Sol

De Viquipèdia
Salta a la navegació Salta a la cerca
Per a altres significats, vegeu «Sol (desambiguació)».
Infotaula d'estrellaSolSun symbol.svg
The Sun by the Atmospheric Imaging Assembly of NASA's Solar Dynamics Observatory - 20100819-02.jpg
Dades d'observació
Format perProtuberància solar Modifica el valor a Wikidata
Magnitud aparent (V)-26,832 Modifica el valor a Wikidata
Característiques astromètriques
Distància a la Terra1 unitat astronòmica Modifica el valor a Wikidata
Magnitud absoluta4,83[1] Modifica el valor a Wikidata
Part desistema solar Modifica el valor a Wikidata
PlanetesMercuri, Venus, Terra, Mart, Júpiter, Saturn, Urà, Neptú, Plutó, Makemake, cinturó d'asteroides, 109P/Swift-Tuttle, (253) Mathilde, 4365 Ivanova (en) Tradueix, (58534) Logos, (702) Alauda, troià de Neptú, Cometa rasant de Kreutz, 8543 Tsunemi (en) Tradueix, 11792 Sidorovsky (en) Tradueix, (392741) 2012 SQ31, (8404) 1995 AN (en) Tradueix, 1927 LA, 2012 AD14, 2012 CP8, 2012 AD1, 2013 GR, 2012 KH8, 2012 VP113, 376574 Michalkusiak (en) Tradueix, 348407 Patkosandras, 420779 Świdwin, 129109 (2004 XF32), (81522) 2000 HW7 (en) Tradueix, (156810) 2003 BP49 (en) Tradueix, 333508 Voiture (en) Tradueix, 369423 Quintegr'al (en) Tradueix, 354659 Boileau, 423205 Echezeaux, 375043 Zengweizhou, 332084 Vasyakulbeda, 376029 Blahová (en) Tradueix, 450931 Coculescu, 328305 Jackmcdevitt, 359103 Ottopiene (en) Tradueix, 295472 Puy (en) Tradueix, 2015 RR245, 325369 Shishilov (en) Tradueix, 333636 Reboul (en) Tradueix, 336694 Fey (en) Tradueix, 361183 Tandon (en) Tradueix, 381458 Moiseenko (en) Tradueix, 435552 Morin, 369088 Marcus, 293499 Wolinski (en) Tradueix, 386622 New Zealand, 308197 Satrapi (en) Tradueix, 281772 Matttaylor (en) Tradueix, 320153 Eglitis (en) Tradueix, 302849 Richardboyle (en) Tradueix, 337380 Lenormand, 344641 Szeleczky (en) Tradueix, 358894 Demetrescu (en) Tradueix, 418220 Kestutis, 378721 Thizy, 365761 Popovici (en) Tradueix, 434453 Ayerdhal, 341958 Chrétien, 290074 Donasadock (en) Tradueix, 361450 Houellebecq (en) Tradueix, 337166 Ivanartioukhov (en) Tradueix, 320880 Cabu (en) Tradueix, 274856 Rosendosalvado (en) Tradueix, 308856 Daniket (en) Tradueix, 400308 Antonkutter, 378669 Rivas (en) Tradueix, 410619 Fabry, 436048 Fritzhuber, Ceres, Haumea, Eris, (4) Vesta, 138P/Shoemaker–Levy, (102) Miriam, (486958) Arrokoth, (744) Aguntina, (514107) 2015 BZ509, (12300) 1991 RX10, 65803 Didymos (en) Tradueix, (1036) Ganymed, 541132 Leleākūhonua, 11856 Nicolabonev (en) Tradueix, 3501 Olegiya (en) Tradueix, 3546 Atanasoff (en) Tradueix, 2575 Bulgaria (en) Tradueix, 12246 Pliska (en) Tradueix, 2371 Dimitrov (en) Tradueix, 2530 Shipka (en) Tradueix, 20363 Komitov (en) Tradueix, 20366 Bonev (en) Tradueix, 11852 Shoumen (en) Tradueix, 14342 Iglika (en) Tradueix, 12386 Nikolova (en) Tradueix, 13930 Tashko (en) Tradueix, 31896 Gaydarov (en) Tradueix, 204831 Levski (en) Tradueix, 343743 Kjurkchieva (en) Tradueix, 5000 IAU (en) Tradueix, (300003) 2006 UK37 (en) Tradueix, (300001) 2006 UA35 (en) Tradueix, (300002) 2006 US35 (en) Tradueix, C/2016 R2 (PANSTARRS) (en) Tradueix, 2018 VG₁₈ (en) Tradueix, (1000) Piazzia, (999) Zachia, (1002) Olbersia (oc) Tradueix, (1003) Lilofee, (1004) Belopolskya (oc) Tradueix, (1001) Gaussia (oc) Tradueix, (1005) Arago, (1024) Hale, (1023) Thomana, (1025) Riema, (1026) Ingrid, (1027) Aesculapia (oc) Tradueix, (1028) Lydina (oc) Tradueix, (1029) La Plata (oc) Tradueix, (1006) Lagrangea (oc) Tradueix, (1007) Pawlowia, (1008) La Paz (oc) Tradueix, (1009) Sirene, (1011) Laodamia, (1010) Marlene, (1014) Semphyra, (1012) Sarema, (1013) Tombecka (oc) Tradueix, (1017) Jacqueline, (1018) Arnolda, (1015) Christa, (1016) Anitra, (1019) Strackea, (1020) Arcadia, (1021) Flammario (oc) Tradueix, (1022) Olympiada (oc) Tradueix, (1058) Grubba (oc) Tradueix, (1056) Azalea, (1059) Mussorgskia (oc) Tradueix, (1060) Magnolia, (1061) Paeonia, (1062) Ljuba (oc) Tradueix, (1063) Aquilegia, (1064) Aethusa, (1066) Lobelia, (1065) Amundsenia, (1067) Lunaria, (1068) Nofretete (oc) Tradueix, (1069) Planckia (oc) Tradueix, (1071) Brita (oc) Tradueix, (1070) Tunica, (1072) Malva, (1073) Gellivara, (1074) Beljawskya (oc) Tradueix, (1076) Viola, (1075) Helina (oc) Tradueix, (1077) Campanula, (1078) Mentha, (1030) Vitja (oc) Tradueix, (1031) Arctica (oc) Tradueix, (1032) Pafuri, (1033) Simona (oc) Tradueix, (1034) Mozartia (oc) Tradueix, (1035) Amata, (1037) Davidweilla (oc) Tradueix, (1038) Tuckia (oc) Tradueix, (1039) Sonneberga (oc) Tradueix, (1040) Klumpkea (oc) Tradueix, (1041) Asta, (1042) Amazone, 1043 Beate, 1044 Teutonia, (1046) Edwin (oc) Tradueix, (1045) Michela (oc) Tradueix, (1048) Feodosia, (1047) Geisha, (1049) Gotho, (1050) Meta, (1052) Belgica, (1051) Merope, (1054) Forsytia, (1053) Vigdis, (1055) Tynka, (1057) Wanda (oc) Tradueix, (1104) Syringa, (1105) Fragaria, 1107 Lictoria, (1108) Demeter, (1109) Tata (oc) Tradueix, (1110) Jaroslawa (oc) Tradueix, (1111) Reinmuthia, (1112) Polonia (oc) Tradueix, (1113) Katja (oc) Tradueix, (1114) Lorraine (oc) Tradueix, (1115) Sabauda (oc) Tradueix, (1116) Catriona (oc) Tradueix, (1117) Reginita, (1118) Hanskya (oc) Tradueix, (1119) Euboea (oc) Tradueix, (1120) Cannonia (oc) Tradueix, (1121) Natascha (oc) Tradueix, (1122) Neith (oc) Tradueix, (1123) Shapleya (oc) Tradueix, (1124) Stroobantia (oc) Tradueix, (1125) China (oc) Tradueix, (1126) Otero (oc) Tradueix, (1127) Mimi (oc) Tradueix, (1128) Astrid, (1129) Neujmina (oc) Tradueix, (1130) Skuld (oc) Tradueix, (1131) Porzia (oc) Tradueix, (1132) Hollandia (oc) Tradueix, (1106) Cydonia, (1082) Pirola, (1079) Mimosa, (1080) Orchis, (1081) Reseda, (1083) Salvia, (1084) Tamariwa (oc) Tradueix, (1085) Amaryllis, (1086) Nata (oc) Tradueix, (1087) Arabis, (1088) Mitaka, (1089) Tama, (1090) Sumida, (1091) Spiraea, (1092) Lilium, (1093) Freda, (1094) Siberia, (1095) Tulipa, (1096) Reunerta, (1097) Vicia, (1098) Hakone (oc) Tradueix, (1099) Figneria (oc) Tradueix, (1100) Arnica, (1101) Clematis, (1102) Pepita, (1103) Sequoia, 1162 Larissa, (1164) Kobolda (oc) Tradueix, (1163) Saga (oc) Tradueix, (1165) Imprinetta (oc) Tradueix, (1166) Sakuntala (oc) Tradueix, (1168) Brandia (oc) Tradueix, (1167) Dubiago (oc) Tradueix, (1169) Alwine, (1170) Siva (oc) Tradueix, (1171) Rusthawelia (oc) Tradueix, (1172) Äneas, (1173) Anchises, (1152) Pawona, (1155) Aënna (oc) Tradueix, (1159) Granada (oc) Tradueix, (1133) Lugduna (oc) Tradueix, (1134) Kepler (oc) Tradueix, (1135) Colchis (oc) Tradueix, (1136) Mercedes, (1137) Raïssa (oc) Tradueix, (1138) Attica (oc) Tradueix, (1139) Atami (oc) Tradueix, (1140) Crimea (oc) Tradueix, (1141) Bohmia (oc) Tradueix, (1142) Aetolia (oc) Tradueix, (1144) Oda, (1143) Odysseus, (1145) Robelmonte (oc) Tradueix, (1146) Biarmia, (1147) Stavropolis (oc) Tradueix, (1148) Rarahu (oc) Tradueix, (1149) Volga (oc) Tradueix, (1150) Achaia (oc) Tradueix, (1151) Ithaka (oc) Tradueix, (1153) Wallenbergia (oc) Tradueix, (1154) Astronomia (oc) Tradueix, (1157) Arabia, (1156) Kira (oc) Tradueix, (1158) Luda (oc) Tradueix, 1160 Illyria, (1161) Thessalia (oc) Tradueix, (1174) Marmara (oc) Tradueix, (1175) Margo (oc) Tradueix, (1176) Lucidor (oc) Tradueix, (1177) Gonnessia (oc) Tradueix, (1178) Irmela (oc) Tradueix, (1179) Mally (oc) Tradueix, (1180) Rita (oc) Tradueix, (1181) Lilith (oc) Tradueix, (1182) Ilona (oc) Tradueix, (1183) Jutta (oc) Tradueix, (1184) Gaea (oc) Tradueix, (1185) Nikko, (1186) Turnera (oc) Tradueix, (1187) Afra (oc) Tradueix, (1188) Gothlandia, (1189) Terentia (oc) Tradueix, (1190) Pelagia (oc) Tradueix, (1192) Prisma (oc) Tradueix, (1191) Alfaterna, (1193) Africa, (1194) Aletta, (1195) Orangia (oc) Tradueix, (1196) Sheba (oc) Tradueix, (1197) Rhodesia (oc) Tradueix, (1198) Atlantis (oc) Tradueix, (1199) Geldonia (oc) Tradueix, (1200) Imperatrix (oc) Tradueix, (1227) Geranium, (1228) Scabiosa, (1229) Tilia, (1230) Riceia, (1232) Cortusa, (1231) Auricula, (1233) Kobresia, (1234) Elyna, (1201) Strenua (oc) Tradueix, (1202) Marina (oc) Tradueix, (1203) Nanna (oc) Tradueix, (1204) Renzia (oc) Tradueix, (1205) Ebella (oc) Tradueix, (1206) Numerowia (oc) Tradueix, (1207) Ostenia (oc) Tradueix, (1209) Pumma (oc) Tradueix, (1208) Troilus, (1210) Morosovia (oc) Tradueix, (1211) Bressole (oc) Tradueix, (1212) Francette (oc) Tradueix, (1213) Algeria, (1214) Richilde (oc) Tradueix, (1215) Boyer, (1216) Askania (oc) Tradueix, (1217) Maximiliana, (1218) Aster (oc) Tradueix, (1219) Britta (oc) Tradueix, (1220) Crocus (oc) Tradueix, (1221) Amor, (1222) Tina (oc) Tradueix, (1224) Fantasia (oc) Tradueix, (1223) Neckar, (1225) Ariane (oc) Tradueix, (1226) Golia (oc) Tradueix, (1235) Schorria, (1236) Thaïs (oc) Tradueix, (1237) Geneviève (oc) Tradueix, (1238) Predappia (oc) Tradueix, (1239) Queteleta, (1240) Centenaria (oc) Tradueix, (1241) Dysona, (1243) Pamela (oc) Tradueix, (1244) Deira (oc) Tradueix, (1246) Chaka (oc) Tradueix, (1245) Calvinia (oc) Tradueix, (1247) Memoria (oc) Tradueix, (1248) Jugurtha (oc) Tradueix, (1249) Rutherfordia, (1250) Galanthus (oc) Tradueix, (1251) Hedera (oc) Tradueix, (1252) Celestia (oc) Tradueix, (1253) Frisia (oc) Tradueix, (1254) Erfordia (oc) Tradueix, (1255) Schilowa (oc) Tradueix, (1257) Móra (oc) Tradueix, (1256) Normannia (oc) Tradueix, (1258) Sicilia (oc) Tradueix, (1259) Ógyalla (oc) Tradueix, (1260) Walhalla (oc) Tradueix, (1242) Zambesia (oc) Tradueix, (1261) Legia (oc) Tradueix, (1262) Sniadeckia (oc) Tradueix, (1263) Varsavia (oc) Tradueix, (1264) Letaba (oc) Tradueix, (1266) Tone (oc) Tradueix, (1265) Schweikarda (oc) Tradueix, (1267) Geertruida (oc) Tradueix, (1268) Libya (oc) Tradueix, (1269) Rollandia (oc) Tradueix, (1270) Datura (oc) Tradueix, (1271) Isergina (oc) Tradueix, (1272) Gefion (oc) Tradueix, (1273) Helma (oc) Tradueix, (1274) Delportia (oc) Tradueix, (1275) Cimbria (oc) Tradueix, (1276) Ucclia, (1277) Dolores (oc) Tradueix, (1278) Kenya (oc) Tradueix, (1279) Uganda (oc) Tradueix, (1280) Baillauda (oc) Tradueix, (1281) Jeanne (oc) Tradueix, (1282) Utopia (oc) Tradueix, (1283) Komsomolia (oc) Tradueix, (1284) Latvia, (1285) Julietta (oc) Tradueix, (1287) Lorcia (oc) Tradueix, (1286) Banachiewicza (oc) Tradueix, (1288) Santa (oc) Tradueix, (1289) Kutaïssi (oc) Tradueix, (1290) Albertine, (1291) Phryne (oc) Tradueix, (1292) Luce (oc) Tradueix, (1293) Sonja (oc) Tradueix, (1294) Antwerpia (oc) Tradueix, (1295) Deflotte (oc) Tradueix, (1296) Andrée (oc) Tradueix, (1297) Quadea (oc) Tradueix, (1298) Nocturna (oc) Tradueix, (1299) Mertona (oc) Tradueix, (1300) Marcelle (oc) Tradueix, (1301) Yvonne (oc) Tradueix, (1303) Luthera (oc) Tradueix, (1302) Werra (oc) Tradueix, (1304) Arosa (oc) Tradueix, (1305) Pongola, (1307) Cimmeria (oc) Tradueix, (1306) Scythia (oc) Tradueix, (1308) Halleria (oc) Tradueix, (1309) Hyperborea (oc) Tradueix, (1310) Villigera (oc) Tradueix, (1311) Knopfia (oc) Tradueix, (1312) Vassar (oc) Tradueix, (1313) Berna (oc) Tradueix, (1314) Paula (oc) Tradueix, (1315) Bronislawa (oc) Tradueix, (1316) Kasan (oc) Tradueix, (1317) Silvretta (oc) Tradueix, (1318) Nerina (oc) Tradueix, (1319) Disa (oc) Tradueix, (1320) Impala (oc) Tradueix, (1321) Majuba (oc) Tradueix, (1322) Coppernicus, (1323) Tugela (oc) Tradueix, (1324) Knysna (oc) Tradueix, (1325) Inanda (oc) Tradueix, (1326) Losaka (oc) Tradueix, (1328) Devota (oc) Tradueix, (1327) Namaqua (oc) Tradueix, (1329) Eliane (oc) Tradueix, (1330) Spiridonia (oc) Tradueix, (1331) Solvejg (oc) Tradueix, (1332) Marconia (oc) Tradueix, (1333) Cevenola, (1334) Lundmarka (oc) Tradueix, (1335) Demoulina (oc) Tradueix, (1336) Zeelandia (oc) Tradueix, (1338) Duponta (oc) Tradueix, (1337) Gerarda (oc) Tradueix, (1339) Désagneauxa (oc) Tradueix, (1340) Yvette (oc) Tradueix, (1341) Edmée (oc) Tradueix, (1342) Brabantia (oc) Tradueix, (1343) Nicole (oc) Tradueix, (1344) Caubeta (oc) Tradueix, (1346) Gotha (oc) Tradueix, (1345) Potomac (oc) Tradueix, (1347) Patria (oc) Tradueix, (1348) Michel (oc) Tradueix, (1349) Bechuana (oc) Tradueix, (1350) Rosselia (oc) Tradueix, (1352) Wawel (oc) Tradueix, (1351) Uzbekistania (oc) Tradueix, (1353) Maartje (oc) Tradueix, (1354) Botha (oc) Tradueix, (1355) Magoeba (oc) Tradueix, (1357) Khama (oc) Tradueix, (1356) Nyanza (oc) Tradueix, (1359) Prieska (oc) Tradueix, (1358) Gaika (oc) Tradueix, (1360) Tarka (oc) Tradueix, (1361) Leuschneria (oc) Tradueix, (1362) Griqua (oc) Tradueix, (1363) Herberta (oc) Tradueix, (1364) Safara (oc) Tradueix, (1365) Henyey (oc) Tradueix, (1366) Piccolo (oc) Tradueix, (1367) Nongoma (oc) Tradueix, (1368) Numidia (oc) Tradueix, (1369) Ostanina (oc) Tradueix, (1370) Hella (oc) Tradueix, (1372) Haremari (oc) Tradueix, (1371) Resi (oc) Tradueix, (1373) Cincinnati (oc) Tradueix, (1374) Isora (oc) Tradueix, (1375) Alfreda, (1376) Michelle (oc) Tradueix, (1377) Roberbauxa (oc) Tradueix, (1378) Leonce (oc) Tradueix, (1379) Lomonosowa (oc) Tradueix, (1380) Volodia (oc) Tradueix, (1381) Danubia (oc) Tradueix, (1382) Gerti (oc) Tradueix, (1383) Limburgia (oc) Tradueix, (1384) Kniertje, (1385) Gelria (oc) Tradueix, (1386) Storeria (oc) Tradueix, (1387) Kama (oc) Tradueix, (1388) Aphrodite (oc) Tradueix, (1389) Onnie (oc) Tradueix, (1390) Abastumani (oc) Tradueix, (1391) Carelia (oc) Tradueix, (1392) Pierre (oc) Tradueix, (1394) Algoa, (1393) Sofala (oc) Tradueix, (1396) Outeniqua (oc) Tradueix, (1395) Aribeda (oc) Tradueix, (1397) Umtata (oc) Tradueix, (1398) Donnera (oc) Tradueix, (1399) Teneriffa (oc) Tradueix, (1400) Tirela (oc) Tradueix, (1401) Lavonne (oc) Tradueix, (1402) Eri (oc) Tradueix, (1403) Idelsonia (oc) Tradueix, (1404) Ajax, (1405) Sibelius (oc) Tradueix, (1406) Komppa (oc) Tradueix, (1407) Lindelöf (oc) Tradueix, (1408) Trusanda (oc) Tradueix, (1409) Isko (oc) Tradueix, (1410) Margret (oc) Tradueix, (1411) Brauna (oc) Tradueix, (1412) Lagrula (oc) Tradueix, (1413) Roucarie (oc) Tradueix, (1414) Jérôme, (1415) Malautra (oc) Tradueix, (1416) Renauxa (oc) Tradueix, (1417) Walinskia (oc) Tradueix, (1418) Fayeta (oc) Tradueix, (1419) Danzig (oc) Tradueix, (1420) Radcliffe (oc) Tradueix, (1421) Esperanto (oc) Tradueix, (1422) Strömgrenia (oc) Tradueix, (1423) Jose, (1424) Sundmania (oc) Tradueix, (1425) Tuorla (oc) Tradueix, (1426) Riviera (oc) Tradueix, (1428) Mombasa (oc) Tradueix, (1427) Ruvuma (oc) Tradueix, (1429) Pemba (oc) Tradueix, (1430) Somalia (oc) Tradueix, (1431) Luanda (oc) Tradueix, (1432) Ethiopia (oc) Tradueix, (1433) Geramtina (oc) Tradueix, (1434) Margot (oc) Tradueix, (1435) Garlena (oc) Tradueix, (1436) Salonta (oc) Tradueix, (1437) Diomedes, (1438) Wendeline (oc) Tradueix, (1439) Vogtia (oc) Tradueix, (1440) Rostia (oc) Tradueix, (1442) Corvina (oc) Tradueix, (1441) Bolyai (oc) Tradueix, (1444) Pannonia (oc) Tradueix, (1443) Ruppina (oc) Tradueix, (1445) Konkolya (oc) Tradueix, (1446) Sillanpää (oc) Tradueix, (1448) Lindbladia (oc) Tradueix, (1447) Utra (oc) Tradueix, (1449) Virtanen (oc) Tradueix, (1450) Raimonda (oc) Tradueix, (1477) Bonsdorffia (oc) Tradueix, (1478) Vihuri (oc) Tradueix, (1479) Inkeri (oc) Tradueix, (1480) Aunus (oc) Tradueix, (1451) Granö (oc) Tradueix, (1452) Hunnia (oc) Tradueix, (1453) Fennia (oc) Tradueix, (1454) Kalevala (oc) Tradueix, (1455) Mitchella (oc) Tradueix, (1456) Saldanha (oc) Tradueix, (1458) Mineura (oc) Tradueix, (1457) Ankara, (1459) Magnya (oc) Tradueix, (1460) Haltia (oc) Tradueix, (1461) Jean-Jacques (oc) Tradueix, (1462) Zamenhof (oc) Tradueix, (1463) Nordenmarkia (oc) Tradueix, (1464) Armisticia (oc) Tradueix, (1465) Autonoma (oc) Tradueix, (1466) Mündleria (oc) Tradueix, (1467) Mashona (oc) Tradueix, (1468) Zomba, (1469) Linzia (oc) Tradueix, (1470) Carla (oc) Tradueix, (1471) Tornio (oc) Tradueix, (1472) Muonio (oc) Tradueix, (1473) Ounas (oc) Tradueix, (1474) Beira (oc) Tradueix, (1475) Yalta (oc) Tradueix, (1476) Cox (oc) Tradueix, (1506) Xosa (oc) Tradueix, (1507) Vaasa (oc) Tradueix, (1508) Kemi (oc) Tradueix, (1510) Charlois (oc) Tradueix, (1511) Daléra (oc) Tradueix, (1512) Oulu (oc) Tradueix, (1513) Mátra (oc) Tradueix, (1514) Ricouxa (oc) Tradueix, Perrotin (oc) Tradueix, (1516) Henry (oc) Tradueix, (1486) Marilyn (oc) Tradueix, (1481) Tübingia (oc) Tradueix, (1482) Sebastiana (oc) Tradueix, (1484) Postrema (oc) Tradueix, (1483) Hakoila (oc) Tradueix, (1485) Isa (oc) Tradueix, (1487) Boda (oc) Tradueix, (1488) Aura (oc) Tradueix, (1489) Attila (oc) Tradueix, (1490) Limpopo (oc) Tradueix, (1492) Oppolzer (oc) Tradueix, (1491) Balduinus (oc) Tradueix, (1493) Sigrid (oc) Tradueix, (1494) Savo (oc) Tradueix, (1495) Helsinki (oc) Tradueix, (1496) Turku (oc) Tradueix, (1497) Tampere (oc) Tradueix, (1498) Lahti (oc) Tradueix, (1499) Pori (oc) Tradueix, (1500) Jyväskylä (oc) Tradueix, (1501) Baade, (1502) Arenda (oc) Tradueix, (1503) Kuopio (oc) Tradueix, (1504) Lappeenranta (oc) Tradueix, (1505) Koranna (oc) Tradueix, (1509) Esclangona (oc) Tradueix, 1628 Strobel (en) Tradueix, (1517) Beograd (oc) Tradueix, (1518) Rovaniemi (oc) Tradueix, (1519) Kajaani (oc) Tradueix, (1520) Imatra (oc) Tradueix, (1522) Kokkola (oc) Tradueix, (1521) Seinäjoki (oc) Tradueix, (1523) Pieksämäki (oc) Tradueix, (1524) Joensuu (oc) Tradueix, (1525) Savonlinna (oc) Tradueix, 1526 Mikkeli (en) Tradueix, 1527 Malmquista (en) Tradueix, 1528 Conrada (en) Tradueix, 1529 Oterma (en) Tradueix, 1530 Rantaseppä (en) Tradueix, 1532 Inari (en) Tradueix, 1531 Hartmut (en) Tradueix, 1533 Saimaa (en) Tradueix, 1534 Näsi (en) Tradueix, 1535 Päijänne (en) Tradueix, 1536 Pielinen (en) Tradueix, 1537 Transylvania (en) Tradueix, 1538 Detre (en) Tradueix, 1539 Borrelly (en) Tradueix, 1540 Kevola (en) Tradueix, 1541 Estonia (en) Tradueix, 1646 Rosseland (en) Tradueix, 1647 Menelaus (en) Tradueix, 1649 Fabre (en) Tradueix, 1648 Shajna (en) Tradueix, 1650 Heckmann (en) Tradueix, 1651 Behrens (en) Tradueix, 1652 Hergé (en) Tradueix, 1654 Bojeva (en) Tradueix, 1653 Yakhontovia (en) Tradueix, (1655) Comas Solà, 1656 Suomi (en) Tradueix, 1657 Roemera (en) Tradueix, (1658) Innes, 1659 Punkaharju (en) Tradueix, (1660) Wood, 1576 Fabiola (en) Tradueix, (1638) Ruanda, (1640) Nemo, 1542 Schalén (en) Tradueix, 1543 Bourgeois (en) Tradueix, 1544 Vinterhansenia (en) Tradueix, 1545 Thernöe (en) Tradueix, 1546 Izsák (en) Tradueix, 1547 Nele (en) Tradueix, 1548 Palomaa (en) Tradueix, 1549 Mikko (en) Tradueix, 1550 Tito (en) Tradueix, 1551 Argelander (en) Tradueix, 1552 Bessel (en) Tradueix, 1553 Bauersfelda (en) Tradueix, 1554 Yugoslavia (en) Tradueix, 1555 Dejan (en) Tradueix, 1556 Wingolfia (en) Tradueix, 1557 Roehla (en) Tradueix, 1559 Kustaanheimo (en) Tradueix, 1558 Järnefelt (en) Tradueix, 1560 Strattonia (en) Tradueix, 1562 Gondolatsch (en) Tradueix, 1561 Fricke (en) Tradueix, 1563 Noël (en) Tradueix, 1564 Srbija (en) Tradueix, 1565 Lemaître (en) Tradueix, (1566) Ícar, (1567) Alikoski, (1568) Aisleen, 1569 Evita (en) Tradueix, 1570 Brunonia (en) Tradueix, 1571 Cesco (en) Tradueix, 1572 Posnania (en) Tradueix, 1573 Väisälä (en) Tradueix, 1575 Winifred (en) Tradueix, 1574 Meyer (en) Tradueix, 1577 Reiss (en) Tradueix, (1578) Kirkwood, 1579 Herrick (en) Tradueix, 1580 Betulia (en) Tradueix, 1581 Abanderada (en) Tradueix, 1582 Martir (en) Tradueix, (1583) Antilochus, 1584 Fuji (en) Tradueix, 1585 Union (en) Tradueix, 1586 Thiele (en) Tradueix, 1587 Kahrstedt (en) Tradueix, 1589 Fanatica (en) Tradueix, 1588 Descamisada (en) Tradueix, 1590 Tsiolkovskaja (en) Tradueix, 1591 Baize (en) Tradueix, 1592 Mathieu (en) Tradueix, 1593 Fagnes (en) Tradueix, 1594 Danjon (en) Tradueix, (1595) Tanga, 1596 Itzigsohn (en) Tradueix, 1597 Laugier (en) Tradueix, 1598 Paloque (en) Tradueix, 1599 Giomus (en) Tradueix, 1600 Vyssotsky (en) Tradueix, 1601 Patry (en) Tradueix, 1602 Indiana (en) Tradueix, 1603 Neva (en) Tradueix, 1604 Tombaugh (en) Tradueix, 1605 Milankovitch (en) Tradueix, (1606) Jekhovsky, 1607 Mavis, 1608 Muñoz (en) Tradueix, 1609 Brenda (en) Tradueix, 1610 Mirnaya (en) Tradueix, 1611 Beyer (en) Tradueix, 1612 Hirose (en) Tradueix, 1613 Smiley (en) Tradueix, (1614) Goldschmidt, 1615 Bardwell (en) Tradueix, 1616 Filipoff (en) Tradueix, (1617) Alschmitt, 1618 Dawn (en) Tradueix, 1619 Ueta (en) Tradueix, 1620 Geographos (en) Tradueix, 1621 Druzhba (en) Tradueix, (1622) Chacornac, 1623 Vivian (en) Tradueix, 1624 Rabe (en) Tradueix, 1625 The NORC (en) Tradueix, (1626) Sadeya, 1627 Ivar (en) Tradueix, 1629 Pecker (en) Tradueix, 1630 Milet (en) Tradueix, 1631 Kopff (en) Tradueix, 1632 Sieböhme (en) Tradueix, 1633 Chimay (en) Tradueix, 1634 Ndola (en) Tradueix, 1635 Bohrmann (en) Tradueix, 1636 Porter (en) Tradueix, 1637 Swings (en) Tradueix, (1639) Bower, 1641 Tana (en) Tradueix, 1642 Hill (en) Tradueix, 1643 Brown (en) Tradueix, 1644 Rafita (en) Tradueix, 1645 Waterfield (en) Tradueix, (1712) Angola, 1716 Peter (en) Tradueix, 1744 Harriet (en) Tradueix, 1760 Sandra (en) Tradueix, (1723) Klemola, 1661 Granule (en) Tradueix, 1662 Hoffmann (en) Tradueix, (1663) van den Bos, 1664 Felix (en) Tradueix, 1665 Gaby (en) Tradueix, 1666 van Gent (en) Tradueix, 1668 Hanna (en) Tradueix, 1667 Pels (en) Tradueix, 1669 Dagmar (en) Tradueix, 1670 Minnaert (en) Tradueix, 1671 Chaika (en) Tradueix, 1672 Gezelle (en) Tradueix, 1673 van Houten (en) Tradueix, 1674 Groeneveld (en) Tradueix, 1675 Simonida (en) Tradueix, 1676 Kariba (en) Tradueix, 1677 Tycho Brahe (en) Tradueix, 1678 Hveen (en) Tradueix, 1679 Nevanlinna (en) Tradueix, 1680 Per Brahe (en) Tradueix, 1681 Steinmetz (en) Tradueix, 1787 Chiny (en) Tradueix, 1788 Kiess (en) Tradueix, 1789 Dobrovolsky (en) Tradueix, (1790) Volkov, 1791 Patsayev (en) Tradueix, 1792 Reni (en) Tradueix, 1793 Zoya (en) Tradueix, 1794 Finsen (en) Tradueix, 1795 Woltjer (en) Tradueix, 1796 Riga (en) Tradueix, 1797 Schaumasse (en) Tradueix, 1682 Karel (en) Tradueix, (1683) Castafiore, 1684 Iguassú (en) Tradueix, 1685 Toro (en) Tradueix, 1686 De Sitter (en) Tradueix, 1687 Glarona (en) Tradueix, 1688 Wilkens (en) Tradueix, 1689 Floris-Jan (en) Tradueix, 1690 Mayrhofer (en) Tradueix, 1692 Subbotina (en) Tradueix, (1691) Oort, 1694 Kaiser (en) Tradueix, 1693 Hertzsprung (en) Tradueix, 1695 Walbeck (en) Tradueix, 1696 Nurmela (en) Tradueix, 1697 Koskenniemi (en) Tradueix, 1698 Christophe (en) Tradueix, 1699 Honkasalo (en) Tradueix, 1700 Zvezdara (en) Tradueix, 1701 Okavango (en) Tradueix, 1702 Kalahari, 1703 Barry (en) Tradueix, 1704 Wachmann (en) Tradueix, 1705 Tapio (en) Tradueix, 1706 Dieckvoss (en) Tradueix, 1707 Chantal (en) Tradueix, (1708) Polit, 1709 Ukraina (en) Tradueix, 1710 Gothard (en) Tradueix, 1711 Sandrine (en) Tradueix, (1713) Bancilhon, (1714) Sy, 1715 Salli (en) Tradueix, 1717 Arlon (en) Tradueix, 1718 Namibia (en) Tradueix, 1719 Jens (en) Tradueix, 1720 Niels (en) Tradueix, 1721 Wells (en) Tradueix, 1722 Goffin (en) Tradueix, 1724 Vladimir (en) Tradueix, 1725 CrAO (en) Tradueix, 1726 Hoffmeister (en) Tradueix, 1727 Mette (en) Tradueix, 1728 Goethe Link (en) Tradueix, 1729 Beryl (en) Tradueix, 1730 Marceline (en) Tradueix, 1731 Smuts (en) Tradueix, 1732 Heike (en) Tradueix, 1733 Silke (en) Tradueix, 1734 Zhongolovich (en) Tradueix, 1735 ITA (en) Tradueix, 1736 Floirac (en) Tradueix, 1737 Severny (en) Tradueix, 1738 Oosterhoff (en) Tradueix, 1739 Meyermann (en) Tradueix, 1740 Paavo Nurmi (en) Tradueix, 1741 Giclas (en) Tradueix, 1742 Schaifers (en) Tradueix, 1743 Schmidt (en) Tradueix, 1745 Ferguson (en) Tradueix, 1746 Brouwer (en) Tradueix, 1747 Wright (en) Tradueix, 1748 Mauderli (en) Tradueix, (1749) Telamon, 1750 Eckert (en) Tradueix, 1751 Herget (en) Tradueix, 1753 Mieke (en) Tradueix, 1752 van Herk (en) Tradueix, 1754 Cunningham (en) Tradueix, 1755 Lorbach (en) Tradueix, 1757 Porvoo (en) Tradueix, 1756 Giacobini (en) Tradueix, 1758 Naantali (en) Tradueix, 1759 Kienle (en) Tradueix, 1761 Edmondson (en) Tradueix, 1762 Russell (en) Tradueix, 1763 Williams (en) Tradueix, 1764 Cogshall (en) Tradueix, 1765 Wrubel (en) Tradueix, 1766 Slipher (en) Tradueix, 1767 Lampland (en) Tradueix, 1769 Carlostorres (en) Tradueix, (1768) Appenzella, (1770) Schlesinger, 1771 Makover (en) Tradueix, 1772 Gagarin (en) Tradueix, 1773 Rumpelstilz (en) Tradueix, 1774 Kulikov (en) Tradueix, 1775 Zimmerwald (en) Tradueix, (1776) Kuiper, 1777 Gehrels (en) Tradueix, 1778 Alfvén (en) Tradueix, 1779 Paraná (en) Tradueix, 1780 Kippes (en) Tradueix, 1781 Van Biesbroeck (en) Tradueix, 1782 Schneller (en) Tradueix, 1784 Benguella (en) Tradueix, (1783) Albitskij, 1785 Wurm (en) Tradueix, 1786 Raahe (en) Tradueix, 1798 Watts (en) Tradueix, 1799 Koussevitzky (en) Tradueix, (1800) Aguilar, 1802 Zhang Heng (en) Tradueix, 1801 Titicaca (en) Tradueix, 1804 Chebotarev (en) Tradueix, 1803 Zwicky (en) Tradueix, 1805 Dirikis (en) Tradueix, 1806 Derice (en) Tradueix, 1807 Slovakia (en) Tradueix, 1808 Bellerophon (en) Tradueix, 1809 Prometheus (en) Tradueix, 1810 Epimetheus (en) Tradueix, 1811 Bruwer (en) Tradueix, 1812 Gilgamesh (en) Tradueix, (1814) Bach, 1815 Beethoven (en) Tradueix, 1816 Liberia (en) Tradueix, 1817 Katanga (en) Tradueix, 1818 Brahms (en) Tradueix, 1819 Laputa (en) Tradueix, 1820 Lohmann (en) Tradueix, 1822 Waterman (en) Tradueix, 1821 Aconcagua (en) Tradueix, (1823) Gliese, 1824 Haworth (en) Tradueix, 1825 Klare (en) Tradueix, 1826 Miller (en) Tradueix, 1827 Atkinson (en) Tradueix, 1828 Kashirina (en) Tradueix, (1829) Dawson, 1830 Pogson (en) Tradueix, 1831 Nicholson (en) Tradueix, 1832 Mrkos (en) Tradueix, 1833 Shmakova (en) Tradueix, 1834 Palach (en) Tradueix, 1835 Gajdariya (en) Tradueix, 1836 Komarov (en) Tradueix, 1837 Osita (en) Tradueix, 1838 Ursa (en) Tradueix, 1839 Ragazza (en) Tradueix, 1840 Hus (en) Tradueix, 1842 Hynek (en) Tradueix, 1841 Masaryk (en) Tradueix, 1843 Jarmila (en) Tradueix, 1844 Susilva (en) Tradueix, 1845 Helewalda (en) Tradueix, 1846 Bengt (en) Tradueix, 1847 Stobbe (en) Tradueix, 1848 Delvaux (en) Tradueix, 1849 Kresák (en) Tradueix, (1850) Kohoutek, 1813 Imhotep (en) Tradueix, 2005 YU55, 1851 Lacroute (en) Tradueix, 1852 Carpenter (en) Tradueix, 1853 McElroy (en) Tradueix, 1854 Skvortsov (en) Tradueix, (1855) Korolev, 1856 Růžena (en) Tradueix, 1857 Parchomenko (en) Tradueix, 1858 Lobachevskij (en) Tradueix, (1859) Kovalévskaia, (1860) Barbarossa, 1861 Komenský (en) Tradueix, 1863 Antinous (en) Tradueix, (1862) Apol·lo, 1864 Daedalus (en) Tradueix, (1865) Cerberus, (1866) Sisyphus, (1867) Deífob, 1868 Thersites (en) Tradueix, 1869 Philoctetes (en) Tradueix, 1870 Glaukos (en) Tradueix, 1871 Astyanax (en) Tradueix, 1872 Helenos (en) Tradueix, (1873) Agenor, 1874 Kacivelia (en) Tradueix, 1876 Napolitania (en) Tradueix, 1875 Neruda (en) Tradueix, 1878 Hughes (en) Tradueix, 1877 Marsden (en) Tradueix, 1879 Broederstroom (en) Tradueix, 1880 McCrosky (en) Tradueix, 1881 Shao (en) Tradueix, 1882 Rauma (en) Tradueix, 1883 Rimito (en) Tradueix, 1884 Skip (en) Tradueix, 1885 Herero (en) Tradueix, 1886 Lowell (en) Tradueix, 1887 Virton (en) Tradueix, 1889 Pakhmutova (en) Tradueix, 1888 Zu Chong-Zhi (en) Tradueix, 1890 Konoshenkova (en) Tradueix, 1891 Gondola (en) Tradueix, 1892 Lucienne (en) Tradueix, 1893 Jakoba (en) Tradueix, 1897 Hind (en) Tradueix, 1894 Haffner (en) Tradueix, 1895 Larink (en) Tradueix, 1896 Beer (en) Tradueix, 1898 Cowell (en) Tradueix, 1899 Crommelin (en) Tradueix, 1900 Katyusha (en) Tradueix, 1901 Moravia (en) Tradueix, 1902 Shaposhnikov (en) Tradueix, 1903 Adzhimushkaj (en) Tradueix, 1904 Massevitch (en) Tradueix, (1905) Ambartsumian, 1906 Naef (en) Tradueix, 1907 Rudneva (en) Tradueix, 1908 Pobeda (en) Tradueix, (1909) Alekhin, 1910 Mikhailov (en) Tradueix, 1911 Schubart (en) Tradueix, 1912 Anubis (en) Tradueix, 1913 Sekanina (en) Tradueix, 1914 Hartbeespoortdam (en) Tradueix, 1915 Quetzálcoatl (en) Tradueix, (1916) Boreas, 1917 Cuyo (en) Tradueix, (1918) Aiguillon, 1919 Clemence (en) Tradueix, 1920 Sarmiento (en) Tradueix, 1921 Pala (en) Tradueix, 1922 Zulu (en) Tradueix, 1924 Horus (en) Tradueix, 1923 Osiris (en) Tradueix, 1925 Franklin-Adams (en) Tradueix, 1926 Demiddelaer (en) Tradueix, 1927 Suvanto (en) Tradueix, 1928 Summa (en) Tradueix, (1929) Kollaa, (1930) Lucifer, 1931 Čapek (en) Tradueix, 1932 Jansky (en) Tradueix, 1933 Tinchen (en) Tradueix, (1934) Jeffers, 1935 Lucerna (en) Tradueix, 1936 Lugano (en) Tradueix, 1938 Lausanna (en) Tradueix, 1937 Locarno (en) Tradueix, 1939 Loretta (en) Tradueix, 1940 Whipple (en) Tradueix, (1941) Wild, (1943) Anteros, 1944 Günter (en) Tradueix, 1945 Wesselink (en) Tradueix, 1947 Iso-Heikkilä (en) Tradueix, 1946 Walraven (en) Tradueix, 1949 Messina (en) Tradueix, 1948 Kampala (en) Tradueix, 1950 Wempe (en) Tradueix, 1942 Jablunka (en) Tradueix, 3483 Svetlov (en) Tradueix, 1951 Lick (en) Tradueix, 1952 Hesburgh (en) Tradueix, 1953 Rupertwildt (en) Tradueix, 1954 Kukarkin (en) Tradueix, 1960 Guisan (en) Tradueix, 1961 Dufour (en) Tradueix, 3969 Rossi (en) Tradueix, 3967 Shekhtelia (en) Tradueix, 3951 Zichichi (en) Tradueix, 3972 Richard (en) Tradueix, 3962 Valyaev (en) Tradueix, 3965 Konopleva (en) Tradueix, 3467 Bernheim (en) Tradueix, 3461 Mandelshtam (en) Tradueix, 3453 Dostoevsky (en) Tradueix, 3474 Linsley (en) Tradueix, 3460 Ashkova (en) Tradueix, 3493 Stepanov (en) Tradueix, 3471 Amelin (en) Tradueix, 3025 Higson (en) Tradueix, 2957 Tatsuo (en) Tradueix, 2982 Muriel (en) Tradueix, 2529 Rockwell Kent (en) Tradueix, 2998 Berendeya (en) Tradueix, 2956 Yeomans (en) Tradueix, 1962 Dunant (en) Tradueix, 1964 Luyten (en) Tradueix, (1965) van de Kamp, 1966 Tristan (en) Tradueix, 1967 Menzel (en) Tradueix, 1968 Mehltretter (en) Tradueix, (1969) Alain, 1970 Sumeria (en) Tradueix, 1972 Yi Xing (en) Tradueix, 1980 Tezcatlipoca (en) Tradueix, 1981 Midas (en) Tradueix, 1985 Hopmann (en) Tradueix, 1986 Plaut (en) Tradueix, 1990 Pilcher (en) Tradueix, (2001) Einstein, 2003 Harding (en) Tradueix, 2005 Hencke (en) Tradueix, 2006 Polonskaya (en) Tradueix, 2012 Guo Shou-Jing (en) Tradueix, 2016 Heinemann (en) Tradueix, 2017 Wesson (en) Tradueix, 2019 van Albada (en) Tradueix, 2025 Nortia (en) Tradueix, 2027 Shen Guo (en) Tradueix, 2030 Belyaev (en) Tradueix, 2034 Bernoulli (en) Tradueix, 2038 Bistro (en) Tradueix, 2043 Ortutay (en) Tradueix, 2046 Leningrad (en) Tradueix, 2451 Dollfus (en) Tradueix, 2452 Lyot (en) Tradueix, 2454 Olaus Magnus (en) Tradueix, 2455 Somville (en) Tradueix, 2456 Palamedes (en) Tradueix, 2457 Rublyov (oc) Tradueix, 2463 Sterpin (en) Tradueix, 2464 Nordenskiöld (en) Tradueix, 2468 Repin (en) Tradueix, 2471 Ultrajectum (en) Tradueix, 2479 Sodankylä (en) Tradueix, 2480 Papanov (en) Tradueix, 2484 Parenago (en) Tradueix, 2486 Metsähovi (en) Tradueix, 2495 Noviomagum (en) Tradueix, 2501 Lohja (en) Tradueix, 2502 Nummela (en) Tradueix, 2504 Gaviola (en) Tradueix, 2505 Hebei (en) Tradueix, 2536 Kozyrev (en) Tradueix, 2539 Ningxia (en) Tradueix, 2962 Otto (en) Tradueix, 2963 Chen Jiageng (en) Tradueix, 2970 Pestalozzi (en) Tradueix, 2972 Niilo (en) Tradueix, 2973 Paola (en) Tradueix, 2986 Mrinalini (en) Tradueix, 2988 Korhonen (en) Tradueix, 2989 Imago (en) Tradueix, 3001 Michelangelo (en) Tradueix, 3002 Delasalle (en) Tradueix, 3004 Knud (en) Tradueix, 3007 Reaves (en) Tradueix, 3009 Coventry (en) Tradueix, 3011 Chongqing (en) Tradueix, 3022 Dobermann (en) Tradueix, 3024 Hainan (en) Tradueix, 3451 Mentor (en) Tradueix, 3462 Zhouguangzhao (en) Tradueix, 3463 Kaokuen (en) Tradueix, 3476 Dongguan (en) Tradueix, 3485 Barucci (en) Tradueix, 3491 Fridolin (en) Tradueix, 3494 Purple Mountain (en) Tradueix, 3499 Hoppe (en) Tradueix, 3500 Kobayashi (en) Tradueix, 3502 Huangpu (en) Tradueix, 3508 Pasternak (en) Tradueix, 3958 Komendantov (en) Tradueix, 3960 Chaliubieju (en) Tradueix, 4456 Mawson (en) Tradueix, 4459 Nusamaibashi (en) Tradueix, 4462 Vaughan (en) Tradueix, 2023 Asaph (en) Tradueix, 3481 Xianglupeak (en) Tradueix, 2520 Novorossijsk (en) Tradueix, 2979 Murmansk (en) Tradueix, 2975 Spahr (en) Tradueix, 1958 Chandra (en) Tradueix, 2981 Chagall (en) Tradueix, 2959 Scholl (en) Tradueix, (3015) Candy, 2960 Ohtaki (en) Tradueix, 2482 Perkin (en) Tradueix, 2474 Ruby (en) Tradueix, 3486 Fulchignoni (en) Tradueix, 1963 Bezovec (en) Tradueix, 2984 Chaucer (en) Tradueix, 2507 Bobone (en) Tradueix, 2477 Biryukov (en) Tradueix, 1974 Caupolican (en) Tradueix, 2032 Ethel (en) Tradueix, 3005 Pervictoralex (en) Tradueix, 1996 Adams (en) Tradueix, 3465 Trevires (en) Tradueix, 3469 Bulgakov (en) Tradueix, 1956 Artek (en) Tradueix, 2966 Korsunia (en) Tradueix, 2494 Inge (en) Tradueix, 2958 Arpetito (en) Tradueix, 2996 Bowman (en) Tradueix, 3478 Fanale (en) Tradueix, 3013 Dobrovoleva (en) Tradueix, 2952 Lilliputia (en) Tradueix, 3506 French (en) Tradueix, 2509 Chukotka (en) Tradueix, 2955 Newburn (en) Tradueix, 3458 Boduognat (en) Tradueix, (1957) Angara, 2522 Triglav (en) Tradueix, 2523 Ryba (en) Tradueix, 3488 Brahic (en) Tradueix, 2497 Kulikovskij (en) Tradueix, 2968 Iliya (en) Tradueix, 1959 Karbyshev (en) Tradueix, 3498 Belton (en) Tradueix, 2459 Spellmann (oc) Tradueix, 3979 Brorsen (en) Tradueix, 3963 Paradzhanov (en) Tradueix, 2994 Flynn (en) Tradueix, 2993 Wendy (en) Tradueix, 3976 Lise (en) Tradueix, 2977 Chivilikhin (en) Tradueix, 2518 Rutllant (en) Tradueix, 1997 Leverrier (en) Tradueix, 2499 Brunk (en) Tradueix, 2466 Golson (en) Tradueix, (1999) Hirayama, 2011 Veteraniya (en) Tradueix, 3496 Arieso (en) Tradueix, 1955 McMath (en) Tradueix, 1983 Bok (en) Tradueix, 1988 Delores (en) Tradueix, 1971 Hagihara (en) Tradueix, 1975 Pikelner (en) Tradueix, 1977 Shura (en) Tradueix, 1973 Colocolo (en) Tradueix, 1994 Shane (en) Tradueix, 1978 Patrice (en) Tradueix, 2954 Delsemme (en) Tradueix, 3479 Malaparte (en) Tradueix, 2467 Kollontai (en) Tradueix, 2472 Bradman (en) Tradueix, 2453 Wabash (en) Tradueix, 2462 Nehalennia (en) Tradueix, 2953 Vysheslavia (en) Tradueix, 1992 Galvarino (en) Tradueix, 2458 Veniakaverin (en) Tradueix, 2009 Voloshina (en) Tradueix, 2469 Tadjikistan (en) Tradueix, 2014 Vasilevskis (en) Tradueix, 2028 Janequeo (en) Tradueix, 3016 Meuse (en) Tradueix, 3457 Arnenordheim (en) Tradueix, 2488 Bryan (en) Tradueix, 2961 Katsurahama (en) Tradueix, 2525 O'Steen (en) Tradueix, 3495 Colchagua (en) Tradueix, 2511 Patterson (en) Tradueix, 2465 Wilson (en) Tradueix, 2492 Kutuzov (en) Tradueix, 2460 Mitlincoln (en) Tradueix, 3473 Sapporo (en) Tradueix, 2461 Clavel (en) Tradueix, 2490 Bussolini (en) Tradueix, 2951 Perepadin (en) Tradueix, 2999 Dante (en) Tradueix, 3489 Lottie (en) Tradueix, 2965 Surikov (en) Tradueix, (2991) Bilbo, 3455 Kristensen (en) Tradueix, 67P/Churyumov-Gerasimenko, cometa Halley, (101955) Bennu, (590) Tomyris (oc) Tradueix, 2008 KV2 (en) Tradueix, núvol d'Oort, (15760) 1992 QB1, (719) Albert, 432361 Rakovski, C/2019 Y4 (ATLAS) i C/2020 F8 (SWAN) (en) Tradueix Modifica el valor a Wikidata
Característiques físiques
Tipus espectralG2V Modifica el valor a Wikidata
Lluminositat382.800.000.000.000.000 gigawatt (en) Tradueix Modifica el valor a Wikidata
Radi696.000 quilòmetres
1 radi solar Modifica el valor a Wikidata
Massa1.988.550.000 yottagrams i 1 massa solar Modifica el valor a Wikidata
Temperatura superficial15.700.000 K
5.772 K
5.000.000 K Modifica el valor a Wikidata
Edat estimada4,57 mils milionsos d'anys[3] Modifica el valor a Wikidata
Metal·licitat0,0122[4] Modifica el valor a Wikidata
Gravetat274 m/s² Modifica el valor a Wikidata

El Sol és un estel situat al centre del sistema solar. La Terra i tots els altres planetes del sistema solar orbiten al seu voltant. Els planetes menors, els cometes, els meteoroides i tot el medi interplanetari que hi ha enmig també giren al voltant del Sol.

Com que és l'estel més pròxim a la Terra (es troba a 150.000.000 km), és també l'astre més brillant del firmament. La seva presència o absència en el cel determina el dia i la nit, respectivament. L'energia radiada pel Sol és aprofitada pels éssers fotosintètics, els quals constitueixen la base de la cadena alimentària. Així, és la principal font d'energia de la vida. També aporta l'energia que manté en funcionament els processos climàtics.[5]

És un estel de la seqüència principal, de classe espectral G2, cosa que indica que és una mica més gran i calent que un estel mitjà.[6] És una immensa esfera quasi perfecta de plasma formada majoritàriament per hidrogen i heli.[7][8] Radia una gran quantitat d'energia a l'espai mitjançant processos nuclears de fusió. Es va formar fa uns 4.500 milions d'anys, al mateix temps que el sistema solar, i arribarà al final de la seva vida d'aquí a uns 5.000 milions d'anys més. Arribat aquell moment, es convertirà en una gegant vermella i després en una nana blanca.

Malgrat que és un estel de mida mitjana, amb un diàmetre angular de 32 35 en el periheli i 31′ 31″ en l'afeli, la qual cosa dóna un diàmetre mitjà de 32′ 03″. Per una estranya coincidència, la combinació de grandàries i distàncies del Sol i la Lluna són tals que, vistos des de la Terra, tenen aproximadament la mateixa grandària aparent.

L'enorme efecte del Sol a la Terra ha sigut reconegut des dels temps prehistòrics. El Sol ha sigut considerat per algunes cultures com una deïtat. La rotació sinòdica de la Terra i la seva òrbita al voltant del Sol són la base dels calendaris solars, un dels quals és el predominant calendari en ús avui en dia.

Etimologia[modifica]

La paraula «sol» té diverses variacions a través de les famílies de llengües, per exemple, en les llengües de la família indoeuropea, en la majoria dels casos es troba una part nominativa amb una l, en lloc de l'arrel genitiva en n, com per exemple en llatí sōl, el grec ἥλιος hēlios, el gal·lès haul i el rus солнце solntse (pronunciat sontse), així com (amb *l > r) en sànscrit स्वर svár i persa خور xvar. De fet, l'arrel de la l va sobreviure també en protogermànic, com *sōwelan, que va donar lloc al gòtic sauil (al costat de sunnō) i el prosaic nòrdic antic sól (al costat de la poètica sunna), i a través d'ella les paraules per a "sol" en les llengües escandinaves modernes: suec i danès solen, islandès sólin, etc.[9] La paraula anglesa sun es va desenvolupar de l'anglès antic sunne. Els cognates apareixen en altres llengües germàniques, incloent el frisó occidental sinne, holandès zon, baix alemany Sünn, alemany estàndard Sonne, el bavarès Sunna, nòrdic antic sunna i gòtic sunnō. Totes aquestes paraules provenen del protogermànic *sunnōn.[10][9]

Les paraules grega i llatina apareixen en la poesia com a personificacions del Sol, Hèlios i Sol,[11][12] mentre que en ciència ficció en llengua anglesa "Sol" es pot utilitzar com a nom de l'astre per distingir-lo dels altres. El terme "sol" amb 's' minúscula és utilitzat pels astrònoms planetaris per determinar la durada d'un dia solar en un altre planeta com Mart.[13]

Els principals adjectius del Sol en català són assolellat per a la llum solar i, en contextos tècnics, solar,[14] del llatí sol[15] – aquest últim es troba en termes com dia solar, eclipse solar i sistema solar. Del grec helios ve l'adjectiu poc comú helíac.[16]

El terme anglès del dia de la setmana Sunday prové de l’anglès antic Sunnandæg "dia del sol", una interpretació germànica de la frase llatina diēs sōlis, que és una traducció del grec ἡμέρα ἡλίου hēmera hēliou "dia del sol".[17]

Característiques[modifica]

Cal dir que el Sol no és perfectament rodó. Al seu centre, la densitat és aproximadament 1,5 × 105 kg/m3, les reaccions termonuclears (fusió) converteixen l'hidrogen en heli. 3,9 × 1045 àtoms passen per reaccions nuclears cada segon. Això allibera energia que fuig de la superfície del Sol com a llum. És possible de replicar les reaccions termonuclears amb les anomenades bombes d'hidrogen. En un futur, podria esdevenir-se que l'energia alliberada per la fusió nuclear en reactors de fusió sigui utilitzada com a font d'energia alternativa per a la producció d'electricitat.

Tota la matèria del Sol està en forma de plasma a causa de la seva temperatura extrema. Així, el Sol pot girar més ràpidament a l'equador que a latituds altes, ja que no és un sòlid. La rotació diferencial (segons la latitud) del Sol causa que les línies del camp magnètic s'entortolliguin amb el temps, provocant la formació de les espectaculars taques solars i protuberàncies solars.

La corona solar té 1011 àtoms/m3, i la fotosfera té 1023 àtoms/m3.

Durant algun temps, es va pensar que el nombre de neutrins produïts en les reaccions nuclears al Sol era una tercera part de la predicció teòrica, un problema que es denominà problema dels neutrins solars. Quan es va descobrir recentment que els neutrins tenien massa, i que es podien transformar en varietats de neutrins més difícils de detectar en el camí de la Terra al Sol, les mesures i la teoria van coincidir.

El Sol no té un límit definit, però la seva densitat disminueix exponencialment a mesura que augmenta l'alçada per sobre de la fotosfera.[18] A efectes de mesura, es considera que el radi del Sol és la distància des del seu centre fins a la vora de la fotosfera, l’aparent superfície visible del Sol.[19] Amb aquesta mesura, el Sol és una esfera gairebé perfecta amb un aplatament calculat en 9 milionèsimes,[20] el que significa que el seu diàmetre polar difereix només del seu diàmetre equatorial en 10 km.[21] L’efecte mareomotriu dels planetes és feble i no afecta significativament la forma del Sol.[22] El Sol gira més ràpid al seu equador que els seus pols. Aquesta rotació diferencial és causada pel moviment convectiu a causa del transport de calor i la força de Coriolis a causa de la rotació del Sol. En un marc de referència definit per les estrelles, el període de rotació és d'aproximadament 25,6 dies a l'equador i 33,5 dies als pols. Vist des de la Terra mentre orbita al voltant del Sol, el període de rotació aparent del Sol al seu equador és d’uns 28 dies.[23] Vist des d’un mirador sobre el seu pol nord, el Sol gira en sentit antihorari al voltant del seu eix de gir.[a][24] Per a obtenir informació ininterrompuda del Sol, l'Agència Espacial Europea i la NASA van posar en òrbita l'observatori SOHO (Solar and Heliospheric Observatory) el 2 de desembre del 1995.[25]

Llum solar[modifica]

Article principal: Llum solar
El Sol, vist des de la superfície terrestre

La constant solar és la quantitat d'energia que el Sol diposita per unitat d'àrea que està directament exposada a la llum solar. La constant solar és aproximadament igual a 1.368 W/m2 (watts per metre quadrat) a una distància d’una unitat astronòmica (UA) del Sol (és a dir, a la Terra o a prop).[26] La llum del sol a la superfície de la Terra és atenuada per l'atmosfera terrestre, de manera que arriba menys potència a la superfície (al voltant de 1000 W/m2) en condicions clares quan el Sol és a prop del zenit.[27] La llum solar a la part superior de l’atmosfera terrestre es compon (per energia total) d’un 50% de llum infraroja, un 40% de llum visible i un 10% de llum ultraviolada.[28] L’atmosfera, en particular, filtra més del 70% dels ultraviolats solars, especialment a les longituds d’ona més curtes.[29] La radiació ultraviolada solar ionitza l'atmosfera superior durant el dia a la Terra, creant una conducció elèctrica a l'anomenada ionosfera.[30]

El color del Sol és blanc, amb un índex d'espai de color a prop CIE (0.3, 0.3), quan es veu des de l’espai o quan el Sol és alt al cel, i la radiació solar per longitud d’ona arriba a la part verda de l’espectre.[31][32] Quan el Sol està baix al cel, la dispersió atmosfèrica fa que el Sol sigui groc, vermell, taronja o magenta. Malgrat la seva típica blancor, la majoria[note 1] de la gent pensa mentalment el Sol com a groc; els motius són objecte de debat.[33] El Sol és una estrella G2V, amb G2 indicant la seva temperatura superficial d'aproximadament 5.778 K (5.505 °C), i V que, com la majoria de les estrelles, és una estrella de seqüència principal.[34][35] La luminància mitjana del Sol és a prop de 1,88 giga candeles per metre quadrat, però, tal com es veu a través de l'atmosfera terrestre, es redueix a aproximadament 1,44 Gcd/m2.[b] No obstant això, la lluminositat no és constant a tot el disc del Sol (enfosquiment vers el limbe).

Composició[modifica]

Animació en moviment en fals color del Sol
Normalment, el Sol no produeix raigs gamma, però una flamarada el 15 de juny de 1991 va provocar aquesta observació de raigs gamma per part de l’instrument COMPTEL a l’Observatori de Raigs Gamma Compton. Els neutrons del Sol van xocar amb el medi intrastel·lar per produir raigs gamma.
Flamarada solar de 1973 registrada per l'Skylab

El Sol està compost principalment per elements químics d'hidrogen i heli. En aquest moment de la vida del Sol, representen el 74,9% i el 23,8% de la massa del Sol a la fotosfera, respectivament.[36] Tots els elements més pesats, anomenats metalls en astronomia, representen menys del 2% de la massa, sent l'oxigen (aproximadament l'1% de la massa del Sol), el carboni (0,3%), el neó (0,2%) i el ferro (0,2%) els més abundants.[37]

La composició química original del Sol va ser heretada del medi interestel·lar de la qual es va formar. Originalment hauria contingut aproximadament un 71,1% d’hidrogen, un 27,4% d’heli i un 1,5% d’elements més pesats.[36] L'hidrogen i la major part de l'heli del Sol haurien estat produïts per nucleosíntesi de Big Bang en els primers 20 minuts de l'univers, i els elements més pesats van ser produïts per generacions d’estrelles anteriors abans que es formés el Sol i es va estendre al medi interestel·lar durant les etapes finals de la vida estel·lar i per esdeveniments com les supernovae.[38]

Des que es va formar el Sol, el principal procés de fusió ha consistit en fusionar hidrogen amb heli. Durant els últims 4.600 milions d'anys, la quantitat d'heli i la seva ubicació dins del Sol han canviat gradualment. Dins del nucli, la proporció d'heli ha augmentat d'un 24% a un 60% a causa de la fusió, i part de l'heli i elements pesants s'han instal·lat des de la fotosfera cap al centre del Sol a causa de la gravetat. Les proporcions de metalls (elements més pesats) no canvien. La calor és transferida cap a fora del nucli del Sol per radiació més que per convecció (vegeu la zona radiant més avall), de manera que els productes de fusió no s’eleven cap a l’exterior per la calor; romanen al nucli[39] i a poc a poc s'ha començat a formar un nucli intern d'heli que no es pot fusionar perquè actualment el nucli del Sol no és prou calent ni dens per fusionar heli. A la fotosfera actual es redueix la fracció d'heli i la metal·licitat és només el 84% del que era en la fase protoestel·lar (abans de començar la fusió nuclear al nucli). En el futur, l’heli continuarà acumulant-se al nucli i, en uns 5.000 milions d’anys, aquesta acumulació gradual farà que el Sol surti de la seqüència principal i esdevenir una gegant vermella.[40]

La composició química de la fotosfera es considera normalment representativa de la composició del sistema solar primordial.[41] Les abundàncies d’elements pesants solars descrites anteriorment es mesuren tan usant-se espectroscòpia de la fotosfera del Sol o bé mesurant abundàncies en meteorits que mai s’han escalfat a temperatures de fusió. Es creu que aquests meteorits conserven la composició del Sol protoestel·lar i, per tant, no es veuen afectats per l'assentament d'elements pesats. Els dos mètodes generalment concorden bé.[42]

Elements del grup de ferro ionitzats individualment[modifica]

Als anys setanta, moltes investigacions es van centrar en les abundàncies dels elements del grup de ferro al Sol.[43][44] Tot i que es van fer importants investigacions, fins al 1978 va ser difícil determinar l’abundància d’alguns elements del grup de ferro (per exemple el cobalt i el manganès) a través de l'espectroscòpia a causa de les seves estructures hiperfines.[43]

El primer conjunt de forces d'oscil·lador d’elements del grup de ferro ionitzats individualment es van fer disponibles als anys seixanta,[45] i aquestes van ser millorades posteriorment.[46] El 1978 es van derivar les abundàncies d’elements ionitzats individualment del grup del ferro.[43]

Composició isotòpica[modifica]

Diversos autors han considerat l'existència d'un gradient en les composicions isotòpiques dels gasos nobles solars i planetaris,[47] per exemple les correlacions entre composicions isotòpiques del neó i xenó al Sol i als planetes.[48]

Abans del 1983, es pensava que tot el Sol tenia la mateixa composició que l’atmosfera solar.[49] El 1983 es va afirmar que va ser el fraccionament al mateix Sol el que va causar la relació de composició isotòpica a través del vent solar entre els gasos nobles planetaris.[49]

Estructura i fusió[modifica]

Article principal: Model solar estàndard

Com tots els cossos amb suficient massa, el Sol posseeix una forma esfèrica i, a causa del seu lent moviment de rotació, té també un lleu aplatament polar. Com en qualsevol gran cos esfèric, totes les partícules que el constituïxen tendeixen a caure cap al centre per la força gravitacional, però no totes poden fer-ho perquè són rebutjades per la força de pressió de radiació i la pressió del gas. Pel fet que aquestes forces es compensen, l'estrella ni es col·lapsa cap a dins sobre si mateixa ni es disgrega. És l'anomenat equilibri hidroestàtic. El Sol presenta una estructura en capes esfèriques o en «capes de ceba». La frontera física i les diferències químiques entre les distintes capes són difícils d'establir. Sí que es pot, no obstant, establir una funció física que és diferent per a cada una de les capes. En l'actualitat, l'astronomia disposa d'un model d'estructura solar que explica satisfactòriament la majoria dels fenòmens observats. Segons aquest model, el Sol està format per: 1) nucli, 2) zona radiant, 3) zona convectiva, 4) fotosfera, 5) cromosfera, 6) corona i 7) vent solar.

Nucli solar[modifica]

Article principal: Nucli solar

Ocupa uns 139 000 km del radi solar, 1/5 del total, i és en aquesta zona on es verifiquen les reaccions termonuclears que proporcionen tota l'energia que el Sol produeix. El Sol està constituït per un 81% d'hidrogen, 18% d'heli i l'1% restant d'altres elements. En el seu centre, es calcula que existeix un 49% d'hidrogen, un 49% d'heli i el 2% restant d'altres elements que serveixen de catalitzadors en les reaccions termonuclears. A començament de la dècada dels anys 30 del segle xx, el físic austríac Fritz Houtermans (1903-1966) i l'astrònom anglès Robert d'Escourt Atkinson (1898-1982) varen unir els seus esforços per esbrinar si la producció d'energia en l'interior del Sol i en les estrelles es podia explicar per les transformacions nuclears. El 1938, Hans Albrecht Bethe (1906-2005) als Estats Units i Karl Friedrich von Weizsäker (1912) a Alemanya, simultàniament i independent, descobriren un grup de reaccions en què intervenen el carboni i el nitrogen com a catalitzadors, que constitueixen un cicle, repetint-se una i una altra vegada mentre dura l'hidrogen. Aquest grup de reaccions, se'l coneix com a «cicle de Bethe» o «cicle del carboni», i és equivalent a la fusió de quatre protons en un nucli d'heli. En aquestes reaccions de fusió hi ha una pèrdua de massa: l'hidrogen consumit pesa més que l'heli produït. Aquesta diferència de massa es transforma en energia segons l'equació d'Einstein (E = mc2), en què E és l'energia, m la massa i c la velocitat de la llum. Aquestes reaccions nuclears transformen el 0,7% de la massa afectada en fotons, amb una longitud d'ona molt curta i, per tant, molt energètics i penetrants. L'energia produïda manté l'equilibri tèrmic del nucli solar a temperatures d'aproximadament 15 milions de kèlvins.

El cicle consta de les etapes següents:

1H1 + 6C127N13;
7N136C13 + e+ + neutrí;
1H1 + 6C137N14;
1H1 + 7N148O1 ;
8O157N15 + e+ + neutrí;
1H1 + 7N156C12 + 2He4.

Sumant totes les reaccions i cancel·lant els termes comuns, tenim:

4 1H12He4 + 2e+ + 2 neutrins + 26,7 MeV.

L'energia neta alliberada en el procés és 26,7 MeV, o siga, prop de 6,7 x 1014 joules per quilogram de protons consumits. El carboni hi actua com a catalitzador, perquè al final del cicle es regenera.

Cicle de fusió protó-protó[modifica]

Cicle de fusió nuclear més comú al Sol, protó-protó

Una altra reacció de fusió que ocorre en el Sol i en les estrelles és el cicle de Critchfiel o protó-protó. El 1938, Charles Critchfiel, un jove físic alumne de George Gamow (1904-1968) a la Universitat de George Washington, va adonar-se que, en el xoc entre dos protons molt ràpids, pot ocórrer que un dels protons perda la seua càrrega positiva i es convertisca en un neutró, que roman unit a l'altre protó, constituint un deuteró, és a dir, un nucli d'hidrogen pesant. La reacció és: 1H1 + 1H12H2 + e+ + neutrí; 1H1 + 1H22He3; 2He3 + 2He32He4 + 2 1H1.

Observacions[modifica]

El primer cicle (CNO) es dóna en estrelles més calentes i amb major massa que el Sol i la cadena protó-protó en les semblants al Sol. Quant al Sol, fins a l'any 1953, es va creure que la seva energia era produïda exclusivament per l'enllustrament de Bethe, però s'ha demostrat els últims anys que la calor solar procedix en un 99% del cicle protó-protó.

Arribarà un dia en què el Sol esgoti tot l'hidrogen en la regió central en transformar-lo en heli; la pressió serà incapaç de sostenir les capes superiors i la regió central tendirà a contraure's gravitacionalment, escalfant cada vegada més les capes adjacents. L'excés d'energia produïda farà que les capes exteriors del Sol tendeixin a expandir-se i refredar-se i el nostre astre rei es convertirà en una estrella gegant roja. El diàmetre del Sol pot arribar i sobrepassar al de l'òrbita de la Terra, amb la qual cosa, qualsevol forma de vida s'hi haurà extingit. Quan la temperatura de la regió central arribi aproximadament a 100 milions de graus, començarà a produir-se la reacció de l'heli en carboni, fins que el primer s'esgoti, amb la qual cosa es verificarà el mateix procés que en esgotar-se l'hidrogen. D'aquesta manera, el nucli començarà a contraure's, fins a convertir-se el nostre Sol en una nana blanca i, més tard, en refredar-se totalment, en una nana negra.

Zona radiant[modifica]

Article principal: Zona de radiació

És la zona exterior al nucli en què el transport de l'energia generada en l'interior es produïx per radiació cap al límit exterior de la zona radioactiva. Aquesta zona està composta de plasma, és a dir, grans quantitats d'hidrogen i heli ionitzat. Com que la temperatura del Sol decreix del centre (10-20 milions de graus) a la perifèria (6.000 graus en la fotosfera), és més fàcil que un fotó qualsevol es moga del centre a la perifèria que no al revés. Es calcula que un fotó qualsevol inverteix un milió d'anys, movent-se a la velocitat de la llum, a arribar a la superfície i manifestar-se com a llum visible.

Tacoclina[modifica]

Article principal: Tacoclina

La zona radiativa i la zona convectiva estan separades per una capa de transició, la tacoclina. Aquesta és una regió on el règim agut canvia entre la rotació uniforme de la zona radiativa i la rotació diferencial de la zona convectiva dóna com a resultat un gran tensió entre ambdues: una condició on les successives capes horitzontals llisquen entre si.[50] Actualment, ha sorgit una hipòtesi (vegeu Dinamo solar) que una dinamo magnètica dins d'aquesta capa genera el camp magnètic del Sol.[51]

Zona convectiva[modifica]

Article principal: Zona de convecció

Aquesta regió s'estén per damunt de la zona radiant i en aquesta els gasos solars deixen d'estar ionitzats i els fotons són absorbits amb facilitat, tornant-se el material opac al transport de radiació. Per tant, el transport d'energia es realitza per convecció, en la qual la calor es transporta de manera no homogènia i turbulenta pel mateix fluid. Els fluids es dilaten en ser calfats i disminuïxen de densitat; per tant, es formen corrents ascendents de material des de la zona calfada fins a la zona superior i regions descendents de material des de les zones exteriors fredes, establint-se corrents convectius. Així, a uns 200.000 quilòmetres sota la fotosfera del Sol, el gas es torna opac per efecte de la disminució de la temperatura; en conseqüència, absorbeix els fotons procedents de les zones inferiors i es calfa a expenses de la seva energia. Es formen així seccions convectives de turbulència; les parcel·les de gas calent i lleuger pugen fins a la fotosfera, on novament l'atmosfera solar es torna transparent a la radiació i el gas calent cedeix la seva energia en forma de llum visible, refredant-se abans de tornar a descendir a les profunditats. L'anàlisi de les oscil·lacions solars ha permès establir que aquesta zona s'estén fins a estrats de gas situats a la profunditat indicada anteriorment. L'estudi de les oscil·lacions solars constituïx l'heliosismologia.

Fotosfera[modifica]

Article principal: Fotosfera
Fotosfera del Sol. S'hi aprecien diverses taques solars

La fotosfera és la zona des d'on s'emet pràcticament tota la llum visible del Sol i es considera com la «superfície» solar, la qual, vista amb el telescopi, es presenta formada per grànuls brillants que es projecten sobre un fons més fosc. A causa de l'agitació de la nostra atmosfera, aquests grànuls pareixen estar sempre en agitació. Ja que el Sol és gasós, la fotosfera és un poc transparent: pot ser observada fins a una profunditat d'uns centenars de quilòmetres abans de tornar-se completament opaca. Encara que el limbe del Sol apareix prou nítid en una fotografia o en la imatge solar projectada amb un telescopi, es nota fàcilment que la brillantor del disc solar disminuïx cap al limbe. Aquest fenomen d'enfosquiment del limbe és conseqüència que el Sol és un cos gasós amb una temperatura que disminuïx amb la distància al centre. La llum que es veu en el centre procedeix en la major part de les capes inferiors de la fotosfera, més calenta i per tant més lluminosa. Però, en mirar cap al limbe, la direcció visual de l'observador és quasi tangent a la vora del disc solar i està mirant cap a les capes superiors de la fotosfera, que estan més fredes i emeten amb una intensitat menor que les capes més profundes en la base de la fotosfera; per aquesta raó, el limbe apareix menys brillant que el centre. La fotosfera té uns 100 o 200 km de profunditat.

El signe més evident d'activitat en la fotosfera són les taques solars.

Cromosfera[modifica]

Article principal: Cromosfera

La cromosfera és la regió de l'atmosfera solar situada entre la fotosfera i la corona solar. És una capa relativament fina, de només 2.000 km de gruix, que està dominada per un espectre de línies d'absorció i emissió. El nom cromosfera ve del grec chromos que significa 'color', perquè la cromosfera és visible com un flaix de color al principi i al final dels eclipsis totals de Sol.

Atmosfera[modifica]

Articles principals: Corona solar i Rínxol coronal

La corona solar és la part més exterior de l'atmosfera solar. Mesura més d'un milió de quilòmetres i pot observar-se durant els eclipsis solars o utilitzant un dispositiu capaç d'ocultar la llum del Sol, denominat coronògraf. Fins al 1930, l'única forma d'observar la corona era quan la Lluna eclipsava el Sol totalment. Gràcies a la invenció, el 1930, d'un enginyós dispositiu per a produir eclipsis artificials, els anomenats coronògrafs, es va poder estudiar de manera més accessible el fenomen de la corona solar.

La densitat de la corona solar és un bilió de vegades inferior a la de l'atmosfera terrestre i la seua temperatura aconseguix els dos milions de graus (mentre que la fotosfera té una temperatura aproximada de 6.000 °C).

La corona solar està composta per xicotetes partícules que eventualment són llançades a l'espai per l'intens camp magnètic solar, produint el vent solar i, en fenòmens d'ejecció intensos, tempestats elèctriques en la Terra. Aquests àtoms llançats, en xocar amb la part superior de la nostra atmosfera, són els causants de les aurores en les regions polars Nord i Sud. Tots els detalls estructurals de la corona són deguts al camp magnètic del Sol.

Durant un eclipsi, el 1870, Charles Young, observant l'espectre de llum de la corona, va identificar un traç verd l'origen del qual no va poder ser explicat. Entre les hipòtesis que van circular en l'època, es va parlar d'un suposat element químic desconegut que no estaria disponible en la Terra. El 1940, Edlen i de Grotrian van demostrar que les ratlles verdes no eren produïdes per l'espectre de materials desconeguts sinó d'àtoms altament ionitzats d'elements disponibles en la Terra com el ferro.

Fotons i neutrins[modifica]

Article principal: Irradiança solar

Els fotons d'alta energia en raigs gamma inicialment alliberats amb reaccions de fusió al nucli són gairebé immediatament absorbits pel plasma solar de la zona radiativa, normalment després de viatjar només uns pocs mil·límetres. La reemissió es produeix en una direcció aleatòria i normalment a una energia lleugerament inferior. Amb aquesta seqüència d’emissions i absorcions, la radiació triga molt a arribar a la superfície del Sol. Les estimacions del temps de viatge del fotó oscil·len entre els 10.000 i els 170.000 anys.[52] En canvi, només triga 2,3 segons pels neutrins, que representen aproximadament el 2% de la producció total d’energia del Sol, per arribar a la superfície. Com que el transport d’energia al Sol és un procés que implica fotons en equilibri termodinàmic amb la matèria, l’escala de temps del transport d’energia al Sol és més llarga, de l’ordre de 30 milions d’anys. Aquest és el temps que trigaria el Sol a tornar a un estat estable, si la taxa de generació d’energia en el seu nucli es canviés sobtadament.[53]

Els neutrins també són alliberats per les reaccions de fusió al nucli, però, a diferència dels fotons, poques vegades interactuen amb la matèria, de manera que gairebé tots són capaços d'escapar immediatament del Sol. Durant molts anys les mesures que es van fer del nombre de neutrins produïts al Sol van ser inferiors a les teories previstes per un factor de 3. Aquesta discrepància es va resoldre el 2001 mitjançant el descobriment dels efectes de l'oscil·lació de neutrins: el Sol emet el nombre de neutrins predits per la teoria, però faltaven detectors de neutrins 2⁄3 parts d’ells perquè els neutrins havien canviat de sabor en el moment en què es van detectar.[54]

Vent solar[modifica]

Article principal: Vent solar
Diagrama de l'heliopausa, en el límit entre el vent solar i el vent interestel·lar

El vent solar és un flux de partícules carregades (és a dir, plasma) que sorgeixen de la part superior de l'atmosfera solar i s'estenen per tot el sistema solar. Està format majoritàriament per protons i electrons d'alta energia (500 keV).[55]

La composició elemental del vent solar (en massa) és idèntica a la de la corona: un 71-73% d'hidrogen ionitzat i un 25-27% d'heli ionitzat, la resta són ions d'altres elements i electrons. Les partícules es troben completament ionitzades formant un plasma molt poc dens. En les proximitats de la Terra, la velocitat del vent solar varia entre els 200-889 km/s, i n'és la mitjana d'uns 450 km/s. El Sol perd aproximadament 800 quilograms de matèria cada segon en forma de vent solar.[56]

Les partícules de vent solar que són atrapades en el camp magnètic terrestre mostren tendència a agrupar-se en els cinturons de Van Allen i poden provocar les aurores boreals i les aurores australs quan xoquen amb l'atmosfera terrestre prop dels pols geogràfics. Altres planetes que tenen camps magnètics semblants als de la Terra també tenen les seves pròpies aurores.[57]

El vent solar forma una «bombolla» enmig del medi interestel·lar (una molt baixa densitat d'àtoms d'hidrogen i heli que omple la galàxia). El punt en què la força del vent solar no és prou important per a desplaçar el medi interestel·lar es coneix com a heliopausa i es considera que és el límit exterior del sistema solar. La distància fins a l'heliopausa no és coneguda amb precisió i, probablement, depèn de la velocitat del vent solar i de la densitat local del medi interestel·lar, però se sap que està molt més enllà de l'òrbita de Plutó.

Activitat magnètica[modifica]

Camp magnètic[modifica]

Vegeu també: Camp magnètic estel·lar i Taca solar
Fotografia de llum visible de la taca solar del 13 de desembre de 2006
Diagrames de papallona que mostren un patró de taques solars aparellades. El gràfic és de l'àrea de taques solars.
En aquesta imatge ultraviolada de fals color, el Sol mostra una flamarada solar de classe C3 (zona blanca a la part superior esquerra), un tsunami solar (estructura semblant a l’ona, a la part superior dreta) i múltiples filaments de plasma seguint un camp magnètic, que puja de la superfície estel·lar.
El corrent heliosfèric difús s’estén fins als límits exteriors del sistema solar i resulta de la influència del camp magnètic giratori del Sol sobre el plasma al medi interplanetari.[58]

El Sol té un camp magnètic que varia a través de la superfície del Sol. El seu camp polar és 1–2 gauss (0,0001–0,0002 T), mentre que el camp sol ser 3.000 gauss (0,3 T) en les característiques del Sol anomenades taques solars i 10–100 gauss (0,001–0,01 T) en protuberàncies.[59]

El camp magnètic també varia en temps i ubicació. Els quasi-periòdics d’11 anys de cicle solar és la variació més destacada en què el nombre i la mida de les taques solars s’acreixen i disminueixen.[60][61][62]

Les taques solars són visibles com a taques fosques a la fotosfera del Sol, i corresponen a concentracions de camp magnètic on el transport convectiu de calor s’inhibeix des de l’interior solar fins a la superfície. Com a resultat, les taques solars són una mica més fresques que la fotosfera circumdant, de manera que semblen fosques. En un típic mínim solar, poques taques solars són visibles i, de tant en tant, no se’n pot veure cap. Les que apareixen es troben a altes latituds solars. A mesura que el cicle solar avança cap al seu màxim, les taques solars tendeixen a formar-se més a prop de l'equador solar, un fenomen conegut com a llei de Spörer. Les taques solars més grans poden tenir desenes de milers de quilòmetres de diàmetre.[63]

Un cicle de taques solars d’11 anys és la meitat d’un cicle 22 anys de tipus dinamo Babcock–Leighton, que correspon a un intercanvi oscil·latori d’energia entre camps magnètics solars toroïdals i poloïdals. Al màxim del cicle solar, el camp magnètic dipolar poloïdal extern està a prop de la seva força mínima del cicle de dinamo, però un camp quadripol intern toroïdal, generat a través de la rotació diferencial dins de la tacoclina, és a prop de la seva força màxima. En aquest moment del cicle de la dinamo, la pujada flotant dins de la zona convectiva provoca l’aparició del camp magnètic toroïdal a través de la fotosfera, donant lloc a parells de taques solars, aproximadament alineades est-oest i amb petjades amb polaritats magnètiques oposades. La polaritat magnètica dels parells de taques solars alterna cada cicle solar, un fenomen conegut com a cicle de Hale.[64][65]

Durant la fase decreixent del cicle solar, l'energia es desplaça del camp magnètic toroïdal intern al camp poloïdal extern, i les taques solars disminueixen en nombre i mida. Al mínim del cicle solar, el camp toroïdal és, corresponentment, a una força mínima, les taques solars són relativament rares i el camp poloïdal té la seva força màxima. Amb l’augment del proper cicle de taques solars de 11 anys, la rotació diferencial fa canviar l’energia magnètica del camp poloïdal al camp toroïdal, però amb una polaritat oposada al cicle anterior. El procés continua contínuament i, en un escenari idealitzat i simplificat, cada cicle de taques solars d’11 anys correspon a un canvi, doncs, en la polaritat general del camp magnètic a gran escala del Sol.[66][67]

El camp magnètic solar s’estén molt més enllà del propi Sol. El plasma del vent solar que es condueix elèctricament porta el camp magnètic del Sol a l'espai, formant el que s'anomena camp magnètic interplanetari.[68] En una aproximació coneguda com a magnetohidrodinàmica ideal, les partícules de plasma només es mouen al llarg de les línies del camp magnètic. Com a resultat, el vent solar que flueix cap a fora estira el camp magnètic interplanetari també cap a fora, forçant-lo a formar una estructura aproximadament radial. Per a un simple camp magnètic dipolar solar, amb polaritats hemisfèriques oposades a banda i banda de l’equador magnètic solar, el corrent difús es forma al vent solar.[68] A grans distàncies, la rotació del Sol fa girar el camp magnètic dipolar i el corrent difús corresponent en una estructura d'espiral d'Arquimedes anomenada espiral Parker.[68] El camp magnètic interplanetari és molt més fort que el component dipolar del camp magnètic solar. El camp magnètic dipolar del Sol de 50–400 μT (a la fotosfera) es redueix amb el cub invers de la distància, donant lloc a un camp magnètic predit de 0,1 nT a la distància de la Terra. No obstant això, segons les observacions de les sondes espacials, el camp interplanetari a la ubicació de la Terra és al voltant 5 nT, aproximadament cent vegades més gran.[69] La diferència es deu als camps magnètics generats pels corrents elèctrics al plasma que envolta el Sol.

Variació en l'activitat[modifica]

Mesures del 2005 de la variació del cicle solar durant els darrers 30 anys

El camp magnètic del Sol provoca molts efectes que s’anomenen col·lectivament activitat solar. Les erupcions solars i les ejeccions de massa coronal solen aparèixer en grups de taques solars. Els fluxos de vent solar d’alta velocitat que canvien lentament s'emeten des de forats coronals a la superfície fotosfèrica. Tant les expulsions de massa coronal com els corrents d’alta velocitat de vent solar transporten plasma i camp magnètic interplanetari cap al sistema solar.[70] Els efectes de l’activitat solar a la Terra inclouen aurores de latituds moderades a altes i la interrupció de les comunicacions per ràdio i electricitat. Es creu que l’activitat solar va jugar un paper important a la formació i evolució del sistema solar.

Amb la modulació del cicle solar del nombre de taques solars s’obté una modulació corresponent de les condicions de la meteorologia espacial, inclosos els que envolten la Terra on es poden veure afectats els sistemes tecnològics.

El desembre de 2019 es va observar un nou tipus d’explosió magnètica solar, coneguda com a reconnexió magnètica forçada. Anteriorment, en un procés anomenat reconnexió magnètica espontània, es va observar que les línies del camp magnètic solar divergen explosivament i convergeixen de nou instantàniament. La reconnexió magnètica forçada va ser similar, però va ser desencadenada per una explosió a la corona.[71]

Canvis a llarg termini[modifica]

Alguns científics creuen que el canvi secular a llarg termini del nombre de taques solars està correlacionat amb el canvi a llarg termini de la irradiació solar,[72] que, al seu torn, podria influir en el clima a llarg termini de la Terra.[73] Per exemple, al segle XVII, el cicle solar semblava haver-se aturat completament durant diverses dècades; es van observar poques taques solars durant un període conegut com a mínim de Maunder. Això va coincidir amb l'època de la Petita Edat de Gel, quan Europa va experimentar temperatures inusualment fredes.[74] S'han descobert mínims ampliats anteriorment mitjançant l'anàlisi dels anells dels arbres i sembla que han coincidit amb temperatures globals inferiors a la mitjana.[75]

Una teoria recent afirma que hi ha inestabilitats magnètiques al nucli del Sol que causen fluctuacions amb períodes de 41.000 o 100.000 anys. Aquests podrien proporcionar una millor explicació dels períodes glacialss en comptes dels cicles de Milanković.[76][77]

Naixement i mort[modifica]

Vegeu també: Evolució estel·lar

El Sol es va formar fa uns 4.500 milions d'anys a partir de núvols de gas i pols que ja contenien residus de generacions anteriors d'estrelles. Gràcies a la metal·licitat de tal gas, del seu disc protoplanetari van sorgir, més tard, els planetes, asteroides i cometes del sistema solar. En l'interior del Sol, es produïxen reaccions de fusió en les quals els àtoms d'hidrogen es transformen en heli i es produïx l'energia que irradia la nostra estrella. Actualment, el Sol es troba en plena seqüència principal, fase en què seguirà uns 5.000 milions d'anys més cremant hidrogen de manera estable. Quan l'hidrogen del seu nucli sigui molt menys abundant, aquest es contraurà i s'encendrà la capa d'hidrogen adjacent, però això no bastarà per a retenir-lo. Seguirà compactant-se fins que la seva temperatura sigui prou elevada per a fusionar l'heli del nucli (uns 100 milions de graus). Al mateix temps, les capes exteriors de l'embolcall aniran expandint-se gradualment. S'expandiran tant que, a pesar de l'augment de brillantor de l'estrella, la seva temperatura efectiva disminuirà, situant la seva llum en la regió vermella de l'espectre. El Sol s'haurà convertit en una gegant roja. El radi del Sol, per a llavors, serà tan gran que haurà engolit Mercuri, Venus i, possiblement, la Terra. Durant la seva etapa com a gegant roja (uns 1.000 milions d'anys), el Sol anirà expulsant gas cada vegada amb major intensitat. En els últims moments de la seva vida, el vent solar s'intensificarà i el Sol es desprendrà de tot el seu embolcall, el qual formarà, amb el temps, una nebulosa planetària. El nucli i les seves regions més properes es comprimiran més, fins a formar un estat de la matèria molt concentrat en què les repulsions de tipus quàntic entre els electrons extremadament propers (degenerats) frenaran el col·lapse. Quedarà, llavors, com a romanent estel·lar, una nana blanca de carboni i oxigen que s'anirà refredant gradualment.

Fases evolutives[modifica]

El Sol actual és aproximadament a la meitat de la part més estable de la seva vida. No ha canviat dràsticament durant més de quatre mil milions d'anys,[c] i es mantindrà bastant estable durant més de cinc mil milions més. No obstant això, després que la fusió d'hidrogen en el seu nucli s'hagi aturat, el Sol experimentarà canvis dramàtics, tant internament com externament.

Formació[modifica]

El Sol es va formar fa uns 4.600 milions d’anys a partir del col·lapse d’una part d’un núvol molecular gegant que consistia principalment en hidrogen i heli i que probablement va donar a llum moltes altres estrelles.[78] Aquesta edat s’estima utilitzant simulacions informàtiques d'evolució estel·lar i a través de la nucleocosmocronologia.[6] El resultat és coherent amb la data radiomètrica del material més antic del sistema solar, fa 4.567 milions d’anys.[79][80] Estudis d'antics meteorits revelen traces de nuclis estables d’isòtops de curta durada, com ara ferro-60, que només es formen en estrelles de curta durada i en explosió. Això indica que deu haver-se produït una o més supernoves a prop de la ubicació on es va formar el Sol. Una ona de xoc d'una supernova propera hauria desencadenat la formació del Sol comprimint la matèria dins del núvol molecular i provocant el col·lapse de determinades regions sota la seva pròpia gravetat.[81] Quan una regió del núvol es va col·lapsar, també va començar a girar a causa de la conservació del moment angular i escalfar amb la pressió creixent. Gran part de la massa es va concentrar al centre, mentre que la resta es va aplanar en un disc que es convertiria en els planetes i altres cossos del sistema solar. La gravetat i la pressió dins del nucli del núvol van generar molta calor ja que s’acumulava més matèria del disc circumdant, provocant finalment el desencadenament de la fusió nuclear.

HD 162826 i HD 186302 són germans estel·lars hipotetitzats del Sol, que s’han format en el mateix núvol molecular.

Seqüència principal[modifica]

Evolució de la lluminositat, radi i temperatura efectiva solar en comparació amb el Sol actual. De Ribas (2010)[82]

El Sol és aproximadament a la meitat de la seva etapa de seqüència principal, durant la qual les reaccions de fusió nuclear del seu nucli fusionen l’hidrogen amb l’heli. Cada segon, més de quatre milions de tones de matèria es converteixen en energia dins del nucli del Sol, produint neutrins i radiació solar. A aquest ritme, fins ara el Sol ha convertit al voltant de 100 vegades la massa de la Terra en energia, aproximadament el 0,03% de la massa total del Sol. El Sol passarà aproximadament 10.000 milions d’anys com a estrella de seqüència principal.[83] El Sol s’està escalfant gradualment durant la seva seqüència principal, perquè els àtoms d’heli del nucli ocupen menys volum que els àtoms d'hidrogen que es van fusionar. Per tant, el nucli s’està reduint i permet que les capes externes del Sol s’apropin al centre i experimentin una força gravitatòria més forta, segons la llei de l'invers del quadrat. Aquesta força més forta augmenta la pressió sobre el nucli, que es resisteix amb un augment gradual de la velocitat a la qual es produeix la fusió. Aquest procés s’accelera a mesura que el nucli es torna més dens. S'estima que el Sol s'ha tornat un 30% més brillant en els darrers 4.500 milions d'anys.[84] Actualment, augmenta la brillantor aproximadament un 1% cada 100 milions d’anys.[85]

Després de l'esgotament del nucli d'hidrogen[modifica]

La mida del Sol actual (ara en la seqüència principal) en comparació amb la seva mida estimada durant la seva fase de gegant vermella en el futur

El Sol no té prou massa per explotar com a supernova. En lloc d'això, sortirà de la seqüència principal en aproximadament 5.000 milions d'anys i començarà a convertir-se en una gegant vermella.[86][87] Com a gegant vermella, el Sol creixerà tant que engolirà Mercuri, Venus i probablement la Terra.[87][88]

Fins i tot abans que es converteixi en una gegant vermella, la lluminositat del Sol s'haurà gairebé duplicat i la Terra rebrà tanta llum solar com Venus rep avui. Un cop s’esgoti l’hidrogen del nucli en 5.400 milions d’anys, el Sol s’expandirà fins una fase de subgegant i lentament el doble de mida durant aproximadament cinc cents milions d’anys. A continuació, s’expandirà més ràpidament durant aproximadament cinc cents milions d’anys fins que sigui més de dues-centes vegades més gran que l’actual i un parell de milers de vegades més lluminosa. A continuació, s'inicia la fase de branca gegant vermella que el Sol passarà al voltant de mil milions d’anys i perdrà al voltant d’un terç de la seva massa.[87]

Evolució d’una estrella semblant al Sol. El traçat d'una estrella d'una massa solar al diagrama de Hertzsprung-Russell es mostra des de la seqüència principal fins a l'etapa de branca gegant post-asimptòtica.

Després de la branca gegant vermella, al Sol li queden aproximadament 120 milions d’anys de vida activa, però passen diversos esdeveniments. En primer lloc, el nucli, ple d'heli que es degenera s'encén violentament en flaix de l'heli, on s’estima que el 6% del nucli, el 40% de la massa del Sol, es convertirà en carboni en qüestió de minuts a través del procés triple alfa.[89] El Sol es redueix al voltant de deu vegades la seva mida actual i 50 vegades la lluminositat, amb una temperatura una mica inferior a l’actual. Després haurà arribat a l'agrupament vermell o branca horitzontal, però una estrella de la massa del Sol no evoluciona cap al blau al llarg de la branca horitzontal. En canvi, es fa moderadament més gran i més lluminós durant uns 100 milions d’anys, ja que continua reaccionant l’heli al nucli.[87]

Quan l’heli s’esgoti, el Sol repetirà l’expansió que va seguir quan es va esgotar l’hidrogen del nucli, excepte que aquesta vegada tot passa més de pressa i el Sol es fa més gran i lluminós. Aquest és la fase de branca asimptòtica de les gegants, i el Sol reacciona alternativament amb hidrogen en una closca o heli en una closca més profunda. Després d’uns 20 milions d’anys a la primera branca gegant asimptòtica, el Sol es torna cada vegada més inestable, amb pèrdues de massa ràpides i polsos tèrmics que augmenten la mida i la lluminositat durant uns quants centenars d’anys cada 100.000 anys més o menys. Els polsos tèrmics es fan cada vegada més grans, i els polsos posteriors empenyen la lluminositat fins a 5.000 vegades el nivell actual i el radi a més d’1 UA.[90] Segons un model del 2008, l'òrbita de la Terra es redueix a causa de les forces de marea (i, finalment, arrossegament des de la cromosfera inferior), de manera que el Sol l’engolirà prop de la punta de la fase de la branca gegant vermella, 3,8 i 1 milió d’anys després que Mercuri i Venus hagin tingut el mateix destí respectivament. Els models varien segons la velocitat i el moment de la pèrdua de massa. Els models amb més pèrdues de massa a la branca gegant vermella produeixen estrelles més petites i menys lluminoses a la punta de la branca gegant asimptòtica, potser només 2.000 vegades la lluminositat i menys de 200 vegades el radi.[87] Per al Sol, es preveuen quatre polsos tèrmics abans que perdi completament l’embolcall exterior i es comenci a fer una nebulosa planetària. Al final d’aquesta fase, amb una durada aproximada de 500.000 anys, el Sol només tindrà aproximadament la meitat de la seva massa actual.

L’evolució de la branca gegant post-asimptòtica és encara més ràpida. La lluminositat es manté aproximadament constant a mesura que augmenta la temperatura, i la meitat expulsada de la massa del Sol es ionitza en una nebulosa planetària a mesura que el nucli exposat arriba a 30.000 K. El nucli nu final, una nana blanca, tindrà una temperatura superior a 100.000 K i contindrà aproximadament un 54,05% de la massa actual del Sol.[87] La nebulosa planetària es dispersarà al cap d’uns 10.000 anys, però la nana blanca sobreviurà durant bilions d’anys abans d’esvair-se en una hipotètica nana negra.[91][92]

Moviment i situació[modifica]

Il·lustració de la Via Làctia, que mostra la ubicació del Sol

El Sol és prop de la part interna del Braç d'Orió de la Via Làctia, al Núvol Interestel·lar Local o Cinturó de Gould, a una distància hipotètica de 7,62±0,32 kpc (24.800 anys llum) del Centre Galàctic.[93][94][95][96] La distància entre el braç local i el següent braç (el de Perseus és d'uns 6.500 anys llum).[97] El Sol, i per tant el sistema solar, es troba en el que els científics anomenen la zona habitable de la galàxia.

The Sun is contained within the Local Bubble, a space of rarefied hot gas, possibly produced by the supernova remnant Geminga,[98] or multiple supernovae in subgroup B1 of the Pleiades moving group.[99] The distance between the local arm and the next arm out, the Perseus Arm, is about 6,500 light-years.[97] El Sol, i per tant el sistema solar, es troba en el que els científics anomenen la zona habitable de la galàxia. The Apex of the Sun's Way, or the solar apex, is the direction that the Sun travels relative to other nearby stars. This motion is towards a point in the constellation Hercules, near the star Vega.

Within 32,6 a.l. of the Sun there are 315 known stars in 227 systems, as of 2000, including 163 single stars. It is estimated that a further 130 systems within this range have not yet been identified. Out to 81,5 a.l., there may be up to 7,500 stars, of which around 2,600 are known. The number of substellar objects in that volume are expected to be comparable to the number of stars.[100] Of the 50 nearest stellar systems within 17 light-years from Earth (the closest being the red dwarf Proxima Centauri at approximately 4.2 light-years), the Sun ranks fourth in mass.[101]

Òrbita a la Via Làctia[modifica]

The Sun orbits the center of the Milky Way, and it is presently moving in the direction of the constellation of Cygnus. A simple model of the motion of a star in the galaxy gives the galactic coordinates X, Y, and Z as:

where U, V, and W are the respective velocities with respect to the local standard of rest, A and B are the Oort constants, is the angular velocity of galactic rotation for the local standard of rest, is the "epicyclic frequency", and ν is the vertical oscillation frequency.[102] For the sun, the present values of U, V, and W are estimated as km/s, and estimates for the other constants are A = 15.5 km/s/kpc, B = −12.2 km/s/kpc, κ = 37 km/s/kpc, and ν=74 km/s/kpc. We take X(0) and Y(0) to be zero and Z(0) is estimated to be 17 parsecs.[103] This model implies that the Sun circulates around a point that is itself going around the galaxy. The period of the Sun's circulation around the point is . which, using the equivalence that a parsec equals 1 km/s times 0.978 million years, comes to 166 million years, shorter than the time it takes for the point to go around the galaxy. In the (X, Y) coordinates, the Sun describes an ellipse around the point, whose length in the Y direction is

and whose width in the X direction is

The ratio of length to width of this ellipse, the same for all stars in our neighborhood, is The moving point is presently at

The oscillation in the Z direction takes the Sun

above the galactic plane and the same distance below it, with a period of or 83 million years, approximately 2.7 times per orbit.[104] Although is 222 million years, the value of at the point around which the Sun circulates is

(see Oort constants), corresponding to 235 million years, and this is the time that the point takes to go once around the galaxy. Other stars with the same value of have to take the same amount of time to go around the galaxy as the sun and thus remain in the same general vicinity as the Sun.

The Sun's orbit around the Milky Way is perturbed due to the non-uniform mass distribution in Milky Way, such as that in and between the galactic spiral arms. It has been argued that the Sun's passage through the higher density spiral arms often coincides with mass extinctions on Earth, perhaps due to increased impact events.[105] It takes the Solar System about 225–250 million years to complete one orbit through the Milky Way (a galactic year),[106] so it is thought to have completed 20–25 orbits during the lifetime of the Sun. The orbital speed of the Solar System about the center of the Milky Way is approximately 251 km/s (156 mi/s).[107] At this speed, it takes around 1,190 years for the Solar System to travel a distance of 1 light-year, or 7 days to travel 1 AU.[108]

The Milky Way is moving with respect to the cosmic microwave background radiation (CMB) in the direction of the constellation Hydra with a speed of 550 km/s, and the Sun's resultant velocity with respect to the CMB is about 370 km/s in the direction of Crater or Leo.[109]

Moviment en el sistema solar[modifica]

Moviment aparent del baricentre del sistema solar pel que fa al Sol: en realitat és el Sol el que es mou.

The Sun is moved by the gravitational pull of the planets. One can think of the barycentre of the Solar System as being stationary (or as moving in a steady motion around the galaxy). The centre of the sun is always within 2.2 solar radii of the barycentre. This motion of the Sun is mainly due to Jupiter, Saturn, Uranus, and Neptune. For some periods of several decades, the motion is rather regular, forming a trefoil pattern, whereas between these periods it appears more chaotic.[110] After 179 years (nine times the synodic period of Jupiter and Saturn) the pattern more or less repeats, but rotated by about 24°.[111] The orbits of the inner planets, including of the Earth, are similarly displaced by the same graviational forces, so the movement of the Sun has little effect on the relative positions of the Earth and the Sun or on solar irradiance on the Earth as a function of time.[112]

Energia solar[modifica]

Article principal: Energia solar

La major part de l'energia utilitzada pels éssers vius procedeix del Sol, les plantes l'absorbeixen directament i realitzen la fotosíntesi, els herbívors absorbeixen indirectament una xicoteta quantitat d'aquesta energia menjant les plantes, i els carnívors absorbeixen indirectament una quantitat més xicoteta menjant els herbívors.

La majoria de les fonts d'energia emprades per l'ésser humà deriven indirectament del Sol. Els combustibles fòssils preserven energia solar capturada fa milions d'anys per mitjà de fotosíntesi, l'energia hidràulica usa l'energia potencial d'aigua que es va condensar en altura després d'haver-se evaporat per la calor del Sol, etc.

No obstant això, l'ús directe de l'energia solar per a l'obtenció d'energia no està massa estès pel fet que els mecanismes actuals no són prou eficaços.

Precaucions en l'observació[modifica]

  • Mirar directament el Sol sense la protecció adient pot causar lesions i cremades greus als ulls i, fins i tot, ceguesa permanent.
  • Les ulleres de sol, filtres fets amb pel·lícula fotogràfica velada, polaritzadors, gelatines, CD o vidres fumats no ofereixen suficient protecció als ulls.
  • Una bona protecció la proporcionen els filtres MYLAR® o equivalents. Les ulleres utilitzades per a la soldadura a l'arc amb vidres de densitats 14 a 16 són idònies per a aquesta fi. Les mateixes precaucions s'han de tenir en compte si s'utilitzen aparells òptics. Els filtres han d'anar col·locats a la part frontal i mai a l'ocular.
  • L'exposició excessiva al sol pot produir una insolació.

El sol en la cultura[modifica]

Article principal: Símbols solars
Símbol del Sol

El sol és un símbol principal en la majoria de cultures. Pot ser un principi masculí, com en la majoria del Mediterrani, o femení, com a l'Àsia, per exemple. Sol tenir relació amb el gènere que té la paraula en cada llengua.

Simbolitza la llum i el poder. En alquímia, es relaciona amb l'or i s'escriu com un cercle amb un punt enmig (el mateix signe que en l'astrologia).

A vegades, s'ha utilitzat com a al·legoria de Jesús, ja que «mor» i «ressuscita» (es pon i surt cada dia per a l'ull humà), està al cel i irradia llum. Igualment, la data de Nadal estaria associada al solstici d'hivern. Les corones dels sants sovint tenen rajos com els del sol.

En molts indrets, va ser venerat un déu del Sol. A Egipte, era Ra i va ser el primer culte monoteista de la història. En el panteó de la mitologia grega era Apol·lo. També és una divinitat important en les cultures precolombines d'Amèrica.

El sol és el protagonista d'algunes cançons per a la mainada en l'àmbit tradicional català, com Plou i fa sol o Sol solet.[113]

Notes[modifica]

  1. Els nens al Japó s’ensenya a acolorir el Sol de vermell. Això es reflecteix a la bandera del Japó (anomenada Nisshōki, que significa la "bandera del Sol") que té un disc vermell, en lloc de groc.
  1. En sentit antihorari també és la direcció de la revolució al voltant del Sol per als objectes del sistema solar i és la direcció del gir axial per a la majoria d’objectes.
  2. 1,88 Gcd/m2 es calcula a partir de la il·luminació solar de 128.000 lux (vegeu llum solar) vegades el quadrat de la distància al centre del Sol, dividit per la secció transversal del Sol. 1,44 Gcd/m2 es calcula utilitzant 98.000 lux.
  3. Error de citació: Etiqueta <ref> no vàlida; no s'ha proporcionat text per les refs nomenades short

Error de citació: L'etiqueta <ref> amb el nom "heavy elements" definida a <references> no s'utilitza en el text anterior.
Error de citació: L'etiqueta <ref> amb el nom "power production density" definida a <references> no s'utilitza en el text anterior.

Error de citació: L'etiqueta <ref> amb el nom "particle density" definida a <references> no s'utilitza en el text anterior.

Referències[modifica]

  1. URL de la referència: http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html. Editorial: NASA. Data de consulta: 31 agost 2014.
  2. Helmut Schlattl «The age of the Sun and the relativistic corrections in the EOS» (en anglès). Astronomy and Astrophysics, 3, agost 2002, pàg. 1115–1118. DOI: 10.1051/0004-6361:20020749.
  3. Martin Bizzarro «The absolute chronology and thermal processing of solids in the solar protoplanetary disk.» (en anglès). Science, 6107, 1r novembre 2012, pàg. 651-655. DOI: 10.1126/SCIENCE.1226919.
  4. Martin Asplund «The new solar abundances - Part I: the observations». Communications in Asteroseismology, 2007, pàg. 76-79. DOI: 10.1553/CIA147S76.
  5. Woolfson, M. «The origin and evolution of the solar system». Astronomy & Geophysics, 41, 1, 2000, pàg. 12. Bibcode: 2000A&G....41a..12W. DOI: 10.1046/j.1468-4004.2000.00012.x.
  6. 6,0 6,1 Bonanno, A.; Schlattl, H.; Paternò, L. «The age of the Sun and the relativistic corrections in the EOS». Astronomy and Astrophysics, 390, 3, 2002, pàg. 1115–1118. arXiv: astro-ph/0204331. Bibcode: 2002A&A...390.1115B. DOI: 10.1051/0004-6361:20020749.
  7. «How Round is the Sun?». NASA, 02-10-2008 [Consulta: 7 març 2011].
  8. «First Ever STEREO Images of the Entire Sun». NASA, 06-02-2011 [Consulta: 7 març 2011].
  9. 9,0 9,1 Vladimir Orel (2003) A Handbook of Germanic Etymology, Brill
  10. Barnhart, R.K.. The Barnhart Concise Dictionary of Etymology. HarperCollins, 1995, p. 776. ISBN 978-0-06-270084-1. 
  11. Plantilla:Lexico
  12. «Sol». A: Oxford English Dictionary. 3a. Oxford University Press, Setembre de 2005. 
  13. «Opportunity's View, Sol 959 (Vertical)». NASA, 15-11-2006. [Consulta: 1r agost 2007].
  14. «solar». A: Oxford English Dictionary. 3a. Oxford University Press, Setembre de 2005. 
  15. Little, William; Fowler, H.W.; Coulson, J. «Sol». A: Oxford Universal Dictionary on Historical Principles. 3rd, 1955. 
  16. «heliac». A: Oxford English Dictionary. 3a. Oxford University Press, Setembre de 2005. 
  17. Barnhart, R.K.. The Barnhart Concise Dictionary of Etymology. HarperCollins, 1995, p. 778. ISBN 978-0-06-270084-1. 
  18. Beer, J.; McCracken, K.; von Steiger, R. Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments. Springer Science+Business Media, 2012, p. 41. ISBN 978-3-642-14651-0. 
  19. Phillips, K.J.H.. Guide to the Sun. Cambridge University Press, 1995, p. 73. ISBN 978-0-521-39788-9. 
  20. Godier, S.; Rozelot, J.-P. «The solar oblateness and its relationship with the structure of the tachocline and of the Sun's subsurface». Astronomy and Astrophysics, 355, 2000, pàg. 365–374. Bibcode: 2000A&A...355..365G.
  21. Jones, G. «Sun is the most perfect sphere ever observed in nature», 16-08-2012. [Consulta: 19 agost 2013].
  22. Schutz, B.F.. Gravity from the ground up. Cambridge University Press, 2003, p. 98–99. ISBN 978-0-521-45506-0. 
  23. Phillips, K.J.H.. Guide to the Sun. Cambridge University Press, 1995, p. 78–79. ISBN 978-0-521-39788-9. 
  24. «The Anticlockwise Solar System». Australian Space Academy.
  25. «3,000th Comet Spotted by Solar and Heliospheric Observatory (SOHO)». NASA. [Consulta: 15 setembre 2015]. (2.703 descobriments fins al 21 d’abril de 2014)
  26. «Construction of a Composite Total Solar Irradiance (TSI) Time Series from 1978 to present». Arxivat de l'original el 01-08-2011. [Consulta: 5 octubre 2005].
  27. El-Sharkawi, Mohamed A. Electric energy. CRC Press, 2005, p. 87–88. ISBN 978-0-8493-3078-0. 
  28. «Solar radiation».
  29. «Reference Solar Spectral Irradiance: Air Mass 1.5». [Consulta: 12 novembre 2009].
  30. Phillips, K.J.H.. Guide to the Sun. Cambridge University Press, 1995, p. 14–15, 34–38. ISBN 978-0-521-39788-9. 
  31. «What Color is the Sun?». Universe Today.
  32. «What Color is the Sun?». Stanford Solar Center.
  33. Wilk, S.R. «The Yellow Sun Paradox». Optics & Photonics News, 2009, pàg. 12–13.
  34. Phillips, K.J.H.. Guide to the Sun. Cambridge University Press, 1995, p. 47–53. ISBN 978-0-521-39788-9. 
  35. Karl S. Kruszelnicki «Dr Karl's Great Moments In Science: Lazy Sun is less energetic than compost». Australian Broadcasting Corporation, 17-04-2012 [Consulta: 25 febrer 2014]. «Every second, the Sun burns 620 million tonnes of hydrogen...»
  36. 36,0 36,1 Lodders, Katharina «Solar System Abundances and Condensation Temperatures of the Elements». The Astrophysical Journal, 591, 2, 10-07-2003, pàg. 1220–1247. Bibcode: 2003ApJ...591.1220L. DOI: 10.1086/375492.
    Lodders, K. «Abundances and Condensation Temperatures of the Elements». Meteoritics & Planetary Science, 38, suppl, 2003, pàg. 5272. Bibcode: 2003M&PSA..38.5272L.
  37. Hansen, C.J.; Kawaler, S.A.; Trimble, V. Stellar Interiors: Physical Principles, Structure, and Evolution. 2nd. Springer, 2004, p. 19–20. ISBN 978-0-387-20089-7. 
  38. Hansen, C.J.; Kawaler, S.A.; Trimble, V. Stellar Interiors: Physical Principles, Structure, and Evolution. 2nd. Springer, 2004, p. 77–78. ISBN 978-0-387-20089-7. 
  39. Hansen, C.J.; Kawaler, S.A.; Trimble, V. Stellar Interiors: Physical Principles, Structure, and Evolution. 2nd. Springer, 2004, p. § 9.2.3. ISBN 978-0-387-20089-7. 
  40. Iben, I Jnr (1965) "Stellar Evolution. II. The Evolution of a 3 M_{sun} Star from the Main Sequence Through Core Helium Burning". (Astrophysical Journal, vol. 142, p. 1447)
  41. Aller, L.H. «The chemical composition of the Sun and the solar system». Proceedings of the Astronomical Society of Australia, 1, 4, 1968, pàg. 133. Bibcode: 1968PASAu...1..133A. DOI: 10.1017/S1323358000011048.
  42. Error de citació: Etiqueta <ref> no vàlida; no s'ha proporcionat text per les refs nomenades basu2008
  43. 43,0 43,1 43,2 Biemont, E. «Abundances of singly ionized elements of the iron group in the Sun». Monthly Notices of the Royal Astronomical Society, 184, 4, 1978, pàg. 683–694. Bibcode: 1978MNRAS.184..683B. DOI: 10.1093/mnras/184.4.683.
  44. Ross i Aller 1976, Withbroe 1976, Hauge i Engvold 1977, citats a Biemont 1978.
  45. Corliss i Bozman (1962 citats a Biemont 1978) i Warner (1967 citat a Biemont 1978)
  46. Smith (1976 citata a Biemont 1978)
  47. Signer i Suess 1963; Manuel 1967; Marti 1969; Kuroda i Manuel 1970; Srinivasan i Manuel 1971, tots citats a Manuel i Hwaung 1983
  48. Kuroda i Manuel 1970 citats a Manuel i Hwaung 1983:7
  49. 49,0 49,1 Manuel, O.K.; Hwaung, G. «Solar abundances of the elements». Meteoritics, 18, 3, 1983, pàg. 209–222. Bibcode: 1983Metic..18..209M. DOI: 10.1111/j.1945-5100.1983.tb00822.x.
  50. Tobias, S.M.. «The solar tachocline: Formation, stability and its role in the solar dynamo». A: A.M. Soward. Fluid Dynamics and Dynamos in Astrophysics and Geophysics. CRC Press, 2005, p. 193–235. ISBN 978-0-8493-3355-2. 
  51. Error de citació: Etiqueta <ref> no vàlida; no s'ha proporcionat text per les refs nomenades NASA1
  52. «Ancient sunlight». NASA, 2007. [Consulta: 24 juny 2009].
  53. Stix, M. «On the time scale of energy transport in the sun». Solar Physics, 212, 1, 2003, pàg. 3–6. Bibcode: 2003SoPh..212....3S. DOI: 10.1023/A:1022952621810.
  54. Schlattl, H. «Three-flavor oscillation solutions for the solar neutrino problem». Physical Review D, 64, 1, 2001, pàg. 013009. arXiv: hep-ph/0102063. Bibcode: 2001PhRvD..64a3009S. DOI: 10.1103/PhysRevD.64.013009.
  55. «Sol». L'Enciclopèdia.cat. Barcelona: Grup Enciclopèdia Catalana.
  56. McComas, D. J.; Elliott, H. A.; Schwadron, N. A.; Gosling, J. T.; Skoug, R. M.; Goldstein, B. E. «The three-dimensional solar wind around solar maximum» (en anglès). Geophysical Research Letters, 30, 10, 15-05-2003, pàg. 1517. Bibcode: 2003GeoRL..30.1517M. DOI: 10.1029/2003GL017136. ISSN: 1944-8007.
  57. «Stanford SOLAR Center -- Ask A Solar Physicist FAQs - Answer».
  58. «The Mean Magnetic Field of the Sun». Wilcox Solar Observatory, 2006. [Consulta: 1r agost 2007].
  59. Error de citació: Etiqueta <ref> no vàlida; no s'ha proporcionat text per les refs nomenades nssdc
  60. Charbonneau, P. «Solar Dynamo Theory». Annual Review of Astronomy and Astrophysics, 52, 2014, pàg. 251–290. Bibcode: 2014ARA&A..52..251C. DOI: 10.1146/annurev-astro-081913-040012.
  61. Zirker, J.B.. Journey from the Center of the Sun. Princeton University Press, 2002, p. 119–120. ISBN 978-0-691-05781-1. 
  62. Lang, Kenneth R. The Sun from Space. Springer-Verlag, 2008, p. 75. ISBN 978-3-540-76952-1. 
  63. «The Largest Sunspot in Ten Years». Goddard Space Flight Center, 30-03-2001. Arxivat de l'original el 23 agost 2007. [Consulta: 10 juliol 2009].
  64. Hale, G.E.; Ellerman, F.; Nicholson, S.B.; Joy, A.H. «The Magnetic Polarity of Sun-Spots». The Astrophysical Journal, 49, 1919, pàg. 153. Bibcode: 1919ApJ....49..153H. DOI: 10.1086/142452.
  65. «NASA Satellites Capture Start of New Solar Cycle». PhysOrg, 04-01-2008. [Consulta: 10 juliol 2009].
  66. «Sun flips magnetic field». CNN, 16-02-2001 [Consulta: 11 juliol 2009].
  67. Phillips, T. «The Sun Does a Flip». NASA, 15-02-2001. Arxivat de l'original el 12 maig 2009. [Consulta: 11 juliol 2009].
  68. 68,0 68,1 68,2 Error de citació: Etiqueta <ref> no vàlida; no s'ha proporcionat text per les refs nomenades Russell2001
  69. Wang, Y.-M.; Sheeley, N.R. «Modeling the Sun's Large-Scale Magnetic Field during the Maunder Minimum». The Astrophysical Journal, 591, 2, 2003, pàg. 1248–1256. Bibcode: 2003ApJ...591.1248W. DOI: 10.1086/375449.
  70. Zirker, J.B.. Journey from the Center of the Sun. Princeton University Press, 2002, p. 120–127. ISBN 978-0-691-05781-1. 
  71. «Astronomers Observe New Type Of Magnetic Explosion On The Sun» (en anglès).
  72. Willson, R.C.; Hudson, H.S. «The Sun's luminosity over a complete solar cycle». Nature, 351, 6321, 1991, pàg. 42–44. Bibcode: 1991Natur.351...42W. DOI: 10.1038/351042a0.
  73. Eddy, John A. «The Maunder Minimum». Science, 192, 4245, Juny 1976, pàg. 1189–1202. Bibcode: 1976Sci...192.1189E. DOI: 10.1126/science.192.4245.1189. JSTOR: 17425839. PMID: 17771739.
  74. Lean, J.; Skumanich, A.; White, O. «Estimating the Sun's radiative output during the Maunder Minimum». Geophysical Research Letters, 19, 15, 1992, pàg. 1591–1594. Bibcode: 1992GeoRL..19.1591L. DOI: 10.1029/92GL01578.
  75. Mackay, R.M.; Khalil, M.A.K. «Greenhouse gases and global warming». A: Singh, S.N.. Trace Gas Emissions and Plants. Springer, 2000, p. 1–28. ISBN 978-0-7923-6545-7. 
  76. Ehrlich, R. «Solar Resonant Diffusion Waves as a Driver of Terrestrial Climate Change». Journal of Atmospheric and Solar–Terrestrial Physics, 69, 7, 2007, pàg. 759–766. arXiv: astro-ph/0701117. Bibcode: 2007JASTP..69..759E. DOI: 10.1016/j.jastp.2007.01.005.
  77. Clark, S. «Sun's fickle heart may leave us cold». New Scientist, 193, 2588, 2007, pàg. 12. DOI: 10.1016/S0262-4079(07)60196-1.
  78. Zirker, Jack B. Journey from the Center of the Sun. Princeton University Press, 2002, p. 7–8. ISBN 978-0-691-05781-1. 
  79. Amelin, Y.; Krot, A.; Hutcheon, I.; Ulyanov, A. «Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions». Science, 297, 5587, 2002, pàg. 1678–1683. Bibcode: 2002Sci...297.1678A. DOI: 10.1126/science.1073950. PMID: 12215641.
  80. Baker, J.; Bizzarro, M.; Wittig, N.; Connelly, J.; Haack, H. «Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites». Nature, 436, 7054, 2005, pàg. 1127–1131. Bibcode: 2005Natur.436.1127B. DOI: 10.1038/nature03882. PMID: 16121173.
  81. Williams, J. «The astrophysical environment of the solar birthplace». Contemporary Physics, 51, 5, 2010, pàg. 381–396. arXiv: 1008.2973. Bibcode: 2010ConPh..51..381W. DOI: 10.1080/00107511003764725.
  82. Ribas, Ignasi «Proceedings of the IAU Symposium 264 'Solar and Stellar Variability – Impact on Earth and Planets': The Sun and stars as the primary energy input in planetary atmospheres». Proceedings of the International Astronomical Union, 264, febrer 2010, pàg. 3–18. arXiv: 0911.4872. Bibcode: 2010IAUS..264....3R. DOI: 10.1017/S1743921309992298.
  83. Goldsmith, D.; Owen, T. The search for life in the universe. University Science Books, 2001, p. 96. ISBN 978-1-891389-16-0. 
  84. «The Sun's Evolution».
  85. «Earth Won't Die as Soon as Thought», 22-01-2014.
  86. «Red Giant Stars: Facts, Definition & the Future of the Sun». [Consulta: 20 febrer 2016].
  87. 87,0 87,1 87,2 87,3 87,4 87,5 Schröder, K.-P.; Connon Smith, R. «Distant future of the Sun and Earth revisited». Monthly Notices of the Royal Astronomical Society, 386, 1, 2008, pàg. 155–163. arXiv: 0801.4031. Bibcode: 2008MNRAS.386..155S. DOI: 10.1111/j.1365-2966.2008.13022.x.
  88. Boothroyd, A.I.; Sackmann, I.‐J. «The CNO Isotopes: Deep Circulation in Red Giants and First and Second Dredge‐up». The Astrophysical Journal, 510, 1, 1999, pàg. 232–250. arXiv: astro-ph/9512121. Bibcode: 1999ApJ...510..232B. DOI: 10.1086/306546.
  89. «The End Of The Sun».
  90. Vassiliadis, E.; Wood, P.R. «Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss». The Astrophysical Journal, 413, 1993, pàg. 641. Bibcode: 1993ApJ...413..641V. DOI: 10.1086/173033.
  91. Bloecker, T. «Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution». Astronomy and Astrophysics, 297, 1995, pàg. 727. Bibcode: 1995A&A...297..727B.
  92. Bloecker, T. «Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution». Astronomy and Astrophysics, 299, 1995, pàg. 755. Bibcode: 1995A&A...299..755B.
  93. Reid, Mark J. «The distance to the center of the Galaxy». Annual review of astronomy and astrophysics, 31, 1993, pàg. 345–372. DOI: 10.1146/annurev.aa.31.090193.002021 [Consulta: 10 maig 2007].
  94. Eisenhauer, F.; Schödel, R.; Genzel, R.; Ott, T.; Tecza, M.; Abuter, R.; Eckart, A.; Alexander, T. «A Geometric Determination of the Distance to the Galactic Center». The Astrophysical Journal, 597, 2003, pàg. L121–L124. DOI: 10.1086/380188 [Consulta: 10 maig 2007].
  95. Horrobin, M.; Eisenhauer, F.; Tecza, M.; Thatte, N.; Genzel, R.; Abuter, R.; Iserlohe, C.; Schreiber, J.; Schegerer, A.; Lutz, D.; Ott, T.; Schödel, R. «First results from SPIFFI. I: The Galactic Center» (PDF). Astronomische Nachrichten, 325, 2004, pàg. 120–123. DOI: 10.1002/asna.200310181 [Consulta: 10 maig 2007].
  96. Eisenhauer, F. et al. «SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month». The Astrophysical Journal, 628, 1, 2005, pàg. 246–259. DOI: 10.1086/430667 [Consulta: 12 agost 2007].
  97. 97,0 97,1 anglès, Jayanne «Exposing the Stuff Between the Stars». Hubble News Desk, 24-07-1991 [Consulta: 10 maig 2007]. Error de citació: Etiqueta <ref> no vàlida; el nom «fn9» està definit diverses vegades amb contingut diferent.
  98. Gehrels, Neil; Chen, Wan; Mereghetti, S. «The Geminga supernova as a possible cause of the local interstellar bubble». Nature, 361, 6414, 25-02-1993, pàg. 706–707. Bibcode: 1993Natur.361..704B. DOI: 10.1038/361704a0.
  99. Berghoefer, T.W.; Breitschwerdt, D. «The origin of the young stellar population in the solar neighborhood – a link to the formation of the Local Bubble?». Astronomy & Astrophysics, 390, 1, 01-07-2002, pàg. 299–306. arXiv: astro-ph/0205128. Bibcode: 2002A&A...390..299B. DOI: 10.1051/0004-6361:20020627.
  100. Scholz, R.-D.; Ibata, R.; Irwin, M.; Lehmann, I. «New nearby stars among bright APM high proper motion stars». Monthly Notices of the Royal Astronomical Society, 329, 1, gener 2002, p. 109–114. DOI: 10.1046/j.1365-8711.2002.04945.x.
  101. Adams, F.C.; Graves, G.; Laughlin, G.J.M. «Red Dwarfs and the End of the Main Sequence». Revista Mexicana de Astronomía y Astrofísica, 22, 2004, pàg. 46–49. Bibcode: 2004RMxAC..22...46A.
  102. B. Fuchs «The search for the origin of the Local Bubble redivivus». MNRAS, 373, 3, 2006, pàg. 993–1003. arXiv: astro-ph/0609227. Bibcode: 2006MNRAS.373..993F. DOI: 10.1111/j.1365-2966.2006.11044.x.
  103. Bobylev, Vadim V. «Searching for Stars Closely Encountering with the Solar System». Astronomy Letters, 36, 3, 2010, pàg. 220–226. arXiv: 1003.2160. Bibcode: 2010AstL...36..220B. DOI: 10.1134/S1063773710030060.
  104. Moore, Patrick; Rees, Robin. Patrick Moore's Data Book of Astronomy. Cambridge: Cambridge University Press, 2014. ISBN 978-1-139-49522-6. 
  105. Gillman, M.; Erenler, H. «The galactic cycle of extinction». International Journal of Astrobiology, 7, 1, 2008, pàg. 17–26. Bibcode: 2008IJAsB...7...17G. DOI: 10.1017/S1473550408004047.
  106. Leong, S. «Period of the Sun's Orbit around the Galaxy (Cosmic Year)», 2002.
  107. Croswell, K. «Milky Way keeps tight grip on its neighbor». New Scientist, 199, 2669, 2008, pàg. 8. DOI: 10.1016/S0262-4079(08)62026-6.
  108. Garlick, M.A.. The Story of the Solar System. Cambridge University Press, 2002, p. 46. ISBN 978-0-521-80336-6. 
  109. Kogut, A.; etal «Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps». Astrophysical Journal, 419, 1993, 1993, pàg. 1. arXiv: astro-ph/9312056. Bibcode: 1993ApJ...419....1K. DOI: 10.1086/173453.
  110. See Figure 5 and reference in Valentina Zharkova «Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale». Scientific Reports, 9, 1, Jun 24, 2019, pàg. 9197. arXiv: 2002.06550. DOI: 10.1038/s41598-019-45584-3. PMC: 6591297. PMID: 31235834.
  111. Paul Jose «Sun's Motion and Sunspots». The Astronomical Journal, Apr 1965, pàg. 193–200. The value of 24° comes from (360)(15 J − 6 S)/(S − J), where S and J are the periods of Saturn and Jupiter respectively.
  112. Zharkova, V. V.; Shepherd, S. J.; Zharkov, S. I.; Popova, E. «Retraction Note: Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale». Scientific Reports, 10, 1, Mar 4, 2020, pàg. 4336. DOI: 10.1038/s41598-020-61020-3. PMC: 7055216. PMID: 32132618.
  113. Viquitexts: Sol solet com a títol d'obres literàries.

Per a més informació[modifica]

Vegeu també[modifica]

Enllaços externs[modifica]