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MEASURIN G AN D M ON ITO RIN G  network round-trip 
time (RTT) is important for multiple reasons: it allows 
network operators and end users to understand 
their network performance and help optimize their 
environment, and it helps businesses understand 
the responsiveness of their services to sections of their 
user base. 

Measuring network RTT is also 
important for Transmission Control 
Protocol (TCP) stacks to help optimize 
bandwidth usage. TCP stacks on end 
hosts optimize for high performance 
by passively measuring network RTTs 
using widely deployed TCP timestamp 
options carried in TCP headers. This in-
formation, if utilized, carries some dis-
tinct operational advantages for servic-
es and applications: hosts do not need 
to launch out-of-band Internet Control 
Message Protocol (ICMP) echo requests 
(pings), nor do they need to embed tim-
ing information into application traffic. 
Instead, hosts can passively measure 
RTT representative of full-path network 
latency experienced by TCP traffic. 

Understanding network delay is 
key to understanding some important 
aspects of network performance. The 
time taken to traverse the network be-
tween two hosts affects how responsive 
services are, and it affects the effective 
bandwidth available to end hosts. Mea-
suring this information passively on 
servers can help provide a fine-grained 
indication of service responsiveness 
from the customer’s perspective, and 
it simultaneously offers a network-
distance metric for customers that is 
more useful than coarse-grained and 
often inaccurate IP-based geolocation. 

Measuring the RTT to many hosts or 
customers is nontrivial. One solution 
is active probing, in the form of ICMP 
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echo requests and responses (that is, 
ping), but this incurs additional net-
work load. In some cases ICMP traffic 
is deprioritized, dropped completely, 
or routed over a different path to TCP 
traffic. If none of this is true, there is 
still the possibility that the RTT is be-
ing measured to a Network Address 
Translator (NAT) and not the end host 
exchanging data. 

Another possible solution for mea-
suring network RTT is to measure the 
application-layer responsiveness. This, 
however, implies an application-spe-
cific, ad hoc measurement performed 
by embedding IDs or timestamps into 
the TCP bytestream, which may give a 
misleading, inflated measurement for 
network RTT, depending on network 
conditions (more on this later). 

Neither of these solutions is to-
tally satisfactory because neither is 
guaranteed to measure the network 
RTT that affects application traffic. 
The timestamp information carried 
in TCP headers, however, offers an-
other solution: it is effectively a net-
work-layer RTT measurement that 
passes through most middleboxes 
such as NATs and firewalls and mea-
sures the full-path RTT between both 
hosts on a connection. This informa-
tion provides the only noncustom 
RTT estimation solution available to 
end hosts. Tools such as tcptrace can 
calculate RTT using this state, but 
any software that can inspect packet 
headers (usually accomplished via 
libpcap) or that can interrogate the 

local system for such kernel state can 
passively gather network RTTs for all 
active connections. 

The key differences between these 
measurements and how differing net-
work conditions affect them are not 
obvious. The purpose of this article is 
to discuss and demonstrate the pas-
sive RTT measurements possible using 
TCP traffic. 

Background
TCP offers a reliable bytestream to the 
applications that use it; applications 
send arbitrary amounts of data, and 
the TCP layer sends this as a series of 
segments with sequence numbers and 
payload lengths indicating the chunk 
of the bytestream each segment rep-
resents. To achieve an ordered byte 
stream, TCP retransmits segments if 
they go missing between the source 
and destination (or, if an acknowl-
edgment for a received segment goes 
missing between the destination and 
the source). To improve performance 
in all network conditions, the TCP 
stack measures RTT between it and 
the other host on every connection to 
allow it to optimize its retransmission 
timeout (RTO) appropriately and opti-
mize the time taken to recover from a 
loss event. 

The original TCP specification con-
tained no mandatory, dedicated RTT 
calculation mechanism. Instead, TCP 
stacks attempted to calculate RTTs by 
observing the time at which a sequence 
number was sent and correlating that 

with a corresponding acknowledgment. 
Calculation of RTTs using this mecha-
nism in the presence of packet loss, 
however, makes accurate measure-
ment impossible.13 TCP timestamps 
were defined to permit this calculation 
independently at both ends of a con-
nection while data is being exchanged 
between the two hosts. TCP timestamps 
offer a mechanism for calculating RTT 
that is independent of sequence num-
bers and acknowledgments. 

The algorithm for calculating RTT 
from a TCP flow between two hosts, 
documented in RFC 1323,3 is common-
ly used by both end hosts on a connec-
tion to refine the RTO to improve the 
performance of TCP in the presence 
of loss. The mechanism is enabled by 
default in modern operating systems 
and is rarely blocked by firewalls, and 
thus appears in most TCP flows; the 
TCP Timestamp option is known to be 
widely deployed in the wild.5 

RTT is calculated continuously for 
each connection for as long as data is 
exchanged on those connections. TCP 
calculates RTT for packets exchanged 
on a per-connection basis and com-
putes the exponential moving average 
of these measurements, referred to 
as the smoothed RTT (SRTT). The TCP 
stack also maintains the variance in 
the measured RTT, the RTTVAR. The 
SRTT that the TCP stack calculates for a 
connection determines the RTO value. 
Given variables G, which is the system 
clock granularity, and K, which is set 
to 4,8 the RTO is calculated as follows:  

RTO = SRTT + max(G,K * RTTVAR)

The RTO is used to optimize the time 
the TCP stack waits, having transmit-
ted a TCP segment, for a correspond-
ing acknowledgment prior to retrying 
the send operation. Accurate measure-
ments of RTT between two hosts allow 
TCP to tune its RTO accurately for each 
active connection. 

Understanding the state contained 
within the TCP headers carried in 
most TCP traffic can help applica-
tion designers or network operators 
understand the network RTTs experi-
enced by application traffic. Many ap-
plications with real-time constraints 
use TCP to transport their traffic, 
which is acceptable within certain 
bounds.1 It is useful to understand 

Figure 1. Simplified demonstration of TCP timestamp exchange.
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To improve 
performance in all 
network conditions, 
the TCP stack 
measures RTT 
between it and 
the other host on 
every connection to 
allow it to optimize 
its retransmission 
timeout (RTO) 
appropriately.

how the bytestream semantic can af-
fect real-time performance.

TCP timestamps are optional fields 
in the TCP header, so although they are 
extremely useful and carried in most 
traffic, they are not strictly required for 
TCP to function. The values are held in 
two four-byte header fields: Timestamp 
Value (TSval) and Timestamp Echo Re-
ply (TSecr). Both hosts involved in the 
connection emit TSval timestamps 
to the other host whenever a TCP seg-
ment is transmitted, and they await 
the corresponding TSecr in return. The 
time difference measured between 
first emitting a TSval and receiving it in 
a TSecr is the TCP stack’s best guess as 
to RTT. Timestamp here is an arbitrary 
value that increments at the granular-
ity of the local system clock; it is not a 
timestamp that can be interpreted in-
dependently, such as number of sec-
onds since the epoch. 

By way of example, in Figure 1, time 
progresses from top to bottom, and 
the horizontal lines indicate real-time 
incrementing (for example, in milli-
seconds). Two hosts, A and B, have an 
open connection and are exchanging 
packets. In reality the two hosts have 
differing clocks, but for simplicity as-
sume they are perfectly synchronized. 

The example operates as follows: 
Host A emits a TCP segment that 

contains the timestamp options 

TSval = 1, TSecr = 0 

TSecr is set to 0 because no TSval from 
B has been observed at A; this usually 
indicates A is opening a connection to 
B. Host B receives this timestamp at 
time 1; at time 2, host B emits a TCP 
segment back to A, which contains the 
values

TSval = 2, TSecr = TSvalA = 1 

These are received at host A at time 3. 
Given this echoed value and the cur-
rent time, host A knows that the RTT in 
this instance is approximately 2ms. 

Subsequently, the next two segments 
that A emits both carry the values: 

TSval = 3, TSecr = TSvalB = 2 

The first of these is received at host B at 
time 4, so host B can also calculate an 
RTT of 2ms. Given the two echoes of 

the same timestamp received, the mini-
mum duration is assumed to be closest 
to actual network delay; if network de-
lay changes, future exchanges will mea-
sure this. Continuously sending values 
to the other host and noting the mini-
mum time until the echo reply contain-
ing that value is received allows each 
end host to determine the RTT between 
it and the other host on a connection. 

The caveat is that for a TSval to be 
considered useful, the TCP segment 
must be carrying data from the appli-
cation. TCP segments can legitimately 
carry a zero-byte payload, most com-
monly when acknowledging a data 
segment, or when TCP keepalives are 
enabled. By requiring the only valid 
TSvals come from TCP segments car-
rying data, the algorithm is less likely 
to measure breaks in the communica-
tion between the hosts, where data ex-
change pauses for a time, then restarts 
using the last received TSval as the TSe-
cr. This also implies that on a TCP flow 
in which data is exchanged exclusively 
in one direction, only one of the hosts 
will be able to calculate the RTT. Usual-
ly, however, there is some application 
layer chatter in both directions. 

Finally, RTT calculation can be 
performed on any host that is for-
warding traffic, not just end hosts, 
so full-path RTTs on all connections 
within a network can be calculated 
from its gateway host, for example. 
All that is necessary to compute ac-
curate RTTs is that both directions 
of a connection pass through the 
monitoring host. Whether this is the 
case often relies on the network ar-
chitecture, but it is known that paths 
on the Internet are normally not sym-
metric.2 Running this algorithm on a 
gateway node for a network through 
which all traffic passes, however, al-
lows for the RTT calculation to take 
place passively on all connections 
from just one location. 

Demonstrating RTT Measurements
The network is a shared resource, and 
multiple factors can affect TCP RTT 
calculation. This section broadly cov-
ers some of these factors and demon-
strates where the TCP RTT calculation 
differs from the RTT perceived by ap-
plications. The aim is to demonstrate 
parity with ICMP’s RTT estimations, 
assuming all else is equal, and how 
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packet loss and excessive buffering 
affect these measures relative to per-
ceived latency at the application layer. 

To demonstrate the responsiveness 
of RTT measurements, traffic flows 
were simulated in a virtualized environ-
ment. The environment is simple: two 
Linux hosts were configured on differ-
ent subnets, with a third Linux host 
with packet forwarding enabled, con-
figured with two network interfaces, 
one for each subnet. 

This forwarding host is used to vary 
the network characteristics observed 
between the two end hosts, using the 
traffic control (tc) tool. Network char-
acteristics are not modified on the 
end hosts, so their TCP stacks are not 
directly aware of the configuration for 
each experiment. For each experiment, 
an egress delay of 50ms is set on each 
interface on the forwarding host, re-
sulting in an RTT of 100ms between 
the two end hosts. Each experiment 
runs for 180 seconds. The maximum 
data rate is set to 10Mbps. 

On these end hosts, the following 
components are running: 

 ! Ping is running on both hosts, so 
each host is sending ICMP echo re-
quests to the other once per second. 
This measures the ICMP RTT value 
to establish a “ground-truth” RTT be-
tween the hosts. 

 ! A simple client/server pair of pro-
grams is running, where the client 
sends a local timestamp over a TCP 
connection once every second to the 
server, and the server echoes the time-
stamp back to the client; the client 
calculates the difference whenever 
it reads the response out of the byte 
stream. The client application runs 
two threads: one for sending and one 
for receiving. This measures the RTT 
perceived by the application layer.

 ! Also running on both end hosts 
is a packet capture (pcap) reader that 
observes the TCP timestamp values 
carried in the TCP headers for the 
traffic generated by the client/server 
program from which it calculates the 
RTT, outputting the latest RTT value 
once every second. The value exported 
for these experiments is the RTT rath-
er than the SRTT, since the goal here 
is to examine the actual RTT and not 
an approximation. This calculates the 
RTT passively from TCP timestamps. 
No other traffic is exchanged between 

Figure 2. Histograms indicating measured RTTs for all tests.
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hosts, except during the demonstra-
tion of bufferbloat. 

The following examples demonstrate: 
1. The ability to monitor changing 

RTT accurately by modifying network 
latency. 

2. The impact of packet loss. 
3. The impact of oversized buffers 

(commonly referred to as bufferbloat).
Nagle’s algorithm. Before describ-

ing these experiments in detail, we 
should take a look at Nagle’s algo-
rithm,6 which is enabled by default 
in many TCP stacks. Its purpose is to 
reduce the number of small, header-
heavy datagrams transferred by the 
network. It operates by delaying the 
transmission of new data if the amount 
of data available to send is less than the 
MSS (maximum segment size), which 
is the longest segment permissible giv-
en the maximum transmission unit on 
the path, and if there is previously sent 
data still awaiting acknowledgment. 

Nagle’s algorithm can cause un-
necessary delays for time-critical ap-
plications running over TCP. Thus, 
because the assumption is that such 
applications will run over TCP in the 
experiments presented here, Nagle’s 
algorithm is disabled. This is achieved 
in the client and server by setting the 
TCP_NODELAY socket option on all 
sockets in use. 

Experiment 1: Changing Network 
Conditions. When computing RTTs, it 
is critical the measurements accurately 
reflect current conditions. The purpose 
of this experiment is simply to demon-
strate the responsiveness of our met-
rics to conditions that change in a pre-
dictable manner. In this experiment 
the base RTT (100ms) is initially set, 
and then an additional latency (50ms) 
is alternately added and deducted from 
that base RTT by incrementing the de-
lay on both interfaces at the forwarding 
host by 25ms. No loss ratio is specified 
on the path, and no additional traffic is 
sent between the two hosts. 

Note that since TCP’s RTT calcu-
lation is wholly passive, it does not 
observe variation in RTT if no data is 
being exchanged. In the presence of 
traffic, however, it’s beneficial that the 
RTT measurement update quickly. The 
results of this experiment are shown 
in Figure 2. The measurements taken 
at all layers indicate a bimodal dis-
tribution, which is precisely what we 

should expect without other network 
conditions affecting traffic. The three 
forms of measurements taken are all 
effectively equivalent, with the mean 
RTT measured during the experiments 
varying by no more than 1%.

Experiment 2: Packet Loss. Packet 
loss on a network affects reliability, re-
sponsiveness, and throughput. It can 
be caused by many factors, including 
noisy links corrupting data, faulty for-
warding hardware, or transient glitch-
es during routing reconfiguration. As-
suming the network infrastructure is 
not faulty and routing is stable, loss is 
often caused by network congestion 
when converging data flows cause a 
bottleneck, forcing buffers to overflow 
in forwarding hardware and, there-
fore, packets to be dropped. Loss can 
happen on either the forward or the 
reverse path of a TCP connection, the 
only indication to the TCP stack being 
the absence of a received ACK. 

TCP offers applications an ordered 
bytestream. Thus, when loss occurs 
and a segment has to be retransmit-
ted, segments that have already arrived 
but that appear later in the bytestream 
must await delivery of the missing seg-
ment so the bytestream can be reas-
sembled in order. Known as head-of-
line blocking, this can be detrimental 
to the performance of applications 
running over TCP, especially if latency 
is high. Selective acknowledgments, if 
enabled, allow a host to indicate pre-

cisely which subset of segments went 
missing on the forward path and thus 
which subset to retransmit. This helps 
improve the number of segments “in 
flight” when loss has occurred.

In this experiment, packet loss was 
enabled on the forwarding host at loss 
rates of 5%, 10%, 15%, and 20%, the pur-
pose being to demonstrate that TCP 
segments are still exchanged and RTTs 
estimated by TCP are more tolerant to 
the loss than the RTTs measured by the 
application. The results of this experi-
ment are shown in Figure 3. The points 
represent median values, with 5th and 
95th percentiles shown.

In these tests, a 5% packet loss was 
capable of introducing a half-second 
delay for the application, even though 
the median value is close to the real RTT 
of 100ms; the mean measured applica-
tion layer RTT with 5% loss is 196.4ms, 
92.4ms higher than the measured mean 
for TCP RTT. The measured means rise 
quickly: 400.3ms for 10% loss, 1.2s for 
15% loss, and 17.7s for 20% loss. The 
median values shown in Figure 3 for 
application-layer RTT follow a similar 
pattern, and in this example manifest 
in median application-layer RTTs mea-
sured at around 12 seconds with 20% 
packet loss. The TCP RTT, however, is 
always close to the true 100ms distance; 
although delayed packet exchanges can 
inflate this measure, the largest mean 
deviation observed in these tests be-
tween TCP RTT and ICMP RTT was a 
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57.7ms increase in measured RTT at 
the TCP layer. The effect of packet loss 
can be devastating to the responsive-
ness of TCP applications, but it is clear 
that passively measuring network level 
RTTs is still feasible, and distinct from 
the perceived latency experienced by 
applications that can be introduced by 
TCP’s in-order delivery semantics. 

Experiment 3: Bufferbloat. Misun-
derstandings around the relationship 
between loss prevention and network 
performance have led to excessive 
buffering being introduced to for-
warding and routing hardware as a 
loss-avoidance strategy. Often (but not 
exclusively) this affects commodity 
customer premises equipment (CPE), 

and thus directly affects end users. 
However, excessive buffering works 
against TCP’s loss-detection algo-
rithm by increasing delay and thus de-
laying the time taken for a TCP stack 
to identify loss and back-off; that is, 
the additional delay introduced by 
large buffers can disrupt TCP’s con-
gestion-control mechanism. 

Figure 4. RTT histograms representing the difference in RTTs.
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Bufferbloat is a well-known phe-
nomenon,7 where the deepest buffer 
on a network path between two hosts 
is eventually filled by TCP. Ostensibly, 
system designers increase buffer size 
to reduce loss, but deeper buffers in-
crease the actual time taken for pack-
ets to traverse a path, increasing the 
RTT and delaying the time it takes for 
TCP to determine when a loss event 
has occurred. Loss is the driver for 
TCP’s congestion-control algorithm, 
so increasing buffer size is actually 
counterintuitive. 

To demonstrate bufferbloat in this 
experiment, tc queue sizes were sys-
tematically increased from 10kB, to 
100kB, then 200kB, then finally 300kB 
on the forwarding host, and netcat 
was used to create a high-bandwidth 
flow between each of the end hosts 
prior to starting the client/server ap-
plication. The intention of the high-
bandwidth flow was to fill the longer 
queues on the forwarding host, dem-
onstrating that the draining time af-
fects application responsiveness. 

The results of the experiment are 
shown in figures 4 and 5. Figure 4 shows 
the dispersion of RTT measurements 
as the buffer sizes were increased. Fo-
cusing on the 300kB test in Figure 5, 
we see very similar RTT measures are 
evident from both hosts in the ICMP 
measurements, at the TCP layer, and 
in the application layer; mean and me-
dian values for all layers in these ex-
periments were all within 2ms of each 
other. All RTT measures are inflated by 
the same amount because the exces-
sive buffer size effectively increases the 
network-layer path length. Given that 
the test application only emits a hand-
ful of packets once per second, the saw-
tooth pattern is indicative of the netcat 
data filling a queue then TCP waiting 
for the queue to drain prior to sending 
more of netcat’s data, forming a bursty 
pattern. These filled queues adversely 
affects the delivery of all other traffic 
and our test application suffers RTTs, 
which vary from 100ms to about 250ms 
as a result.

The bufferbloat problem is be-
ing actively worked on. Mechanisms 
such as Selective Acknowledgments 
(SACK), Duplicate SACK (DSACK), 
and Explicit Congestion Notification 
(ECN), when enabled, all help allevi-
ate bufferbloat. Additionally, active 

queue management strategies such as 
Codel have been accepted into main-
line Linux kernels. 

In summary, it is clear that to mini-
mize delays caused by head-of-line 
blocking in TCP, packet loss must 
be kept to a minimum. Given that we 
must expect packet loss as a primary 
driver of TCP’s congestion control 
algorithm, we must also be careful 
to minimize network buffering, and 
avoid the delays incurred by buffer-
bloat. The latter requirement in par-
ticular is useful to keep in mind when 
provisioning networks for time-critical 
data that must be delivered reliably. 

Related Work 
The key issue when using TCP for 
time-sensitive applications is that 
TCP offers a reliable bytestream. This 

requirement is distinct from other 
key aspects of TCP, such as conges-
tion control and flow control. TCP is 
not suitable for all applications, how-
ever. Eli Brosh et al. discuss in more 
detail the behavior of TCP in the pres-
ence of delay and certain acceptability 
bounds for application performance.1 

 UDP9 is the most commonly used 
transport protocol after TCP; it’s a 
datagram-oriented protocol with 
no congestion control, flow control, 
or message-ordering mechanisms. 
It effectively augments the IP layer 
with UDP-layer port numbers. With-
out the message-ordering constraint, 
it is not affected by the head-of-line 
blocking problem that can affect 
TCP connections. 

UDP alone is not suitable for many 
applications, however, because reli-
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Figure 5. Indication of measured RTT values in the presence of excessive buffering.
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TCP is the most 
commonly used 
transport-layer 
protocol today, 
and it meets the 
requirements that 
many applications 
desire: it offers a 
reliable bytestream 
and handles 
concerns of 
retransmissions 
and congestion 
avoidance.

ability is often a requirement, and con-
gestion control is important to permit 
fair sharing of network resources. 
Many applications choose to layer 
protocols on top of UDP, such as RTP 
Real Time Protocol (RTP) in tandem  
with Real Time Control Protocol 
(RTCP),10 primarily intended for car-
rying time-sensitive real-time traffic 
able to handle small amounts of loss. 
These protocols suit applications 
such as VoIP that do not require 100% 
reliability and find delay incurred by 
head-of-line blocking detrimental. 
RTCP permits coarse-grained con-
gestion control and allows real-time 
applications to modify their usage by 
choosing different quality settings for 
the live stream, but congestion con-
trol is not built in per se. 

DCCP4 is a message-oriented, best-
effort transport-layer protocol that 
does not enforce strict ordering on 
data delivery, does not handle data-
gram retransmission, but does per-
form congestion control to conserve 
network resources. DCCP is useful for 
a similar set of applications as RTP and 
RTCP, but the addition of congestion 
control without potential datagram du-
plication is important, permitting RTP 
to run over DCCP with fewer concerns 
for network resource consumption. 

SCTP11 is also a message-oriented 
transport, where each message is deliv-
ered to the application in-order. Strict 
message ordering, however, is option-
al, and so the transport can be more re-
sponsive for application traffic. SCTP 
also caters for partial reliability.12 

Note that bufferbloat is endemic, 
and other transport protocols are af-
fected in the same way as TCP, but 
relaxing strict ordering constraints at 
the transport layer is one approach to 
improving performance by removing 
the additional response time incurred 
when the stream is blocked waiting 
for missing data. Active queue man-
agement (AQM) techniques7 are being 
deployed in new Linux kernels to help 
further alleviate bufferbloat without 
modification to applications.

Conclusion
TCP is the most commonly used 
transport-layer protocol today, and 
it meets the requirements that many 
applications desire: it offers a reli-
able bytestream and handles con-

cerns of retransmissions and con-
gestion avoidance. TCP’s semantics 
can mean that there is a large dis-
crepancy between the RTT measured 
at the transport layer and the RTT 
measured by the application read-
ing the bytestream. Thus, TCP is not 
always the most applicable transport 
for time-critical applications, but the 
TCP RTT measurement mechanism 
that is enabled in most TCP stacks 
today achieves measurements very 
close to the ICMP “ground truth” and 
performs substantially better than a 
similar echo-based protocol embed-
ded within the TCP bytestream.  
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