login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: keyword:new
Displaying 1-10 of 273 results found. page 1 2 3 4 5 6 7 8 9 10 ... 28
     Sort: relevance | references | number | modified | created      Format: long | short | data
A336432 Number of ordered quadruples of divisors (d_i, d_j, d_k, d_m) of n such that GCD(d_i, d_j, d_k, d_m) > 1. +0
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 16, 0, 0, 0, 1, 0, 3, 0, 5, 0, 0, 0, 29, 0, 0, 0, 16, 0, 3, 0, 1, 1, 0, 0, 74, 0, 1, 0, 1, 0, 16, 0, 16, 0, 0, 0, 98, 0, 0, 1, 15, 0, 3, 0, 1, 0, 3, 0, 181, 0, 0, 1, 1, 0, 3, 0, 74, 1, 0, 0, 98, 0, 0, 0, 16, 0, 98, 0, 1, 0, 0, 0, 220, 0, 1, 1, 29, 0, 3, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,24

COMMENTS

Number of elements in the set {(x, y, z, w): x|n, y|n, z|n, w|n , x < y < z < w, GCD(x, y, z, w) > 1}.

Every element of the sequence is repeated indefinitely, for instance:

a(n) = 0 for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, ... (Numbers k such that product of proper divisors of k is <= k; i.e., product of divisors of k is <= k^2). See A007964);

a(n) = 1 for n = 12, 16, 18, 20, 28, 44, 45, 50, 52, 63, 68, 75, 76, 81, 92, 98, 99,... (Either 4th power of a prime, or product of a prime and the square of a different prime. See A080258);

a(n) = 5 for n = 32, 243, 3125, 16807, ... (Fifth powers of primes.. See A050997);

a(n) = 15 for n = 64, 729, 15625, 117649, ... (Numbers with 7 divisors. 6th powers of primes. See A030516).

a(n) = 16 for n = 24, 40, 56, 135, 189, 297, 351, 459, ... (numbers of the form p^3*q, p and q primes with q > p).

a(n) = 17 for n = 54, 88, 104, 136, 152, 184, 232, 248, ... (numbers of the form p^i*q^j, p and q primes and (i, j) = (3, 1) or (1, 3).

a(n) = 30 for n = 36, 225, 441, 1225, 3025, 4225, 5929, ... (numbers of the form p^2*q^2, p and q primes.

It is possible to continue with a(n) = 74, 75, 78, 107, 110, 112, 114, ...

LINKS

Table of n, a(n) for n=1..103.

EXAMPLE

a(30) = 3 because the divisors of 30 are {1, 2, 3, 5, 6, 10, 15, 30} and GCD(d_i, d_j, d_k, d_m) > 1 for the 4 following quadruples of divisors: (2,6,10,30), (3,6,15,30) and (5,10,15,30).

MAPLE

with(numtheory):nn:=100:

for n from 1 to nn do:

it:=0:d:=divisors(n):n0:=nops(d):

  for i from 1 to n0-3 do:

   for j from i+1 to n0-2 do:

     for k from j+1 to n0-1 do:

       for l from k+1 to n0 do:

    if igcd(d[i], d[j], d[k], d[l])> 1

       then

       it:=it+1:

       else

      fi:

     od:

    od:

   od:

  od:

    printf(`%d, `, it):

od:

MATHEMATICA

Array[Count[GCD @@ # & /@ Subsets[Divisors[#], {4}], _?(# > 1 &)] &, 100] (* Amiram Eldar, Oct 31 2020 after Michael De Vlieger at A336530 *)

PROG

(PARI) a(n) = my(d=divisors(n)); sum(i=1, #d-3, sum (j=i+1, #d-2, sum (k=j+1, #d-1, sum (m=k+1, #d, gcd([d[i], d[j], d[k], d[m]]) > 1)))); \\ Michel Marcus, Oct 31 2020

(PARI) a(n) = {my(f = factor(n), vp = vecprod(f[, 1]), d = divisors(vp), res = 0); for(i = 2, #d, res-=binomial(numdiv(n/d[i]), 4)*(-1)^omega(d[i])); res} \\ David A. Corneth, Oct 31 2020

CROSSREFS

Cf. A275387, A336530.

KEYWORD

nonn,new

AUTHOR

Michel Lagneau, Oct 05 2020

EXTENSIONS

Terms corrected by David A. Corneth, Oct 31 2020

STATUS

approved

A338352 Indices of primes in A280985. +0
0
2, 4, 6, 8, 13, 15, 20, 22, 27, 34, 36, 42, 46, 48, 53, 61, 66, 68, 75, 80, 82, 89, 94, 99, 108, 112, 114, 119, 121, 127, 141, 146, 151, 154, 165, 167, 173, 179, 184, 191, 198, 200, 211, 213, 218, 220, 233, 244, 246, 249, 256, 261, 263, 276, 283, 289, 294, 296, 303, 307, 309, 324 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..7096

CROSSREFS

Cf. A280985.

KEYWORD

nonn,new

AUTHOR

N. J. A. Sloane, Nov 01 2020

STATUS

approved

A338537 Numbers that occur more than once in A338529. +0
0
4320, 23142, 301310, 333414, 340352, 375650, 553520, 644490, 910872, 921730, 1133670, 1366090, 1422650, 1440138, 1650350, 1705070, 1751970, 1874430, 2091850, 2180768, 2852640, 3213780, 3438548, 3676320, 4044732, 4444662, 4682000, 4854274, 4863754, 5101914, 5384106, 6011250, 6309860, 6551688 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Does any number occur more than twice in A338529?

LINKS

Table of n, a(n) for n=1..34.

EXAMPLE

a(3) = 301310 is in the sequence because A338529(1618) = A338529(2414) = 301310.

MAPLE

A338529:= [seq(ithprime(n+2)*ithprime(n+3)-ithprime(n)*ithprime(n+1), n=1..100000)]):

M:= 12*ithprime(100000):

V:= Vector(M, datatype=integer[4]):

R:= NULL:

for i from 1 to 100000 do

  v:= A338529[i];

  if v <= M then V[v]:= V[v]+1; if V[v] > 1 then R:= R, v fi fi

od:

sort([R]);

CROSSREFS

Cf. A338529.

KEYWORD

nonn,new

AUTHOR

J. M. Bergot and Robert Israel, Nov 01 2020

STATUS

approved

A338533 Primes in A338529/2. +0
0
31, 1873, 6163, 4133, 8093, 18211, 10529, 18233, 12743, 14557, 15473, 16057, 16607, 37571, 28793, 22669, 92221, 58073, 65993, 34759, 37781, 32563, 36473, 106163, 70003, 48487, 64621, 75527, 87133, 117701, 89017, 171877, 61223, 61283, 62603, 96997, 75533, 103657, 116797, 81899, 82241, 108533 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The primes are listed in the order in which they appear in A338529.  Some appear more than once, e.g. a(481) = a(669) = 2427137 because 2427137 = A338529(11966)/2 = A338529(16893)/2.

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

EXAMPLE

A338529(2)/2 = 31 is prime, so a(1) = 31.

A338529(38)/2 = 1873 is prime, so a(2) = 1873.

A338529(65)/2 = 6163 is prime, so a(3) = 6163.

MAPLE

select(isprime, [seq(ithprime(n+2)*ithprime(n+3)-ithprime(n)*ithprime(n+1), n=2..10000)]/2);

CROSSREFS

Cf. A338529.

KEYWORD

nonn,new

AUTHOR

J. M. Bergot and Robert Israel, Nov 01 2020

STATUS

approved

A338529 a(n) = prime(n+2)*prime(n+3)-prime(n)*prime(n+1). +0
0
29, 62, 108, 144, 180, 216, 344, 462, 480, 618, 616, 504, 728, 1106, 1108, 960, 1158, 1096, 1010, 1374, 1620, 2076, 2410, 1770, 1224, 1260, 1296, 2688, 4320, 3596, 2406, 2764, 3456, 2996, 3092, 3514, 3300, 3746, 3508, 3604, 4464, 3450, 2340, 3968, 7850, 8632, 4930, 2736, 3704, 4242, 4804, 6908 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) > (A001223(n)+2*A001223(n+1)+A001223(n+2))*prime(n).

In particular, a(n) > 12*prime(n).

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Robert Israel, Plot of a(n)/n for 1 <= n <= 30000

EXAMPLE

The third through sixth primes are 5,7,11,13, so a(3) = 11*13-5*7 = 108.

MAPLE

seq(ithprime(n+2)*ithprime(n+3)-ithprime(n)*ithprime(n+1), n=1..1000);

CROSSREFS

Cf. A338533, A338537.

KEYWORD

nonn,look,new

AUTHOR

J. M. Bergot and Robert Israel, Nov 01 2020

STATUS

approved

A338542 Numbers having exactly five non-unitary prime factors. +0
0
5336100, 7452900, 10672200, 12744900, 14905800, 15920100, 16008300, 18404100, 21344400, 22358700, 23328900, 25489800, 26680500, 29811600, 31472100, 31840200, 32016600, 36072036, 36808200, 37088100, 37264500, 37352700, 38234700, 39312900, 42380100, 42688800, 43956900 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers k such that A056170(k) = A001221(A057521(k)) = 5.

Numbers divisible by the squares of exactly five distinct primes.

The asymptotic density of this sequence is (eta_1^5 - 10*eta_1^3*eta_2 + 15*eta_1*eta_2^2 + 20*eta_1^2*eta_3 - 20*eta_2*eta_3 - 30*eta_1*eta_4 + 24*eta_5)/(20*Pi^2) = 0.0000015673..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011).

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

Carl Pomerance and Andrzej Schinzel, Multiplicative Properties of Sets of Residues, Moscow Journal of Combinatorics and Number Theory, Vol. 1, No. 1 (2011), pp. 52-66. See pp. 61-62.

EXAMPLE

5336100 = 2^2 * 3^2 * 5^2 * 7^2 * 11^2 is a term since it has exactly 5 prime factors, 2, 3, 5, 7 and 11, that are non-unitary.

MATHEMATICA

Select[Range[2*10^7], Count[FactorInteger[#][[;; , 2]], _?(#1 > 1 &)] == 5 &]

CROSSREFS

Subsequence of A013929, A318720 and A327877.

Cf. A001221, A056170, A057521, A190641, A338539, A338540, A338541.

Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3), A324835 (eta_4), A324836 (eta_5).

KEYWORD

nonn,new

AUTHOR

Amiram Eldar, Nov 01 2020

STATUS

approved

A338541 Numbers having exactly four non-unitary prime factors. +0
0
44100, 88200, 108900, 132300, 152100, 176400, 213444, 217800, 220500, 260100, 264600, 298116, 304200, 308700, 324900, 326700, 352800, 396900, 426888, 435600, 441000, 456300, 476100, 485100, 509796, 520200, 529200, 544500, 573300, 592900, 596232, 608400, 617400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers k such that A056170(k) = A001221(A057521(k)) = 4.

Numbers divisible by the squares of exactly four distinct primes.

The asymptotic density of this sequence is (eta_1^4 - 6*eta_1^2*eta_2 + 3*eta_2^2 + 8*eta_1*eta_3 - 6*eta_4)/(4*Pi^2) = 0.0000970457..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011).

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

Carl Pomerance and Andrzej Schinzel, Multiplicative Properties of Sets of Residues, Moscow Journal of Combinatorics and Number Theory, Vol. 1, No. 1 (2011), pp. 52-66. See pp. 61-62.

EXAMPLE

44100 = 2^2 * 3^2 * 5^2 * 7^2 is a term since it has exactly 4 prime factors, 2, 3, 5 and 7, that are non-unitary.

MATHEMATICA

Select[Range[620000], Count[FactorInteger[#][[;; , 2]], _?(#1 > 1 &)] == 4 &]

CROSSREFS

Subsequence of A013929 and A318720.

Cf. A001221, A056170, A057521, A190641, A338539, A338540, A338542.

Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3), A324835 (eta_4).

KEYWORD

nonn,new

AUTHOR

Amiram Eldar, Nov 01 2020

STATUS

approved

A338540 Numbers having exactly three non-unitary prime factors. +0
0
900, 1764, 1800, 2700, 3528, 3600, 4356, 4500, 4900, 5292, 5400, 6084, 6300, 7056, 7200, 8100, 8712, 8820, 9000, 9800, 9900, 10404, 10584, 10800, 11025, 11700, 12100, 12168, 12348, 12600, 12996, 13068, 13500, 14112, 14400, 14700, 15300, 15876, 16200, 16900, 17100 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers k such that A056170(k) = A001221(A057521(k)) = 3.

Numbers divisible by the squares of exactly three distinct primes.

Subsequence of A318720 and first differs from it at n = 123.

The asymptotic density of this sequence is (eta_1^3 - 3*eta_1*eta_2 + 2*eta_3)/Pi^2 = 0.0032920755..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011).

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

Carl Pomerance and Andrzej Schinzel, Multiplicative Properties of Sets of Residues, Moscow Journal of Combinatorics and Number Theory, Vol. 1, No. 1 (2011), pp. 52-66. See pp. 61-62.

EXAMPLE

900 = 2^2 * 3^2 * 5^2 is a term since it has exactly 3 prime factors, 2, 3 and 5, that are non-unitary.

MATHEMATICA

Select[Range[17000], Count[FactorInteger[#][[;; , 2]], _?(#1 > 1 &)] == 3 &]

CROSSREFS

Subsequence of A013929, A318720 and A327877.

Cf. A001221, A056170, A057521, A190641, A338539, A338541, A338542.

Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3).

KEYWORD

nonn,new

AUTHOR

Amiram Eldar, Nov 01 2020

STATUS

approved

A338539 Numbers having exactly two non-unitary prime factors. +0
0
36, 72, 100, 108, 144, 180, 196, 200, 216, 225, 252, 288, 300, 324, 360, 392, 396, 400, 432, 441, 450, 468, 484, 500, 504, 540, 576, 588, 600, 612, 648, 675, 676, 684, 700, 720, 756, 784, 792, 800, 828, 864, 882, 936, 968, 972, 980, 1000, 1008, 1044, 1080, 1089 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers k such that A056170(k) = A001221(A057521(k)) = 2.

Numbers divisible by the squares of exactly two distinct primes.

Subsequence of A036785 and first differs from it at n = 44.

The asymptotic density of this sequence is (3/Pi^2)*(eta_1^2 - eta_2) = 0.0532928864..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011).

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

Carl Pomerance and Andrzej Schinzel, Multiplicative Properties of Sets of Residues, Moscow Journal of Combinatorics and Number Theory, Vol. 1, No. 1 (2011), pp. 52-66. See pp. 61-62.

EXAMPLE

36 = 2^2 * 3^2 is a term since it has exactly 2 prime factors, 2 and 3, that are non-unitary.

MATHEMATICA

Select[Range[1000], Count[FactorInteger[#][[;; , 2]], _?(#1 > 1 &)] == 2 &]

CROSSREFS

Subsequence of A013929 and A036785.

Cf. A001221, A056170, A057521, A190641, A338540, A338541, A338542.

Cf. A154945 (eta_1), A324833 (eta_2).

KEYWORD

nonn,new

AUTHOR

Amiram Eldar, Nov 01 2020

STATUS

approved

A337994 T(n, k) = (k*(2*k+2)*(2*k+1)*(2*n-1)*binomial(2*(n-1),n-1))/(n*(n+1)*(n+2)) for n, k > 0 and T(0, 0) = 1. Triangle read by rows, for 0 <= k <= n. +0
0
1, 0, 2, 0, 3, 15, 0, 6, 30, 84, 0, 14, 70, 196, 420, 0, 36, 180, 504, 1080, 1980, 0, 99, 495, 1386, 2970, 5445, 9009, 0, 286, 1430, 4004, 8580, 15730, 26026, 40040, 0, 858, 4290, 12012, 25740, 47190, 78078, 120120, 175032 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

T(n, k) is divisible by A099398(n) for all 0 <= k <= n.

LINKS

Table of n, a(n) for n=0..44.

FORMULA

Let t(n) denote the triangular numbers and C(n) the Catalan numbers.

T(n, k) = k*(2*n - 1)*(t(2*k + 1)/t(n + 1))*C(n - 1) for n, k > 0.

T(n, k) = k^n if k = 0; if k = n then C(n+1)*t(n+1); else T(n-1, k)*(4-10/(n+2)).

EXAMPLE

Triangle starts:

[0] 1

[1] 0, 2

[2] 0, 3,    15

[3] 0, 6,    30,    84

[4] 0, 14,   70,    196,   420

[5] 0, 36,   180,   504,   1080,  1980

[6] 0, 99,   495,   1386,  2970,  5445,   9009

[7] 0, 286,  1430,  4004,  8580,  15730,  26026,  40040

[8] 0, 858,  4290,  12012, 25740, 47190,  78078,  120120, 175032

[9] 0, 2652, 13260, 37128, 79560, 145860, 241332, 371280, 541008, 755820

MAPLE

T := proc(n, k) if n = 0 then 1 else

(k*(2*k+2)*(2*k+1)*(2*n-1)*binomial(2*(n-1), n-1))/(n*(n+1)*(n+2)) fi end:

# Recursive:

CatalanNumber := n -> binomial(2*n, n)/(n+1):

T := proc(n, k) option remember; if k=0 then k^n elif k=n then CatalanNumber(n+1)* binomial(n+1, 2) else (4 - 10/(n + 2))*T(n-1, k) fi end:

seq(seq(T(n, k), k=0..n), n=0..9);

MATHEMATICA

T[n_, k_] := If[n == 0, 1, (k (2k + 2)(2k + 1)(2n - 1) CatalanNumber[n-1])/((n + 1) (n + 2))]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten

CROSSREFS

Cf. A119578 (row sums), (-1)^n*A005430 (alternating row sums), A002740 (main diagonal), A007054 (col 1), A099398 (universal divisor), A000108 (Catalan).

KEYWORD

nonn,tabl,new

AUTHOR

Peter Luschny, Nov 01 2020

STATUS

approved

page 1 2 3 4 5 6 7 8 9 10 ... 28

Search completed in 0.085 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 2 11:59 EST 2020. Contains 338146 sequences. (Running on oeis4.)