The Wayback Machine - https://web.archive.org./web/20210318032846/https://github.com/topics/gpu
Skip to content
#

gpu

Here are 2,089 public repositories matching this topic...

pseudotensor
pseudotensor commented on Jan 12, 2021

Problem: the approximate method can still be slow for many trees
catboost version: master
Operating System: ubuntu 18.04
CPU: i9
GPU: RTX2080

Would be good to be able to specify how many trees to use for shapley. The model.predict and prediction_type versions allow this. lgbm/xgb allow this.

H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.

  • Updated on Mar 18, 2021
  • Jupyter Notebook
solardiz
solardiz commented on Jul 19, 2019

Our users are often confused by the output from programs such as zip2john sometimes being very large (multi-gigabyte). Maybe we should identify and enhance these programs to output a message to stderr to explain to users that it's normal for the output to be very large - maybe always or maybe only when the output size is above a threshold (e.g., 1 million bytes?)

rsn870
rsn870 commented on Aug 21, 2020

Hi ,

I have tried out both loss.backward() and model_engine.backward(loss) for my code. There are several subtle differences that I have observed , for one retain_graph = True does not work for model_engine.backward(loss) . This is creating a problem since buffers are not being retained every time I run the code for some reason.

Please look into this if you could.

BenikaHall
BenikaHall commented on Feb 10, 2021

Describe the bug
After applying the unstack function, the variable names change to numeric format.

Steps/Code to reproduce bug

def get_df(length, num_cols, num_months, acc_offset):
    cols = [ 'var_{}'.format(i) for i in range(num_cols)]
    df = cudf.DataFrame({col: cupy.random.rand(length * num_months) for col in cols})
    df['acc_id'] = cupy.repeat(cupy.arange(length), nu
jankrynauw
jankrynauw commented on Jun 6, 2019

We would like to forward a particular 'key' column which is part of the features to appear alongside the predictions - this is to be able to identify to which set of features a particular prediction belongs to. Here is an example of predictions output using the tensorflow.contrib.estimator.multi_class_head:

{"classes": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"],
 "scores": [0.068196

Improve this page

Add a description, image, and links to the gpu topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the gpu topic, visit your repo's landing page and select "manage topics."

Learn more