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Opinion
The Roll Back Malaria (RBM) partnership has established
goals for protecting vulnerable populations with locally
appropriate vector control. In many places, these goals
will be achieved by the mass distribution of insecticide
treatedbednets (ITNs). Mathematicalmodels can forecast
an ITN-driven realignment of malaria endemicity, defined
by the Plasmodium falciparum parasite rate (PfPR) in
children, to predict PfPR endpoints and appropriate pro-
gram timelines for this change in Africa. The relative ease
of measuring PfPR and its widespread use make it particu-
larly suitable for monitoring and evaluation. This theory
provides a method for context-dependent evaluation of
ITN programs and a basis for setting rational ITNcoverage
targets over the next decade.

Strategic plans and likely timelines for malaria control
The Abuja Declaration and Plan of Action (2000) set tar-
gets of protecting 60% of pregnant women and children
under five years’ old with insecticide-treated bednets
(ITNs) by 2005 [1]. The Roll Back Malaria (RBM) strategic
plan (2005) subsequently redefined these targets to 80%
coverage by 2010 [2] and the recent Global Malaria Action
Plan (2008) called for a rapid scale-up to achieve universal
coverage with some form of vector control [3]. There has
been fast, large-scale ITN deployment in some areas of
Africa, but ITN use in many parts of the continent remains
low [4]. In areas where high ITN coverage has been
achieved, there are early reports that the epidemiology
of malaria in these areas is in transition [5–12], but the
theoretical basis for attributing these changes to ITNs
remains poorly defined. Scaling-up ITN coverage across
Africa remains a high priority, but there is also a need to
learn from the rapid scale-up of ITN coverage and put that
information to work as countries define strategic plans and
set funding priorities for the next five years and beyond.
This planning process would benefit from a quantitative
and predictive approach that is based on direct measures of
malaria and ITN usage, not just estimates of commodity
distribution. Using mathematical models, it is possible to
define rational expectations about ITN-driven changes in
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malaria in relation to actual ITN usage, the ITN coverage
levels required to achieve national goals for malaria
reduction, and the likely timelines for change.

Finding a metric
A predictive theory for ITNs is ideally based on quantities
that are commonly and easily measured. One effect of
ITNs is to reduce the personal risk of clinical malaria,
severe malaria, and malaria mortality for the individuals
who use them [13,14]. Changes in disease burden are the
outcomes of greatest interest, but they are also the most
difficult to measure. Population-level benefits occur
because ITNs also slow transmission by increasing mos-
quito death rates, delaying feeding, or diverting some bites
onto non-human hosts [13,14]. High levels of ITN owner-
ship and usage by all members of a community can there-
fore substantially reduce the vectorial capacity, reduce the
size of the parasite reservoir [15,16], and protect people
who do not own a net [17–19].

Several metrics have been developed over the past
century to measure these population-level parasitological,
entomological, and epidemiological aspects of malaria
transmission [20]. Three potentially useful metrics are
the Plasmodium falciparum parasite rate (PfPR or
malaria prevalence, the proportion of the population
positive for malaria infection, which is usually measured
by microscopy), entomological inoculation rate (PfEIR, the
expected number of infectious bites per unit of time) and
basic reproductive number (PfR0, the expected number of
malaria cases that would arise from a single case after one
parasite generation if there were no malaria immunity or
malaria control). The PfR0 would be an ideal metric to use
for planning [21], but fewer than 50 direct estimates have
been made [22–24]. The annual PfEIR provides a direct
measure of exposure to malaria, and been measured
hundreds of times [25], but not sufficiently extensively
nor in a standardized way that would provide a sound
basis for planning. The PfPR is frequently measured, and
more than 17,000 geo-referenced estimates of PfPR made
since 1985 have been age-standardized and assembled into
a database by the Malaria Atlas Project (MAP) [26–29].
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Box 1. Malaria Indicators for monitoring and evaluation

Most malaria morbidity and mortality occurs in children under five

years of age. Since the inception of Roll Back Malaria (RBM),

national Malaria Indicator Surveys managed as Demographic and

Health Surveys (DHS) or Multiple Indicator Surveys (MICS) have

focused on coverage indicators among pregnant women or children

under five years old. However, theory suggests that the best way to

protect the most vulnerable people and to achieve stable endemic

control will be to shift the emphasis from the most vulnerable and

extend insecticide-treated bednets (ITN) coverage to the whole

population [19]. Thus, monitoring ITN ownership and use must

include all age groups in a community.

More recently, there has been a trend toward including infection

prevalence in young children as part of national sample surveys, but

the PfPR in children under five years of age is difficult to interpret as

a measure of transmission [27]. The standard PfPR measured in

children older than two years of age but younger than ten years of

age has many advantages, including continuity with historical

measures of malaria infection risk [20,52]. The correspondence with

the steady state PfPR makes it useful for applying epidemiological

theory [27]. The PfPR in 2–10-year-olds thus provides a reasonable

index for planning, monitoring and evaluating progress. PfPR

changes sufficiently rapidly that it provides a measure of recent

exposure, but sufficiently slowly that it provides a good average

measure of exposure within the past 1–2 years. In general,

reductions in PfPR provide a good descriptor of PfPR in the whole

population and the parasite reservoir for ongoing transmission.

National sample surveys should be encouraged to ensure a more

efficient age sampling for parasite prevalence to track the impact of

scaled intervention coverage.
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We have, therefore, developed a theory and forecast
ITN-driven changes in endemicity, defined by the PfPR
in children aged 2–10 years (Box 1). The PfPR provides a
direct estimate of the reservoir of asexual parasites, so
reductions in PfPR provide a direct estimate of the pro-
gress towards control and elimination of disease [20,30].
The relative ease of measuring PfPR in children aged 2–10
years and its widespread measurement [29] make it
Figure 1. Predictive theory requires a transmission model integrated with a control mo
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to compute a new reproductive number under control, PfRC(f), and the new PfPR endpo

can be used to predict the change in PfPR starting from one level of effective ITN cove

512
particularly suitable for strategic planning, monitoring
and evaluation (Box 1).

Malaria transmission models and control
Malaria transmission models provide a basis for develop-
ing and refining a predictive theory based around the
PfPR. Starting with Ronald Ross [31,32], malaria trans-
mission models established a quantitative basis for eval-
uating the complex quantitative relationships between
PfPR, PfEIR and PfR0. These earlier theoretical models
have now been extended to include simple models of
malaria immunity [33], superinfection [34], heterogeneous
biting [35], various modes of malaria control [36,37], and
complex individual-based computer simulations [38,39].

Basic epidemiological theory for malaria suggests that
PfR0 defines a steady state for PfPR [40], so a malaria
transmissionmodel andPfPR can be used to estimatePfR0

[24,41] (Figure 1a and Supplementary Online Infor-
mation). Given the age-related patterns in PfPR, it is
necessary to use an age-standardized PfPR to estimate
the PfR0; children aged 2–10 have poorly developed anti-
parasite immunity but ample exposure to malaria, soPfPR
in these age groups best reflects the steady state [27].

To establish quantitative benchmarks for planning, a
publishedmalaria transmissionmodel thatdescribes super-
infection,heterogeneousbiting, and immunitywasused; the
model fits the empirically observed relationships between
PfEIR and PfPR in African children better than a well-
established statistical relationship [42,43], and the fitted
parameters are consistent with direct observations [24,41].
The relationship betweenPfPR,PfEIR andPfR0 is strongly
affected by the degree of heterogeneous biting, which can
disguise subpopulations with intense exposure. Contrast
two populations with a PfPR of 10%: in a population in
which 10% of people are bitten many times each day, but in
del. (a) The malaria transmission model predicts a particular relationship between

ulation gets 80% of the bites (a = 4.2); the dashed line shows the same degree of

es. The lower gray line shows the relationship in places where biting is more

ray line shows the relationship in places where it is more heterogeneous (a = 6),

is �85, starting from a baseline PfPR of 60%. (b) The control model describes the

ines represent the bionomics of four vectors [14,45]. The dashed black line is the

ne is An. arabiensis, which was used as the benchmark. The purple segment shows

and 75% usage. To compute a new endpoint PfPR, this reduction is used in part (a)

int, X̄ fð Þ [see the purple segment and the red lines, in part (a)]. The same algorithm

rage and switching to another.



Figure 2. (a) For the benchmark parameters, the endemicity class of the PfPR endpoint for every baseline PfPR and every effective ITN coverage level (f). The colors

represent different endemicity levels (dark red, >40%; red, 5%–40%; pink, 1%–5%; and gray, <1%). The dashed black lines highlight two points, the level of effective

coverage required to reduce PfPR to below 1% starting from a baseline of 40% and a practical maximum starting point for which low stable endemic control is achievable

with only ITNs, at 95% effective coverage. (b) The uncertainty associated with the benchmark prediction is represented here as the probability of reducing PfPR to below 1%,

given the uncertainty about biting heterogeneity and vector bionomics (Supplementary Online Information). (c) The changes in PfPR do not happen instantaneously, even

in the best case in which ITN coverage is rapidly scaled-up to the maximum and illustrated here. The colors show the waiting time until PfPR is within 1% of the endpoint in

Figure 2a (>8 years, dark-blue; 4–8 years, blue; 2–4 years, sky-blue; 1–2 years, purple; <1 year pink). When RC(f) � 1 so that the endpoint is approximately 1% (black region),

the waiting times can be more than one decade [49]. (d) The timelines for changing PfPR endemicity are sensitive to the rate that ITNs are scaled-up. These illustrate the

changes over time starting from a baseline of approximately 50%, when the ITN coverage scales up to a maximum instantaneously (black), or linearly over a period of 2

years (blue), or 5 years (red). The relationship between ITN coverage and the effect size is greater than log–linear (see Figure 1b), so the maximum effect size is not achieved

until ITN coverage levels are very close to the maximum value.

Opinion Trends in Parasitology Vol.25 No.11
which 90% of the population is never bitten, PfR0 would be
much higher than in a population with a PfPR of 10% with
uniform biting rates. The relationship between PfPR and
PfR0 from this model is shown graphically in Figure 1a.

A second model is required to model the effects of ITNs.
A suitable model is based on the mosquito feeding cycle
that describes changes in the vectorial capacity, the vector-
related aspects of the reproductive number [44]. The effect
of ITNs depends on the proportion of the whole community
that owns and uses a net and the proportion of biting that
occurs indoors at night, called the effective coverage (f)
[14]. Increased use of ITNs lowers the vectorial capacity,
and reduces the reproductive number to a new level,
PfRC(f). The ITN effect size on transmission, defined by
the ratio PfR0:PfRC(f), depends on effective coverage and
vector bionomics. The predicted relationship between ITN
effective coverage and the effect size for different vectors is
illustrated graphically in Figure 1b.
Both models are necessary because of the non-linear
functional relationships between PfPR and PfR0, and be-
tween ITN effective coverage and the transmission effect
size. To compute a new steady state, the malaria trans-
mission model uses the output of the ITNmodel. The same
function that describes PfR0 in terms of PfPR is inverted to
predict a new steady state for PfPR in terms of PfRC(f)
(Figure 1a).

Benchmark predictions from these two models are
based on the best-fit parameters from the malaria trans-
mission model [41] and vector bionomics for a typical
African vector (Figure 1b, Supplementary Online Infor-
mation) [14,45]. The models predict the changes in PfPR
endpoints from any baseline and for any level of ITN
effective coverage; the corresponding endemicity class of
the endpoint is shown graphically in Figure 2a. Themodels
suggest that the outcome of scaling up ITNs will vary,
depending on baseline PfPR, the ITN effect size, and the
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degree of heterogeneous biting (Figure 1a, and Supple-
mentary Online Information). The ITN effect size varies
with vector bionomics, the fraction of mosquitoes killed or
repelled by the nets, and other factors [14]. The predictions
are, thus, accompanied by an assessment of uncertainty
(Figure 2b, and Supplementary Online Information).

Setting targets
To be effective and transparent, country-level plans must
set verifiable targets that are described as quantitative
changes in malariometric indices. The theory developed
here can provide guidance in setting these goals based on
a commonly used metric. To illustrate how this can be
done, two realistic benchmarks were set that have some
utility for national malaria control programs when apply-
ing for international donor support: (i) what ITN coverage
levels would be required to halve existing PfPR? and (ii)
what ITN coverage levels would be required to reach a
national or sub-national goal of 1% PfPR? At a 1% PfPR,
disease burdens across Africa would be substantially
reduced [46–48].

If PfPR is 70%, scaling-up ITNs to an effective coverage
of 70% will ultimately halve this starting endemic level
(Table 1). As a rule of thumb for halving PfPR, the increase
in effective coveragemust be at least 80% of baselinePfPR.
What can be achieved with 80% ITN ownership used 75%
of the time (i.e. 60% effective coverage), consistent with
short-duration, but large-scale ITN trials [15,16]? At these
levels, a reduction in transmission of 93% would reduce
PfPR to below 1% if the baseline PfPR was below �40%.

ITNs do not provide perfect protection, so full coverage
may not be sufficient to achieve sustained endemic control
areas with very high baseline PfPR. If the baseline PfPR
exceeds 70%, the models predict that 94% effective cover-
age is required to reach PfPR of 1%. This would represent
an upper limit in a context where 6% of biting by vectors
occurred outdoors.

PfPR does not change instantaneously. Timelines for
changing malaria endemicity as ITN coverage is gradually
Table 1. Benchmark targets for ITN effective coverage, defined
as ownership multiplied by the rate of usea

To halve PfPR To reach 1% PfPR

PfPR f0 = 0% f0 = 10% f0 = 20% f0 = 0% f0 = 10% f0 = 20%

5% 4% 14% 24% 7% 17% 27%

10% 8% 18% 28% 15% 25% 34%

15% 12% 22% 31% 23% 32% 41%

20% 16% 26% 35% 30% 39% 48%

25% 20% 29% 38% 37% 46% 54%

30% 24% 33% 42% 45% 52% 60%

35% 28% 37% 46% 51% 59% 65%

40% 33% 42% 50% 58% 65% 72%

45% 38% 46% 54% 65% 71% 76%

50% 42% 51% 59% 71% 77% 81%

55% 49% 56% 64% 77% 82% 86%

60% 55% 62% 69% 83% 87% 92%

65% 62% 69% 74% 89% 92% 96%

70% 70% 75% 80% 94% 98% *

75% 78% 83% 87% 99% * *

80% 86% 90% 93% * * *
aThe first three columns give the ITN effective coverage target required to reduce

PfPR by 50% from the baseline. The next three columns report the ITN coverage

required to reduce PfPR to 1%. Each column represents a different ITN coverage at

the baseline (f0). The asterisk indicates PfPR values for which a 1% PfPR is not

attainable with ITNs alone.
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scaled-up can be found by simulatingmalaria transmission
in the corresponding models [49,50] (Supplementary
Online Information). After reaching ITN coverage targets,
the time to reach the new PfPR endpoint can be as short as
a few months. If the endpoint is stable endemic control, if
PfRC (f) is close to one, the waiting times can be more than
a decade (Figure 2c)[49].

An important lesson was that timelines for ITN impact
on PfPR are extremely sensitive to the time taken to reach
a scaled coverage target (Figure 2d). The predicted func-
tional relationship between ITN effective coverage and
proportional reductions in vectorial capacity is, in the
model, greater than log–linear (see Figure 1b). The great-
est reductions in vectorial capacity are realized when ITN
coverage levels reach the target, usually near the end of the
scaling-up period. National sample surveys should there-
fore compare PfPR endpoints in a standard fashion and
cross-sectional surveys be repeated for 3–5 years after ITN
coverage reaches its target maximum.

Most African governments set strategies for malaria
control, policy and financing on five-year cycles. The bench-
mark predictions in Figure 2c represent a best-case
scenario in which ITN coverage is rapidly brought to scale,
but a more realistic scenario would be that ITN coverage
levels would be scaled-up over the five-year planning cycle.
At the end of a scaling-up period, PfPR would therefore
remain higher than the benchmark (Supplementary
Online Information).

Caveats
The benchmarks illustrate how mathematical models can
provide guidance about the likely outcome of scaling-up
ITNs, but the predictions come with caveats. A monitor-
ing and evaluation framework for assessing the perform-
ance of control programs based on parasitological
markers will depend on the local entomological context
for transmission, including vector bionomics, mode of
action of the insecticides in the nets [14], observed levels
of ITN ownership and use [4], the degree of hetero-
geneous biting, seasonal fluctuations in mosquito popu-
lations, changing weather, changes in malaria control,
and changing socioeconomic status of countries. In
particular, these predictions must be revised if national
drug policies abandon failing drugs and adopt artemisi-
nin combination therapies while simultaneously scaling-
up ITNs: increased use of effective drugs also reduces
transmission [37]. Analysis of steady states may not be
useful in places with high inter-annual variability in
transmission. Mathematical models can be adapted to
reflect differences in the local ecology, provided that
there is some additional information about the inputs.
In practice, information about temporal trends and
spatial variability in malaria transmission is usually
not available. This analysis represents a starting point
for planning that can be improved upon as more infor-
mation about transmission in a specific context becomes
available.

Taken together, baseline endemicity and uncertainty
about heterogeneous biting, immunity, and vector bio-
nomics suggest highly unpredictable endpoints after
reaching universal coverage, as prescribed by RBM.
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Monitoring and evaluation across the transmission spec-
trum and across the range of dominant vector species
should aim to establish context-specific expectations and
goals.

Conclusion
Mathematical models establish basic expectations about
the changes in PfPR as a function of ITN coverage. These
can be used to establish rationally defined endpoints,
timelines and criteria for monitoring and evaluation of
ITN programs. A limitation for planning has been poor
information about the global distribution of malaria risk,
but a global map and an open-access database describing
PfPR have now been published, and these provide a basis
for regional planning [29]. In practice, information about
historical trends in other factors and spatial variability in
malaria transmission is usually not available at scale. The
models suggest that it is possible to transform malaria
epidemiology across Africa in the short-to-medium-term by
achieving high levels of ITN ownership use among all
members of the population living across the diverse ende-
micity spectrum [29]. The timelines for a transition to low,
stable endemic control is achievable over the next 5–10
years for much of the continent. More importantly, this
impact can be predicted and measured. Ongoing surveil-
lance, including parasitological monitoring, is imperative
to evaluate the theory in the local context and update
programmatic goals. Following adaptations to existing
national sample survey methodologies promoted by
RBM (Box 1), the international community can map pro-
gress and its contribution to the changing landscape of
malaria in Africa [51].
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