
OCTOBER 2013 | VOL. 56 | NO. 10 | COMMUNICATIONS OF THE ACM 57

MEASURIN G AN D M ON ITO RIN G network round-trip
time (RTT) is important for multiple reasons: it allows
network operators and end users to understand
their network performance and help optimize their
environment, and it helps businesses understand
the responsiveness of their services to sections of their
user base.

Measuring network RTT is also
important for Transmission Control
Protocol (TCP) stacks to help optimize
bandwidth usage. TCP stacks on end
hosts optimize for high performance
by passively measuring network RTTs
using widely deployed TCP timestamp
options carried in TCP headers. This in-
formation, if utilized, carries some dis-
tinct operational advantages for servic-
es and applications: hosts do not need
to launch out-of-band Internet Control
Message Protocol (ICMP) echo requests
(pings), nor do they need to embed tim-
ing information into application traffic.
Instead, hosts can passively measure
RTT representative of full-path network
latency experienced by TCP traffic.

Understanding network delay is
key to understanding some important
aspects of network performance. The
time taken to traverse the network be-
tween two hosts affects how responsive
services are, and it affects the effective
bandwidth available to end hosts. Mea-
suring this information passively on
servers can help provide a fine-grained
indication of service responsiveness
from the customer’s perspective, and
it simultaneously offers a network-
distance metric for customers that is
more useful than coarse-grained and
often inaccurate IP-based geolocation.

Measuring the RTT to many hosts or
customers is nontrivial. One solution
is active probing, in the form of ICMP

Passively
Measuring TCP
Round-Trip
Times

DOI:10.1145/2507771.2507781

 Article development led by
queue.acm.org

A close look at round-trip time measurements
with the Transmission Control Protocol.

BY STEPHEN D. STROWES

58 COMMUNICATIONS OF THE ACM | OCTOBER 2013 | VOL. 56 | NO. 10

practice

echo requests and responses (that is,
ping), but this incurs additional net-
work load. In some cases ICMP traffic
is deprioritized, dropped completely,
or routed over a different path to TCP
traffic. If none of this is true, there is
still the possibility that the RTT is be-
ing measured to a Network Address
Translator (NAT) and not the end host
exchanging data.

Another possible solution for mea-
suring network RTT is to measure the
application-layer responsiveness. This,
however, implies an application-spe-
cific, ad hoc measurement performed
by embedding IDs or timestamps into
the TCP bytestream, which may give a
misleading, inflated measurement for
network RTT, depending on network
conditions (more on this later).

Neither of these solutions is to-
tally satisfactory because neither is
guaranteed to measure the network
RTT that affects application traffic.
The timestamp information carried
in TCP headers, however, offers an-
other solution: it is effectively a net-
work-layer RTT measurement that
passes through most middleboxes
such as NATs and firewalls and mea-
sures the full-path RTT between both
hosts on a connection. This informa-
tion provides the only noncustom
RTT estimation solution available to
end hosts. Tools such as tcptrace can
calculate RTT using this state, but
any software that can inspect packet
headers (usually accomplished via
libpcap) or that can interrogate the

local system for such kernel state can
passively gather network RTTs for all
active connections.

The key differences between these
measurements and how differing net-
work conditions affect them are not
obvious. The purpose of this article is
to discuss and demonstrate the pas-
sive RTT measurements possible using
TCP traffic.

Background
TCP offers a reliable bytestream to the
applications that use it; applications
send arbitrary amounts of data, and
the TCP layer sends this as a series of
segments with sequence numbers and
payload lengths indicating the chunk
of the bytestream each segment rep-
resents. To achieve an ordered byte
stream, TCP retransmits segments if
they go missing between the source
and destination (or, if an acknowl-
edgment for a received segment goes
missing between the destination and
the source). To improve performance
in all network conditions, the TCP
stack measures RTT between it and
the other host on every connection to
allow it to optimize its retransmission
timeout (RTO) appropriately and opti-
mize the time taken to recover from a
loss event.

The original TCP specification con-
tained no mandatory, dedicated RTT
calculation mechanism. Instead, TCP
stacks attempted to calculate RTTs by
observing the time at which a sequence
number was sent and correlating that

with a corresponding acknowledgment.
Calculation of RTTs using this mecha-
nism in the presence of packet loss,
however, makes accurate measure-
ment impossible.13 TCP timestamps
were defined to permit this calculation
independently at both ends of a con-
nection while data is being exchanged
between the two hosts. TCP timestamps
offer a mechanism for calculating RTT
that is independent of sequence num-
bers and acknowledgments.

The algorithm for calculating RTT
from a TCP flow between two hosts,
documented in RFC 1323,3 is common-
ly used by both end hosts on a connec-
tion to refine the RTO to improve the
performance of TCP in the presence
of loss. The mechanism is enabled by
default in modern operating systems
and is rarely blocked by firewalls, and
thus appears in most TCP flows; the
TCP Timestamp option is known to be
widely deployed in the wild.5

RTT is calculated continuously for
each connection for as long as data is
exchanged on those connections. TCP
calculates RTT for packets exchanged
on a per-connection basis and com-
putes the exponential moving average
of these measurements, referred to
as the smoothed RTT (SRTT). The TCP
stack also maintains the variance in
the measured RTT, the RTTVAR. The
SRTT that the TCP stack calculates for a
connection determines the RTO value.
Given variables G, which is the system
clock granularity, and K, which is set
to 4,8 the RTO is calculated as follows:

RTO = SRTT + max(G,K * RTTVAR)

The RTO is used to optimize the time
the TCP stack waits, having transmit-
ted a TCP segment, for a correspond-
ing acknowledgment prior to retrying
the send operation. Accurate measure-
ments of RTT between two hosts allow
TCP to tune its RTO accurately for each
active connection.

Understanding the state contained
within the TCP headers carried in
most TCP traffic can help applica-
tion designers or network operators
understand the network RTTs experi-
enced by application traffic. Many ap-
plications with real-time constraints
use TCP to transport their traffic,
which is acceptable within certain
bounds.1 It is useful to understand

Figure 1. Simplified demonstration of TCP timestamp exchange.

B
1

2

3

4

5

6

7

A

OCTOBER 2013 | VOL. 56 | NO. 10 | COMMUNICATIONS OF THE ACM 59

To improve
performance in all
network conditions,
the TCP stack
measures RTT
between it and
the other host on
every connection to
allow it to optimize
its retransmission
timeout (RTO)
appropriately.

how the bytestream semantic can af-
fect real-time performance.

TCP timestamps are optional fields
in the TCP header, so although they are
extremely useful and carried in most
traffic, they are not strictly required for
TCP to function. The values are held in
two four-byte header fields: Timestamp
Value (TSval) and Timestamp Echo Re-
ply (TSecr). Both hosts involved in the
connection emit TSval timestamps
to the other host whenever a TCP seg-
ment is transmitted, and they await
the corresponding TSecr in return. The
time difference measured between
first emitting a TSval and receiving it in
a TSecr is the TCP stack’s best guess as
to RTT. Timestamp here is an arbitrary
value that increments at the granular-
ity of the local system clock; it is not a
timestamp that can be interpreted in-
dependently, such as number of sec-
onds since the epoch.

By way of example, in Figure 1, time
progresses from top to bottom, and
the horizontal lines indicate real-time
incrementing (for example, in milli-
seconds). Two hosts, A and B, have an
open connection and are exchanging
packets. In reality the two hosts have
differing clocks, but for simplicity as-
sume they are perfectly synchronized.

The example operates as follows:
Host A emits a TCP segment that

contains the timestamp options

TSval = 1, TSecr = 0

TSecr is set to 0 because no TSval from
B has been observed at A; this usually
indicates A is opening a connection to
B. Host B receives this timestamp at
time 1; at time 2, host B emits a TCP
segment back to A, which contains the
values

TSval = 2, TSecr = TSvalA = 1

These are received at host A at time 3.
Given this echoed value and the cur-
rent time, host A knows that the RTT in
this instance is approximately 2ms.

Subsequently, the next two segments
that A emits both carry the values:

TSval = 3, TSecr = TSvalB = 2

The first of these is received at host B at
time 4, so host B can also calculate an
RTT of 2ms. Given the two echoes of

the same timestamp received, the mini-
mum duration is assumed to be closest
to actual network delay; if network de-
lay changes, future exchanges will mea-
sure this. Continuously sending values
to the other host and noting the mini-
mum time until the echo reply contain-
ing that value is received allows each
end host to determine the RTT between
it and the other host on a connection.

The caveat is that for a TSval to be
considered useful, the TCP segment
must be carrying data from the appli-
cation. TCP segments can legitimately
carry a zero-byte payload, most com-
monly when acknowledging a data
segment, or when TCP keepalives are
enabled. By requiring the only valid
TSvals come from TCP segments car-
rying data, the algorithm is less likely
to measure breaks in the communica-
tion between the hosts, where data ex-
change pauses for a time, then restarts
using the last received TSval as the TSe-
cr. This also implies that on a TCP flow
in which data is exchanged exclusively
in one direction, only one of the hosts
will be able to calculate the RTT. Usual-
ly, however, there is some application
layer chatter in both directions.

Finally, RTT calculation can be
performed on any host that is for-
warding traffic, not just end hosts,
so full-path RTTs on all connections
within a network can be calculated
from its gateway host, for example.
All that is necessary to compute ac-
curate RTTs is that both directions
of a connection pass through the
monitoring host. Whether this is the
case often relies on the network ar-
chitecture, but it is known that paths
on the Internet are normally not sym-
metric.2 Running this algorithm on a
gateway node for a network through
which all traffic passes, however, al-
lows for the RTT calculation to take
place passively on all connections
from just one location.

Demonstrating RTT Measurements
The network is a shared resource, and
multiple factors can affect TCP RTT
calculation. This section broadly cov-
ers some of these factors and demon-
strates where the TCP RTT calculation
differs from the RTT perceived by ap-
plications. The aim is to demonstrate
parity with ICMP’s RTT estimations,
assuming all else is equal, and how

HIGH-FREQUENCY
TRADING

60 COMMUNICATIONS OF THE ACM | OCTOBER 2013 | VOL. 56 | NO. 10

practice

packet loss and excessive buffering
affect these measures relative to per-
ceived latency at the application layer.

To demonstrate the responsiveness
of RTT measurements, traffic flows
were simulated in a virtualized environ-
ment. The environment is simple: two
Linux hosts were configured on differ-
ent subnets, with a third Linux host
with packet forwarding enabled, con-
figured with two network interfaces,
one for each subnet.

This forwarding host is used to vary
the network characteristics observed
between the two end hosts, using the
traffic control (tc) tool. Network char-
acteristics are not modified on the
end hosts, so their TCP stacks are not
directly aware of the configuration for
each experiment. For each experiment,
an egress delay of 50ms is set on each
interface on the forwarding host, re-
sulting in an RTT of 100ms between
the two end hosts. Each experiment
runs for 180 seconds. The maximum
data rate is set to 10Mbps.

On these end hosts, the following
components are running:

 ! Ping is running on both hosts, so
each host is sending ICMP echo re-
quests to the other once per second.
This measures the ICMP RTT value
to establish a “ground-truth” RTT be-
tween the hosts.

 ! A simple client/server pair of pro-
grams is running, where the client
sends a local timestamp over a TCP
connection once every second to the
server, and the server echoes the time-
stamp back to the client; the client
calculates the difference whenever
it reads the response out of the byte
stream. The client application runs
two threads: one for sending and one
for receiving. This measures the RTT
perceived by the application layer.

 ! Also running on both end hosts
is a packet capture (pcap) reader that
observes the TCP timestamp values
carried in the TCP headers for the
traffic generated by the client/server
program from which it calculates the
RTT, outputting the latest RTT value
once every second. The value exported
for these experiments is the RTT rath-
er than the SRTT, since the goal here
is to examine the actual RTT and not
an approximation. This calculates the
RTT passively from TCP timestamps.
No other traffic is exchanged between

Figure 2. Histograms indicating measured RTTs for all tests.

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

TCP RTT measured from host B (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

ICMP RTT measured from host B (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

TCP RTT measured from host A (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

ICMP RTT measured from host A (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

Application layer RTT measured from host A (ms)

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

OCTOBER 2013 | VOL. 56 | NO. 10 | COMMUNICATIONS OF THE ACM 61

hosts, except during the demonstra-
tion of bufferbloat.

The following examples demonstrate:
1. The ability to monitor changing

RTT accurately by modifying network
latency.

2. The impact of packet loss.
3. The impact of oversized buffers

(commonly referred to as bufferbloat).
Nagle’s algorithm. Before describ-

ing these experiments in detail, we
should take a look at Nagle’s algo-
rithm,6 which is enabled by default
in many TCP stacks. Its purpose is to
reduce the number of small, header-
heavy datagrams transferred by the
network. It operates by delaying the
transmission of new data if the amount
of data available to send is less than the
MSS (maximum segment size), which
is the longest segment permissible giv-
en the maximum transmission unit on
the path, and if there is previously sent
data still awaiting acknowledgment.

Nagle’s algorithm can cause un-
necessary delays for time-critical ap-
plications running over TCP. Thus,
because the assumption is that such
applications will run over TCP in the
experiments presented here, Nagle’s
algorithm is disabled. This is achieved
in the client and server by setting the
TCP_NODELAY socket option on all
sockets in use.

Experiment 1: Changing Network
Conditions. When computing RTTs, it
is critical the measurements accurately
reflect current conditions. The purpose
of this experiment is simply to demon-
strate the responsiveness of our met-
rics to conditions that change in a pre-
dictable manner. In this experiment
the base RTT (100ms) is initially set,
and then an additional latency (50ms)
is alternately added and deducted from
that base RTT by incrementing the de-
lay on both interfaces at the forwarding
host by 25ms. No loss ratio is specified
on the path, and no additional traffic is
sent between the two hosts.

Note that since TCP’s RTT calcu-
lation is wholly passive, it does not
observe variation in RTT if no data is
being exchanged. In the presence of
traffic, however, it’s beneficial that the
RTT measurement update quickly. The
results of this experiment are shown
in Figure 2. The measurements taken
at all layers indicate a bimodal dis-
tribution, which is precisely what we

should expect without other network
conditions affecting traffic. The three
forms of measurements taken are all
effectively equivalent, with the mean
RTT measured during the experiments
varying by no more than 1%.

Experiment 2: Packet Loss. Packet
loss on a network affects reliability, re-
sponsiveness, and throughput. It can
be caused by many factors, including
noisy links corrupting data, faulty for-
warding hardware, or transient glitch-
es during routing reconfiguration. As-
suming the network infrastructure is
not faulty and routing is stable, loss is
often caused by network congestion
when converging data flows cause a
bottleneck, forcing buffers to overflow
in forwarding hardware and, there-
fore, packets to be dropped. Loss can
happen on either the forward or the
reverse path of a TCP connection, the
only indication to the TCP stack being
the absence of a received ACK.

TCP offers applications an ordered
bytestream. Thus, when loss occurs
and a segment has to be retransmit-
ted, segments that have already arrived
but that appear later in the bytestream
must await delivery of the missing seg-
ment so the bytestream can be reas-
sembled in order. Known as head-of-
line blocking, this can be detrimental
to the performance of applications
running over TCP, especially if latency
is high. Selective acknowledgments, if
enabled, allow a host to indicate pre-

cisely which subset of segments went
missing on the forward path and thus
which subset to retransmit. This helps
improve the number of segments “in
flight” when loss has occurred.

In this experiment, packet loss was
enabled on the forwarding host at loss
rates of 5%, 10%, 15%, and 20%, the pur-
pose being to demonstrate that TCP
segments are still exchanged and RTTs
estimated by TCP are more tolerant to
the loss than the RTTs measured by the
application. The results of this experi-
ment are shown in Figure 3. The points
represent median values, with 5th and
95th percentiles shown.

In these tests, a 5% packet loss was
capable of introducing a half-second
delay for the application, even though
the median value is close to the real RTT
of 100ms; the mean measured applica-
tion layer RTT with 5% loss is 196.4ms,
92.4ms higher than the measured mean
for TCP RTT. The measured means rise
quickly: 400.3ms for 10% loss, 1.2s for
15% loss, and 17.7s for 20% loss. The
median values shown in Figure 3 for
application-layer RTT follow a similar
pattern, and in this example manifest
in median application-layer RTTs mea-
sured at around 12 seconds with 20%
packet loss. The TCP RTT, however, is
always close to the true 100ms distance;
although delayed packet exchanges can
inflate this measure, the largest mean
deviation observed in these tests be-
tween TCP RTT and ICMP RTT was a

HIGH-FREQUENCY
TRADING

100000

10000

1000

100

5 10 15 20

Figure 3. RTTs measured in the presence of varying packet loss rates.

 TCP RTT
 Application RTT

R
T

T
 (m

s,
 lo

g
sc

al
e)

Loss (%)

62 COMMUNICATIONS OF THE ACM | OCTOBER 2013 | VOL. 56 | NO. 10

practice

57.7ms increase in measured RTT at
the TCP layer. The effect of packet loss
can be devastating to the responsive-
ness of TCP applications, but it is clear
that passively measuring network level
RTTs is still feasible, and distinct from
the perceived latency experienced by
applications that can be introduced by
TCP’s in-order delivery semantics.

Experiment 3: Bufferbloat. Misun-
derstandings around the relationship
between loss prevention and network
performance have led to excessive
buffering being introduced to for-
warding and routing hardware as a
loss-avoidance strategy. Often (but not
exclusively) this affects commodity
customer premises equipment (CPE),

and thus directly affects end users.
However, excessive buffering works
against TCP’s loss-detection algo-
rithm by increasing delay and thus de-
laying the time taken for a TCP stack
to identify loss and back-off; that is,
the additional delay introduced by
large buffers can disrupt TCP’s con-
gestion-control mechanism.

Figure 4. RTT histograms representing the difference in RTTs.

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

RTT (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

RTT (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

RTT (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

RTT (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

RTT (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

RTT (ms)

(a) Range of application-layer RTTs
reported with different buffer sizes.

(b) Range of TCP RTTs reported
with different buffer sizes.

 10kB buffer
 100kB buffer
 200kB buffer
 300kB buffer

 10kB buffer
 100kB buffer
 200kB buffer
 300kB buffer

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

RTT (ms)

140

120

100

80

60

40

20

0
0 50 100 150 200 250 300

RTT (ms)

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

OCTOBER 2013 | VOL. 56 | NO. 10 | COMMUNICATIONS OF THE ACM 63

Bufferbloat is a well-known phe-
nomenon,7 where the deepest buffer
on a network path between two hosts
is eventually filled by TCP. Ostensibly,
system designers increase buffer size
to reduce loss, but deeper buffers in-
crease the actual time taken for pack-
ets to traverse a path, increasing the
RTT and delaying the time it takes for
TCP to determine when a loss event
has occurred. Loss is the driver for
TCP’s congestion-control algorithm,
so increasing buffer size is actually
counterintuitive.

To demonstrate bufferbloat in this
experiment, tc queue sizes were sys-
tematically increased from 10kB, to
100kB, then 200kB, then finally 300kB
on the forwarding host, and netcat
was used to create a high-bandwidth
flow between each of the end hosts
prior to starting the client/server ap-
plication. The intention of the high-
bandwidth flow was to fill the longer
queues on the forwarding host, dem-
onstrating that the draining time af-
fects application responsiveness.

The results of the experiment are
shown in figures 4 and 5. Figure 4 shows
the dispersion of RTT measurements
as the buffer sizes were increased. Fo-
cusing on the 300kB test in Figure 5,
we see very similar RTT measures are
evident from both hosts in the ICMP
measurements, at the TCP layer, and
in the application layer; mean and me-
dian values for all layers in these ex-
periments were all within 2ms of each
other. All RTT measures are inflated by
the same amount because the exces-
sive buffer size effectively increases the
network-layer path length. Given that
the test application only emits a hand-
ful of packets once per second, the saw-
tooth pattern is indicative of the netcat
data filling a queue then TCP waiting
for the queue to drain prior to sending
more of netcat’s data, forming a bursty
pattern. These filled queues adversely
affects the delivery of all other traffic
and our test application suffers RTTs,
which vary from 100ms to about 250ms
as a result.

The bufferbloat problem is be-
ing actively worked on. Mechanisms
such as Selective Acknowledgments
(SACK), Duplicate SACK (DSACK),
and Explicit Congestion Notification
(ECN), when enabled, all help allevi-
ate bufferbloat. Additionally, active

queue management strategies such as
Codel have been accepted into main-
line Linux kernels.

In summary, it is clear that to mini-
mize delays caused by head-of-line
blocking in TCP, packet loss must
be kept to a minimum. Given that we
must expect packet loss as a primary
driver of TCP’s congestion control
algorithm, we must also be careful
to minimize network buffering, and
avoid the delays incurred by buffer-
bloat. The latter requirement in par-
ticular is useful to keep in mind when
provisioning networks for time-critical
data that must be delivered reliably.

Related Work
The key issue when using TCP for
time-sensitive applications is that
TCP offers a reliable bytestream. This

requirement is distinct from other
key aspects of TCP, such as conges-
tion control and flow control. TCP is
not suitable for all applications, how-
ever. Eli Brosh et al. discuss in more
detail the behavior of TCP in the pres-
ence of delay and certain acceptability
bounds for application performance.1

 UDP9 is the most commonly used
transport protocol after TCP; it’s a
datagram-oriented protocol with
no congestion control, flow control,
or message-ordering mechanisms.
It effectively augments the IP layer
with UDP-layer port numbers. With-
out the message-ordering constraint,
it is not affected by the head-of-line
blocking problem that can affect
TCP connections.

UDP alone is not suitable for many
applications, however, because reli-

HIGH-FREQUENCY
TRADING

Figure 5. Indication of measured RTT values in the presence of excessive buffering.

300

250

200

150

100

50

0
0 20 40 60 80 100 120 140 160 180

 TCP RTT measured from host B
 ICMP RTT measured from host B

R
T

T
 (m

s)

Measured delay over time from host B with 300kB buffer on-oath.

300

250

200

150

100

50

0
0 20 40 60 80 100 120 140 160 180

 Application Layer RTT measured from host A
 TCP RTT measured from host A
 ICMP RTT measured from host A

R
T

T
 (m

s)

Measured delay over time from host A with 300kB buffer on-oath.

Seconds

Seconds

64 COMMUNICATIONS OF THE ACM | OCTOBER 2013 | VOL. 56 | NO. 10

practice

TCP is the most
commonly used
transport-layer
protocol today,
and it meets the
requirements that
many applications
desire: it offers a
reliable bytestream
and handles
concerns of
retransmissions
and congestion
avoidance.

ability is often a requirement, and con-
gestion control is important to permit
fair sharing of network resources.
Many applications choose to layer
protocols on top of UDP, such as RTP
Real Time Protocol (RTP) in tandem
with Real Time Control Protocol
(RTCP),10 primarily intended for car-
rying time-sensitive real-time traffic
able to handle small amounts of loss.
These protocols suit applications
such as VoIP that do not require 100%
reliability and find delay incurred by
head-of-line blocking detrimental.
RTCP permits coarse-grained con-
gestion control and allows real-time
applications to modify their usage by
choosing different quality settings for
the live stream, but congestion con-
trol is not built in per se.

DCCP4 is a message-oriented, best-
effort transport-layer protocol that
does not enforce strict ordering on
data delivery, does not handle data-
gram retransmission, but does per-
form congestion control to conserve
network resources. DCCP is useful for
a similar set of applications as RTP and
RTCP, but the addition of congestion
control without potential datagram du-
plication is important, permitting RTP
to run over DCCP with fewer concerns
for network resource consumption.

SCTP11 is also a message-oriented
transport, where each message is deliv-
ered to the application in-order. Strict
message ordering, however, is option-
al, and so the transport can be more re-
sponsive for application traffic. SCTP
also caters for partial reliability.12

Note that bufferbloat is endemic,
and other transport protocols are af-
fected in the same way as TCP, but
relaxing strict ordering constraints at
the transport layer is one approach to
improving performance by removing
the additional response time incurred
when the stream is blocked waiting
for missing data. Active queue man-
agement (AQM) techniques7 are being
deployed in new Linux kernels to help
further alleviate bufferbloat without
modification to applications.

Conclusion
TCP is the most commonly used
transport-layer protocol today, and
it meets the requirements that many
applications desire: it offers a reli-
able bytestream and handles con-

cerns of retransmissions and con-
gestion avoidance. TCP’s semantics
can mean that there is a large dis-
crepancy between the RTT measured
at the transport layer and the RTT
measured by the application read-
ing the bytestream. Thus, TCP is not
always the most applicable transport
for time-critical applications, but the
TCP RTT measurement mechanism
that is enabled in most TCP stacks
today achieves measurements very
close to the ICMP “ground truth” and
performs substantially better than a
similar echo-based protocol embed-
ded within the TCP bytestream.

 Related articles
 on queue.acm.org

Bufferbloat: Dark Buffers in the Internet
Jim Gettys and Kathleen Nichols
http://queue.acm.org/detail.cfm?id=2071893

TCP Offload to the Rescue
Andy Currid
http://queue.acm.org/detail.cfm?id=1005069

References
1. Brosh, E., Baset, S., Misra, V., Rubenstein, D. and

Schulzrinne, H. The delay-friendliness of TCP
for realtime traffic. IEEE/ACM Transactions on
Networking 18, 5 (2010), 478-491.

2. He, Y., Faloutsos, M., Krishnamurthy, S. and Huffaker,
B. On routing asymmetry in the Internet. In
Proceedings of IEEE Global Telecommunications
Conference (GLOBECOM) 2005.

3. Jacobson, V., Braden, R. and Borman, D. TCP
extensions for high performance. RFC 1323.

4. Kohler, E., Handley, M. and Floyd, S. Datagram
Congestion Control Protocol. RFC 4340 (2006).

5. Kühlewind, M., Neuner, S. and Trammell, B. 2013. On
the state of ECN and TCP options on the Internet.
Passive and Active Measurement. M. Roughan and R.
Chang, eds. Lecture Notes in Computer Science 7799
(2013). Springer Berlin Heidelberg, 135–144.

6. Nagle, J. Congestion control in IP/TCP internetworks.
RFC 896 (1984).

7. Nichols, K. and Jacobson, V. Controlling queue delay.
Queue 10, 5 (2012); http://queue.acm.org/detail.
cfm?id=2209336.

8. Paxson, V., Allman, M., Chu, J. and Sargent, M.
Computing TCP’s retransmission timer. RFC 6298
(2011).

9. Postel. J. User Datagram Protocol. RFC 768 (1980).
10. Schulzrinne, H., Casner, S. Frederick, R. and Jacobson,

V. RTP: A transport protocol for real-time applications.
RFC 3550 (2003).

11. Stewart, R. Stream Control Transmission Protocol.
RFC 4960 (2007).

12. Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., Conrad, P.
Stream Control Transmission Protocol (SCTP) Partial
Reliability Extension. RFC 3758 (2004).

13. Zhang, L. Why TCP timers don’t work well. In
Proceedings of 1986 SIGCOMM.

Stephen Strowes is a senior engineer at Boundary Inc.,
where he works on network measurement metrics and
tools. He has previously studied scalable inter-domain
routing protocols, NAT traversal protocols, and peer-to-
peer protocols for real-time content.

© 2013 ACM 0001-0782/13/10 $15.00

