in order for the bias to work in the same direction as

our finding, the control patent would have to be systematically better for co-ethnic and co-located

inventors. We are not aware of any conditions under which this would be true.

The third and fourth columns of Table 5 show the effects of allowing for co-technology interac-

tions. The key question here is how being co-technologists affects the knowledge-flow facilitation role

of co-location and co-ethnicity. The estimated KFPFs again show large co-location and co-ethnicity

effects and a large negative interaction between the two. We now also find evidence of a substan-
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tial negative interaction between co-location and co-technology so that co-location matters less for

knowledge flows when inventors are working the same technological area. For inventors working

in different technology fields, co-location increases the probability of a citation by approximately

30% compared to an increase of 20% for inventors working in the same field.27 The coefficient on

the interaction between co-ethnicity and co-technology is also negative but the size of the effect is

small and statistically insignificant. This implies that the facilitating role of co-ethnicity is similar

for inventors working in the same or in different technological areas.28 Finally, the coefficient on

the three-way interaction is statistically insignificant. This means that co-technology does not sig-

nificantly influence the observed negative interaction between co-location and co-ethnicity and that

co-ethnicity does not significantly influence the observed negative interaction between co-location

and co-technology.29

Table 6 repeats the analysis using distance as an alternative measure of geographical proximity.

The results are broadly consistent with Table 5. The coefficient on distance is negative and sta-

tistically significant. A 1000-mile increase in distance results in an approximately two percentage

point reduction in the probability that the observation is an actual citation; once again we see

that distance impedes knowledge flow. Consistent with our earlier finding of the substitutability

of geographical proximity and co-ethnicity, we find a positive interaction between distance and the

co-ethnicity dummy. This reinforces our earlier finding that co-ethnicity plays a more important

role for more geographically separated inventors in terms of facilitating knowledge flows. As a

specific example, the estimated coefficients of our KFPF indicate that while the marginal effect of

co-ethnicity between inventors that are 1000 miles apart is to increase the likelihood of a knowledge
27This is consistent with a prior finding that co-location results in a larger increase in the probability of a cross-

field citation (from one technology field to another) than in the probability of a within-field citation (Agrawal et al.
(2006)). We attribute the lower marginal impact of co-location for within-field cites to a greater likelihood of alternative
channels for establishing social relationships through communities of practice.

28Of course, since we are looking at patent citations, the technology of the cited patent must be relevant to the
inventor on the focal patent. The question here is whether co-location and co-ethnicity are more or less important for
citations that occur across rather that within technological fields.

29To examine how these effects vary across industries, we estimate separate KFPFs for each of the one-digit NBER
technology classifications. The regressions use co-location and the geographic proximity variable and also include co-
technology interactions. Although differences exist across the broad technology categories, the patterns of coefficients
are overall quite similar to those reported for all technologies in the third column of Table 5. The coefficients on co-
location range from a low of 0.1152 in Drugs & Medical to a high of 0.1906 in Mechanical (all statistically significant
at the 1% level). The coefficients on co-ethnicity exhibit a wider range, from a low (and statistically insignificant)
0.032 in Electrical & Electronic to a high of 0.1558 in “Other.” Most interestingly, given the focus of this paper, the
two-way interactions are generally negative in sign, although statistical significance varies substantially, reflecting in
part the relatively small sizes of technology-specific sub-samples.
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flow by only 5%, the effect between inventors that are 3000 miles apart is to increase the likelihood

by 13%.

The pattern of interactions between co-technology and the other forms of relationship are also

broadly similar to those found in Table 5. Working in the same technological field is more facilitative

of knowledge flows when inventors are further apart. Looked at another way, the advantage of

geographical proximity tends to decline when inventors are working in the same technological field.

We again find a negative interaction between co-ethnicity and co-technology, which is here significant

at the 10% level. The three-way interaction is once again statistically insignificant.30

Separately, we estimate the KFPF with just the distance and co-ethnicity variable (i.e., without

the interaction). The estimated coefficients on distance/1000 and co-ethnicity are -0.0225643 and

0.0307164, respectively. Taking the ratio, these results imply that co-ethnicity has an equivalent

effect on knowledge flows as being nearer by 690 miles.

Summing up these findings, we observe a general pattern of substitutability between the rela-

tionships that we have hypothesized affect knowledge flows. Geographical proximity matters most

in the absence of social proximity that may otherwise facilitate access to knowledge. In terms of

methodology, we have shown that the KFPF is a useful device for thinking about the drivers of

knowledge flows and that one can empirically implement the function using patent citation data

with careful attention to the choice of controls. We turn to the implications of these findings in the

concluding section.

5 Conclusion

Our results show that, considered independently, co-location and co-ethnicity both enhance knowl-

edge flows between inventors. However, in terms of their interaction, co-location and co-ethnicity

substitute for rather than complement one another. What are the implications of our findings?

In Agrawal et al. (2007), we use the KFPF to develop three simple models to determine the op-

timal distribution of ethnic inventors across the economy from the perspective of: 1) the city, 2)

the national economy, and 3) individual ethnic inventors. In the context of the first model, where
30We also run specifications with both the co-location dummy and distance variables included together. Not

surprisingly, the results show that each matters, with the patterns for signs and significance broadly matching the
estimated effects when we include co-location and distance separately. This suggests both a premium for pure
proximity (i.e., co-location in an MSA) and also a negative gradient with the distance from an inventor’s MSA.
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the city’s simple objective is to maximize access to knowledge by its stock of local inventors, the

estimated negative coefficient on the interaction between co-location and co-ethnicity is a sufficient

condition for an ethnically diverse population of inventors to be optimal (rather than a homogeneous

population).

In the context of the second model, where the country’s objective is to distribute ethnic in-

ventors across cities in order to maximize aggregate knowledge access over all cities, the estimated

negative coefficient on the interaction between co-location and co-ethnicity is a sufficient condition

for an equally distributed ethnic inventor mix to be optimal (rather than, say, all ethnic inventors

being concentrated in one city). Finally, in the third model, where the individual ethnic inventor’s

objective is to maximize knowledge access for herself, the positive value of the sum of the estimated

coefficient on co-location plus the estimated coefficient on the interaction is a sufficient condition

for concentration – not dispersion – to be optimal (the only stable equilibrium).

Collectively, the models presented in Agrawal et al. (2007) both motivate the importance of

the main empirical finding reported in this paper that co-location and co-ethnicity are substitutes

while also illustrating the tension that arises since they are substitutes. The tension results from

the model implication that dispersion is optimal from the perspective of the city and the national

economy but concentration is optimal from the perspective of ethnic inventors themselves. Of course

with free mobility of inventors, the actual dispersion across locations will be the result of numerous

individual inventor decisions about where to live and work. As such, our empirical findings invite

obvious policy responses, at least within the context of these simple models.

Overall, our paper points to the economic importance of social and spatial proximity in terms

of mediating knowledge flow patterns. However, critical questions remain. Perhaps most urgent

is the underlying mechanism that gives our key measure of social proximity – co-ethnicity – its

economic salience. Do last names serve a cuing or reputational function for co-ethnics? Do co-ethnics

benefit from lower cost access to latent knowledge (Agrawal (2006)) arising from social interactions

predicated on common social circles, places of worship, or schools from which they graduated? Are

these effects likely to be stronger or weaker for other channels of knowledge production, such as

academic publishing? We need to understand the underlying mechanisms in order to draw general

conclusions.

Our findings, along with others (Kapur and McHale, 2005; Nanda and Khanna, 2006), also point
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to the need to extend the scope of immigration models beyond just labor market effects to include

the impact on knowledge flows and innovation. Moreover, our paper suggests that through a mix of

location choice (relative to the location of related innovative activity) and recruitment decisions (in

terms of social connections, or ethnic diversity in our specific case), firms may influence their innova-

tion productivity. Indeed, the increased pace of recruitment of international talent in academia and

private-sector labs as well as the rapid expansion of multinational R&D to international locations

over the past quarter century suggests that firms may have already well recognized these important

determinants of knowledge flow patterns.
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Table 1: USPTO-Issued Patents by Application Year

1976 1980 1985 1990 1995 2000

Total 71,040 72,129 78,646 108,684 156,777 164,340
One or More Indian Inventor 651 788 1041 1934 4557 5334
Percentage Indian 0.9% 1.1% 1.3% 1.8% 2.9% 3.2%
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Table 2: Share of Patents Where at Least One Inventor is of Indian Origin by
Location, U.S. MSAs/CMSAs and Canadian CMAs (Application year 1995)

Indian All Indian
MSA Name Patents Patents Share

7362 San Francisco Oakland San Jose, CA CMSA 2156 20396 10.6%
5602 New York Northern New Jersey Long Island, NY NJ CT 2017 17816 11.3%
1122 Boston Worcester Lawrence, MA NH ME CT CMSA 792 9660 8.2%
1602 Chicago Gary Kenosha, IL IN WI CMSA 770 7672 10.0%
4472 Los Angeles Riverside Orange County, CA CMSA 460 8862 5.2%
6162 Philadelphia Wilmington Atlantic City, PA NJ DE MD 429 5758 7.5%
640 Austin San Marcos, TX MSA 427 3147 13.6%

8872 Washington Baltimore, DC MD VA WV CMSA 386 4707 8.2%
6840 Rochester, NY MSA 286 3568 8.0%
1922 Dallas Forth Worth, TX CMSA 276 3887 7.1%
2162 Detroit Ann Arbor Flint, MI CMSA 253 5017 5.0%
7602 Seattle Tacoma Bremerton, WA CMSA 239 3720 6.4%
7320 San Diego, CA MSA 235 4312 5.4%
6640 Raleigh Durham Chapel Hill, NC MSA 220 2201 10.0%
6442 Portland Salem, OR WA CMSA 212 2211 9.6%
3362 Houston Galveston Brazoria, TX CMSA 202 3438 5.9%
5120 Minneapolis St. Paul, MN WI MSA 195 4967 3.9%
6280 Pittsburgh, PA MSA 174 1633 10.7%
1692 Cleveland Akron, OH CMSA 161 2703 6.0%
1080 Boise City, ID MSA 141 1009 14.0%
535 Toronto, ON, CMA (Canada) 140 1888 7.4%
520 Atlanta, GA MSA 135 2334 5.8%

7040 St. Louis, MO IL MSA 133 2088 6.4%
6200 Phoenix Mesa, AZ MSA 124 2198 5.6%
1642 Cincinnati Hamilton, OH KY IN CMSA 121 2460 4.9%
160 Albany Schenectady Troy, NY MSA 92 1362 6.8%

3480 Indianapolis, IN MSA 86 2144 4.0%
2082 Denver Boulder Greeley, CO CMSA 81 2634 3.1%
1840 Columbus, OH MSA 75 1193 6.3%
7160 Salt Lake City Ogden, UT MSA 62 1225 5.1%
3280 Hartford, CT MSA 33 1106 3.0%
4992 Miami Fort Lauderdale, FL CMSA 29 1202 2.4%
5082 Milwaukee Racine, WI CMSA 28 1323 2.1%

Mean (MSAs listed above) 338 4238 7.0%
Mean (all MSAs with non-zero patents) 45 613 4.1%

Note: Only locations with more than 1000 issued patents with application year 1995 are shown.
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Table 3: Share of Patents Issued Where One or More Inventors is of
Indian Origin (Application year 1995)

NBER Description One or More All Indian
Subcategory Indian Patents Share

Inventor

22 Computer Hardware & Software 528 9171 5.8%
31 Drugs 517 8873 5.8%
19 Miscellaneous-chemical 460 12205 3.8%
21 Communications 302 8532 3.5%
14 Organic Compounds 301 4011 7.5%
15 Resins 242 5023 4.8%
46 Semiconductor Devices 242 3776 6.4%
33 Biotechnology 235 5251 4.5%
69 Miscellaneous-Others 188 10680 1.8%
45 Power Systems 114 4336 2.6%
24 Information Storage 113 3388 3.3%
12 Coating 97 2202 4.4%
52 Metal Working 90 3159 2.8%
41 Electrical Devices 79 3707 2.1%
43 Measuring & Testing 76 3665 2.1%
51 Mat. Proc & Handling 76 5148 1.5%
32 Surgery & Med Inst. 73 5444 1.3%
49 Miscellaneous-Elec 64 3513 1.8%
42 Electrical Lighting 55 2154 2.6%
23 Computer Peripherials 54 2601 2.1%
59 Miscellaneous-Mechanical 54 5383 1.0%
54 Optics 44 3479 1.3%
53 Motors & Engines + Parts 35 3881 0.9%
44 Nuclear & X-rays 33 1559 2.1%
61 Agriculture,Husbandry,Food 32 2381 1.3%
55 Transportation 30 3450 0.9%
64 Earth Working & Wells 26 1303 2.0%
39 Miscellaneous-Drgs&Med 24 1010 2.4%
13 Gas 21 457 4.6%
11 Agriculture,Food,Textiles 13 802 1.6%
66 Heating 10 1104 0.9%
68 Receptacles 10 2299 0.4%
62 Amusement Devices 9 1473 0.6%
67 Pipes & Joints 9 912 1.0%
63 Apparel & Textile 7 1679 0.4%
65 Furniture,House Fixtures 6 2300 0.3%

Total 4269 140311 3.0%
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Table 4: Descriptive Statistics for Regression Variables

Actual Citations Control Citations

Obs. Mean Stand. Mean Stand. Mean
Dev. Dev.

Citation 261,888 1 0 0 0 1

Co-Location 261,888 0.1260* 0.3318 0.0842* 0.2276 0.0418*
(0.0009) (0.0008) (0.0012)

Distance/1000 261,888 2.2818* 2.2157 2.7336* 2.3323 -0.4518*
(0.0061) (0.0064) (0.0089)

Co-Ethnicity 261,888 0.0588* 0.2353 0.0465* 0.2105 0.0123*
(0.0007) (0.0006) (0.0009)

Co-Location 261,888 0.0150* 0.1215 0.0114* 0.1062 0.0036*
× Co-Ethnicity (0.0003) (0.0003) (0.0004)

Distance/1000 261,888 0.0649* 0.4134 0.0529* 0.3759 0.0120*
× Co-Ethnicity (0.0011) (0.0010) (0.0015)

Co-Location 261,888 0.0758* 0.2646 0.0544* 0.2268 0.0214*
× Co-Technology (0.0007) (0.0006) (0.0010)

Distance/1000 261,888 1.2809* 1.9987 1.5033* 2.1823 -0.2224*
× Co-Technology (0.0055) (0.006) (0.0082)

Co-Ethnicity 261,888 0.0351* 0.1839 0.0283* 0.1658 0.0068*
× Co-Technology (0.0005) (0.0005) (0.0007)

Co-Location × Co-Ethnicity 261,888 0.0094* 0.0965 0.0076* 0.0870 0.0018*
× Co-Technology (0.0003) (0.0002) (0.0004)

Distance/1000 × Co-Ethnicity 261,888 0.0385* 0.3243 0.0314* 0.2933 0.0071*
× Co-Technology (0.0009) (0.0008) (0.0012)

1. The value of the citation dummy is one for an actual citation and zero for a control citation.
2. Inventor and assignee self cites are excluded.
3. See text for description of how control citations are chosen.
4. Standard errors are in parentheses.
5. * Indicates significance at 1% level.
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Table 5: Estimated Knowledge Flow Production Functions

Dependent Variable = Dummy for Actual Citation

OLS Logit OLS Logit

Co-Location 0.1187* 0.4810* 0.1467* 0.5997*
(0.0049) (0.0205) (0.0064) (0.0274)

Co-Ethnicity 0.0701* 0.2813* 0.0718* 0.2881*
(0.0064) (0.0258) (0.0094) (0.0382)

Co-Location × Co-Ethnicity -0.1060* -0.4294* -0.1064* -04344*
(0.0128) (0.0520) (0.0207) (0.0856)

Co-Location × Co-Technology -0.0454* -0.1911*
(0.0080) (0.0336)

Co-Ethnicity × Co-Technology -0.0028 -0.0115
(0.0117) (0.0473)

Co-Location × Co-Ethnicity -0.0029 0.0168
× Co-Technology (0.0247) (0.1016)

Constant 0.4853* 0.0588* 0.4853* -0.0588*
(0.0006) (0.0025) (0.0006) (0.0025)

Observations 261,888 261,888 261,888 261,888
Number of Citing Patents 10,674 10,674 10,674 10,674
R2 0.0054 0.0056
Pseudo R2 0.0039 0.0041

1. Inventor and assignee self cites are excluded.
2. See text for description of how control citations are chosen.
3. Standard errors are in parentheses; standard errors are robust to citing-patent

cluster effects.
4. * Indicates significance at 1% level; ** Indicates significance at 5% level; ***

Indicates significance at 10% level.
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Table 6: Estimated Knowledge Flow Production Functions
with Distance as Geographic Variable

Dependent Variable = Dummy for Actual Citation

OLS Logit OLS Logit

Distance/1000 -0.0215* -0.0866* -0.0226* -0.0910*
(0.0006) (0.0026) (0.0007) (0.0029)

Co-Ethnicity 0.0116*** 0.0466*** 0.0251** 0.1015**
(0.0068) (0.0277) (0.0105) (0.0428)

Distance/1000 × Co-Ethnicity 0.0167* 0.0672* 0.0127** 0.0509**
(0.0038) (0.0155) (0.0060) (0.0242)

Distance/1000 × Co-Technology 0.0020* 0.0081
(0.0006) (0.0023)

Co-Ethnicity × Co-Technology -0.0218*** -0.0884***
(0.0117) (0.0122)

Distance/1000 × Co-Ethnicity -0.0061 0.0247
× Co-Technology (0.0071) (0.0287)

Constant 0.5524* 0.2105* 0.5523* 0.2103*
(0.0016) (0.0065) (0.0016) (0.0065)

Observations 261,888 261,888 261,888 261,888
Number of Citing Patents 10,674 10,674 10,674 10,674
R2 0.0101 0.0101
Pseudo R2 0.0073 0.0073

1. Inventor and assignee self cites are excluded.
2. See text for description of how control citations are chosen.
3. Standard errors are in parentheses; standard errors are robust to citing-patent cluster

effects.
4. * Indicates significance at 1% level; ** Indicates significance at 5% level; *** Indicates

significance at 10% level.
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