Donate
Helen Keller International's vitamin A supplementation program is one of our top-rated charities and we believe that it offers donors an outstanding opportunity to accomplish good with their donations.
More information: What is our evaluation process?
Published: November 2020
What do they do? Helen Keller International (Helen Keller) supports programs focused on reducing malnutrition and averting blindness and poor vision; this review focuses only on Helen Keller's work on vitamin A supplementation (VAS) in sub-Saharan Africa. Helen Keller provides technical assistance, engages in advocacy, and contributes funding to government-run vitamin A supplementation programs. (More)
Does it work? There is strong evidence from many randomized controlled trials (RCTs) conducted in the 1980s and 1990s that VAS can substantially reduce child mortality, but weaker evidence on how effective VAS is in the places Helen Keller would work with additional funding in the next few years. Helen Keller has conducted studies to determine whether its mass distribution programs reach a large proportion of targeted children and generally found positive results. We have also investigated the question of what effect Helen Keller's support has on programs and found a number of cases where it seems likely that Helen Keller support is necessary for supplementation to occur. (More)
What do you get for your dollar? We estimate that it costs $1.10 to deliver a vitamin A supplement in Helen Keller-supported programs. The numbers of deaths averted and other benefits of VAS are a function of a number of difficult-to-estimate factors, which we discuss below. (More)
Is there room for more funding? We believe that Helen Keller could use more funding than it expects to receive for VAS mass campaigns. We estimate that Helen Keller could use up to an additional $12.7 million to support VAS mass campaigns. (More)
Helen Keller's vitamin A supplementation program is recommended because:
Major open questions include:
In April 2017, we invited Helen Keller International (Helen Keller) to apply to be considered for a top charity recommendation for its vitamin A supplementation program. To date, our investigation of Helen Keller has consisted of:
Helen Keller International (Helen Keller) supports programs focused on reducing malnutrition and averting blindness and poor vision in countries in Africa and Asia; it also provides vision screenings and distributes eyeglasses at schools in the United States.2
In this review, we focus only on Helen Keller's vitamin A supplementation (VAS) programs, which operate in countries in sub-Saharan Africa.3 The World Health Organization (WHO) recommends that all preschool-aged children (aged 6 to 59 months) in areas where vitamin A deficiency (VAD) is a public health problem receive vitamin A supplements two to three times per year.4 Helen Keller supports countries' VAS programs for preschool-aged children by providing technical assistance, engaging in advocacy, and contributing funding to governments for implementing the programs.
Vitamin A is an essential nutrient that serves many purposes in the body; in particular, the immune and visual systems require it to function properly.5 Essential nutrients must be obtained through diet since the body cannot produce them on its own.6
Vitamin A deficiency (VAD) can cause stunting, anemia, xerophthalmia (dry eyes, which can lead to blindness), increased severity of infections, and death.7 WHO notes that people who have diets containing few animal products and little vitamin A-fortified food may be particularly susceptible to VAD.8 WHO estimates that VAD is most common in its Africa and South-East Asia Regions.9 Infants, children, and pregnant or lactating women with low vitamin A intake appear to have a particularly high risk of the negative health impacts caused by VAD.10
WHO notes that vitamin A from high-dose supplements can be stored in the liver and used as needed in the body for several months.11 To prevent childhood morbidity and mortality, WHO recommends vitamin A supplementation (VAS) every four to six months for all children aged 6 to 59 months in areas where VAD is a public health problem.12
More information about VAS is available in our vitamin A supplementation intervention report.
Helen Keller-supported VAS programs distribute vitamin A supplements through either mass distribution campaigns or through routine delivery (in which caregivers take their children to facilities to receive VAS every six months).13 We have requested that Helen Keller use GiveWell-directed funding only for mass distribution campaigns because we have a limited understanding of how to measure Helen Keller's impact on routine delivery programs (see below for more details).
Helen Keller supports two types of VAS mass distribution campaigns:
This spreadsheet lists the distribution methods of VAS mass distribution campaigns Helen Keller supported with GiveWell-directed funding in 2018 and 2019.
Health workers implementing VAS programs are instructed to cut vitamin A capsules open with scissors and squeeze the contents of the capsules directly into children's mouths.17 Health workers are also instructed to ask caregivers about the age of the child in order to provide the correct dosage of vitamin A: 100,000 IU for 6-11 month-old infants, and 200,000 IU to 12-59 month-old children.18
Helen Keller provides the following types of support to government-run VAS programs:19
UNICEF and Nutrition International (formerly Micronutrient Initiative) also support VAS programs in countries where Helen Keller works. Nutrition International procures the vitamin A supplements used in the programs, and UNICEF provides technical and financial support to geographic regions in Guinea, Mali, and Burkina Faso not supported by Helen Keller.29
Helen Keller's work on VAS campaigns in 2018 and 2019 was primarily funded by GiveWell-directed funding.30 Details of its spending on VAS in 2018-2019 can be found in this spreadsheet. In short, in 2019:
We summarize Helen Keller's past spending on VAS programs during its most recent (2013-2016) grant from Global Affairs Canada in this spreadsheet.33
We base our expectation of the impact of Helen Keller's VAS campaigns on:
This expectation relies on the assumption that Helen Keller's support of VAS campaigns increases the number of children who receive VAS, compared to the number who would have in the absence of its support. To test whether this assumption holds up, we consider evidence about whether Helen Keller's support of past VAS campaigns either caused those campaigns to occur or increased the coverage rates they achieved.
Finally, we consider whether there are factors that are not accounted for in the above evidence that would offset the impact of Helen Keller's VAS programs, either through reducing their effectiveness or contributing to negative outcomes.
A large number of RCTs of VAS that were conducted in the 1980s and 1990s found that VAS greatly reduces child mortality. A 1999-2004 trial with more participants than all previous studies combined (the Deworming and Enhanced Vitamin A, or DEVTA, trial) did not find a statistically significant effect on mortality. We remain uncertain about what could explain this difference in results.
Further details on trials of VAS:
For more details, see our vitamin A supplementation intervention report. A shorter summary of our views is available in our blog post on vitamin A supplementation programs.
We have several sources of uncertainty about how to apply evidence from the trials discussed above to the contexts in which VAS programs operate today, including:
To estimate what effect we should expect from VAS in locations where Helen Keller supports VAS programs, we have considered the following questions:
There is limited recent data on the prevalence of vitamin A deficiency (VAD) among populations targeted by Helen Keller's VAS programs. Our best estimate, using data from a model of VAD prevalence created by the Institute for Health Metrics and Evaluation's Global Burden of Disease project, is that the prevalence of VAD among preschool-aged children in countries where Helen Keller works or plans to work is between 25% and 36%. We estimate that the prevalence of VAD in populations represented in the meta-analysis of the effect of VAS on mortality was roughly 59%. Based on these estimates, we expect that VAS has a smaller impact on child mortality rates in populations reached by Helen Keller's programs today than the impact on mortality found in populations studied in VAS trials. We incorporate this adjustment into our cost-effectiveness analysis of Helen Keller (see below).
It appears unlikely that low rates of vitamin A deficiency (VAD) explain the DEVTA results, but it is still plausible that low rates of VAD in an area may indicate that VAS programs will have a limited effect on mortality there.45 (See footnote for arguments on ways in which VAD rates may not be indicative of the impact of VAS on child mortality; we have not yet evaluated these arguments carefully.)46
The prevalence of VAD in a population can be estimated using representative surveys of serum retinol concentrations or retinol-binding protein (measured in blood samples), clinically assessed eye signs of VAD (e.g., Bitot's spots, xerophthalmia), or other measures.47 WHO defines VAD as being indicated by a serum retinol concentration lower than 0.70 μmol/L, and severe VAD as a serum retinol concentration lower than 0.35 μmol/L.48
Our estimates for the prevalence of VAD among populations studied in trials included in Imdad et al. 2017 are in this spreadsheet ("Imdad 2017 - VAD prevalence estimates" sheet). We consider our weighted average estimate of 59% prevalence of VAD in populations studied in VAS trials to be a rough best guess, based on limited data. Our process and sources for creating this estimate are outlined in the following footnote.49
We remain uncertain about the prevalence of VAD among preschool-aged children in areas where Helen Keller works after considering the following sources of information:
In 2018, we took the information above into account to form a subjective best guess of VAD prevalence among populations targeted by Helen Keller's VAS campaigns.66 In 2019, following a conversation with the Institute for Health Metrics and Evaluation (IHME), we decided to instead use VAD prevalence estimates from its Global Burden of Disease (GBD) project.67 IHME's modeling takes past vitamin A deficiency survey results, vitamin A supplementation coverage, a socio-demographic index, and an estimate of the availability of vitamin A in a country's food supply into account (excluding fortified foods).68 IHME's estimates indicate that, as of 2017, VAD prevalence ranged from 25% to 36% among children aged 6- to 59-months in countries where Helen Keller is supporting or plans to support VAS campaigns69
We would guess that IHME's estimates of the prevalence of VAD are more likely to be accurate than our subjective best-guesses, but our confidence in this judgment is limited for the following reasons:
Child mortality rates in countries where Helen Keller works are lower than child mortality rates of some populations studied in trials of VAS in the 1980s and 1990s, but not so much lower that we would expect that Helen Keller's programs would be unlikely to be effective on average. (See above for an explanation of why VAS may have a limited impact on preventing additional child mortalities in populations where baseline rates are already relatively low.)
For the nine countries where Helen Keller is supporting or plans to support VAS mass campaign programs, mortality rates for children aged 6- to 59-months range from 4.6 to 19.0 deaths per 1,000 child-years as of 2017.72 Some major VAS trials took place in contexts where baseline mortality rates were considerably higher than these rates (see Table 1 below). Trials listed in Table 1 with baseline child mortality rates of 10.6 per 1,000 child-years or higher found that VAS significantly reduced child mortality, but the trials with lower baseline rates did not find statistically significant effects.73
Three out of the nine countries where Helen Keller supports or plans to support VAS programs have mortality rates below 10.6 per 1,000 child-years.74 For comparison, control group child mortality rates in the six main trials included in Imdad et al. 2017 are presented in the following table. 19 trials are included in the all-cause mortality meta-analysis in Imdad et al. 2017, but we focus on these six trials because they account for around 90% of Imdad et al. 2017's weighted mean estimate of the effect of VAS on mortality.75
Table 1: Characteristics of the six main studies used in the Cochrane review's estimate of the effect of VAS on all-cause mortality
Study | Age group | Control group mortality per 1,000 child-years | Mortality risk ratio (95% CI) | Deaths/Child-years in treatment vs. control |
---|---|---|---|---|
Awasthi et al. 2013 (DEVTA) | 12 to 72 months | 5.3 | 0.96 (0.89 – 1.03)76 | 12,467/2,464,490 vs. 13,217/2,496,62077 |
Ross et al. 1993 | 6 to 90 months | 29.9 | 0.81 (0.68 – 0.98) | 397/16,508 vs. 495/16,77978 |
West et al. 1991 | 6 to 72 months | 16.4 | 0.70 (0.56 – 0.88) | 152/13,175 vs. 210/12,79579 |
Herrera et al. 1992 | 9 to 72 months | 5.3 | 1.06 (0.82 – 1.37) | 120/21,515 vs. 112/21,22480 |
Daulaire et al. 1992 | 1 to 59 months | 126 | 0.74 (0.55 – 0.99) | 138/1,480 vs. 167/1,32381 |
Sommer et al. 1986 | 0 to 71 months | 10.6 | 0.73 (0.54 – 0.99) | 101/12,991 vs. 130/12,20982 |
There are major limitations to our analysis so far of baseline child mortality rates in areas where Helen Keller works. In particular:
Helen Keller conducts coverage surveys to determine what proportion of the target population (children aged 6-59 months) was reached with VAS in the relevant campaign. We use results from past campaigns to understand the impact we should expect future campaigns to have. Specifically, we use coverage survey results about the proportion of targeted children reached, along with data on program spending, to estimate the cost of treating a child with VAS. Our interpretation of these coverage survey results is informed by their comprehensiveness and the methodology used to collect them.
See this spreadsheet for all results we have seen from Helen Keller's VAS campaigns.
In 2018, Helen Keller began supporting VAS campaigns with GiveWell-directed funds. That year, Helen Keller supported eight such campaigns: two each in Burkina Faso, Côte d'Ivoire, Guinea, and Mali. We have seen results from all five coverage surveys that took place; surveys did not take place for three campaigns.85 In 2019, Helen Keller supported eleven VAS campaigns: one in Mali and two each in Burkina Faso, Côte d'Ivoire, Guinea, Kenya, and Niger. We have seen results from all seven coverage surveys that took place; surveys did not take place for four campaigns.86 The surveys we have seen from 2018 and 2019 represent around 65% of Helen Keller's total spending on VAS campaigns in those years.87 While this constitutes substantial evidence for the impact of Helen Keller's VAS campaigns, we note that it is less thorough than monitoring we have seen from some of our other top charities. Our confidence that we are seeing a representative picture of Helen Keller's work is increased by the fact that in 2018, we saw coverage surveys from all four countries where Helen Keller supported VAS campaigns, and in 2019, we saw coverage surveys from five of six countries where Helen Keller supported VAS campaigns (the exception being Kenya).88 We incorporate this assessment into our cost-effectiveness model.89
Helen Keller has also shared coverage surveys from VAS campaigns conducted prior to 2018. We have reviewed these surveys but put limited weight on their results90 because they cover a relatively small portion of Helen Keller's past work91 and many were conducted in areas where Helen Keller expected coverage to be low.92 We have focused on reviewing results from 2018 and 2019, as we believe they are more likely to be indicative of what we can expect from future VAS campaigns that Helen Keller supports using GiveWell-directed funds.
In Helen Keller's coverage surveys, data collectors visit a sample of households and ask household members whether the eligible children in those households received VAS during the relevant campaign. As noted above, we have focused on understanding the methodology used in the coverage surveys conducted for campaigns in 2018 and 2019 that were supported with GiveWell-directed funds. Full details of the methodology used in those surveys are in this spreadsheet.
In 2019, Helen Keller developed a revised coverage survey guide,93 with a new sampling methodology.94 As such, the remainder of this section focuses on the methodology used in the coverage surveys conducted for campaigns in 2019, along with results from those surveys.
Below, we summarize Helen Keller's general 2019 coverage survey methodology and discuss methodological strengths and weaknesses. Overall, we believe that Helen Keller's coverage surveys are designed to measure key indicators of the success of VAS campaigns and to achieve samples that are generally representative of target populations. However, we are concerned that the self-reported nature of responses may produce bias in results. We are also uncertain about the quality of survey implementation because we have not seen results from the procedure used to audit data collectors' work. We incorporate our assessment of the quality of Helen Keller's coverage survey methodology into our cost-effectiveness model95 and into our qualitative assessment of Helen Keller's organizational strength.
We expect this selection protocol to result in a sample that is generally representative of the target population. We believe that bias may be introduced by data collectors during the household census, either unintentionally (if households are missed) or intentionally (if they only include households that are easier to reach).101 We believe both possibilities would bias results upward, as households missed by data collectors may also have been missed by the relevant campaign. We note that we have not seen evidence that this occurred and note it only as a possibility.
If a selected household is unavailable, data collectors are instructed to return up to two additional times to attempt to interview that household.102 The coverage survey reports for the first 2019 campaign in Burkina Faso and the second 2019 campaign in Côte d'Ivoire state that replacement households were provided to data collectors;103 we do not know how often replacement households were used in those cases. Our understanding is that replacement households were not provided in other surveys.104
In the surveys we have reviewed, 99% or higher of the targeted number of households were interviewed.105 This low sample attrition (i.e. households randomly selected to be interviewed not being interviewed) is unsurprising, as household interviews were conducted shortly after the household census.
A potential source of bias in Helen Keller's coverage surveys is their heavy reliance on self-reported responses. The questionnaire used during household interviews instructs data collectors to ask household members questions about VAS and other interventions, such as deworming, received by each eligible child in the household during the relevant campaign.108 We believe that these responses are at risk of recall bias, as respondents must answer questions about multiple interventions and possibly multiple children. This concern is mitigated by the fact that in most cases, the recall period for these responses was relatively short, about one month.109 Self-reported responses are also at risk of social desirability bias that could lead respondents to overreport VAS administration, if they believe that this is the preferred response of data collectors.
We would have more confidence in a survey that tested the reliability of self-reported responses against some objective measure. The questionnaire instructs data collectors to show household members vitamin A capsules and deworming tablets (or photos of these items) when asking questions about these treatments,110 but while these visual aids may improve accurate recall, they are not used to verify responses (for example, by asking respondents to identify these items before they are asked if eligible children received them).
Helen Keller's 2019 coverage surveys included an auditing procedure in which supervisors randomly selected and then re-surveyed 10% of households in order to assess the accuracy of initial results, to which they were blinded.112 We see the inclusion of such a procedure as a methodological strength, both because it may encourage accurate data collection and because it provides a check on the accuracy of results. However, we have not seen data on the level of correspondence found between initial and re-survey results.113 We are thus uncertain about the quality of survey implementation.
We believe that results from Helen Keller's coverage surveys provide relatively strong evidence that a high proportion of the target population has been reached with VAS in past campaigns. We use results about the proportion of targeted children reached, along with data on program spending, to estimate the cost of treating a child with VAS.
See this spreadsheet for all results we have seen from Helen Keller's VAS campaigns. In short, in 2019:
The evidence we have discussed to this point forms the basis of our expectation of the impact of Helen Keller's VAS campaigns. This expectation relies on the assumption that Helen Keller's support of VAS campaigns increases the number of children who receive VAS, compared to the number who would have in the absence of its support. To test whether this assumption holds up, we have considered evidence about whether Helen Keller's support of past VAS campaigns either caused those campaigns to occur or increased the coverage rates they achieved. We have found strong evidence in some cases that Helen Keller's financial support enables VAS mass campaigns to occur.
Helen Keller's support may impact the outcome of VAS mass campaigns in the following ways:
We have completed case studies on the types of impact Helen Keller's involvement may have on VAS mass campaigns for a selection of Helen Keller's past country programs. Helen Keller selected the countries for these case studies based on the availability of in-country staff for phone interviews; we are uncertain how representative our five country case studies are of the thirteen countries in which Helen Keller has recently supported VAS programs.
In our case studies, we found strong evidence in a few cases that Helen Keller's financial support enables mass distributions of VAS to occur. We have not yet seen evidence we find convincing that Helen Keller's technical assistance enables mass distribution programs to achieve higher coverage rates than the programs would achieve in Helen Keller's absence, primarily because we lack information about coverage rates in areas without Helen Keller-supported programs (details in footnote).123
The full details of our case studies are available in this spreadsheet.
In this section, we consider factors that are not accounted for in the above evidence that could offset the impact of Helen Keller's VAS campaigns, either through reducing their effectiveness or contributing to negative outcomes.
We estimate that on average the total cost to deliver a vitamin A supplement through Helen Keller-supported mass distribution programs is $1.10.
For programs that distribute health commodities, our general approach for calculating a "cost per item delivered" estimate is to identify comparable data on costs and items delivered and take the ratio.
We try to include all costs incurred to carry out a project, not just those that the charity in question pays for itself. We start with this total cost figure and apply adjustments in our cost-effectiveness analysis to account for cases in which we believe the charity's funds have caused other actors to shift funds from a less cost-effective use to a more cost-effective use ("leverage") or from a more cost-effective use to a less cost-effective use ("funging").
We prefer to calculate average "cost per item delivered" estimates using data from a broadly representative sample of mass distribution rounds, since costs may vary considerably in different contexts.
We have used the following inputs to construct our cost per supplement estimate for Helen Keller:
Using the approach described in the section above, we estimate that it costs $1.10 on average to deliver a vitamin A supplement in Helen Keller-supported VAS mass distribution programs. Full details are in this spreadsheet.
The following are key limitations of our cost per supplement analysis:
See our most recent cost-effectiveness model for estimates of the cost per life saved through Helen Keller's VAS programs.
There are limitations to this kind of cost-effectiveness analysis, and we believe that cost-effectiveness estimates such as these should not be taken literally, due to the significant uncertainty around them. We provide these estimates (a) for comparative purposes and (b) because working on them helps us ensure that we are thinking through as many of the relevant issues as possible.
Helen Keller-supported VAS campaigns also deliver additional interventions alongside VAS, including deworming, polio vaccination, "mop-up" immunizations (for children who have missed scheduled immunizations), and screening for severe acute malnutrition and moderate acute malnutrition.145 A major limitation of our cost-effectiveness analysis of Helen Keller is that we do not directly include benefits resulting from interventions delivered alongside VAS in Helen Keller-supported programs.146
We believe that Helen Keller could use more funding than it expects to receive to expand its support of VAS mass campaigns in Cameroon, Kenya, and additional states in Nigeria. In short:
In sum, we estimate that Helen Keller could use up to an additional $12.7 million to support VAS mass campaigns. We have substantial uncertainties about these funding gaps (details below).
More details and calculations in this spreadsheet. Below, we discuss our approach to assessing Helen Keller's room for more funding.
In general, we assess top charities' funding needs over a three-year period.147 We ask top charities to report their ideal budgets over the next three years, along with information about their current available funding and funding pipeline. The difference between a charity's three-year budget and the funding we project that it will have available to support that budget is the charity's room for more funding. For this analysis, we focus only on Helen Keller's programs supporting VAS mass campaigns.
As of June 30, 2020, Helen Keller held $2.0 million in funding available to support additional future work. This figure represents the $23.3 million in funding Helen Keller had in the bank,148 less the $21.3 million in funding it had already committed to future activities. Helen Keller's funding commitments include providing support to VAS mass campaigns in upcoming years in Burkina Faso, Côte d'Ivoire, Democratic Republic of the Congo, Guinea, Kenya, Mali, Niger, and Nigeria.
More details and calculations in this spreadsheet, sheets "Available and expected funding" and "Spending opportunities."
We project that Helen Keller will receive an additional $11.8 million to support its work over the next three years. This projection represents our best guess based on past revenue and our understanding of Helen Keller's funding pipeline. It excludes any funding we may specifically recommend to Helen Keller, beyond our November 2020 recommendation to Open Philanthropy described below.
We include the following sources of funding in our projection:
We assume for our projection that two foundations that have previously supported Helen Keller's VAS mass campaigns will renew their support in 2022 and 2023—we are uncertain about whether these foundations will in fact make additional grants to Helen Keller.151
More details and calculations in this spreadsheet, sheets "Available and expected funding" and "Additional calculations."
Between 2006 and 2016, Helen Keller's VAS programs were primarily funded by Global Affairs Canada.152 Most recently, Global Affairs Canada granted $29 million CAD to Helen Keller to support VAS programs in 13 countries in sub-Saharan Africa between 2013 and 2016.153 Helen Keller submitted a concept note to Global Affairs Canada for the continuation of these programs between 2016 and 2021, but Helen Keller did not receive a new grant.154
Global Affairs Canada has also made grants to UNICEF and Nutrition International to support VAS programs in sub-Saharan Africa.155 Helen Keller told us that, going forward, Global Affairs Canada planned to grant funds only to UNICEF for VAS programs in order to ease administrative burdens.156
Helen Keller has identified opportunities to spend up to $24.4 million, beyond the funding it currently holds or projects to receive. After applying Helen Keller's expected funding, we estimate that Helen Keller could use up to an additional $12.7 million in funding over the next three years to expand its support of VAS programs in Cameroon, Kenya, and four states in Nigeria.
For these funding gaps, we note open questions about what would happen in the absence of Helen Keller's support:
More details and calculations in this spreadsheet, sheets "RFMF projections" and "Spending opportunities."
Global Affairs Canada granted 70 million CAD to Helen Keller and UNICEF for VAS programs between 2013 and 2016 and made a new grant of 70 million CAD to UNICEF for VAS programs between 2016 and 2020.167 Due to declines in the value of the Canadian dollar relative to the US dollar, granting 70 million CAD over four years rather than three years, and an increase in the proportion of the grant intended to cover immunization activities, it appears that Global Affairs Canada is now granting considerably less funding per year for VAS programs in total than it did between 2013 and 2016.168
Our understanding is that prior to 2016, Global Affairs Canada was the only large funder supporting the implementation of VAS programs, and that no other major funders have begun supporting VAS programs since 2016.169
We use qualitative assessments of our top charities to inform our funding recommendations. See this page for more information about this process and for our qualitative assessment of Helen Keller as an organization.
We have published notes from some of our conversations with Helen Keller staff:
"We currently have more than 120 programs in 20 African and Asian countries.
"Part of this work is focused on preventing blindness and vision loss for millions of vulnerable people through cataract surgery, vision correction, vitamin A supplementation, screening and treatment for diabetic retinopathy, and distribution of treatments and cures for neglected tropical diseases.
"We also work to reduce malnutrition by promoting solutions aimed at improving nutrition practices for millions of families. These include vitamin A supplementation, maternal and child nutrition education, fortification of staple foods with essential nutrients, globally recognized family-led agricultural programs and community-based management of acute malnutrition." HKI website About Us
"Vitamin A is an essential nutrient needed in small amounts for the normal functioning of the visual system, and maintenance of cell function for growth, epithelial integrity, red blood cell production, immunity and reproduction. Essential nutrients cannot be synthesized by the body and therefore must be provided through diet." WHO Global prevalence of vitamin A deficiency in populations at risk 2009, Pg 1.
WHO Global prevalence of vitamin A deficiency in populations at risk 2009:
"Usually, VAD develops in an environment of ecological, social and economical deprivation, in which a chronically deficient dietary intake of vitamin A coexists with severe infections, such as measles, and frequent infections causing diarrhoea and respiratory diseases that can lower intake through depressed appetite and absorption, and deplete body stores of vitamin A through excessive metabolism and excretion. The consequent 'synergism' can result in the body’s liver stores becoming depleted and peripheral tissue and serum retinol concentrations decreasing to deficient levels, raising the risks of xerophthalmia, further infection, other VADD and mortality." Pg 1.
"Low vitamin A intake during nutritionally demanding periods in life, such as infancy, childhood, pregnancy and lactation, greatly raises the risk of health consequences, or vitamin A deficiency disorders (VADD)." WHO Global prevalence of vitamin A deficiency in populations at risk 2009, Pg 1.
"Mass distribution campaigns are the main delivery mechanism for VAS. These campaigns are organized at least every 6 months...
"Because mass campaigns take place only every 4 to 6 months, children who reach the age of 6 months between two campaigns, may have to wait several months before they get their first dose of Vitamin A despite being the most vulnerable age group.
"To remedy this, HKI is working closely with country-level health sector experts to add a contact point in national immunization calendars – at 6 months, when no other vaccination is scheduled.
"Additionally, HKI supports routine facility-based and outreach delivery of vitamin A for all children under 5 in countries where stronger health systems offer sufficient access to quality services. Few countries are ready for this approach and these still need to develop social mobilization actions to create demand to match the capacity to offer services." HKI VAS overview brochure, Pg 2.
GiveWell's notes from a site visit with HKI to Conakry, Guinea, October 9-11, 2017, Pg 3.
"To remedy this, HKI is working closely with country-level health sector experts to add a contact point in national immunization calendars – at 6 months, when no other vaccination is scheduled." HKI VAS overview brochure, Pg 2.
HKI VAS overview brochure, Pg 3.
"In concrete terms, HKI, in consultation with national government counterparts, directs its support to low performing areas to help local program managers identify and solve VAS coverage barriers. This involves organizing workshops with state and district health authorities to analyze what worked and what did not. HKI teams then spend time with health managers to help them identify feasible and cost-effective solutions to improve performance of the targeted services and accompany them through the whole programming cycle (i.e. planning, budgeting, implementation, real time supervision and monitoring, and finally evaluation of the progress made). One cycle sometimes proves insufficient so the HKI teams continue working with each targeted health district until minimum thresholds of performance are met. Funds are used to support deployment of HKI teams in remote areas, to support financing workshops and joint field supervisions, to provide training for field actors, or to organize coverage surveys and review meetings at the end of the exercise. In some cases, HKI provides funds directly to the local authorities to fill financial gaps they may experience ensuring rigorous financial accountability. When conditions for a change of approach are met, HKI provides technical assistance to local authorities to design, implement and monitor with them innovative approaches such as the 6-month contact point or SMS messaging." HKI VAS documents guide for GiveWell 2017, Pgs 3-4.
"In most countries, HKI teams spent around 10% of their time working with the national government to advocate for VAS. HKI advocated for domestic budgets to take a greater proportion of the costs of VAS, to integrate VAS in national health and nutrition policy documents and in pluriannual strategies or action plans, supporting coordination between actors and sectors and promoting monitoring of VAS at national level to provide the government with a comprehensive vision of the services for the whole country." HKI country-level technical support related to vitamin A supplementation, Pg 1.
"Because mass campaigns take place only every 4 to 6 months, children who reach the age of 6 months between two campaigns, may have to wait several months before they get their first dose of Vitamin A despite being the most vulnerable age group.
"To remedy this, HKI is working closely with country-level health sector experts to add a contact point in national immunization calendars – at 6 months, when no other vaccination is scheduled." HKI VAS overview brochure, Pg 2.
GiveWell-directed funding supported at least 81% of Helen Keller's VAS campaign work in 2018 and at least 78% in 2019. See this spreadsheet, sheet "Source: VAS 2018 Expense Summary," cell C43 and sheet "Source: VAS 2019 Annual Report," cells B45:D45.
Helen Keller told us that this spending went exclusively to the country's routine delivery program, rather than VAS campaigns.
In some locations, Helen Keller provides funding for VAS campaigns through sub-agreements with regional or district-level governments. Dr. Rolf Klemm, Vice President of Nutrition, and David Doledec, Regional Vitamin A Supplementation Program Manager, Helen Keller International, conversation with GiveWell, March 30, 2020.
"The current grant amounts to CDN$29,000,000 over a three-year period (2013–2016) and is entitled “Scaling Up Nutrition through Integrated Life-Saving Interventions.” The two primary anticipated outcomes of the project are:
HKI External Evaluation and HKI Response - Canada DFATD VAS Project 2015, Pg 1.
Imdad et al. 2017, Pg 18, Figure 3.
Cochrane Handbook section 9.5.4: Incorporating heterogeneity into random-effects models:
The DEVTA researchers conducted a meta-analysis of DEVTA and eight previous large trials where pre-school children were provided with multiple doses of VAS per year. They found “heterogeneity between DEVTA and subtotal of eight previous trials p = 0.0010.” Awasthi et al. 2013, Pg 1475.
See our vitamin A intervention report for sources and details.
"Organizations in the Global Alliance for Vitamin A (GAVA) currently use 10% VAD as the threshold at or above which VAS programs ought to be maintained in a region. The World Health Organization (WHO) classifies VAD rates of 20% or greater among preschool-aged children as a serious public health problem. VAD rates of less than 5% are accepted as not much of a concern." GiveWell's non-verbatim summary of a conversation with Helen Keller International, June 1, 2017, Pg 2.
"Two sets of indicators of VAD are commonly used for population surveys: clinically assessed eye signs and bio-chemically determined concentrations of retinol in plasma or serum. The term xerophthalmia encompasses the clinical spectrum of ocular manifestations of VAD, from milder stages of night blindness and Bitot’s spots, to potentially blinding stages of corneal xerosis, ulceration and necrosis (keratomalacia) (17), as listed in Table 1. The stages of xerophthalmia are regarded both as disorders and clinical indicators of VAD, and thus can be used to estimate an important aspect of morbidity and blinding disability as well as the prevalence of deficiency. As corneal disease is rare, the most commonly assessed stages are night blindness, obtainable by history, and Bitot’s spots, observable by handlight examination of the conjunctival surface. Standard procedures exist for assessing xerophthalmia (17). Although night blindness and Bitot’s spots are considered mild stages of eye disease, both represent moderate-to-severe systemic VAD, as evidenced by low serum retinol concentrations (19), and increased severity of infectious morbidity (i.e. diarrhoea and respiratory infections) and mortality in children (5) and pregnant women (6, 20).
"Measuring serum retinol concentrations in a population constitutes the second major approach to assessing vitamin A status in a population, with values below a cut-off of 0.70 μmol/l representing VAD (21), and below 0.35 μmol/l representing severe VAD. Although there is not yet international consensus, a serum retinol concentration below a cut-off of 1.05 μmol/l has been proposed to reflect low vitamin A status among pregnant and lactating women (22). While the distribution of serum retinol concentrations below appropriate cut-offs are considered to reflect inadequate states of vitamin A nutriture, a low biochemical concentration of retinol in circulation is not considered a VADD. Also, while an inadequate dietary intake of vitamin A or beta-carotene likely reveals an important and preventable cause of VAD in a population, it is not an indicator of vitamin A status." WHO Global prevalence of vitamin A deficiency in populations at risk 2009, Pg 2.
"Measuring serum retinol concentrations in a population constitutes the second major approach to assessing vitamin A status in a population, with values below a cut-off of 0.70 µmol/l representing VAD (21), and below 0.35 µmol/l representing severe VAD." WHO Global prevalence of vitamin A deficiency in populations at risk 2009, Pg 2.
Our process for creating our weighted average estimate of VAD prevalence in populations studied in VAS trials is as follows:
See this spreadsheet, Sheet "VAD where HKI works (or plans to work)."
See this spreadsheet, Sheet "VAD where HKI works (or plans to work)."
See this spreadsheet, Sheet "VAD in other countries in sub-Saharan Africa."
Incidence of Bitot's spots was significantly lower in treatment groups in trials of VAS included in the meta-analysis Imdad et al. 2017: RR 0.42, 95% CI 0.33 to 0.53. Pg 5.
See footnote above and results for Sierra Leone, Malawi, and Kenya in this spreadsheet
See Wirth et al. 2017, Pgs 6-7, for a list of countries in which biofortified crop programs have been implemented.
See this spreadsheet, Sheet "VAD where HKI works (or plans to work)" for sources and details.
See this spreadsheet, Sheet "VAD where HKI works (or plans to work)," Cells K4, K5, and K12 for sources and details.
"There is likely a threshold of VAD prevalence below which VAS is unlikely to have much impact on mortality. If there is high-quality data showing low VAD in a region, Helen Keller thinks it is reasonable not to expect VAS to have a mortality impact there.
"Organizations in the Global Alliance for Vitamin A (GAVA) currently use 10% VAD as the threshold at or above which VAS programs ought to be maintained in a region. The World Health Organization (WHO) classifies VAD rates of 20% or greater among preschool-aged children as a serious public health problem. VAD rates of less than 5% are accepted as not much of a concern.
"Despite a lack of recent micronutrient analyses in many African countries, HKI is confident that VAD is prevalent enough in many places for VAS to remain an impactful intervention. For instance, while HKI is not aware of any recent micronutrient deficiency data in Mali, it would be surprising if VAD were not prevalent there, given Mali's child mortality and malnutrition rates." GiveWell's non-verbatim summary of a conversation with Helen Keller International, June 1, 2017, Pg 2.
"Despite the lack of data, Dr. Tanumihardjo thinks it is unlikely that oil fortification programs across sub-Saharan Africa are working well enough to render VAS programs unnecessary in most countries, given that many of the oil fortification programs are relatively new. Over the next few years, we may gain enough data on rates of VAD to make an informed decision about whether to continue or scale back VAS programs. If there were strong evidence that a country's vitamin A fortification program was effectively fortifying food and reaching target populations, it may be appropriate to scale back the programs. Dr. Tanumihardjo thinks it would be premature to start scaling back VAS programs before we have these data." GiveWell's non-verbatim summary of conversations with Sherry Tanumihardjo, October 17 and 27, 2017, Pg 2.
See our estimates in this spreadsheet, "VAD where HKI works (or plans to work)" sheet, column N.
"For many countries, there is either no VAD survey data available or the available data is more than 10 years old. To estimate VAD prevalence for countries and years without available survey data, IHME uses the following covariates in a predictive model (all of which are inversely related to VAD prevalence):
"WHO collects results from VAD surveys in its Vitamin and Mineral Nutrition Information System (VMNIS). IHME uses these results, along with additional survey results from Demographic and Health Surveys (DHS) and other sources, as inputs for its VAD prevalence estimations.
"For many countries, there is either no VAD survey data available or the available data is more than 10 years old. To estimate VAD prevalence for countries and years without available survey data, IHME uses the following covariates in a predictive model (all of which are inversely related to VAD prevalence):
"This funding has been used to support VAS programs in 6 countries to date: Burkina Faso, Côte d’Ivoire, Guinea, Kenya, Mali and Niger." HKI room for more funding report July 2019, Pg 2.
"In collaboration with the Food and Agriculture Organization of the United Nations, IHME developed a global database (encompassing all 195 GBD countries) for the availability of 170 different nutrients. In its model of VAD prevalence, IHME treats vitamin A availability in national food supplies as a proxy for vitamin A consumption, but it does not account for consumption of vitamin A fortified foods—fortification data is often either unavailable or incomplete." GiveWell's non-verbatim summary of a conversation with the Institute for Health Metrics and Evaluation, April 5, 2019, Pg 2.
"For many countries, there is either no VAD survey data available or the available data is more than 10 years old. To estimate VAD prevalence for countries and years without available survey data, IHME uses the following covariates in a predictive model (all of which are inversely related to VAD prevalence):
See this spreadsheet, "Child mortality rates by country" sheet for our calculations.
See the "Improved overall health conditions" and "Interpreting the evidence in light of DEVTA" sections of our vitamin A supplementation intervention report for more information on baseline child mortality rates in VAS trials.
See this spreadsheet, Sheet “Child mortality rates by country,” Row 20 for full details.
Imdad et al. 2017, Pgs 111-112, Analysis 1.1.
“Deaths per child-care centre at ages 1.0–60 years during the 5-year study (the primary trial endpoint) were 3.01 retinol versus 3.15 control (absolute reduction 0.14 [SE 0.11], mortality rate ratio [RR] 0.96, 95% CI 0.89–1.03, p=0.22), suggesting absolute risks of death between ages 1.0 and 6.0 years of approximately 2.5% retinol versus 2.6% control.” Awasthi et al. 2013, Pg 1473
Inputs to mortality rate in DEVTA (xlsx)
Table III, West et al. 1991, Pg. 68
Table III, Daulaire et al. 1992, Pg. 208
"Nine trials reported mortality due to diarrhoea and showed a 12% overall reduction for VAS (RR 0.88, 95% CI 0.79 to 0.98; 1,098,538 participants; high-quality evidence). There was no significant effect for VAS on mortality due to measles, respiratory disease, and meningitis. Imdad et al. 2017, Pg 2.
"There was no significant effect for VAS on mortality due to measles, respiratory disease, and meningitis. VAS reduced incidence of diarrhoea (RR 0.85, 95% CI 0.82 to 0.87; 15 studies; 77,946 participants; low-quality evidence) and measles (RR 0.50, 95% CI 0.37 to 0.67; 6 studies; 19,566 participants; moderate-quality evidence)." Imdad et al. 2017, Pg 2.
See this spreadsheet, sheet "Comprehensiveness (2018-19)" for details.
See this spreadsheet, sheet "Comprehensiveness (2018-19)" for details.
See this spreadsheet, sheet "Comprehensiveness (2018-19)," cell D83.
See this spreadsheet, sheet "Comprehensiveness (2018-19)."
Helen Keller has shared a report from an evaluation it conducted in Kenya of a separate program: HKI, Final evaluation of Every Child Thrives (ECT) Project in Kenya, 2020. This evaluation included a limited coverage survey that assessed VAS coverage in three sub-counties within the eight counties supported by Helen Keller. We have low confidence in the representativeness of these results and thus have not reviewed this report in depth.
See the most recent version of the model here, line "Misappropriation without monitoring results."
See this spreadsheet, sheet "Results analysis (2013-19)" for details.
We have seen coverage surveys (and estimates of total vitamin A supplements delivered from administrative data for corresponding distributions) representing around 19% of the total vitamin A supplements delivered with Helen Keller support between 2013 and 2016:
See HKI, Post-event coverage survey guide, 2019.
HKI, conversation with GiveWell, March 30, 2020 (unpublished).
See the most recent version of the model here, line "False monitoring results."
For details of standard sampling procedure, see pgs. 18-24 of HKI, Post-event coverage survey guide, 2019.
See this spreadsheet, sheet "Methods (2019), row 5.
See this spreadsheet, sheet "Methods (2019), row 6.
“This first step will consist in listing all the eligible households in each cluster. The maps of sampled clusters will be handed to the enumerators who, once in the cluster, will enumerate all the households in the cluster and enter the identification number of each identified household on their door and on the household census form…Each evening, all the team leaders will report the households surveyed by cluster to the senior supervisor, indicating the number of eligible households identified per cluster. A random sampling using the function RANDBETWEEN (min, max) of Excel will be used for the household sampling. It's a simple matter of entering as minimum value 1 and maximum value the number of eligible households in the cluster and then draw the function on the number of households to be surveyed. Thus, we have a list of number of households and only these households will be surveyed (since each household in the cluster is numbered from 1 to n). An inventory form of households selected in this way will be established for monitoring.” HKI, Post-event coverage survey guide, 2019, pgs. 30-31.
See this spreadsheet, sheet "Methods (2019), row 7.
Our understanding that all eligible children in selected households are surveyed comes from Helen Keller, conversation with GiveWell, March 30, 2020 (unpublished).
"Note that supervisors accompany the data collection teams during the census and survey, which one might assume would minimize this potential for 'convenience' bias. Also, it should be noted that the national statistics office provides an estimate of the expected average number of households per cluster which is compared with the census number of households before survey households are selected. Wide disparities between the two estimates are flagged." Helen Keller, comments on a draft of this page, October 2020.
“If the respondent is absent at the first visit, return at least twice more.” HKI, Post-event coverage survey guide, 2019, pg. 31.
See this spreadsheet, sheet "Methods (2019), rows 7 and 8.
See this spreadsheet, sheet "Methods (2019), rows 7 and 8.
See this spreadsheet, sheet "Methods (2019), row 8.
See example here: HKI, Post-event coverage survey questionnaires, 2019
See this spreadsheet, sheet "Methods (2019), row 10.
See this spreadsheet, sheet "Methods (2019), row 9.
See this spreadsheet, sheet "Methods (2019), row 9. An exception is the coverage survey for the first 2019 campaign in Guinea, where data collection occurred up to two months after the campaign (cell E9).
“(Show capsules or a picture of vitamin A)” HKI, Post-event coverage survey questionnaires, 2019, pg. 3.
“(Show a tablet or deworming photo).” HKI, Post-event coverage survey questionnaires, 2019, pg. 4.
See this spreadsheet, sheet "Methods (2019), row 12.
“Is it correct that the 10% re-survey procedure was used in all surveys, including those for which it is not explicitly mentioned in reports? Yes the 10% re-survey procedure was used in all surveys, indeed, the procedure for revisiting the 10% of households is part of the methodology used for the PECS surveys.
What are the details of this procedure (How are re-survey households selected? A quality control of 10% of the data collected by the interviewers is carried out by the supervisor, thus, in each locality the supervisor randomly selects one (01) household already surveyed and asks some essential questions (i.e. linked with coverage) from the household questionnaire and adapted for a double interview in order to evaluate the coverage of services provided to these surveyed households. The household responses from the first interview will be compared to those from the second interview. The household identification number writen on their door by the interviewers helps the supervisor to easily locate the drawn households.
Are supervisors blinded to initial results? Yes, The supervisor does not have access to the initial results before going to the field to draw the 10% of households to be surveyed. The random sampling of the 10% households is done once in the cluster by the supervisor.
What is the process for correcting issues? If both the interviewer and the supervisor are in the cluster, the supervisor conducts the verification and provides feedback to the interviewer to return to the household if necessary or to improve future surveys. If the interviewer and the supervisor are not in the cluster together, the verification data are sent to the platform and the ONA platform manager provides daily feedback on the concordance of the data to return to improve future surveys. In all cases, the household responses from the first interview will be compared to those from the second interview.” Helen Keller, answers to GiveWell’s questions, September 30, 2020
See this spreadsheet, sheet "Methods (2019), row 11.
See this spreadsheet, sheet "Methods (2019), row 15.
See this spreadsheet, sheet "Methods (2019), rows 8 and 15.
See this spreadsheet, sheet "Results summary," cell B12.
See this spreadsheet, sheet "Results summary," cell B13 and sheet "Coverage (2019)," cell E18.
See this spreadsheet, sheet "Results summary," cell B14 and sheet "Coverage (2019)," cell E20.
See this spreadsheet, sheet "Results summary," cell B4.
This is our understanding from multiple conversations with Helen Keller.
"HKI teams work closely with national governments to support the policy, strategy and tool development mentioned above, but HKI’s major added value is its capacity to rapidly deploy technical support to the sub national level to assist local health authorities with implementing national VAS strategies. HKI focus its efforts sub-nationally because local level (at state and/or district level) health system performance is key to ensuring high VAS coverage. It also allows HKI to support other health system functions that also improve the delivery of other maternal and child health services.
"In concrete terms, HKI, in consultation with national government counterparts, directs its support to low performing areas to help local program managers identify and solve VAS coverage barriers. This involves organizing workshops with state and district health authorities to analyze what worked and what did not. HKI teams then spend time with health managers to help them identify feasible and cost-effective solutions to improve performance of the targeted services and accompany them through the whole programming cycle (i.e. planning, budgeting, implementation, real time supervision and monitoring, and finally evaluation of the progress made). One cycle sometimes proves insufficient so the HKI teams continue working with each targeted health district until minimum thresholds of performance are met. Funds are used to support deployment of HKI teams in remote areas, to support financing workshops and joint field supervisions, to provide training for field actors, or to organize coverage surveys and review meetings at the end of the exercise. In some cases, HKI provides funds directly to the local authorities to fill financial gaps they may experience ensuring rigorous financial accountability. When conditions for a change of approach are met, HKI provides technical assistance to local authorities to design, implement and monitor with them innovative approaches such as the 6-month contact point or SMS messaging." HKI VAS documents guide for GiveWell 2017, Pg 2.
"Many African countries are facing funding shortfalls around VAS, and some planned VAS mass campaigns have had to be cancelled. For instance, in Mali (which HKI does not currently have funds to support, but which received support from HKI for VAS programs in 2013-16), it is not clear whether VAS mass campaigns will occur at all without external technical assistance from HKI. HKI still expects vitamin A capsules to be provided to countries in sufficient numbers, but there is a risk of millions of capsules remaining undistributed if campaigns are underfunded." GiveWell's non-verbatim summary of a conversation with Helen Keller International, June 1, 2017, Pg 7.
"We reanalyzed the data to explore the hypothesis that VAS reduces mortality in children who had bacille Calmette-Guerin or measles vaccine as their most recent vaccine but increased mortality when diphtheria-tetanus-pertussis vaccine (DTP) was the most recent vaccine. On the basis of previous studies, we expected the effects to be strongest in girls." Benn et al. 2009, Pg 629.
"As hypothesized, the reanalysis suggests important interactions between VAS, sex, and vaccines. VAS was associated with a strong beneficial effect in children with no record of vaccination, whereas there was almost no effect for those who had been vaccinated. This differential effect was due to a difference in girls, in whom VAS was associated with a decrease in mortality in the unvaccinated but in whom VAS was associated with a nonsignificant increase in mortality in the vaccinated (Table 2). This was due to a differential effect of VAS according to vaccination type. Among girls who had already received MV at enrollment, VAS was associated with significantly higher mortality. This was only seen in girls who were missing doses of DTP at enrollment and were therefore likely to receive them during follow-up (Table 5)." Benn et al. 2009, Pg 635.
"Between August 2007 and November 2010, 7587 children were enrolled. Within 6 months of follow-up 80 non-accident deaths occurred (VAS: 38; placebo: 42). The mortality rate ratio (MRR)comparing VAS versus placebo recipients was 0.91 (95% confidence interval 0.59–1.41) and differed significantly between boys (MRR1.92 [0.98–3.75]) and girls (MRR 0.45 [0.24–0.87]) (P= .003 for interaction between VAS and gender). At enrollment, 42% (3161/7587) received live measles vaccine, 29% (2154/7587) received inactivated diphtheria-tetanus-pertussis–containing vaccines, and 21% (1610/7587)received both live and inactivated vaccines. The effect of VAS did not differ by vaccine group." Fisker et al. 2014, Pg e739.
See this document for our research on the biological plausibility of interactions between vitamin A supplementation and vaccine effectiveness.
"When the correct age-specific dose of vitamin A is given with immunization, mild side-effects or adverse events may be observed. However, they are rare and transient. Occasionally, some children experience loose stools, headache, irritability, fever, nausea, and vomiting. Depending on age and the dosage given, the excess rate of occurrence of these mild symptoms of intolerance has shown be in the range of 1.5-7% (Florentino et al., 1990; West et al., 1992; Agoestina et al., 1994). These side-effects disappear in practically all children within 24-48 hours (Florentino et al., 1990; West et al., 1992; Agoestina et al., 1994)." WHO vitamin A supplements adverse events, Pgs 1-2.
"When the correct age-specific dose of vitamin A is given with immunization, mild side-effects or adverse events may be observed. However, they are rare and transient. Occasionally, some children experience loose stools, headache, irritability, fever, nausea, and vomiting. Depending on age and the dosage given, the excess rate of occurrence of these mild symptoms of intolerance has shown be in the range of 1.5-7% (Florentino et al., 1990; West et al., 1992; Agoestina et al., 1994). These side-effects disappear in practically all children within 24-48 hours (Florentino et al., 1990; West et al., 1992; Agoestina et al., 1994)." WHO vitamin A supplements adverse events, Pgs 1-2.
WHO vitamin A supplements adverse events:
"[HKI:] This is a legitimate question and one we have had to think about carefully as we started to promote and support the 6 month contact point (6MCP). First, receiving two doses in a short time frame poses some, but minimal, risks for children as the toxicity thresholds go far beyond receiving two doses (see attached document on Adverse events following administration of VAS)."
HKI responses to GiveWell's questions May 2017
For example, see discussion of GiveWell staff's observations in October 2017 Maternal and Child Health Week in Guinea, GiveWell's notes from a site visit with HKI to Conakry, Guinea, October 9-11, 2017, Pgs 11-14.
For example, see discussion of GiveWell staff's observations in October 2017 Maternal and Child Health Week in Guinea, GiveWell's notes from a site visit with HKI to Conakry, Guinea, October 9-11, 2017, Pgs 11-14.
See the "HKI 2018-2019 spending" sheet in our 2020 cost per supplement analysis for Helen Keller.
See the "Budgets of other organizations" sheet in our 2020 cost per supplement analysis for Helen Keller.
See the "In-kind government costs" sections on the "Cost per supplement" sheets for Guinea, Mali, Burkina Faso, and Niger of our 2020 cost per supplement analysis for Helen Keller.
See the "Supplements delivered in HKI-supported areas" sheet in our 2020 cost per supplement analysis for Helen Keller.
See our 2020 cost per supplement analysis spreadsheet, "HKI budgets of other organizations" sheet.
See our 2020 cost per supplement analysis spreadsheet, "Cost per supplement" sheets for Guinea, Mali, Burkina Faso, and Niger.
See this section of our review of the Schistosomiasis Control Initiative for details.
See our 2020 cost per supplement analysis spreadsheet, "Supplements delivered in HKI-supported areas" sheet.
See this spreadsheet for the list of interventions provided in Guinea, Burkina Faso, Côte d'Ivoire, Niger, Kenya, and Mali in 2019.
On the "inclusion/exclusion" sheet in our cost-effectiveness analysis, we include a rough estimation of the impact these additional interventions would have on Helen Keller's cost-effectiveness. See our most recent cost-effectiveness analysis here.
For a discussion of why we consider funding a charity's work up to three years in the future, see this blog post.
Some of our top charities have a policy of holding funding reserves. In our room for more funding analyses, we include reserved funding as funding available to support program activities. We do this both to ensure consistency across top charities (as not all top charities hold reserves) and to understand the true effect of granting additional funding (i.e. whether additional funding would support undertaking additional program activities versus building or maintaining reserves).
Open Philanthropy, a philanthropic organization with which we work closely, is the largest single funder of our top charities. The vast majority of Open Philanthropy's current giving comes from Good Ventures. We make recommendations to Open Philanthropy each year for how much funding to provide to our top charities and how to allocate that funding among them.
In our projections of future funding, we typically count only one year of funding that an organization receives as a result of being on our list of top charities in order to retain the flexibility to change our recommendations in future years.
See "Projected revenue (before GiveWell's 2020 recommendations)" section, "Additional calculations" sheet, GiveWell's room for more funding analysis for Helen Keller's vitamin A supplementation program (mass campaigns only) [2020].
"It's not yet clear how the move will affect the work of the Canadian International Development Agency, which is currently the responsibility of International Co-operation Minister Julian Fantino, but the fact the minister's powers are about to be enshrined in law is seen as a positive sign for its future.
"In the past, ministers in charge of CIDA haven't had the same enshrinement in law as other federal cabinet ministers.
"The new department will be known as the Department of Foreign Affairs, Trade and Development." CBC News 2013
"The current grant amounts to CDN$29,000,000 over a three-year period (2013–2016) and is entitled 'Scaling Up Nutrition through Integrated Life-Saving Interventions.' The two primary anticipated outcomes of the project are:
HKI External Evaluation and HKI Response - Canada DFATD VAS Project 2015, Pg 1.
HKI VAS concept note, Pg 4.
"In a three-year period between 2013 and 2016, GAC granted around $30 million (CAD) to HKI as well as provided significant funding to UNICEF and the Canadian-based Nutrition International for VAS programs in SSA." GiveWell's non-verbatim summary of a conversation with Helen Keller International, June 1, 2017, Pg 6.
"In a three-year period between 2013 and 2016, GAC granted around $30 million (CAD) to HKI as well as provided significant funding to UNICEF and the Canadian-based Nutrition International for VAS programs in SSA. Going forward, GAC will be passing its VAS funding directly to UNICEF to ease the administration burden of managing two separate grants with the expectation that UNICEF will use some of this funding to provide grants to other organizations supporting VAS programs, including HKI." GiveWell's non-verbatim summary of a conversation with Helen Keller International, June 1, 2017, Pgs 6-7.
"In Cameroon, the under-five mortality rate remains high with 112 deaths per 1,000 live births and is even higher in the Far North (154/1,000) and North (173/1,000) regions. These two regions include ~37 percent of children HKI, Room for more funding report, July 2020 (redacted), Pg 11.
@Rolf Klemm, Vice President of Nutrition, HKI, and David Doledec, Regional VAS Program Manager, HKI, conversation with GiveWell, August 27, 2020@
We discuss Helen Keller's proposal to work in Bauchi State and the results of the baseline coverage survey in our blog post Why ongoing assessment of top charities leads to more impact: HKI’s vitamin A supplementation program.
HKI, Nasarawa State rapid qualitative assessment of health facilities for VAS implementation, 2020
"UNICEF has provided VAS support to the majority of the country’s counties until recently. In 2020, UNICEF announced that its support to VAS will be drastically reduced leaving many counties will little or no support and putting many children at risk of not receiving VAS. Helen Keller supported five counties this year with funds received from the [redacted]; however,we anticipate that 32 counties, including those previously supported by UNICEF, are in need of VAS support. To ensure that VAS is provided to all children in the country, an additional $1,125,000 per year is needed for a total of $3,375,000 from 2021-23. With this funding level, we anticipate delivering VAS to 4,325,678 children twice per year." HKI, Room for more funding report, July 2020 (redacted), Pg 13.
"In brief, UNICEF said that the funding gap was due to reprogramming of funds to respond to the more immediate needs resulting from the COVID-19 situation..." HKI, Concept note for filling VAS funding gap in Kenya, May 2020.
"UNICEF, as a multi-national United Nations program, works in many more countries than HKI does, and has had to prioritize certain countries over others to receive GAC funding. Many UNICEF priority countries for VAS are not countries where HKI has a presence, which has meant fewer resources to continue HKI’s VAS work in those countries not prioritized by UNICEF. There are several other global trends that cause concern for the future of funding VAS programs:
GiveWell's non-verbatim summary of a conversation with Helen Keller International, June 1, 2017, Pgs 6-7.
"Global Affairs Canada (GAC), a department of the Canadian government, has funded vitamin A supplementation (VAS) work by HKI, UNICEF, and Nutrition International since the early 2000s. It has been the only major funder of VAS programs. GiveWell's notes from a site visit with HKI to Conakry, Guinea, October 9-11, 2017, Pg 1.
Helen Keller International (HKI) wrote the following in response to GiveWell's interim review of HKI. We have since updated our review of HKI so the below may not fully be up-to-date.
Published: November 2017
Helen Keller International (HKI) appreciates GiveWell’s invitation to be considered for a top charity recommendation for its vitamin A supplementation program. We have appreciated the transparency and thoroughness of GiveWell’s investigative process thus far. We also appreciate being named a standout charity based on the interim review while GiveWell undertakes additional investigation to determine if HKI qualifies as a top-rated charity.
We would like to offer the following statements in response to points made in GiveWell’s interim review:
There is no question that in contexts exhibiting public health levels of vitamin A deficiency (VAD) and UFMR, VAS (and other interventions that improve the underlying vitamin A status of risk groups) is both sight- and life-saving. This conclusion stems from the results of large, rigorously conducted community trials in South Asia and Africa, which collectively provide incontrovertible evidence that vitamin A interventions, including 6-monthly VAS, reduce early childhood mortality and blindness in undernourished populations (Mayo-Wilson et al 2011). The impact is particularly striking on fatality not only from measles but also from more common diseases such as diarrhea, dysentery and other infectious illnesses. In contexts where uncertainly exists about deficiency and mortality levels (due to the lack of recent data or other reasons) stopping or modifying VAS targets potentially puts children’s lives at risk.
But even in countries with marked mortality declines and changes in causes of death, one cannot rule out a child survival benefit in many contexts. In all, 54 countries globally had a high U5MR (defined as ≥50 per 1000 live births) in 2012 (Unicef 2014). A large proportion of these deaths are caused by infections. Furthermore, in these high-mortality countries VAD is also likely to be high (Schultink 2002), thus reinforcing the need to maintain VAS and other vitamin A interventions. Where U5MR, VAD and infectious disease rates are low, the mortality effect of VAS will likely be reduced. Nevertheless, we must bear in mind two important facts (1) the original VAS studies observed mortality impacts in settings with a wide range of mortality and morbidity rates (Beaton et al 1993), and (2) one cannot rule out the role of VAS in helping to bring down U5MR (Bishai et al 2005; Masanja et al 2008).
The question of HKI’s added value with respect to VAS programs is, in our view clear. HKI remains a global leader, innovator, advocate and technical support to VAS programs in countries and contexts where VAS should remain a priority intervention. We look forward to GiveWell’s site visits so they can learn more about the important role HKI has provided to VAS programs especially in Sub-Saharan Africa and the support it wishes to continue to provide until the scourge caused by VAD no longer plagues vulnerable populations. VAD will not disappear until vulnerable populations have achieved normal vitamin A status by sustained changes in dietary vitamin A intake. HKI strives to improve the diets through its fortification, nutrition education and food production programs. Until the time when the diets of vulnerable populations are replete with adequate intake of vitamin A, HKI believes periodic high-dose vitamin A has a vital public health role in protecting child health and survival, and thus remains committed to this sight- and life-saving intervention.
References
Beaton GH, Martorell R, Aronson KJ, Edmonston B, McCabe G, Ross AC, Harvey B. Effectiveness of Vitamin A Supplementation in the Control of Young Child Morbidity and Mortality in Developing Countries. Geneva, Switzerland: Administrative Committee on Coordination–Subcommittee on Nutrition (ACC/SCN); 1993.
Bishai D, Kumar K C S, Waters H, Koenig M, Katz J, Khatry SK, West KP Jr. The impact of vitamin A supplementation on mortality inequalities among children in Nepal. Health Policy Plan. 2005 Jan;20(1):60-6.
Habicht JP, Victora C. Vitamin A supplementation in Indian children. Lancet. 2013 Aug 17;382(9892):592.
Kumapley RS, Kupka R, Dalmiya N. The Role of Child Health Days in the Attainment of Global Deworming Coverage Targets among Preschool-Age Children. PLoS Negl Trop Dis. 2015 Nov 6;9(11).
Liu L, Johnson HL, Cousens S, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012;379:2151-61.
Mannar V, Schultink W, Spahn K. Vitamin A supplementation in Indian children. Lancet. 2013 Aug 17;382(9892):591-2.
Masanja H, de Savigny D, Smithson P, Schellenberg J, John T, Mbuya C, Upunda G, Boerma T, Victora C, Smith T, Mshinda H. Child survival gains in Tanzania: analysis of data from demographic and health surveys. Lancet. 2008 Apr 12;371(9620):1276-83.
Mayo-Wilson E, Imdad A, Herzer K, Yakoob MY, Bhutta ZA. Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: systematic review and meta-analysis. BMJ 2011; 343.
Mayo-Wilson E, Imdad A, Herzer K, Bhutta ZA. Vitamin A supplementation in Indian children. Lancet. 2013 Aug 17;382(9892):594
Schultink W. Use of under-five mortality rate as an indicator for vitamin A deficiency in a population. J Nutr 2002;132:2881S-3S.
Sloan NL, Mitra SN. Vitamin A supplementation in Indian children. Lancet. 2013 Aug 17;382(9892):593. .
Sommer A, West KP Jr, Martorell R. Vitamin A supplementation in Indian children. Lancet. 2013 Aug 17;382(9892):591.
Stevens GA, Bennett JE, Hennocq Q, et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Glob Health. 2015;3:e528-e536.
UNICEF. The State of the World’s Children 2014 In Numbers: Every Child Counts. New York 2014.
UNICEF, WHO, Bank W, UN. Levels & Trends in Child Mortality. Report 2014. New York: UNICEF;
2014.
van den Ent MM, Brown DW, Hoekstra EJ, Christie A, Cochi SL. Measles mortality reduction contributes substantially to reduction of all cause mortality among children less than five years of age, 1990-2008. The Journal of infectious diseases 2011;204 Suppl 1:S18-23.
Wirth JP, Petry N, Tanumihardjo SA, Rogers LM, McLean E, Greig A, Garrett GS, Klemm RD, Rohner F. Vitamin A Supplementation Programs and Country-Level Evidence of Vitamin A Deficiency. Nutrients. 2017 Feb 24;9(3).