
Central Control Over Distributed Routing
http://fibbing.net

Stefano Vissicchio∗∗, Olivier Tilmans∗, Laurent Vanbever†, Jennifer Rexford‡
∗Université catholique de Louvain, † ETH Zurich, ‡ Princeton University

∗ name.surname@uclouvain.be, †lvanbever@ethz.ch, ‡jrex@cs.princeton.edu

ABSTRACT
Centralizing routing decisions offers tremendous flexi-
bility, but sacrifices the robustness of distributed proto-
cols. In this paper, we present Fibbing, an architecture
that achieves both flexibility and robustness through
central control over distributed routing. Fibbing intro-
duces fake nodes and links into an underlying link-state
routing protocol, so that routers compute their own for-
warding tables based on the augmented topology. Fib-
bing is expressive, and readily supports flexible load bal-
ancing, traffic engineering, and backup routes. Based
on high-level forwarding requirements, the Fibbing con-
troller computes a compact augmented topology and
injects the fake components through standard routing-
protocol messages. Fibbing works with any unmodified
commercial routers speaking OSPF. Our experiments
also show that it can scale to large networks with many
forwarding requirements, introduces minimal overhead,
and quickly reacts to network and controller failures.

CCS Concepts
•Networks→ Routing protocols; Network architec-
tures; Programmable networks; Network management;

Keywords
Fibbing; SDN; link-state routing

1. INTRODUCTION
Consider a large IP network with hundreds of devices,

including the components shown in Fig. 1a. A set of
IP addresses (D1) see a sudden surge of traffic, from
multiple entry points (A, D, and E), that congests a

∗S. Vissicchio is a postdoctoral researcher of F.R.S.-FNRS.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787497

part of the network. As a network operator, you suspect
a denial-of-service attack (DoS), but cannot know for
sure without inspecting the traffic as it could also be a
flash crowd. Your goal is therefore to: (i) isolate the
flows destined to these IP addresses, (ii) direct them
to a scrubber connected between B and C, in order to
“clean” them if needed, and (iii) reduce congestion by
load-balancing the traffic on unused links, like (B,E).

5

5

1

1

S1

S2

D1

source

destination

scrubber
router

flow

IGP
weight

S3

A

B C

D E F
D2

10

1

5

SA

(a) Initial topology

5

5

1

11

fake node

A

B C

D E F

10
1

2

1

1

5

(b) Augmented topology

Figure 1: Fibbing can steer the initial forward-
ing paths (see (a)) for D1 through a scrubber by
adding fake nodes and links (see (b)).

Performing this routine task is very difficult in tra-
ditional networks. First, since the middlebox and the
destinations are not adjacent to each other, the con-
figuration of multiple devices needs to change. Also,
since intra-domain routing is typically based on short-
est path algorithms, modifying the routing configura-
tion is likely to impact many other flows not involved
in the attack. In Fig. 1a, any attempt to reroute flows
to D1 would also reroute flows to D2 since they home
to the same router. Advertising D1 from the middlebox
would attract the right traffic, but would not necessar-
ily alleviate the congestion, because all D1 traffic would
traverse (and congest) path (A,D,E,B), leaving (A,B)
unused. Well-known Traffic-Engineering (TE) protocols
(e.g., MPLS RSVP-TE [1]) could help. Unfortunately,
since D1 traffic enters the network from multiple points,
many tunnels (three, on A, D, and E, in our tiny ex-
ample) would need to be configured and signaled. This
increases both control-plane and data-plane overhead.

Software Defined Networking (SDN) could easily solve
the problem as it enables centralized and direct con-
trol of the forwarding behavior. However, moving away
from distributed routing protocols comes at a cost. In-

http://fibbing.net
http://dx.doi.org/10.1145/2785956.2787497

centralized/SDN distributed/traditional hybrid
OpenFlow [2], PCE [3], SR [4] IGP [5, 6], RSVP-TE [1] Fibbing

forwarding paths:
- configuration simple (declarative & global) complex (indirect & per-device) simple (declarative & global)
- manageability high (direct control) low [7, 8] (need for coordination) high (direct control)
- path installation slow (by controller, per-device) fast (by device, distributed) fast (by device, distributed)

robustness:
- network failures slow (by controller) fast (local) fast (local)
- controller failures hard (ad-hoc synch) native (distributed) easy (synch via IGP)
- partitions hard (uncontrollable devices) best (distributed) best (fallback on distributed)

routing policies: highest (any path) - low for IGP (shortest paths) high (any non-loopy paths)
- highest for RSVP (any path)

Table 1: Fibbing combines the advantages of existing control planes, avoiding the main drawbacks.

deed, IGPs like OSPF and IS-IS are scalable (support
networks with hundreds of nodes), robust, and quickly
react to failures. Building a SDN controller with com-
parable scalability and reliability is challenging. It must
compute and install forwarding rules for all the switches,
and respond quickly to topology changes. Even the sim-
ple task of updating the switch rule tables can then be-
come a major bottleneck for a central controller man-
aging hundreds of thousands of rules in hundreds of
switches. In contrast, distributed routing protocols nat-
urally parallelize this work. For reliability and scala-
bility, a SDN controller should also be replicated and
geographically distributed, leading to additional chal-
lenges in managing controller state. Finally, the de-
ployment of SDN as a whole is a major hurdle as many
networks have a huge installed base of devices, manage-
ment tools, and human operators that are not familiar
with the technology. As a result, existing SDN deploy-
ments are limited in scope, e.g., new deployments of
private backbones [8, 9] and software deployments at
the network edge [10].

This paper introduces Fibbing, a technique that offers
direct control over the routers’ forwarding information
base (FIB) by manipulating the input of a distributed
routing protocol. Fibbing relies on traditional link-state
protocols such as OSPF [5] and IS-IS [6], where routers
compute shortest paths over a synchronized view of the
topology. Fibbing controls routers by carefully lying to
them, removing the need to configure them. It coaxes
the routers into computing the target forwarding en-
tries by presenting them with a carefully constructed
augmented topology that includes fake nodes (provid-
ing fake announcements of destination address blocks)
and fake links (with fake weights). In essence, Fibbing
inverts the routing function: given the forwarding en-
tries (i.e., the desired output) and the routing protocol
(i.e., the function), Fibbing automatically computes the
routing messages to send to the routers (i.e., the input).

Fibbing can solve the problem in Fig. 1a adding two
fake nodes (Fig. 1b), connected to A and E with the de-
picted weights. Both fake nodes advertise that they can
reach D1 directly. Based on the augmented topology, D
starts to use A to reach D1, as the new cost (3) is lower

than the original one (6). A and E also select different
paths. Since the fake nodes do not really exist, packets
forwarded by A or E actually flow through B. Routers
B and C do not change their forwarding decisions.

Table 1 gives an overview of how Fibbing improves
flexibility and manageability by adopting a SDN-like
approach while keeping the advantages of distributed
protocols (e.g., robustness and fast FIB modifications).

Fibbing is expressive. Fibbing can steer flows along
any set of per-destination loop-free paths. In other
words, it can exert full control at a per-destination gran-
ularity. For this reason, Fibbing readily supports ad-
vanced forwarding applications such as: (a) traffic engi-
neering, (b) load balancing, (c) fast failover, and (d)
traffic steering through middleboxes. By relying on
destination-based routing protocols, Fibbing does not
support finer-grained routing and forwarding policies
such as matching on port numbers. Though, those poli-
cies can easily be supported via middleboxes.

Fibbing scales and is robust to failures. Lying
to routers is powerful but challenging. Indeed, Fib-
bing must be fast in computing augmented topologies
to avoid loops and blackholes upon network failures.
At the same time, Fibbing must compute small aug-
mented topologies since routers have limited resources.
Finally, Fibbing must be reliable and gracefully handle
controller failures. We address all three challenges.

Fibbing differs from previous approaches that
rely on routing protocols to program routers.
Prior approaches like the Routing Control Platform [11]
rely on BGP as a “poor man’s” SDN protocol to in-
stall a forwarding rule for each destination prefix on
each router. In contrast, Fibbing leverages the routing-
protocol implementation on the routers. Doing so, Fib-
bing can adapt the forwarding behavior of many routers
at once, while allowing them to compute forwarding-
table entries and converge on their own. That is, while
the controller computes the routing input centrally, the
routing output is still computed in a distributed fashion.

Fibbing works on existing routers. We implemented
a fully-functional Fibbing prototype and used it to pro-

network
topology

§4
+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced  
topology

running
network

§3§3§2

Compilation Augmentation Optimization
Injection/
Monitoring

Figure 2: The four-staged Fibbing workflow.

gram real routers (both Cisco and Juniper). Based on
an augmented topology, these routers can install hun-
dreds of thousands of forwarding entries with an aver-
age installation time of less than 1ms per entry. This
offers much greater scale and faster convergence than
is possible with state-of-the-art SDN switches [12, 13],
without requiring the deployment of new equipment and
per-device actions from the controller. This also means
that Fibbing can implement recent SDN proposals, like
Google’s B4 [8] and Microsoft’s SWAN [9]—on top of
existing networks.

Our earlier work showed that Fibbing can enforce
any set of forwarding DAGs [14]. This paper goes fur-
ther by describing the complete design, implementation,
and evaluation of a Fibbing controller managing intra-
domain routing. Rather than focusing on specific use
cases (like traffic engineering), we describe its support
for different higher-level approaches (e.g., [8, 9]). We
make the following contributions:

• Abstraction: We show how to express and realize
high-level forwarding requirements by manipulat-
ing a distributed link-state routing protocol (§2).

• Algorithms: We propose new, efficient algorithms
to compute compact augmented topologies (§3).

• Implementation: We describe a complete Fib-
bing implementation which works with unmodified
Cisco and Juniper routers (§4).

• Evaluation: We show that our Fibbing controller
quickly generates small augmented topologies, in-
ducing minimal load on routers (§5).

2. FLEXIBLE FIBBING
Fibbing workflow proceeds in four consecutive stages

based on two inputs: the desired forwarding graphs (one
Directed Acyclic Graph, or DAG, per destination) and
the IGP topology (Fig. 2). The forwarding DAGs can
either be provided directly or expressed indirectly, at a
high-level, using a simple path-based language. In the
latter case, the Compilation (§2) stage starts by com-
piling the requirements into concrete forwarding DAGs.
Then, the Topology Augmentation (§3) stage com-
putes an augmented topology that achieves these for-
warding DAGs. While computing an augmented topol-
ogy is fast, the resulting topology can be large. As such,
the job of the next Topology Optimization (§3) stage
is to reduce the augmented topology while preserving
the forwarding paths. Finally, the Injection & Mon-

pol ::= (s1; . . . ; sn) Fibbing Policy
s ::= p | b Requirement
r ::= p1 and p2 | p1 or p2 | p Path Req.
p ::= Path(n+) Path Expr.
n ::= id | ∗ | n1 and n2 | n1 or n2 Node Expr.
b ::= r as backupof ((id1, id2)+) Backup Req.

Figure 3: Syntax of Fibbing high-level language.

itoring (§4) stage turns fake information into actual
“lies” that the controller injects into the network.

In this section, we present the high-level language and
compilation process (§2.1), and show that Fibbing can
express a wide range of forwarding behaviors (§2.2).

2.1 Fibbing high-level language
Fibbing language (Fig. 3) provides operators with a

succinct and easy way to specify their forwarding re-
quirements. A Fibbing policy is a collection of require-
ments, naturally expressed as regular expressions on
paths. Each requirement is either a path requirement
which specifies how traffic should flow to a given des-
tination, or a backup requirement which specifies how
traffic should flow if the IGP topology changes. Each
path requirement is recursively defined as a composition
of path requirements through logical AND and OR. Op-
erators can express load-balancing requirements using a
conjunction of n requirements. Similarly, they can en-
sure that traffic to a specific destination will take one
of n paths (e.g., containing a firewall) using disjunc-
tion. Path requirements are composed of a sequence
of node requirements. A node requirement is either a
node (router) identifier or the wildcard *, representing
any sequence of nodes. Like path requirements, node
requirements can be combined using logical AND and
OR. Whenever no path requirement is stated, the orig-
inal IGP paths should be used. This way, operators
do not have to express all the unmodified paths, only
deviations from the IGP shortest paths.

The following example illustrates the main features of
the language. It states that traffic between E and D1

should be load-balanced on two paths, traffic between
A and D2 should cross B or C and that traffic from F
to D3 should be rerouted via G if the link (F,H) fails.

((E ,C ,D1) and (E ,G ,D1) ;
((A ,∗ ,B ,∗ ,D2) or (A ,∗ ,C ,∗ ,D2)) ;
(F ,G ,∗ ,D3) as backupof ((F ,H))) ;)

Fibbing policies are compiled into per-destination for-
warding DAGs by finding convenient network paths (if
any). Compilation works in two consecutive stages.
First, the compiler expands any requirement with wild-
cards into paths. This step can be computationally ex-
pensive as, in general, a network can have a number of
paths exponential in the number of nodes. While this
is unlikely, especially for networks designed according
to best practices, we bounded the number of paths that
can be expanded out of a single requirement. We only
expand again if no solution is found with the current
set of paths. Once all requirements are expanded, the

compiler groups them by destination and computes the
Disjunctive Normal Form (DNF) of each requirement.
To finally produce a forwarding DAG, the compiler it-
erates over the disjunction of path requirements and
checks whether the resulting graph is loop-free.

2.2 Fibbing expressiveness
Beyond steering traffic along a given path (§1), we

now show that Fibbing can also: (i) balance load over
multiple paths and; (ii) provision backup paths.

Fibbing can forward any flow on any set of paths.
Fibbing can load-balance traffic over multiple paths to
maximize throughput, minimize response time, or in-
crease reliability. For example, consider the network in
Fig. 4a where three sources S1, S2, and S3 send traffic
to three corresponding destinations. Demands and link
capacities are such that link (F,G) is congested. One
way to alleviate congestion is to split traffic destined to
D2 over the top (via (B,C)) and bottom (via (F,G))
paths. Load-balancing traffic coming from E on multi-
ple paths is possible under conventional link-state rout-
ing (e.g., by re-weighting links (F,G) to 15. However,
this would force the traffic from S2 and S3 to spread
over both paths, creating congestion. More generally, it
is impossible to route the traffic destined to D2 and D3

on different links under conventional link-state routing.

S1

S2

S3

D1

D2

D3

10

0.75

0.75
0.50

3

3

3

3

10

1

1

0.50

0.75

0.75
demand

1

link
capacity

1

A B C D

E F G H

(a) Initial topology

3

3

3

3

10

1

1

0.25

0.25
0.75

0.75

1

1

A B C D

E F G H
1

6

(b) Augmented topology

Figure 4: Fibbing supports multi-path forward-
ing. Here, it avoids the initial congestion (see
(a)) by load-balancing traffic for D2 (see (b)).

This simple requirement can easily be expressed as:

((S2 ,E ,B ,C ,H ,D2) and (S2 ,E ,F ,G ,H ,D2))

Fig. 4b shows the augmented topology which realizes
this requirement. A fake node announcing D1 (with a
weight of 6) is inserted between E and B. After intro-
ducing this node, E has two shortest paths (of cost 7)
to reach D2 and, hence, splits D2 traffic over B and
F . In this example, Fibbing enables maximum network
efficiency as each link is used to its full capacity.

Fibbing can provision backup paths for any flow.
Fibbing can provision backup paths to prevent conges-
tion or increased delays after link and node failures.
As an illustration, consider the network in Figure 5a.
The failure of link (E,F) leads to congestion since traf-
fic flows for D1 and D2 are both rerouted to the same
path via link (A,B). To prevent congestion, traffic des-
tined to D1 and D2 should be split over the two remain-
ing disjoint paths but only upon failure on the path

(A,D,E, F). This is another example of a requirement
that is impossible to achieve with link-state routing,
and would require significant control-plane overhead in
MPLS. In contrast, it is easily done with Fibbing.

S1

S2

D1

D2

3

0.50

0.50 1 1

3

1

3
B

5

5

.75

1

0.50
0.50

5

A

C

D E F

G
.5

H

(a) Initial topology

3

1 1

3

1

3

5

5

0.50

0.50

B

A

C

D E F

G H

.75

1

.53

1

(b) Augmented topology

Figure 5: Fibbing can provision backup paths.
Here, possible congestion upon a link failure (see
(a)) is avoided by adding a fake node (see (b)).

Backup paths can be specified in our language as:
(A ,B ,∗ ,D1) and (A ,G ,∗ ,D2)

as backupof ((A ,D) or (D ,E) or (E ,F))

Fig. 5b shows the corresponding augmented topology,
which has a single fake node advertisingD2. The weights
are set to prevent A from using the fake node to reach
D2 unless a failure occurs along the path (A,D,E, F).
While successful for this example, Fibbing cannot sat-
isfy all possible requirements for backup paths (§3.3).

3. AUGMENTING TOPOLOGY
In this section, we detail the augmentation problem

(§3.1), and we show how the Fibbing controller quickly
computes small augmented topologies from a set of for-
warding DAGs. We rely on a divide-and-conquer ap-
proach based on three consecutive steps.

1) Topology initialization (§3.2): We modify the
initial weights in the link-state protocol (if necessary),
to guarantee that any set of forwarding DAGs can be
enforced by Fibbing. If needed, this operation has to
be done only once, when Fibbing is first deployed.

2) Per-destination augmentation (§3.3): Starting
from an initialized topology, we compute a suitable aug-
mentation, individually for every destination of an in-
put forwarding DAG. We designed two algorithms for
this step, achieving different trade-offs between com-
putation time and augmentation size. The fastest one,
Simple, can compute augmented topologies within mil-
liseconds, and works by injecting a dedicated fake node
for every router that changes its next-hop. The rela-
tively slower one, Merger, reduces the augmentation
size by re-using the same fake nodes to program multi-
ple routers. Simple and Merger are suited for different
goals. The speed of Simple is useful for quick failure re-
action. In contrast, Merger can be run in background to
progressively re-optimize the augmented topology. We
evaluate the trade-offs achieved by each algorithm in §5.

3) Optimization across destinations (§3.4): We
merge the augmentations obtained in the per-destination
augmentation step to further reduce the number of fake

nodes and edges. Namely, whenever safe, we replace
multiple fake nodes announcing different destinations
with a single fake node which either announces all the
destinations or creates a new path (a shortcut) between
routers in the augmented topology.

3.1 The Topology Augmentation Problem
We start the description of the topology augmenta-

tion algorithms by precisely defining the basic concepts
on which they rely and the problem that they solve.

Fake nodes scoping. A Fibbing controller can gener-
ate both locally-scoped lies (targeted to a single router)
and globally-scoped lies (targeted to all routers). Locally-
scoped lies are useful as they enable local actions on one
router without creating side effects on other routers.
Globally-scoped lies affect the entire network. Hence,
if carefully computed, they can reduce the size of the
augmented topology. All of our previous examples used
globally-scoped lies. We detail how to implement both
kinds of lies in the current OSPF in §4.

Fake edges to forwarding next-hop mapping func-
tion. Fibbing can modify the routing path computed by
any IGP router r. In particular, it can augment the IGP
topology so that r’s shortest path is no longer the one in
the original topology but includes some fake sub-paths.
Throughout the paper, we assume that a fake edge in
the shortest path from any router r to any destination d
corresponds to the ability to force the next-hop of r for
d to be any of its neighbors. In the example in Fig. 1,
for instance, the fake edge between the A and its ad-
jacent fake node translates into A forwarding traffic to
B. We discuss in §4 how to achieve this ability in the
current OSPF protocol, as well as in future IGPs.

Topology augmentation problem. Since we assume
an arbitrary mapping between fake edges and forward-
ing next-hops, the topology augmentation problem is
defined as follows: Given an initial topology G and a
set of forwarding DAGs, compute an augmented topol-
ogy G′ ⊃ G such that for each path (u, v, . . . , d) in the
forwarding DAG for d, the next-hop of u in one of its
shortest paths for d in G′ is either v or a fake node.

3.2 Topology Initialization
In the topology initialization, we scale the link weights

of the original IGP topology G to guarantee arbitrary
per-destination control through Fibbing and help re-
duce the size of topology augmentations. In particu-
lar, we proportionally increase link weights (multiply-
ing them by a constant factor) if they are too low in G.
Moreover, we set very high announcement cost for any
destination, at least equal to the length of the longest
path in G times the maximum link weight.

Topology initialization enables full Fibbing ex-
pressivity. Indeed, it makes the IGP topology Fib-
bing compliant, which provably avoids cases in which
a forwarding DAG cannot be implemented by Fibbing

(see [15]). We say that a topology is Fibbing compli-
ant if for every destination d, the cost of the shortest
path from every router (including the ones announcing
d) to d exceeds 2. In Fibbing compliant topologies, for
any router r and destination d the controller can al-
ways compute a fake path P such that (i) P is shorter
than the original shortest path from r to d; and (ii) P
is longer than the original shortest path from any other
router v 6= r to d. As proved by the following theorem,
this implies the ability of Fibbing to forward flows for
the same destination on any set of loop-free paths.

Theorem 1. Any set of per-destination forwarding
DAGs can always be enforced by augmenting a Fibbing-
compliant topology even only with globally-scoped lies.

Proof. We prove the statement by showing a simple
topology augmentation procedure. Let G be the initial
topology. For every forwarding DAG with destination
d, we add for each node r in the network a fake node fr
announcing d. This generates a new fake path (r, fr, d)
in the augmented topology. We set the total cost of
this newly added fake path to 2. Since G is Fibbing
compliant, then the cost of the shortest path from r to d
in G is greater than 2. Hence, the shortest path of every
node r in the augmented topology will be (r, fr, d). The
forwarding DAG is then implemented by mapping the
fake link on the right physical link.

Note that Theorem 1 applies to destinations in the
augmented topology. Those destinations do not need to
match the destination prefixes announced in the origi-
nal IGP. Hence, Fibbing allows to control flows for de-
aggregation of the original IGP destinations (up to IP
address granularity) or even non-overlapping prefixes.

Topology initialization is non-intrusive. Since it
is based on the adaptation of a few configurable pa-
rameters, our initialization procedure can be applied
to any link-state routing configuration, and preserves
the original forwarding paths. It can be carried out in
a running network, using known lossless reconfigura-
tion techniques [16]. Moreover, it is strictly needed no
more than once in the network lifetime. Indeed, since
Fibbing compliance does not depend on the routing re-
quirements or the presence of specific links, any topol-
ogy remains Fibbing compliant independently of new
requirements or the failures of nodes or links. Finally,
topologies growing in size can be easily kept Fibbing
compliant by ensuring that the new destinations are an-
nounced with high costs and the new links have weights
consistent with pre-existing ones.

3.3 Per-destination augmentation
We now describe Simple and Merger. We use Figure 6

to illustrate the difference of the two algorithms.

3.3.1 Simple
Simple relies solely on locally-scoped lies to avoid hav-

ing to compute any fake path cost. For every destina-

15

10

5

10

A B

C X D
50

F

25

100

10

30

required

initial

(a) Requirements

A B

C X D

F

f0
f1

f4

f3

f2
1

1

1
1 1

1

1

1

1

1
10

30

15

5

10

25

50 100

locally-
scoped
node

10

(b) Simple augmentation

10

A B

C X D

F

30

10015

5

10

25

f4

1

1

120

50

f3

globally-
scoped
node

125
10

(c) Merger augmentation

Figure 6: Outcome of our per-destination augmentation algorithms. Simple produces larger topolo-
gies (with locally-scoped lies) in a very short time, while Merger reduces the size of the augmentation
by relying on globally-scoped lies and a longer computation.

tion d and corresponding forwarding DAG D, the algo-
rithm adds fake nodes to each router whose next-hops
in the original topology differ from those in D. Pre-
cisely, for every router r that changes its next-hop for
d, Simple adds a fake node fr,d and a fake link (r, fr,d).
Node fr,d announces d to r with a locally-scoped lie.
We set the total cost of path (r, fr,d, d) to 2. Since the
topology is Fibbing compliant, r is ensured to change
its shortest path. Also, since the lie is locally-scoped,
other routers are not affected by it.

Figure 6b shows the output of Simple for the example
of Figure 6a. Nodes A,B,C and X are required to
change their respective next-hops. Moreover, A needs
to load-balance on B and C. Thus, Simple creates five
locally-scoped nodes (two connected to A), all providing
fake paths to the destination with a cost of 2.

3.3.2 Merger
To reduce the number of fake nodes, Merger relies on

globally-scoped lies that can change the forwarding be-
havior of multiple routers at once. When applied to Fig-
ure 6a, Merger creates only two fakes nodes (see Fig. 6c)
to change the next-hops of A,B,C and X, instead of
the five used by Simple. The added fake nodes create
load-balancing on A (cost 136) via B and C, as required.

Merger performs the topology augmentation for any
destination d in two phases. First, it adds an excessive
number of fake nodes, and computes the lower and up-
per bounds for their respective cost. Second, it merges
fake nodes whenever possible, based on the value of the
computed bounds. We now provide an intuitive descrip-
tion of those two phases. Additional details about them
and Merger correctness proofs are reported in [15].

Step 1. Fake bounds computation. Merger starts
by adding fake nodes to every router r that is required to
change the next-hop (according to the input forwarding
DAG) for d. In this case, one new fake node fr,d is con-
nected to r for every new r’s next-hop in the input for-
warding DAGs. However, to enable merging of globally-
visible fake nodes, Merger calculates lower and upper
bounds for every newly-added fake path (r, fr,d, d). Since
the initial positioning of fake nodes is as in Simple, we
illustrate bound computations referring to Figure 6b.

The upper bound ub(fr,d) represents the maximum
value of the fake path cost that changes r’s shortest
path to (r, fr,d, d). It is easy to compute by statically
considering the non-augmented topology G. Indeed, it
is equal to dist(r, d,G) − 1, where dist(u, v,G) is the
cost of the shortest path from u to v in G.

The lower bound lb(fr,d) represents the minimal value
of the fake path cost that does not change the shortest
path of any real node different from r. To compute
it, we divide nodes in two sets, depending on whether
the input forwarding DAG prescribes to change their
respective next-hops or not.

For the next-hop preserving nodes whose shortest path
does not traverse r in the input topology, we impose
that their original shortest path is not modified by fr,d.
For example, when computing lb(f0) in Figure 6b, we
ensure that f0 does not change the shortest path of F ,
by constraining lb(f0) + 25 > dist(F, d,G) = 110, that
is, lb(f0) = 86. More generally, for every fake node
fr,d and every next-hop preserving neighbor n of r, we
impose that lb(fr,d) > dist(n, d,G)− dist(n, r,G).

For next-hop changing nodes (connected to other fake
nodes), the final value of their shortest paths is not
known in advance, but is determined by the augmen-
tation itself. That is, the lower bound of any fake
node generally depends on the lower bound of other fake
nodes. For example, in Figure 6b, f4 changes the short-
est path of X only if lb(f4) < dist(X,C,G) + lb(f3).
To avoid that real nodes pass through fake nodes not
directly connected to them, Merger runs a lower bound
propagation procedure. This procedure takes as input
the lower bounds initialized with values from next-hop
preserving nodes. It then fixes one lower bound at the
time, following a specific order and adjusting the others
to be consistent with the fixed one. This order guar-
antees that each lower bound must be considered only
once. Sometimes, lower bounds cannot be made consis-
tent. Indeed, Theorem 1 does not provide guarantees
if fake nodes are connected only to next-hop changing
nodes. We solve these cases by using locally-visible lie.

Step 2. Fake nodes merging. In this step, Merger
tries to merge fake nodes together. More precisely, it
iterates over every simple path from a source to d in

the input forwarding DAG. For each of those paths, it
merges pairs of fake nodes whenever safe.

To assess when it is safe to merge a fake nodes f ′

into f ′′, Merger sequentially performs three checks. We
illustrate these checks by considering the required path
(A,B,X,D) and the merge of f1 into f2 in Figure 6b.

First, Merger assesses whether the IGP shortest paths
are compliant with the considered source-sink path in
the DAG. In our example, it verifies that the short-
est path from A and B (i.e., (A,B)) is a sub-path of
the required (A,B,X,D). If A had predecessors in the
required path not connected to a fake node, this check
would have been repeated for those predecessors as well.

Second, Merger checks the possibility to use f ′′ as
part of the shortest path of the real node connected
to f ′ without changing the current next-hops of any
node. To this end, the algorithm assess the existence of
feasible post-merging bounds for f ′′. More precisely, it
re-computes the modified lower bound of f ′′ as the min-
imum value (if any) that forces the new shortest path
of the real node connected to f ′ and its next-hop pre-
serving predecessors in the required path through f ′′,
without affecting nodes previously not crossing f ′′. In
our example, the lower bound of f2 is modified to ex-
clude the constraint of not changing A’s next-hop, hence
it is decreased to lb(f2) = 81 (it was greater before, for
A’s next-hop to be f1). The upper bound of f ′′ is also
modified to ensure that the real node connected to f ′

and its next-hop preserving predecessors use the fake
path via f ′′. In our example, ub(f2) is modified to 129,
as the cost of the original shortest path from A to the
destination is 135 and those between A and B is 5.

Third, Merger simulates the merge to assess whether
all bounds can be consistently adjusted network-wide,
given that the merging f ′ into f ′′ would change the
bounds of f ′′ and remove one fake node. To this end, we
re-run the lower bound propagation procedure, devoting
special attention to fake nodes used for load-balancing.
In our example, for instance, we constrain the lower
bound of f0 to be equal to the cost of path (A,B, f2, d),
meant to be used by A after the merging.

If all the three checks pass, then Merger actually
perform the merge, by removing f ′ and updating the
bounds of all other fake nodes (including f ′′) according
to the values computed during the last check.

3.3.3 Dealing with backup requirements
Backup requirements can be specified by providing

additional sets of (tagged) forwarding DAGs to our al-
gorithms. Let G′ be an augmented topology computed
to accommodate primary requirements. To deal with
backup ones, slight variants of Simple and Merger can
be run after the computation of G′. The main mod-
ification of Simple consists in setting the cost of the
fake paths added for backup requirements to 3 instead
of 2. In contrast, backup requirements are supported
in Merger by imposing that lower bounds are always
greater than the cost of the shortest path in G′.

10

A B

C X D

F

30

120

100

135

15

5

10

25
100

100

71

90
10

1

50

1

(a) Fake destination merging.

A B

C X D

F

19
1

100

100

500

135

90

1
10

30

10015

5

10

25
100

100

10

50

globally
scoped

shortcut

asymmetric
weight

(b) Fake shortcuts creation.

Figure 7: Cross-destination optimizations.

Contrary to primary requirements (see Theorem 1),
Fibbing may not enforce backup requirements, even in
a Fibbing-compliant topology (see [15]). Indeed, if the
cost of the original shortest path of a node r is equal
to a fake one (used for a primary requirement) in G′,
then backup paths different from the original shortest
path cannot be implemented on r. In those cases, we
notify the operator on the impossibility to implement
the given backup paths.

3.4 Cross-Destination Optimization
Fake nodes computed on a per-destination basis may

be redundant. We reduce such redundancy in two ways,
namely, by (i) merging fake nodes connected to the same
real node, and (ii) replacing fake destination announce-
ments with fake paths connecting real nodes.

Cross-destination merging. After per-destination
augmentations, two fake nodes f1 and f2 announcing
different destinations d1 and d2 can be connected to the
same node r and used to force traffic to the same real
link (r, n). Those fake nodes can always be merged. In-
deed, we can replace f1 and f2 with a new fake node f ′

such that (i) cost(r, f ′) = min{cost(r, f1), cost(r, f2)},
and (ii) f ′ announces both d1 and d2, with cost(f ′, di) =
cost(r, fi, di)− cost(x, f ′) for i = 1, 2. For example, as-
sume that in the network in Figure 6 additional desti-
nations are attached to C and F as in Figure 7a. The
result of the cross-destination merging is shown in Fig-
ure 7a, where both A and X have a single fake neighbor
announcing multiple destinations (rather than multiple
fake neighbors each announcing a single destination).
This reduces the number of fake nodes from 4 to 2.

Creating shortcuts. One of the most appealing fea-
tures (unmatched by competitor solutions) of Fibbing
is that a single lie can change the paths for multiple des-
tinations. To this end, we need however to replace fake
destination announcements with fake paths connecting
real nodes together, i.e., fake shortcuts.

Currently, we use fake shortcuts only if a real link
is never traversed in different directions. Consider, for
example, the link between X and D in Figure 7a. It is
traversed from X to D for the destinations attached to
D and F , and never from D to X. In those cases, we
try to transform X’s fake neighbor into a fake shortcut,
as in Figure 7b. Let u and v be the two real nodes
at the endpoints of the shortcut. First, we check if a

shortcut cost c exists such that all the shortest paths1

are kept the same with and without the shortcut. If this
condition is met, given a fake node f used to enforce
the subpath (u, . . . , v) in the input forwarding DAGs,
all fake destinations announced by f are replaced by a
fake shortcut (u, f, v) and the cost of (u, f, v) is set to c.
Figure 7b illustrates that we found such a value c = 20
for X in our example. Also, we use asymmetric weights
to prevent the fake shortcut from being traversed in the
opposite direction. To this end, the cost of path (v, f, u)
is set to a very high value, e.g., by setting a high weight
of the directed link (v, f). In Figure 7b, we indeed set
the weight of the link from D to the fake node in the
shortcut to 500.

4. IMPLEMENTATION
We built a complete prototype of Fibbing in Python

(algorithmic part) and C (interaction with OSPF) by
extending Quagga [17]. Fibbing code base spans over
2300 (resp. 400) lines of Python (resp. C) code. It
is available at http://www.fibbing.net. In this sec-
tion, we present our prototype (§4.1), describe how Fib-
bing works with current OSPF routers (§4.2), and pro-
pose two small modifications to link-state protocols that
would make Fibbing even more efficient (§4.3). Finally,
we describe how to ensure controller reliability (§4.4).

4.1 Fibbing Controller
Our prototype consists of three main components:

Fake topology generator applies (i) the compilation
algorithms (§2) to turn forwarding requirements into
forwarding DAGs and (ii) the augmentation algorithms
(§3) to convert the forwarding DAGs into fake nodes
and links. The topology generator uses a JSON in-
terface to register for update events produced by the
event manager. Upon network updates, the generator
automatically recomputes the augmented topology ei-
ther using Simple to ensure fast convergence, or Merger
to reduce the size of the topology. To ensure fast con-
vergence and a small augmented topology, the genera-
tor also pre-computes augmentations with Merger, e.g.,
those needed for any single link failure, and stores them
in a deltas database.

Link-state translator interacts with the routers by
establishing routing adjacencies to inject lies and track
topology changes. Thanks to the flooding mechanism
used by link-state protocols, a single adjacency is suffi-
cient to send and receive all routing messages to/from
all routers. Though, maintaining several adjacencies is
useful for reliability. In this case, the translator simply
injects the lies via all adjacencies. While this slightly
increase the flooding load, doing so does not impact the

1By definition of the shortest path, we only need to check the
paths from v and from u neighbors to each destination.

routers memory as each message has a unique identifier
and routers only maintain one copy per ID in memory.

Event manager maintains an update-to-date view of
the network topology by (i) parsing the routing mes-
sages collected by the translator and (ii) constructing
a network graph for the topology generator. The event
manager checks whether each new event (e.g., a node
failure or addition) affects any of the forwarding require-
ments. If so, it first checks the deltas database for a
pre-computed lie, and otherwise notifies the topology
generator to request a new augmented topology.

4.2 Fibbing with Unmodified OSPF
Our Fibbing prototype works with unmodified OSPF-

speaking routers (tested on Cisco and Juniper). To cre-
ates lies, our prototype leverages the Forwarding Ad-
dress (FA) [18] field of OSPF messages. Suppose the
controller wants routers to think that destination d is
directly attached to the router with IP address y. Then,
the controller injects the route for d with a forwarding
address of y and the desired cost for the fake edge from
y to d. Router y ignores the message, and all other
routers compute the cost of the route as the sum of
their cost to y plus the cost in the message.

Locally-scoped lies in OSPF. To support locally-
scoped lies, we reserve a set of IP addresses to be used as
FAs. All those addresses are propagated network-wide
in OSPF. However, every router is configured not to in-
stall routes to all those addresses. Consequently, only
the directly-connected router can reach any of those ad-
dresses, and accept routes specifying that address as FA.
Both allocation and configuration of FA-associated IP
addresses can be done just once in the network lifetime.

Globally-scoped lies in OSPF, and limitations.
OSPF readily supports globally-scoped lies by simply
propagating OSPF messages with the FA set to an IP
address announced in OSPF. However, some subtle con-
straints hold in an unmodified OSPF network due to
how FAs are resolved on the router. Prominently, (i)
OSPF fake nodes are actually fake routes to the speci-
fied FA, hence both their positioning and the path to be
used for reaching them are constrained; and (ii) OSPF
routers discard any OSPF message whose FA is one of
its own IP address and computes its shortest path ac-
cording to the topology without the fake node. The
combination of these two constraints limit the power of
globally-scoped lies in OSPF, making them insufficient
to implement all possible forwarding DAG. An example
of those cases is reported in [15].

Overcoming OSPF limitations. To support the full
expressiveness of Fibbing, our prototype controller uses
an OSPF-compliant implementation of Merger with a
combination of locally and globally-scoped lies. This
implementation uses globally-scoped lies whenever pos-
sible, and falls back to locally-scoped lies for any re-
quirements that cannot be met that way.

http://www.fibbing.net

4.3 Proposed Protocol Enhancements
Other link-state protocols, like IS-IS [6], do not sup-

port forwarding addresses, and even the OSPF imple-
mentation of lies has limitations. However, minor pro-
tocol extensions can enable more flexible Fibbing in fu-
ture routers. Fully-fledged Fibbing needs for the rout-
ing protocol to support two functions: (i) the creation
of adjacencies (with fake nodes) on the basis of a re-
ceived message; and (ii) a third-party next-hop mecha-
nism which allows to specify in a route the forwarding
next-hop to be used if that route is selected. Support
for these functions can be added to protocol specifica-
tions (without impacting current functionalities), and
can be deployed through router software updates.

Preliminary discussions with router vendors confirm
that these changes are reasonable and could be inte-
grated into current protocol implementations. More-
over, backwards compatibility is easily achieved as legacy
routers would simply ignore any Fibbing-specific proto-
col features. Our algorithms can be modified to account
for the fact that the shortest path of a legacy router is
never changed by any fake node.

4.4 Controller Replication
As any network component, a Fibbing controller can

fail at any time. Reliability can be ensured by running
multiple copies the Fibbing controller in parallel and
connecting them to different places in the network.

No state needs to be synchronized between the repli-
cas besides the input forwarding requirements (mostly
static anyway). Indeed, Fibbing algorithms are deter-
ministic, hence all replicas will always compute exactly
the same augmented topology. The only dynamic state
maintained by a Fibbing replica is the network graph.
This state, however, is implicitly synchronized through
the shared topology offered by the underlying IGP: the
link-state flooding mechanism keeps the network graph
up to date and eventually consistent across all replicas.

The determinism of our algorithms enables all repli-
cas to inject (the same) lies at the same time. However,
this would increase the amount of flooded information.

To limit control-plane overhead, our implementation
relies on a primary-backup architecture with a single
active replica and an inexpensive election process. A
pre-defined range of router IDs is reserved for controller
replicas. The replica with the lowest router ID across
all running ones is the active replica. It is the only
one injecting lies, while the others only compute the
topology augmentation. When the controller is booted
or when an active replica fails, running replicas receive
IGP messages on the current network topology. Based
on those messages, every replica independently infers
the possible presence of other replicas; it also checks
whether it is the new active replica by comparing its
router ID with the one of the other running replicas.

5. EVALUATION
We now evaluate Fibbing along three axis. First, we

show that existing routers are perfectly capable of han-
dling the extra load induced by Fibbing (§5.1). We
then demonstrate the efficiency of Fibbing’s augmenta-
tion algorithms in terms of speed and size of the topol-
ogy (§5.2). Observe that Fibbing behaves as a plain
IGP at the network level. Hence, given its negligible
impact on single routers and the efficiency of our con-
troller, current ISP networks can be seen as the best
large-scale evaluation for Fibbing. We therefore com-
plete the evaluation by illustrating how Fibbing can be
used in a realistic case (§5.3).

5.1 Router measurements
By increasing the size of the link-state routing topol-

ogy, Fibbing could increase the CPU and memory over-
head on the routers, or slow down protocol convergence.
Our experiments demonstrate that the impact on load
and convergence time is negligible. All our measure-
ments were performed using OSPF on a recent Cisco
ASR9K running IOS XR v5.2.2 equipped with 12GB of
DRAM assigned to the routing engine, as well as on a (7-
year-old) Juniper M120 running JunOS v9.2, equipped
with 2GB of DRAM. Both routers are representative of
typical edge devices (i.e., aggregation routers) found in
commercial networks. We draw the same conclusions
on both router platforms, and focus on measurements
collected on the Cisco device in the following.

Fibbing induces very little CPU and memory
overhead on routers. We first measured the mem-
ory increase caused by a growing number of fake nodes
(Table 2). Two processes are impacted by the presence
of fake nodes: (i) the RIB process, which maintains
information about all the routes known to each desti-
nation, and (ii) the OSPF process which maintains the
entire OSPF topology. Even with a huge number of
fake nodes (100,000), the total overhead on both pro-
cesses was only 154MB—a small fraction of the total
memory available. We collected the CPU utilization on
the router every minute immediately after we started
injecting fake nodes. The utilization was systematically
low, at most 4%. This is easily explained as Fibbing
relies on OSPF Type-5 LSAs which do not cause the
routers to recompute their shortest paths to each other.

fake nodes RIB memory (MB) OSPF memory (MB)

1,000 0.09 0.56
5,000 1.58 5.19
10,000 3.56 10.96
50,000 19.67 56.37
100,000 39.78 113.17

Table 2: Routers easily sustain Fibbing-induced
load, even with huge augmented topologies.

0 20 40 60 80 100

% of nodes changing next−hop

ti
m

e
 (

s
e

c
)

0
.0

0
1

0
.1

1
0

simple

merger (95−th)

merger (median)

merger (5−th)

(a) Per-destination time

0 20 40 60 80

0
2

0
4

0
6

0
8

0

% of nodes changing next−hop

#
 o

f
fa

k
e

 n
o

d
e

s
 (

%
 o

f
to

ta
l
n

o
d

e
s
)

simple

merger (95−th)

merger (median)

merger (5−th)

(b) Per-destination augmentation size

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

of fake nodes (% of total nodes)

fr
a

c
ti
o

n
 o

f
e
x
p

e
ri

m
e

n
ts

merger (cross opt)

merger

simple

(c) Cross-destination reduction

Figure 8: Evaluation of our augmentation algorithms.

Fibbing can quickly program forwarding entries.
In a second experiment, we measured how long it took
for a router to install a growing number of forwarding
entries (Table 3). We injected a growing number of fake
nodes, one per destination, and measured the total in-
stallation time, by tracking the time at which the router
updated the last entry in its FIB. The time to pro-
cess and install one entry was constant (around 900µs),
independent of the number of entries. This result is
several orders of magnitude better than any OpenFlow
switches currently on the market [12, 13]. Since instal-
lation of forwarding entries is distributed, routers can
install their entries in parallel, meaning Fibbing can pro-
gram thousands of network-wide entries within 1 second.

fake nodes installation time (s) avg time/entry (µs)

1,000 0.89 886.00
5,000 4.46 891.40
10,000 8.96 894.50
50,000 44.74 894.78
100,000 89.50 894.98

Table 3: Programming a forwarding entry in a
router with Fibbing is fast, sub 1ms.

Fibbing does not have any impact on routing-
protocol convergence time. Finally, we compared
the total time for routers to converge with and without
fake nodes. We failed a link and measured the time for
the last FIB entry to be updated considering two cases:
(i) no lie was injected and (ii) one lie per destination
was injected. Similar to the previous experiments, we
repeated the measurements for a growing number of
destinations and lies, between 100 and 100,000. In all
our experiments, the presence of lies did not have any
visible impact. The total convergence times with or
without lies were systematically within 4ms, with the
router being even faster to converge in the presence of
lies in some cases.

5.2 Topology Augmentation Evaluation
We now evaluate Simple and Merger (§ 3) accord-

ing to: (i) the time they take to compute an augmented
topology for a given requirement, and (ii) the size of the
resulting augmented topology. Results are depicted in
Fig. 8. Our evaluation is based on simulation performed
on realistic ISP topologies [19], whose sizes range from
80 nodes to over 300. On these topologies, we gen-
erated forwarding requirements by randomly changing
the next-hop of randomly selected nodes. Destinations
of requirement DAGs were also randomly generated.

Fibbing augments network topologies within ms.
Fig. 8a shows the time (on the y-axis) taken by Simple
and Merger for an increasing number of nodes that must
change their next-hop (on the x-axis). The plot refers to
simulations we ran on the biggest Rocketfuel topology
(AS1239). The time taken by Simple to compute the
per-destination augmentation varies in the order of mil-
liseconds, ranging from 0.5 ms to 8 ms. While Merger
took more time (as expected), its performance is still
one order of magnitude lower than the second. For both
algorithms, the computation time does not vary much
with the number of nodes changing their next-hops.

Merger and cross-optimization effectively reduce
the size of the augmented topology. Fig. 8b plots
the fake topology size (on the y-axis) when the number
of nodes that have to change their next-hop increases
(on the x-axis) for a single destination on all topolo-
gies. The plot shows that Merger reduces the number
of fake nodes by about 25% in the average case and al-
most 50% in the best case. Fake topology reduction is
further corroborated by our cross-destination optimiza-
tion procedures (see §3.4). Fig. 8c shows a cumulative
distribution function (CDF) of the topology augmen-
tation size computed by Simple, Merger, and Merger
with cross-destination optimization. The figure refers
to simulations with a number of destinations varying
between 1 and 100 with 26% of the nodes changing
their nexthop. In more than 90% of our simulations,
cross-destination optimization achieves a reduction of
the augmented topology. Depending on the experi-

ment, such a reduction is up to about 10% with respect
to Merger without cross-destination optimization, and
20% with respect to Simple.

5.3 Case Study
We now show the practicality of Fibbing by improv-

ing the performance of a real network consisting of four
routers (Cisco 3700 running IOS v12.4(3)) connected in
a square with link of 1 Mbps capacity (see Fig. 9a). In
this network, we introduce two sources (bottom left)
that send traffic to two destinations (bottom right) us-
ing iperf. The first source is introduced at time t = 0,
the second one at time t = 5. OSPF weights are config-
ured such that all traffic flows along link (C,X).

5

10 5

A B

C X

1

5

10 5

A B

C X

1

f1
2

1

flow1

flow2

without Fibbing

with Fibbing

(a) Topology

Time (s)

0 5 10 16 20 25

0

.2

.4

.6

.8

1

1.2

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

flow 1

flow 2

(b) Throughput evolution

Figure 9: Case study on how Fibbing can allevi-
ate congestion. At t = 16, a fake node is added to
shift one flow to the upper path in the network,
increasing the total available bandwidth.

Such a network suffers from two inherent inefficien-
cies: (i) the upper path is never used and (ii) the two
flows systematically traverse the same path, competing
for bandwidth, no matter what the link weights are.
Fig. 9b plots the throughput of each flow. Immediately
after the introduction of the second flow at t = 5s, the
two flows start competing for the available bandwidth.
To improve network efficiency, the Fibbing controller
injects a fake node f1 connected to C and announces
one destination at time t = 16. A few ms after the in-
jection, we see that the throughput of both flows double
as each of them now traverses a different path.

6. REACTION TO FAILURES
We now analyze Fibbing’s reaction to different kinds

of failures. We distinguish between network (affect-
ing real router or router-to-router links) and controller
(shutting down replicas or replica-to-router links) fail-
ures. Also, we separately deal with failures inducing
network partitions and non-partitioning ones.

Fibbing quickly reacts to non-partitioning fail-
ures. Upon network failures, forwarded flows fall in
one of the following three cases. First, some flows are
not impacted by the failure as their pre-failure forward-
ing path is not disrupted. Second, flows for which no

input requirements have been specified require only the
IGP to establish a new path, but no action from the Fib-
bing controller. Reaction to failures is extremely fast in
this case (sub-second even in large networks), thanks to
fast convergence [20] and local fast re-route [21] features
commonly supported by current IGP implementations.
Third, the remaining flows are forwarded on paths mod-
ified by the Fibbing controller. They require reaction
from the controller, both to remove possible blackholes
or loops due to previously injected lies [14], and to avoid
requirement violations due to new IGP paths. Theo-
retically, the total failure reaction time is equal to the
sum of the notification time (for the controller to be
notified of the failure), the processing time (for the con-
troller to compute the new topology augmentation) and
the IGP convergence time (for all routers to install the
new lies). Our evaluation (§5) shows that the process-
ing time is negligible, especially for the Simple algo-
rithm. Moreover, the notification time is bounded by
the IGP convergence time, as flooding is faster than
re-convergence. Thus, in the worst case, the total re-
action time is twice the IGP convergence time, that is,
still below 2 seconds [20]. Also, in the average case,
the notification time is smaller than IGP convergence,
because the controller is notified about the failure be-
fore all other routers complete convergence; hence, the
controller injects new lies during the IGP convergence,
and the total failure reaction time is slightly higher than
IGP convergence without Fibbing.

In addition, if one or more controller replicas fail but
others are running, we have no impact on forwarded
flows, unless the failed replica is the active one and some
of its injected lies expire before the new active replica is
elected. Even in the latter case, the new active replica is
quickly elected, in a time which is approximately equal
to the detection and flooding of the failure event by the
IGP. The short election time makes it unlikely that lies
expire before the new active replica is elected, and limits
the period with possible disruptions.

Fibbing can implement both fail-open and fail-
close semantics to deal with partitions. Even if
unlikely, catastrophic events like a simultaneous failure
of all the controller replicas or network partitions may
happen. As for any centralized solution, a major risk in
those cases is to leave the network uncontrolled. This
happens, for example, if some routers are not reach-
able by a controller replica after a network partition.
With respect to pure SDN solutions, Fibbing has the
additional possibility to delegate control to the under-
lying IGP. This way, Fibbing can implement both the
fail-open or fail-close semantics, on a per-destination
basis. For non-critical (optimization) requirements like
traffic engineering ones, the corresponding destinations
can be injected in the IGP, so that connectivity can
be preserved as long as the partition leaves at least one
source-destination path. For stringent requirements like
security ones (e.g., firewall traversal), Fibbing can im-

Time (s)

0 5 10 15 20 25 30 35 40 45 50 55

0

.2

.4

.6

.8

1

1.2
T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

replica
fails

(A,B)
fails

(B,X)
fails

(B,X)
up

(A,B)
up

flow 1

flow 2

Figure 10: Case study on how Fibbing reacts
to failures, and can successfully implement fail-
close (flow 1) and fail-open (flow 2) semantics.

plement fail-close semantics by not announcing the cor-
responding destinations in the IGP. As such, the corre-
sponding flows stop to be forwarded in the absence of
the controller. To quickly reach this configuration, we
can set a low validity time of the injected lies, making
them rapidly expire if not refreshed. This then comes
at the cost of additional control-plane overhead.

We confirmed Fibbing resilience. We consider again
the topology in Figure 9a, and we connect two controller
replicas respectively to routers A and B. The active
replica is initially the one connected to A. We assume a
strict policy on the red flow forcing it to cross the link
(C,X). We then configure a fail-close semantics to it,
and a fail-open to the other flow. Starting from a state
in which both replicas and all links are up, we succes-
sively fail (i) the active replica at time t = 5; (ii) link
(A,B) at t = 12; and (iii) link (B,X) at t = 20. Fi-
nally, we re-establish both failed links, one at the time
(at t = 36 and t = 48).

The results of this experiment, collected via iperf,
are reported in Figure 10. Concretely, the failure of
the active replica has no impact on the forwarded flows.
Indeed, the initially passive replica (connected to B)
quickly detects the failure of the other replica, and start
refreshing the injected lies by the failed controller. When
(A,B) fails, the active replica needs to remove the fake
node f1: Since the physical path (C,A,B,X) is not
available anymore, this fake node is creating a loop be-
tween C and A for the violet flow. Upon failure de-
tection, the controller then sends the LSA to remove
f1, re-establishing the connectivity for the disrupted
flow in approximately 1s. Note that this time can be
lowered by relying on fast failure detection mechanisms
(like BFD). When (B,X) also fails, we create a parti-
tion that makes it impossible for the running replica to
interact with routers A, C, and X. After about 1s, the
injected lies disappear, because they are not refreshed
anymore by any controller. Consistent with the con-
figured failure semantics, the red flow is blackholed (to
avoid the IGP routing it over policy-violating paths)

while the violet flow keeps using the IGP shortest path.
Finally, re-adding the failed links allows the running
replica to re-take control of the network: it re-builds
a (safe) path for the red flow upon (B,X) restoration,
and re-optimizes the distribution of both flow over the
available paths when (A,B) is restored.

7. FREQUENTLY ASKED QUESTIONS
We now provide answers to high-level concerns of-

ten raised against Fibbing. Since empirical analyses are
hardly applicable to those concerns (e.g., debuggabil-
ity), we describe qualitative considerations.

Is Fibbing a long-term solution? Yes. We believe
Fibbing is here to stay. In the short run, Fibbing of-
fers programmability and is easy to deploy, at very lit-
tle cost. A network that ultimately needs even greater
flexibility could deploy finer-grained SDN functional-
ity at the edge, and solutions like Fibbing in the core,
as advocated by major industry [22] and academic ac-
tors [10, 23]. By combining the best of centralized and
distributed routing, Fibbing fits the needs of the net-
work core (flexibility, robustness, low overhead) better
than current forwarding paradigms.

Does Fibbing make networks harder to debug?
No. Fibbing relies on “tried and true” protocols. This
has several implications. First, Fibbing routing matches
the current mental model of operators, a major advan-
tage with respect to other SDN proposals. Moreover,
Fibbing is compatible with any existing management,
monitoring, and debugging tools. Finally, the Fibbing
controller can expose a higher-level interface for debug-
ging, including a mapping between the injected lies and
their usage (matched requirements and how).

Does Fibbing sum the complexities of central-
ized and distributed approaches? No. Fibbing
uses the underlying IGP in a very simple way. The
IGP output is easy to predict and provides the con-
troller with a powerful API to program routers. As a
result, the design of the Fibbing controller is signifi-
cantly simpler than for existing SDN controllers (e.g.,
[24, 25, 26, 27]) since heavy tasks such as path compu-
tation and topology maintenance are offloaded to the
routers. Even basic primitives for controller replication
and replica consistency are mainly delegated to current
distributed routing protocols (see §6).

Does Fibbing impact security? No. The lies intro-
duced by the Fibbing controller can easily be authenti-
cated, e.g., using MD5-based authentication [28, 29].

Since Fibbing can only program loop-free paths,
can it support middleboxes chaining? Partially.
Forwarding loops can be encountered when steering traf-
fic through a chain of middleboxes (e.g., [30] and [31]).
These requirements can be satisfied in Fibbing with lo-
cal support from routers to break the loops. For in-
stance, a router could match on the input interface in

addition to the destination IP address using policy-
based routing, a feature widely available on existing
routers [32, 33] and provisioned centrally using BGP
flowspec [34, 35]. Alternatively, middlebox traffic steer-
ing could be implemented through SDN functionality at
the network edge, while still using Fibbing in the core.

8. RELATED WORK
Fibbing contributes to the larger debate about cen-

tralized and distributed control over routing by identi-
fying a new point in the design space.

Centralized configuration of distributed routing
protocols: A centralized management system can per-
form traffic engineering by optimizing the link weights
in link-state routing protocols [36, 37]. Fibbing is more
general, since it can implement any forwarding paths by
injecting fake nodes and links into the link-state routing
topology. The extra flexibility enables even better load
balancing, as well as a wider range of functionality.

Centralized control using existing routing pro-
tocols as a control channel: RCP [11] is a logically-
centralized platform that uses BGP to install forward-
ing entries into routers. RCP must install forwarding
entries one-by-one, on each device. In contrast, Fibbing
can adapt the forwarding behavior of many routers at
once, with little input (e.g., one fake node), and let them
compute their own forwarding entries.

Centralized control over the routing/forwarding
tables: In SDN, a central controller installs packet-
processing rules directly in the switches, possibly react-
ing to the reception of specific packets. While more
flexible (e.g., enabling stateful control logic) than Fib-
bing, SDN requires updating the switch-level rules one-
by-one, and forgoes the scalability and reliability ben-
efits of distributed routing. Recently, the IETF devel-
oped I2RS [38] which offers a new management interface
for centralized updates the routing information bases
(RIBs) in the routers. Still, I2RS must push RIB en-
tries individually to each router.

The Fibbing language for expressing requirements is
similar in spirit to Merlin [39], but the mechanism for
satisfying the requirements (i.e., fake nodes/links) is en-
tirely different. Our main contributions are the Fibbing
techniques and algorithms, not the language.

For the networks which require the extra flexibility
provided by OpenFlow, Fibbing helps during the tran-
sition by providing access to the FIBs of legacy routers
to any SDN controller [40]. This contrasts to tech-
niques like Panopticon [41], where programmability is
only available in the SDN-enabled parts of the network.

9. CONCLUSIONS
The advent of SDN makes it clear that network oper-

ators want their networks to be more programmable and
easier to manage centrally. In this paper, we show how
Fibbing can achieve those objectives, by centrally and

automatically controlling forwarding without forgoing
the benefits of distributed routing protocols. Fibbing is
expressive, scalable, and works with existing routers. In
future work, we plan to look at extensions of IGP proto-
cols (e.g., for source-destination routing [42] or network
service header awareness) to enable finer-grained con-
trol via Fibbing. Abstractly, Fibbing shows how cen-
tralized and distributed approaches can be profitably
combined. We believe that new research can further
explore this direction, for example, investigating an al-
ternative division of tasks between centralized and dis-
tributed network components.

Acknowledgements
We are grateful to SIGCOMM anonymous reviewers
and our shepherd, Teemu Koponen, for insightful com-
ments. We thank Jo Segaert from BELNET and Dave
Ward, Clarence Filsfils and Kris Michielsen from Cisco
Systems for their support in testing Fibbing on real
routers. This work has been partially supported by the
EC Seventh Framework Programme (FP7/2007-2013)
grant no. 317647 (Leone) and by the ARC grant 13/18-
054 from Communauté française de Belgique.

10. REFERENCES

[1] D. Awduche et al., “RSVP-TE: Extensions to
RSVP for LSP Tunnels,” RFC 3209, 2001.

[2] N. McKeown et al., “OpenFlow: enabling
innovation in campus networks,” ACM
SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[3] A. Farrel, J.-P. Vasseur, and J. Ash, “A Path
Computation Element (PCE)-Based
Architecture,” RFC 4655, 2006.

[4] C. Filsfils et al., “Segment Routing Architecture,”
Internet Draft, 2014.

[5] B. Clouston and B. Moore, “Definitions of
Managed Objects for HPR using SMIv2,” RFC
2238, 1997.

[6] D. Oran, “OSI IS-IS Intra-domain Routing
Protocol,” RFC 1142, 1990.

[7] A. Pathak, M. Zhang, Y. C. Hu, R. Mahajan, and
D. A. Maltz, “Latency inflation with MPLS-based
traffic engineering,” in IMC, 2011.

[8] S. Jain et al., “B4: Experience with a
Globally-Deployed Software Defined WAN,” in
SIGCOMM, 2013.

[9] C.-Y. Hong et al., “Achieving High Utilization
with Software-Driven WAN,” in SIGCOMM, 2013.

[10] M. Casado et al., “Fabric: A retrospective on
evolving SDN,” in HotSDN, 2012.

[11] M. Caesar et al., “Design and implementation of a
routing control platform,” in NSDI, 2005.

[12] X. Jin et al., “Dynamic scheduling of network
updates,” in SIGCOMM, 2014.

[13] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and
A. W. Moore, “OFLOPS: An Open Framework
for Openflow Switch Evaluation,” in PAM, 2012.

[14] S. Vissicchio, L. Vanbever, and J. Rexford, “Sweet
little lies: Fake topologies for flexible routing,” in
Hotnets, 2014.

[15] S. Vissicchio, O. Tilmans, L. Vanbever, and
J. Rexford, “Central Control over Distributed
Routing (Extended Version),” Technical Report,
2015.

[16] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois,
and O. Bonaventure, “Seamless Network-Wide
IGP Migrations,” in SIGCOMM, 2011.

[17] “Quagga routing suite,” www.nongnu.org/quagga.

[18] J. Moy, “OSPF Version 2,” RFC 2328, Apr. 1998.

[19] N. Spring, R. Mahajan, and D. Wetherall,
“Measuring ISP topologies with Rocketfuel,” in
SIGCOMM, 2002.

[20] P. Francois, C. Filsfils, J. Evans, and
O. Bonaventure, “Achieving Sub-second IGP
Convergence in Large IP Networks,” ACM
SIGCOMM CCR, vol. 35, no. 3, 2005.

[21] C. Filsfils, P. Francois, M. Shand, B. Decraene,
J. Uttaro, N. Leymann, and M. Horneffer,
“Loop-Free Alternate (LFA) Applicability in
Service Provider (SP) Networks,” RFC 6571, 2012.

[22] T. Koponen et al., “Network Virtualization in
Multi-tenant Datacenters,” in NSDI, 2014.

[23] “Time for an SDN Sequel? Scott Shenker Preaches
SDN Version 2,” www.sdxcentral.com/articles/
news/scott-shenker-preaches-revised-sdn-sdnv2/
2014/10/.

[24] “ONOS: Open Network Operating System,”
http://onosproject.org/.

[25] T. Koponen et al., “Onix: A distributed control
platform for large-scale production networks,” in
OSDI, 2010.

[26] “Project Floodlight,”
http://www.projectfloodlight.org/floodlight/.

[27] N. Foster et al., “Languages for software-defined
networks,” IEEE Comm. Mag., 2013.

[28] “Cisco OSPF MD5 Authentication,”
http://www.cisco.com/c/en/us/support/docs/ip/
open-shortest-path-first-ospf/13697-25.html.

[29] “Juniper OSPF MD5 Authentication,” http://
www.juniper.net/documentation/en US/junos14.
2/topics/topic-map/ospf-authentication.html.

[30] Z. A. Qazi et al., “Simple-fying middlebox policy
enforcement using sdn,” in SIGCOMM, 2013.

[31] S. K. Fayazbakhsh et al., “Enforcing network-wide
policies in the presence of dynamic middlebox
actions using flowtags,” in NSDI, 2014.

[32] “Cisco. Configuring Policy-Based Routing,”
http://www.cisco.com/c/en/us/td/docs/ios/12
2/qos/configuration/guide/fqos c/qcfpbr.html.

[33] “Juniper. Configuring Filter-Based Forwarding to
a Specific Outgoing Interface or Destination IP
Address,” http://www.juniper.net/techpubs/en
US/junos12.2/topics/topic-map/
filter-based-forwarding-policy-based-routing.html.

[34] “Cisco. Implementing BGP Flowspec,”
http://www.cisco.com/c/en/us/td/docs/routers/
asr9000/software/asr9k r5-2/routing/
configuration/guide/b routing cg52xasr9k/b
routing cg52xasr9k chapter 011.html.

[35] “Juniper. Enabling BGP to Carry
Flow-Specification Routes,”
https://www.juniper.net/documentation/en US/
junos12.3/topics/example/
routing-bgp-flow-specification-routes.html.

[36] B. Fortz and M. Thorup, “Internet traffic
engineering by optimizing OSPF weights,” in
INFOCOM, 2000.

[37] B. Fortz, J. Rexford, and M. Thorup, “Traffic
engineering with traditional IP routing protocols,”
IEEE Comm. Mag., vol. 40, no. 10, pp. 118–124,
2002.

[38] A. Atlas, J. Halpern, S. Hares, and D. Ward, “An
Architecture for the Interface to the Routing
System,” Internet Draft, 2013.

[39] R. Soulé et al., “Merlin: A language for
provisioning network resources,” in CoNEXT,
2014.

[40] S. Vissicchio, L. Vanbever, and O. Bonaventure,
“Opportunities and research challenges of hybrid
software defined networks,” ACM SIGCOMM
CCR, vol. 44, no. 2, pp. 70–75, 2014.

[41] D. Levin, M. Canini, S. Schmid, F. Schaffert, and
A. Feldmann, “Panopticon: Reaping the Benefits
of Incremental SDN Deployment in Enterprise
Networks,” in USENIX ATC, 2014.

[42] F. Baker, “IPv6 Source/Destination Routing using
OSPFv3,” Internet Draft, 2013.

www.nongnu.org/quagga
www.sdxcentral.com/articles/news/scott-shenker-preaches-revised-sdn-sdnv2/2014/10/
www.sdxcentral.com/articles/news/scott-shenker-preaches-revised-sdn-sdnv2/2014/10/
www.sdxcentral.com/articles/news/scott-shenker-preaches-revised-sdn-sdnv2/2014/10/
http://onosproject.org/
http://www.projectfloodlight.org/floodlight/
http://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/13697-25.html
http://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/13697-25.html
http://www.juniper.net/documentation/en_US/junos14.2/topics/topic-map/ospf-authentication.html
http://www.juniper.net/documentation/en_US/junos14.2/topics/topic-map/ospf-authentication.html
http://www.juniper.net/documentation/en_US/junos14.2/topics/topic-map/ospf-authentication.html
http://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfpbr.html
http://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfpbr.html
http://www.juniper.net/techpubs/en_US/junos12.2/topics/topic-map/filter-based-forwarding-policy-based-routing.html
http://www.juniper.net/techpubs/en_US/junos12.2/topics/topic-map/filter-based-forwarding-policy-based-routing.html
http://www.juniper.net/techpubs/en_US/junos12.2/topics/topic-map/filter-based-forwarding-policy-based-routing.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
https://www.juniper.net/documentation/en_US/junos12.3/topics/example/routing-bgp-flow-specification-routes.html
https://www.juniper.net/documentation/en_US/junos12.3/topics/example/routing-bgp-flow-specification-routes.html
https://www.juniper.net/documentation/en_US/junos12.3/topics/example/routing-bgp-flow-specification-routes.html

	Introduction
	Flexible Fibbing
	Fibbing high-level language
	Fibbing expressiveness

	Augmenting Topology
	The Topology Augmentation Problem
	Topology Initialization
	Per-destination augmentation
	Simple
	Merger
	Dealing with backup requirements

	Cross-Destination Optimization

	Implementation
	Fibbing Controller
	Fibbing with Unmodified OSPF
	Proposed Protocol Enhancements
	Controller Replication

	Evaluation
	Router measurements
	Topology Augmentation Evaluation
	Case Study

	Reaction to Failures
	Frequently Asked Questions
	Related Work
	Conclusions
	References

