' R 149
@Mﬂ T God -

THERE ARE 718 6-POINT TOPOLOGIES, ‘_'fc?GBCD

QUASIORDERINGS AWD TRANSGRAPHS

J. A.bfiggfL_‘ C}T?§5

University of Rochester, Rochester, New York 14627
Abstract

The number of tepclogles, quasiorderings or twansgraphs
on n distinct points is the same. They may be denoted by
certain (0,1)-matrices. They fall into equivalence classes
under permutations of the underlying set. We exnress the
numbers of nepoint topologies or classeg in tevms of the
numbers of connected ones for uln, define an iterative
computing procedure for counting the iatter, and £ind for

6 that there are 718 classes, of which 512 are con-

i

n

nected. In Table 3 we classify the latter as to TO 5

duality (defined bellw), and class size.
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1. Introduction

1t is easy to show that for a topology D on a finite set
{al geeny an1, the least basis is { 6, Ai”"’ A }, where
by = n {u: ay € U open}. Furthermore, the relation < defined by:

as < aj iff Ai E_Aj iff a, € Aj (L)

is a reflexive, transitive relation, or quaslordering, and any
such relation conve;sely defines a basis for a topology téjo
We thus ﬁave}a l-to=1 correspondence betweenbtopologies and
quasiorderings on n distinct points.

Quasiorderings correSpoﬁd t§ transitive dirécted graphs, or

transgraphs [23, and have a natural representation by the

matrices mw(<) =m( Q) =M = (x,,) definad by:
1372 y

= e e L. = erwise. 2
mij : N I ay < jj 0 m:LJ 0 otherwise (2)

Note that columm j then describes the basic set A, of the

3

corresponding topology. Henceforth let n-matrix mean "n by n
(0,1)-matrix". The conditions for an n-matrix to reprecent a
quasiordering are:

=13 and for all 1, §, k, m,, =1=m, = n, =1. (3)

i ij ik ik
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We will call such matrices wvallid . They fall iniy natural equi-
valence classes under permutations p of ({1 ,..., n} , in which

jz is homecomorphic to jl iff there 1s a p with

ve I, iff oy qy + 2y € V)€ T,

in which case, where M = m(jl) and N = m(jz) .

o) ,e() T Mi W

We express this by: n = p(M), or N=®R M, or ﬁ?_= p(ji), etc.

2. Definition of varizbles to be enumerated

Let ‘tn Be the number of valid.matficés, qpasiéfderingé,
t:ansgraphs and topologies on n distlnct points: Let hn be the
number of dlasses;’which may be viewed as the number of topologies,
transgraphs, etc. on n unlabeled points. For a ¢1ass H' oL
n~point topologles, let iHI_ be the number of meﬁbers gf H .

Note that _lH} < n!. when there ére symmetries in.itsimembers; if
the unlabeled transgfaph of H (drawn with ércs diréétéd upward)
has a set of points in lateral symmetry, such as KZ in Figure 1,

then a permutation that permutes only the labels of these points



does not change the ordering of the get, hence does not change

ol -
the topology.
Vailues of Ey aﬁd hn ara not known in general, but t
has been published for n <7 (2}, eand h  for n<5 [4].

See Table 1. .In this paper we give hﬁ , and certain other enumer-

atlons defined below.

It has been noted by {4% and others that the following

are equivalent:
N 4g T
: =0

< is antlsymmetric (a partial oxdering)

L]

if 14 3 then A, # A,
e J

i_% } then m,, =0 or m, = 0 {5)

Ll 34
1if 1 ¢ j then columms 1%, {6)
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Let tE . hn be the numbers of T@ topologies and classes therecf.

It 1s known [1, i} that

1 -

= T, A o
tn “'UF;:?. fv(l'!.gm) tm } (7)

k=l

1 m fm} . Tt (_l)m«k

where f&(n,m) = =¥ by L i , @& Stirling mumber of
€ | == .

the seccond kind. Dut the same relation does not hold for h and

& \
h~ , and no analogous one hus been found.




A

J is connected iff its transgraph 1s connected; £for the

following are equlvalent:

a% is a closure point of {ai}

-

a, s aj. lie in the sama component.
.
The equivalent matrix condlition is [ﬁl:
’
ord m(j) conmon

m('j) hag no" r by {n-r) zero submatrix, for 0<r<n., (8
e o Cco co 2 '
, h- , h be the variablas above with "connected"

specified.
The femily 9)' of closed sets of a finlte topology is also
a topology. TFurthermore, it is easy to show that

(-43\ : 45T hew T . TP 1
m{ 3"} = (7)) « whare denotes ''transpose'.

(23]

. Some ways to reduce computation time

We can use the information above to write a computer program
for enumeration of *i:‘1 5 hn , etc. However, the time required
L

is expensively lonz. We can cut it down by using the following

propositions. The minor of m is the submatrix of M
s i

Lads

obtained by striking out row 1 and column Jj.)




3.1. Proposition. In a valld matrix, the minor of each diagonal

lement ... 1s valid

Procf. In (3), restrict i, j, k to be # r.

3.1.1. Corellary. The valid n-matrices may be chﬂ?‘UPtcﬂ by

taking the valid (n-l)-matrices and formlng_valld

augmentations of them: that ls, attaching a row and a column,

of equal index, under restrictican (3).
Note: This principle was used in [é] in enumerating tﬁ and t

3,1.2, Corollery. If only one member of cach (n-1)-pgint clags

is given, and the row and column ave attached as the n'th,

then everv class of ne-patrices wlll be represented among
eiem : o=

the auomentations so obtainable.

Proof, Suppose M belongs to an unrvepresented class. But

the minor M' of m__ belongs to a cless represented by

come glven (n-l)-matrix K. We can construct an augnen-
tation K*¥ of K and e permutation p such that

p(¥¥) = M, In fact, if K= q'), let k¥ =1, and
1N

for 1 <n let kj =mygy - and ki =m0

Let p(i) = q (i) for i< n, and pn) = n.

Henceforth let aurcmentation of an (n-l)-matrlx mear

Paptachment of an n'th row and column, not necessarily valid.

o}
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Note:  Unfortunately, augmentations of (n~1l)-matrices in distinct
classes may be equivalent. See Figure 1, where Kl %iKz but
their respective augmentations Ml and M3 are equivalent.

£

3.2. Proposition, Transposes Or equivalent matrices are equi-

¥

* » e ” ‘{' .
valent, and valid avgmentations of M and M axe

transposition palrs. Proof: Evident from relation (&).
r
Mote: M may be equivalent to M, even though not & symmetric

matrix. (Ml in Ficure 1 1is an example.) If so, we call the

class H(M) of M self-dual. %he corresponding unlabeled trans-

]

. transpose. v
graph is isomorphic to its ipuwees®, If not, H(M) and HI")

are a dual pair of classes; and their union is the duality class

of M, whether or not M is self-dual,

3.2.1, Corollary. To_represent each ne-point duality class it

~

suffices to take one member of each (n-l)« soint dual*“v class

and‘construct valid éugméntations.
Note: ILf M is anvaugmentatioﬁ of K, self-duality o;‘ H{M)
is Independent of that of H(K}. See Figure 1, whereA H{l Al, is
self-dual and H(K23 is not; éndveach has both a self=dusl and

a non~- sclf~dual augmentation, as shown.
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3.4,

3.5.

Note:

Proposition., If K is connected and M 1s an augmentation
of K such that m, # 0 or m , # 0 for some 1 <mn,
= S e == i Al .

then M 1s connacted. Proof: Apply relatlon (8).

Proposition. (a) 1If K is not T, then M 1is not.

Proof: T. is preserved in taking subspaces. Or, apply (5).

0
Note: K may be T0 and M not so. Example: Kz and HS

in Figure 1. Howsver,

(b) Every elass of ngngO n=matrices, for

n >3, Ais represented by an augmentation of a non-TO

(n-1)-matxrix.

Proof: Suppose M belonzs to an unrepresented class.

t

But by (6), M has a pailr of llke columns i, j. Le

S

r # 1, j. Then the minor of m is not Ty by (6).
Its class 1s represented by some non-TO matrix K. By a
construction like that of 3.1.2, we can find an augmentation

of K equivalent to M.

Proposition. (a) The components od a finite topological

space are open, and it id the free union of its components.

(b)Y It is TO 1£€ 2ll the components are TO.

e

Proof is elementary.

o,
%, as a set of subsets, can be consldered as the cross~

~p&¢duét¢a£;itsmr_atrictitns;tbiﬁhe;compoaentsi,




O

product of the topologies on the components. If there are ~r

components, each open set is the unlon of an r-tuple of open

sets (some of which may be empty).

4, Summation formulas

Let a partition of n be represented by
X = ( (nl,xl) yeecs (nkgﬁ{k) )i
meaning that there are 2y # seu P %y celis, Dy < evo <y

and n, occurs x, times; so m = n.x. .
i i i i

4.1. Theorem. In terms of the numbers of classes of connected

¢

topologies, the number of classes of n-point topologizs is

W +x, - 1

E n
hn = § 'gi 1 H,

Proof. For each partition ¥ of n undistinguished points

¥y, we choose from h kinds of

: i
component, x, kinds, allowing repetition and without

regard to order. The nppropriate combinatorial is as given
above. {3, pg. 7.

k[0 x, - 1

s
I ; : (11)

I

Proof: As for the theorem, in view of 3.5 (b).
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Let dist(X) be the number of ways of dis stributing n

)

distinet things into distinct cells (unordered within a cell)

according to partition X. It is well-known E@, PS. él that

n.

dist(x) = ~ = — . (12)
g 1 Lt T2 . .
(nl.) (hz.) cos (nk!)

) k k | '
Lol !L rem, \
: Theorem g =T t(!) I (t ) (xif) . (13}

hd
FAS

s0of. TFor each X, n distinct points can be put ir in
distinct components in dist() ways. Each X, components

introduce a '‘symmetry facton' Xi: , for, if one disthi-

bution pu*s the sets Sl 9us Sx of poiante in the components
Kl g v hd KX of slze De o then every topology having those

-..

sets in those components taken in some other order 1s

identical with one having them in that order, by 3.5 (a),

because free product is commutative. Finally, the =,
Ko
peints assigned to 3 component can be arranged into a connected
; c i dwd . "
space in ‘:‘;"1 ways, by definition of the latter.
1S :i_ .
L,2.1 Corollary G k co\xi % .
et ) . =% dist(X)..0m, (t . L, . . 14)
n X £L i=1 “'n,’ f=1 ( i (14)
. "

Proof: As for theorem, in view of 3.5 (b).




Note:

£.3.

4

p
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Theorem. IXIf H is a class of n-point topologzies having

Yy, components, where for each 1, ¥y of them belong to
i - -

one class Hg of conne clcd n, npoirt topologlies, with

. A S 2

< ..o <n,.  (Fote: we allow equality, in case components

of equal size are taken from distinct class es), then, where

Y = ( (ni,yi) e (nﬂgy?) j
| 1(. j,ng//L,
. tw ! i
ful = d:.st(Y) o I{ l oGyt (155
Proof. TFor each Y, n distirct polnts ecan be pup in the

componants in dist(¥) ways. If y, components are to be

- Fl T“C 3 t
wembers of class Hy there iz a symmetry facter y.. »
: S 5
. L9 Tt 4= s C ; € .
as In 4.2, DMNote that if n, = nj but Hi # H. o then we
. P

must distinguish between distributions putting a given set

of points into cells of differvent kinds. After a distribution

of points to components, we can, in each one independenti
g S

°

- C . <
“1abel” the unlabeled transgraph of H; in !Hi‘ ways; the
product of these numbers, over all componeats, is therefore

a factor of |Hl.
For T, classes, (15) applies unchanged, by 3.5 (b).

:-z‘ ‘ Ci .' ‘ ¢
- L{,Hji : Lo eees hn}

v

Lt
y
¥

c
n

\:
2
=
s
Ing
2]

Corollary. We ma

(summing over all classes of n-point connected topelogies);
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and similarly

h h _
n o k }1"‘115_//1‘C
e » = N .S" 1, ! H "
tn j}ﬁl IHj | j}":l di L(Yj }.;..'glhli! / i=l(}i ) y

1 - { C ] A 1 and 1. > v
vhere Yj and 1Hi¥ depend on H, as degcribed in the

theorem.,

Note: This also applies, mutatis mutandis, in the T, case.

4.4. BSome copen problems remalning are: To express hn in tevxms

of {hn tm <n} in some way analogous yo (7); or to give
il
complete algorithms for ¢_, h etcetera in terms of n.

n n?

5. Counclusion

We have shown thai the enumeraticn of the variables defined

&

in Section 2 can be accomplished with the clogsed~form computatio

in (10) te (16), together with a computer program having the

following specifications:

Input: One member of each duality class of (n-1)-matrices,

with an indication of whether it is TO.

Procedures: 1. Construct commected augmemtations (using 3.3).

2. Test each for validity (using {(3) ).

if input was TO’ check whether new one is TO'

(16)

ns

if not, discard it. If so, go on. (Use (5) and (6).)

4., Test whether new wmatrix ox 1ts transpose is equi-

valent to one already stored. (Use (4).) If so,




discard it; if not, go on.

i

Count its distinct permutationz (using (&) ).

6. Check whether its transpose is one of them, i.e.
its class is self-dual. (Use (9).)

7. Store the matrix, a Ty indicator, and the results

teps 5 and 6, for use in step 4, until

r
@

O

all the input has been used.

Qutput: All the stored information, with matrices and Ty

indicators in a format suitable for use as input for

the next value of n.

Such a program (nct using 3.4, which was noticed later) has

)

been written in PL-1 by William Arcurl and run on an IBM 360,
model 65, at the University of Rochester, for n £ 6. The totals
tn and tz agree with the unclassified enumerations reported in

Bﬂ. A summary of values obtained is given in the tebles. Interested

parties may obtain from the author: (a) The program; (b) a list

s
i-h
2
=

of the matrices foun n =5 6r 6, with hand-drawn diagrams.

7 - s . M [
(Equivalent matrices for n== 5 have been published in %1.) The

L3]

-

machine times were: 3 minutes for 53 144 minutes for 6;

estimated for 7, 120 hours.
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Table .y 0
\Y, Tty ‘°¢°":°~ ore ;:? 49,..&?
a hov ¢© he £© hG ¢
n n n n n n “q
1 1 1 1 L Lz L 1 L
2 1 7 2 3 2 3 3 z
3 3 12 6 19 5 19 9. 29
2 10 146 21 233 16 219 a3 355
5 L& 3060 94 4851 3 4231 139 6542
6 | 238 101642 512 158175 34 130023 718 209527
7 5106612 7720375 6126859 S BioL
*Obtained by (13) aund 14), using £ and t.  as given in [2] .
thle
Numbers of 5S-point connected classes COL"{:J by clasg size,
TO, and duality.

Ciass size |1 5 10 15 20 30 60 120 Totals
1, self-dual 0 0 0 O 1 1 0 & 6
Tgs mot s~d. |0 2 2 0 2 2 20 10 38
not Ty, s=d. |1 O o0 Lot ! 0 4
not T, or s-di0 2 6 2 & 14 18 0 46

Totals 1 4 8 2 8 18 39 14 94




1%

Table

Numbers of OG-point connected clas

3

ges, grouped by class

Pt ot ot et

O =

L and duality.
6 15 20 30 45 60 90 120 180 360 720
E -
T., Self“dL'RliO o 0 1 r o0 o 1 1 & 7
not s=d 0 2 2 G 2 Q G 0 16 24 99
not Ty, g=-d . 1 0 0 1 1 ¢a 2 4 1 6 4
Iy or s=d. 40 2 6 2 4 4 32 12 18- 86 90
Totals 1 4 & & 8 4 38 17 36 120 191
Figure 1L
(All directions not marked are upward.)
% T} ) i 3 A &3
100 | 100 N
i a8 a 111 &
I")
111 e 001 2
} M
1 a ) 2 & .
Lin , &
060 N ico0r _/ \\,21001_%/q '_
to0 2 4 (I T N B A T
111 2 6011 2 0010
001 v c o001 s 0001
:,42 ‘/al h.’i a‘!\\ /1_2.3 8y
000 aj a, 1000 a,
L0oO AN 1111 “ '
111 &3 5011
001 0013
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