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ABSTRACT

Today’s commercial video streaming services use dynamic
rate selection to provide a high-quality user experience. Most
services host content on standard HTTP servers in CDNs,
so rate selection must occur at the client. We measure three
popular video streaming services – Hulu, Netflix, and Vudu
– and find that accurate client-side bandwidth estimation
above the HTTP layer is hard. As a result, rate selection
based on inaccurate estimates can trigger a feedback loop,
leading to undesirably variable and low-quality video. We
call this phenomenon the downward spiral effect, and we
measure it on all three services, present insights into its root
causes, and validate initial solutions to prevent it.

Categories and Subject Descriptors

C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General ; C.4 [Performance of
Systems]: [Measurement techniques]

General Terms

Measurement

Keywords

HTTP-based Video Streaming, Video Rate Adaptation

1. INTRODUCTION
Video streaming is a huge and growing fraction of Inter-

net traffic, with Netflix and Youtube alone accounting for
over 50% of the peak download traffic in the US [18]. Sev-
eral big video streaming services run over HTTP and TCP
(e.g. Hulu, Netflix, Vudu, YouTube) and stream data to the
client from one or more third-party commercial CDNs (e.g.
Akamai, Level3 or Limelight). Streaming over HTTP has
several benefits: It is standardized across CDNs (allowing
a portable video streaming service), it is well-established
(which means the CDNs have already made sure service can
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Figure 1: (Service A) A video starts streaming at
1.75Mb/s over a 5Mb/s network. After 395 seconds,
a second flow starts (from the same server). The
video could stream at 1.75Mb/s (given its fair share
of 2.5Mb/s), but instead drops down to 235kb/s.

reach through NATs to end-hosts), and cheap (the service
is simple, commoditized, and the CDNs compete on price).
These benefits have made possible the huge growth in afford-
able, high-quality movie and TV streaming, for our viewing
delight.

When video is streamed over HTTP, the video service
provider relies on TCP to find the available bandwidth and
choose a video rate accordingly. For example, if a client
estimates that there is 1.5Mb/s available in the network,
it might request the server to stream video compressed to
1.3Mb/s (or the highest video rate available at or below
1.5Mb/s). The video streaming service provider must walk
a tightrope: If they pick a video rate that is too high, the
viewer will experience annoying rebuffering events; if they
pick a streaming rate that is too low, the viewer will ex-
perience poor video quality. In both cases, the experience
degrades, and user may take their viewing elsewhere [9]. It
is therefore important for a video streaming service to select
the highest safe video rate.

This paper describes a measurement study of three pop-
ular HTTP-based video streaming services (Hulu, Netflix,
and Vudu) to see how well they pick the video rate. Accord-
ing to the latest Consumer Reports [21], Netflix is the most
popular video streaming provider in the United States, while
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(a) Service A. Network bottleneck set to 5Mb/s.
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(b) Service B. Network bottleneck set to 5Mb/s.
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(c) Service C HD. Network bottleneck set to 22Mb/s.
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(d) Service C SD. Network bottleneck set to 5Mb/s.

Figure 4: The downward spiral effect is visible in all three services.

The video rates available from each of the three services
are summarized in Table 2; some playback rates may not be
available for some videos.

3.3 The Competing Flows
The competing flow is a TCP flow doing a long file down-

load. To eliminate any unfairness due to variations in net-
work path properties, we ensure that the competing flow is
served by the same CDN, and usually, by the same server.
For Service A and Service C, the competing flow is gener-
ated by an open-ended byte range request to the file with
the highest rate. Further, we use the DNS cache to make
sure that the competing flow comes from same termination
point (the server or the load-balancer) as the video flow.
For Service B, since the files are stored as small segments,
an open-ended request only creates short-lived flows. In-
stead, we generate the competing flow by requesting the
Flash version of the same video stored in the same CDN,
using rtmpdump [20] over TCP.

4. THE DOWNWARD SPIRAL EFFECT
All three services suffer from what we call the “downward

spiral effect” – a dramatic anomalous drop in the video play-
back rate in the presence of a competing TCP flow. The
problem is starkly visible in Figure 4. In all four graphs,
the video stream starts out alone and then competes with
another TCP flow. As soon as the competing flow starts up,
the client mysteriously picks a video playback rate that is far
below the available bandwidth. Our goal is to understand
why this happens.

To gain a first inkling into what is going on, we calculate
the upper bound of what the client might believe the instan-
taneous available bandwidth to be, by measuring the arrival
rate of the last video segment. Specifically, we calculate the
throughput upper bound as the size of a received video seg-
ment divided by the time it took to arrive (the time from
when the first byte arrived until the last byte arrived), which
excludes the initial server response time. In all of the graphs,
the video playback rate chosen by the client is quite strongly
correlated with the calculated throughput. As we will see,



herein lies the problem: if the client is selecting the video
rate based on some function of the throughput it perceived,
and the throughput is so different from the actual available
bandwidth, then it is not surprising the client does such a
poor job. Let’s now see what goes wrong for each service in
turn. For ease of discussion, we will use video throughput to
refer to the throughput a client perceived by downloading a
video segment.

4.1 Service A
Figure 4(a) shows the playback rate of a Service A video

session along with the client’s video throughput over time.
Starting out, the video stream is the only flow and the client
requests the highest video rate (1750kb/s). The competing
flow begins after 400 seconds; the video rate steadily drops
until it reaches the lowest rate (235kb/s), and it stays there
most of the time until the competing flow stops. In theory,
both flows should be able to stream at 2.5Mb/s (their fair
share of the link) and the client should continue to stream
at 1750kb/s.

We repeated the experiment 76 times over four days. In
67 cases (91%) the downward spiral happens, and the client
picks either the lowest rate, or bounces between the two or
three lowest rates. In just seven cases (9%) was the client
able to maintain a playback rate above 1400kb/s. To ensure
accuracy and eliminate problems introduced by competing
flows with different characteristics (e.g. TCP flows with
different RTTs), we make the competing flow request the
same video file (encoded at 1750kb/s) from the same CDN.
Unlike the video flow, the competing flow is just a simple
TCP file download and its download speed is only dictated
by TCP congestion control algorithm and not capped by the
video client.3

Why does throughput of the video flow drop so much be-
low available fair-share bandwidth? Is it an inherent charac-
teristic of streaming video over HTTP, or is the client simply
picking the wrong video rate?

We first confirm that the available bandwidth really is
available for streaming video. We do this using a feature
provided by the Service A client that allows users to man-
ually select a video rate and disable the client’s automatic
rate selection algorithm. We repeat the above experiment,
but with a slight modification. As soon as the client picks a
lower rate, we manually force the video to play at 1750kb/s.
Figure 5 shows the results. Interestingly, the client main-
tains a playback rate of 1750kb/s without causing rebuffer-
ing events, and the throughput also increases. This suggests
that the downward spiral effect is caused by underestima-
tion of the available bandwidth in the client’s rate selection
algorithm. The bandwidth is available, but the client needs
to go grab it.

4.2 Service B
Figure 4(b) shows the same downward spiral effect in Ser-

vice B. As before, the bottleneck bandwidth is 5Mb/s and
the RTT is around 20 ms. We start a video streaming ses-
sion first, allow it to settle at its highest rate (3200kb/s) and
then start a competing flow after 337 seconds, by reading the
same video file from the same server.

3To eliminate variation caused by congestion at the server,
we verified that the same problem occurs if we download
the competing video file from a different server at the same
CDN.
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Figure 5: (Service A) The client manages to main-
tain the highest playback rate if we disable auto-
matic rate selection.

The client should drop the video rate to 2500kb/s (its fair
share of the available bandwidth). Instead, it steps all the
way to the lowest rate offered by Service B, 650kb/s, and
occasionally to 1000kb/s. The throughput plummets too.

4.3 Service C
We observe the downward spiral effect in Service C as well.

Since Service C does not automatically switch between its
HD and SD bitrates, we do two separate experiments.

In the HD experiment, as shown in Figure 4(c), we set
the bottleneck bandwidth to 22Mb/s. To start with, the
client picks the highest HD video rate (9Mb/s). When the
client’s playback buffer is full, the video flow is limited by
the receive window, and the throughput converges to the
same value as the playback rate. We start the competing
flow at 100 seconds, and it downloads the same video file
(9Mb/s video rate) from the same CDN.

Each flow has 11Mb/s available to it, plenty for the client
to continue playing at 9Mb/s. But instead, the client resets
the connection and switches to 4.5Mb/s and then 3Mb/s,
before bouncing around several rates.

SD is similar. We set the bottleneck bandwidth to 5Mb/s,
and the client correctly picks the highest rate (2000kb/s) to
start with, as shown in Figure 4(d). When we start the
competing flow, the video client drops down to 1000kb/s
even though its share is 2.5Mb/s. Since Service C only offers
three SD rates, we focus on its HD service in the rest of the
paper.

5. WALKING THE DOWNWARD SPIRAL
To understand how the downward spiral happens, we ex-

amine each service in turn. Although each service enters
the downward spiral for a slightly different reason, there is
enough commonality for us to focus first on Service A (and
Figure 4(a)) and then describe how the other two services
differ.
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(a) TCP throughput before and after the buffer fills.
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(b) Request interval before and after the buffer fills.

Figure 6: (Service A) Before and after the playback buffer fills at 185 seconds.
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(a) Service A with no competing flow.
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(b) Service A with one competing flow.

Figure 7: (Service A) Throughput at HTTP layer with and without a competing flow.

5.1 Initial Condition: No Competing Flow
In the absence of a competing flow (first 400 seconds),

the Service A client correctly chooses the highest playback
rate. Because the available network bandwidth (5Mb/s) is
much higher than the playback rate (1750kb/s), the client
busily fills up its playback buffer and the bottleneck link
is kept fully occupied. Eventually the playback buffer fills
(after 185 seconds) and the client pauses to let it drain a
little before issuing new requests. Figure 6(a) shows how the
TCP throughput varies before and after the playback buffer
fills up. After the buffer is full, the client enters a periodic
ON-OFF sequence. As we will see shortly, the ON-OFF
sequence is a part of the problem (but only one part). Before
the buffer fills, the client requests a new 4-second segment
of video every 1.5 seconds on average (because it is filling
the buffer). Figure 6(b) confirms that after the buffer is full,
the client requests a new 4-second segment every 4 seconds,
on average. The problem is that during the 4-second OFF
period, the TCP congestion window (cwnd) times out —
due to inactivity longer than 200ms — and resets cwnd to

its initial value of 10 packets [5, 6]. Even though the client is
using an existing persistent TCP connection, the cwnd needs
to ramp up from slow start for each new segment download.

It is natural to ask if the repeated dropping back to slow-
start reduces the client’s video throughput, causing it to
switch to a lower rate. With no competing flow, it appears
the answer is ‘no’. We verify this by measuring the video
throughput for many requests. We set the bottleneck link
rate to 2.5Mb/s, use traces collected from actual sessions
to replay the requests over a persistent connection to the
same server, and pause the requests at the same interval as
the pauses in the trace. Figure 7(a) shows the CDF of the
client’s video throughput for requests corresponding to vari-
ous playback rates. The video throughput is pretty accurate.
Except for some minor variation, the video throughput ac-
curately reflects the available bandwidth, and explains why
the client picks the correct rate.
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(a) A 235kbps Segment.
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(b) Five contiguous 235kbps segments concatenated into
one.

Figure 8: (Service A) The evolution of cwnd for different segment sizes.
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Figure 9: (Service A) The client picks a video rate
depending on the available bandwidth. The hori-
zontal gray lines are the available rates.

5.2 The Trigger: With a Competing Flow
Things go wrong when the competing flows starts (after

400 seconds). Figure 7(b) shows the client’s video through-
put are mostly too low when there is a competing flow.4 If
we look at the progression of cwnd for the video flow after it
resumes from a pause, we can tell how the server opens up
the window differently when there is a competing flow. Be-
cause we don’t control the server (it belongs to the CDN) we
instead use our local proxy to serve both the video traffic and
the competing flow, and use the tcp_probe kernel module

4In Figure 7(b), the bottleneck bandwidth is set to 5Mb/s so
that the available fair-share of bandwidth (2.5Mb/s) is the
same as in Figure 7(a). Note that some segment downloads
are able to get more than its fair share; in these cases, the
competing flow experiences losses and has not ramped up to
its fair share yet. This is the reason why some of the CDF
curves does not end with 100% at 2.5Mb/s in Figure 7(b).

to log the cwnd values. The video traffic here is generated
by requesting a 235kbps video segment. Figure 8(a) shows
how cwnd evolves, starting from the initial value of 10 at 1.5
seconds, then repeatedly being beaten down by the competing
wget flow. The competing wget flow has already filled the
buffer during the OFF period, and so the video flow sees
very high packet loss. Worse still, the segment is finished
before cwnd climbs up again, and we re-enter the OFF pe-
riod. The process will repeat for every ON-OFF period, and
the throughput is held artificially low.

For comparison, and to understand the problem better,
Figure 8(b) shows the result of the same experiment with a
segment size five times larger. With a larger segment size,
the cwnd has longer to climb up from the initial value; and
has a much greater likelihood of reaching the correct steady
state value.

Now that we know the video throughput tends to be low
(because of TCP), we would like to better understand how
the client reacts to the low throughputs. We can track the
client’s behavior as we steadily reduce the available band-
width, as shown in Figure 9. We start with a bottleneck link
rate of 5Mb/s (and no competing flow), drop it to 2.5Mb/s
(to mimic a competing flow), and then keep dropping it
by 100kb/s every 3 minutes. The dashed line shows the
available bandwidth, while the solid line shows the video
rate picked by the client. The client chooses the video rate
conservatively; when available bandwidth drops from from
5Mb/s to 2.5Mb/s, the video rate goes down to 1400kb/s,
and so on.

We can now put the two pieces together. Consider a client
streaming at a playback rate of 1750kb/s, the median video
throughput it perceives is 1787kb/s as shown in Figure 7(b).
According to Figure 9, with a video throughput of 1787kb/s,
the client reduces its playback rate to 1050kb/s. Thus, 50%
of the time the playback rate will go down to 1050kb/s once
the competing flow starts.

It is interesting to observe that the Service A client is
behaving quite rationally given the throughput it perceives.
The problem is that because Service A observes the through-
put above TCP, it is not aware that TCP itself is having
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Figure 16: (Service B) The TCP throughput changes in the presence of a competing flow.
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Figure 14: (Service B) Almost all the OFF periods in
a single video session are greater than RTO (200ms).

video throughput is higher — hence the Service A client
picks a higher rate (1050kb/s).

For comparison, we asked 10 volunteers to rerun this ex-
periment with Service A in their home network connected
to different ISPs, such as AT&T DSL, Comcast, Verizon
and university residences. Even though there was sufficient
available bandwidth for the highest video rate in the pres-
ence of a competing flow, seven people reported a rate of
only 235kb/s-560kb/s.

5.5 Service B
Service B also exhibits ON-OFF behavior, but at the TCP

level and not the HTTP level, i.e., the pause could happen
while downloading a video segment. When its video play-
back buffer is full, the client stops taking data from the
TCP socket buffer. Eventually, the TCP socket buffer also
fills and triggers TCP flow control to pause the server by
sending a zero window advertisement. In Figure 4(b), each
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Figure 15: (Service B) When the video stream is
receiver-limited, the client does not request many
bytes during an ON period.

zero window advertisement is marked by a hexagon. The
client starts issuing zero window advertisements at around
100s and continues to do so until a few seconds after the
competing flow starts. Figure 14 shows the CDF of the du-
ration of the OFF periods. Almost all the pauses are longer
than 200ms, so cwnd is reset to its initial value. Thus, Ser-
vice B effectively exhibits an ON-OFF behavior similar to
that of Service A.

Worse still, during an ON period, Service B does not re-
quest many bytes; Figure 15 shows that over half of the time,
it reads only 800kbytes, which is not enough for the cwnd
to climb up to its steady state before the next OFF period.
Figure 4(b) and Figure 16(b) show the result, that the TCP
throughput is only around 1Mbps to 1.5Mbps, causing Ser-
vice B to pick a video rate of 1000kb/s, or even 650kb/s.
As we saw earlier, when competing with another flow, the
smaller the request, the higher the likelihood of perceiving
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Figure 20: Custom client, similar to Service A –
equally conservative, with a 10-sample moving aver-
age filter – displays the downward spiral.

a reasonable baseline. For Service A, Figure 9 indicates the
bandwidth below which the client picks a lower video rate.
Assume that Service A estimates bandwidth by simply di-
viding the download size by the download time and passing
it through a fixed-size moving-average filter. We can esti-
mate the size of the filter by measuring how long it takes
from when the bandwidth drops until the client picks a new
rate. A number of traces from Service A suggest a filter with
10 samples, though the true algorithm is probably more nu-
anced.

To closely mimic the Service A client, our custom client re-
quests the video segments with the same sizes from the same
locations in the CDN: we capture the segment map given to
the client after authentication, which locates the video seg-
ments for each supported playback rate. Hence, our custom
client will experience the same segment-size variation over
the course of the movie, and when it shifts playback rate,
the segment size will change as well. Since our custom client
uses tokens from an earlier playback, the CDN cannot tell
the difference between our custom client and the real Service
A client. To further match Service A, the playback buffer
is set to 240 seconds, the client uses a single persistent con-
nection to the server, and it pauses when the buffer is full.
We first validate the client, then consider three changes: (1)
being less conservative, (2) changing the filtering method,
and (3) aggregating segments.

6.2 Validating our Custom Client
Figure 20 shows the custom client in action. After down-

loading each segment, the custom client selects the playback
rate based on Service A’s conservative rate selection algo-
rithm, observed in Figure 9. Once the playback buffer is
full, we introduce a competing flow. Like the real client,
the playback rate drops suddenly when the competing flow
starts, then fluctuates over the course of the movie. The
downward spiral does not bottom out, which we suspect is
due to some subtle differences between Service A’s algorithm
and ours.
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Figure 21: Custom client – with 10% conservatism,
but with a 10-sample moving average filter.
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Figure 22: Custom client – with 10% conservatism,
and with an 80th-percentile filter.

6.3 Less Conservative
Bandwidth estimates based on download sizes and dura-

tions tend to under-report the available bandwidth, espe-
cially in the presence of a competing flow. If the algorithm
is conservative, it exacerbates the problem. We try a less
conservative algorithm, with a conservatism of 10% instead
of 40%. Conservatism of 40% means the client requests for
a video rate of at most 1.2Mb/s when it perceives 2.0Mb/s,
while 10% means it requests at most 1.8Mb/s when per-
ceiving 2.0Mb/s. According to Figure 9, Service A requests
video rate with a conservatism of approximately 40%. Fig-
ure 21 shows that the video rate is higher, even though
the playback buffer stays full. The result is higher qual-
ity video, high playback buffer occupancy (i.e. resilience
against rebuffering) and four minutes of buffering to respond
to changes in bandwidth. Note that even though the algo-
rithm is less conservative, the underlying TCP ensures the
algorithm stays a “good citizen” and only gets its fair share
of available bandwidth.



0 200 400 600 800 1000
Time (s)

0

1000

2000

3000

4000

5000
V

id
e

o
 R

a
te

 (
k
b

/s
)

Buffer Status

Video Throughput

Video Rate

0

50

100

150

200

250

V
id

e
o

 S
e

g
m

e
n

ts
 i
n

 B
u

ff
e

r 
(S

e
c
o

n
d

)

Figure 23: Custom client with increased segment
size (5x).

6.4 Better Filtering
Averaging filters provide a more stable estimate of band-

width, but a single outlier can confuse the algorithm. For
example, a few seconds of low-information movie credits re-
duces the segment size and the algorithm might drop the
rate. In place of averages, we consider medians and quan-
tiles to reduce the vulnerability to outliers. Figure 22 shows
what happens if we use the 80th-percentile of measured rate
of the past ten segment download. Variation is greatly re-
duced, and the majority of the movie plays at the highest-
available rate. The playback buffer has small fluctuations,
but it is still far from a rebuffer event.

6.5 Bigger Segments
As noted earlier, bigger segments provide better estimates

of the available bandwidth, allowing TCP to escape slow-
start. Figure 23 shows what happens if our client aggregates
five requests into one. With the larger segment size, the
video throughput is more stable, and both the playback rate
and buffer size are more stable.

In summary, larger segments let TCP reach its fair share
and improve the video throughput. Picking higher rates
less conservatively and filtering measurements more care-
fully can improve video quality. But we should note that
these improvements are for one movie on one service. Given
the prevalence of the downward spiral effect, these should
not be interpreted as hard recommendations, merely as added
detail to our understanding of the problem.

7. RELATED WORK
The related work largely considers three overlapping ar-

eas: systems for video streaming; measurements to under-
stand their performance, and the design and analysis of rate
selection algorithms.

Video Streaming Services. The first category covers
video streaming approaches using HTTP, such as the com-
mercial ones from Adobe, Apple, and Microsoft described
in [22], which differ in their alignment of video switching
rates, whether A/V streams are combined, and whether re-
quests are issued as byte ranges or for pre-specified seg-
ments. A more recent technique is MPEG DASH (Dynamic
Adaptive Streaming over HTTP) [7] which standardizes the

formatting of video content and leaves open the specific
client player algorithm. These techniques underpin the ma-
jor commercial services like YouTube, Netflix, and Hulu.

Video Streaming Measurement. The second cate-
gory measures the performance of individual video streaming
clients experiencing local traffic conditions (“in the lab”), all
the way to distributed measurement systems that compare
the performance of thousands of clients (“in the wild”).

The work most similar to ours is [3], where the authors
also parse HTTP messages to determine playback rates and
use a bandwidth limiter to test clients under varying network
conditions. However, [3] focuses on the unfairness problem
among two video players, while in this work we focus on
the unfairness problem between a video player and a long-
lived TCP flow. This paper considers a significantly differ-
ent scenario: it focuses on a video client competing against
another video client. In this context, they observe similar
pathologies: poor bandwidth estimation, leading to insta-
bility. However, they explain their observations entirely in
terms of the application-layer ON-OFF behavior of video
clients; even if one video client perfectly obtained its fair
share when ON, it can fail to correctly estimate available
bandwidth (depending on the amount of overlap with the
ON periods of the other client). By contrast, our paper
demonstrates that this is only a symptom of a more gen-
eral problem: inaccurate bandwidth estimation occurs even
when the competing flow does not exhibit ON-OFF behav-
ior. As we show in this paper, the problem arises because
it is hard to estimate bandwidth above TCP. Others have
identified the same problem but not explained its causes or
validated potential fixes [4, 16].

Measuring the CDN servers rather than clients provides
different insights. In [1], the authors examine the CDN se-
lection strategy of Hulu, while in [2], the authors look at
Netflix. Both papers find a predisposition for clients to stay
with the original CDN, despite variation between CDNs and
over time. In [9], the authors describe lessons learned from a
distributed commercial measurement system to understand
the effects of Quality-of-Experience (QoE) metrics on viewer
engagement and retention. Rebuffer rates and average video
quality are QoE metrics with measurable impacts on viewer
engagement, which underscores the importance of getting
rate measurement and selection right in the presence of com-
peting flows. With the measurement-driven insights from
the same system, [14] proposes a global video control plane
to dynamically assign clients a choice of video rate and CDN
that optimizes viewers’ experience.

Other work looks at network characteristics of video stream-
ing traffic, rather than focusing on the client or viewer expe-
riences [11, 19, 24]. In particular, the authors in [19] show
ON-OFF cycle behavior for YouTube and Netflix and use a
model to study aggregates of video client and their effects
on the network. Both CDN and network traffic papers do
not consider local effects on measured bandwidth or their
effects on rate stability.

Rate Selection Algorithms. The third category is
work on rate selection algorithms. This work complements
ours, as a control system always benefits from more accu-
rate measurements. In [8], the authors propose an algorithm
to maintain the playout buffer at a target level. In [17],
the authors implement a different buffer-aware rate selection
algorithm and experimentally measure user preferences for
gradual and infrequent playback rate changes. In [23], the



authors model the rate selection problem as a Markov Deci-
sion Process and use a dynamic programming technique to
choose a streaming strategy that improves QoE. In [13], the
authors use simulations to show how parallel HTTP sessions
can improve playback quality. Server-side pacing is another
approach to selecting rate used by YouTube, as described
in [10, 12].

8. CONCLUSION
Despite some differences in specific service implementa-

tions, all three services we study display degraded perfor-
mance in the presence of competing traffic, well below the
video quality possible if the client used its fair share of band-
width. At a high level, our measurement analysis and ex-
periments suggest that the root cause of this failure is a
lack of information. The HTTP layer is simply not privy to
continuous high-fidelity feedback about the fair share at the
bottleneck link.

There are two ways to interpret our observations. On one
hand, we observe that determining the fair share of band-
width available at the bottleneck is precisely the role of TCP.
Thus, one path forward might be to suggest that we should
design the client to improve information flow from TCP to
the HTTP layer. In particular, we should ensure that TCP
has a chance to reach its steady-state fair share; for example,
increasing the segment size enables this effect.

However, we believe there may be a more radical solu-
tion: do not attempt to estimate bandwidth at all! The video
streaming client has two competing goals: attain the highest
bitrate possible while avoiding buffer underruns. Thus the
objective is not to ensure the buffer stays full; the objective
is to ensure the buffer does not go empty. Since the buffer
holds several minutes of video, this shift in perspective sug-
gests that if the buffer is full then the client has picked a rate
that is too low. Rather, the client should increase the bitrate
when the buffer is high and decrease it when the buffer falls
low. Though this sounds aggressive, note that it is exactly
the correct layer separation: it hands off to TCP the ob-
jective of obtaining the fair share of bandwidth, and tries
to always ensure the client picks the highest rate possible.
This suggests an intriguing path forward for future research:
design video-streaming clients that deliver high performance
by eliminating bandwidth estimation all together.
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