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ABSTRACT
Network operators often face the problem of remote outages in
transit networks leading to signi!cant (sometimes on the order of
minutes) downtimes. The issue is that BGP, the Internet routing
protocol, often converges slowly upon such outages, as large bursts
of messages have to be processed and propagated router by router.

In this paper, we presentSWIFT, a fast-reroute framework which
enables routers to restore connectivity in few seconds upon remote
outages.SWIFTis based on two novel techniques. First,SWIFT
deals with slow outage noti!cation by predicting the overall extent
of a remote failure out of few control-plane (BGP) messages. The
key insight is that signi!cant inference speed can be gained at
the price of some accuracy. Second,SWIFTintroduces a new data-
plane encoding scheme, which enables quick and "exible update of
the a#ected forwarding entries.SWIFTis deployable on existing
devices, without modifying BGP.

We present a complete implementation ofSWIFTand demon-
strate that it is both fast and accurate. In our experiments with real
BGP traces,SWIFTpredicts the extent of a remote outage infew
secondswith an accuracy of! 90% and can restore connectivity for
99% of the a#ected destinations.

CCS CONCEPTS
¥Networks ! Networkperformance analysis;Networkmea-
surement; Network reliability;

KEYWORDS
BGP; Convergence; Fast Reroute; Root Cause Analysis

ACM Reference format:
Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Van-
bever. 2017. SWIFT: Predictive Fast Reroute. InProceedings of SIGCOMM
Õ17, Los Angeles, CA, USA, August 21-25, 2017,14 pages.
https://doi.org/10.1145/3098822.3098856

"https://swift.ethz.ch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM Õ17, August 21-25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4653-5/17/08. . .$15.00
https://doi.org/10.1145/3098822.3098856

1 INTRODUCTION
Many applications nowadays require continuous Internet connec-
tivity, where even the slightest downtime can cause large !nancial
and reputational loss. For example, the cost ofoneminute of down-
time for Amazon or Google easily reaches a 6-digit number [2]
and almost any outage that they experience makes the news [4, 8].
Smaller Internet players are not better o#. Across the networking
industry, the average cost of downtime is estimated to be about
$8,000 per minute [55].

Unfortunately, guaranteeing always-on connectivity Internet-
wide is a big challenge for network operators. Even if their network
is perfectly resilient, they still face the problem ofremoteoutages in
transit networks,i.e.,connectivity disruptions in external networks
forwarding their tra$c. These disruptions are frequent: large net-
works routinely see tens of failures or con!guration changes in any
single day [12, 26, 28, 35, 65], each potentially disrupting transit
tra$c for thousands of destinations.

Problem. BGP, the Internet routing protocol, converges slowly
upon remote outages. This can result in long data-plane downtime
for many destinations, including popular ones. Our measurements
on real BGP traces and recent router platforms (¤2) show that:

Ð large bursts of BGP withdrawals (>1.5k pre!xes) regularly hap-
pen in the Internet: 53% (resp. 86%) of" 200 BGP sessions dis-
tributed worldwide see at least one large burst per week (resp.
month). Since single routers in transit networks routinely main-
tain tens to hundreds of such BGP sessions [27], the probability
of receiving a burst is important. 9.5% of these bursts involve
more than 20k pre!xes, and some involve up to 560k pre!xes.
Nearly all the biggest (hence slowest) bursts include pre!xes for
popular destinations (Google, Akamai, Net"ix, etc.).

Ð similarly to what prior studies have shown (e.g.,[18, 37, 43, 45, 53,
62, 63, 66]), BGP slow convergence can causedozens of seconds
of data-plane downtime, during which packets towards many
destinations are lost. We con!rmed data-plane losses with both
testbed experiments on commercial routers and private conver-
sations with operators.

To further substantiate the problem, we conducted a survey with
72 operators. Our survey indicates that slow BGP convergence
is a widespread concern. According to the operators monitoring
convergence time (47% of them), BGP takesmore than 30 secondsto
converge upon remote outages,on average.

Local fast-reroute upon remoteoutages. We presentSWIFT, a
fast-reroute framework that enables a router to restore connectivity
in few secondsupon remote outages.SWIFTis based on two main
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ingredients. Immediately after receiving the !rst BGP messages of a
burst, aSWIFTEDrouter runs aninference algorithm to localize
the outage and predict which pre!xes will be a#ectedÑa sort of
time-bound Root Cause Analysis (RCA). Based on this inference,
the SWIFTEDrouter reroutes the potentially a#ected pre!xes on
paths una#ected by the inferred failure. As many pre!xes may
have to be rerouted at once,SWIFTalso includes a data-plane
encoding scheme that enables the router to "exibly match and
reroute all pre!xes a#ected by a remote failure with few data-plane
rule updates.

Balancing inference accuracy & speed, with correctness &
performance in mind. SWIFTrestores connectivity within few
seconds by inferring the failure from a single vantage point. This
contrasts to prior RCA studies (e.g.,[15, 19, 23, 36, 39, 40, 68Ð70]),
which aim at !nding causes of outages withinminutes, hence can
bene!t from more "exibility in terms of inference algorithms and
input sources (e.g.,active probing from multiple vantage points).

The key insight behindSWIFTinference algorithm is that some
accuracy can be traded for a signi!cant gain in speed. Identify-
ing the topological region where an outage is happening is indeed
much faster than precisely locating the outage within that region.
By rerouting tra$c around the region, aSWIFTEDrouter immedi-
ately restores connectivity for the a#ected pre!xes at the cost of
temporarily forwarding few (according to our results) una#ected
pre!xes on alternate working paths.

SWIFTmakes sure that the e#ect of diverting non-a#ected tra$c
does not trump the bene!t of saving tra$c towards the a#ected
pre!xes. First of all, we prove that rerouting non-a#ected tra$c is
safe:SWIFTdoes not lead to forwarding anomalies, even if multiple
routers and ASes deploy it. Second,SWIFTselects the alternate
paths taking into account the operatorÕs policies (e.g.,type of peers,
cost model) and performance criteria (e.g.,by preventing to reroute
large amount of tra$c to low-bandwidth paths).

Deployment. SWIFTis deployable on a per-router basis and does
not require cooperation between ASes, nor changes to BGP.SWIFT
can be deployed with a simple software update, since the only
hardware requirement, a two-stage forwarding table, is readily
available in recent router platforms [3].

Whenever aSWIFTEDrouter fast-reroutes upon an outage, it
guarantees connectivity to all the tra$c sources passing through
it. Hence, deployingSWIFTin a few central ASes would bene-
!t the entire Internet, since these ASes would also protect their
(non-SWIFTED) customers. The same applies within a network:
deploying fewSWIFTEDrouters at the edge boosts convergence
network-wide. A full InternetSWIFTdeployment would achieve
the utmost advantages of our scheme, as it guarantees ASes to
reroute quickly, independently, and consistently with their policies.

Performance. We implementedSWIFTand used our implementa-
tion to perform extensive experiments using both real and synthetic
BGP traces. Across all our experiments,SWIFTcorrectly identi!ed
90% of the a#ected pre!xes within 2 seconds. Moreover, aSWIFTED
router can fast reroute 99% of the predicted pre!xes with few data-
plane rule updates,i.e.,in milliseconds. Finally, we show that our
implementation is practical by using it to reduce the convergence
time of a recent Cisco router by more than 98%.
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Figure 1: Example of slow convergence upon a remote out-
age: routing policies and absence of information about phys-
ical connectivity force AS 1 towait for 11k BGPwithdrawals,
one per pre�x owned by AS 6 or AS 8.

Contributions. Our main contributions are:

¥ A thorough analysis of the problem of slow BGP convergence
upon remote outages, including a survey with 72 operators and
measurements on real BGP traces and routers (¤2);

¥ A framework,SWIFT, which enables existing routers to quickly
restore connectivity upon such outages (¤3);

¥ Algorithms for quickly inferring disrupted resources from few
BGP updates (¤4) and enabling fast data-plane rerouting (¤5);

¥ An open-source implementation ofSWIFT,1 together with a
thorough evaluation (¤6) based on real-world BGP traces along
with simulations. Among others, we show that SWIFT achieves
a prediction accuracy and an encoding e$ciency above 90%;

¥ A case study showing thatSWIFTcan reduce the convergence
time of recent Cisco routers by 98% (¤7).

2 THE CASE FOR SWIFT
In this section, we show that slow BGP convergence upon remote
outages is practically relevant. We !rst discuss the causes for slow
BGP convergence and its e#ects on data-plane connectivity in a
controlled environment (¤2.1). We then present measurements on
real BGP traces and feedback from operators: they demonstrate
that slow convergence problems occur in the Internet and can lead
to signi!cant tra$c losses, even for popular destinations (¤2.2).

2.1 Slow BGP convergence can cause
signi�cant data-plane losses

We describe an example of slow BGP convergence using the net-
work in Fig. 1(a). Each ASi originates a distinct set of pre!xesSi .
We focus on the 21k pre!xes ofS6, S7 andS8, before and after the
failure of the link (5,6). Contrary to what happens in the current
Internet (see ¤2.2.3), we assume thatall ASes deploy existing fast-
reroute technologies [11, 25, 38, 61]. Those technologies allow each
AS to quickly restore connectivity upon alocaloutage, provided
they have a backup path available.

Fig. 1(a) and Fig. 1(b) respectively show pre- and post-failure
AS paths. AS 5 knows an alternate path forS7 (via AS 3) before
the failure. However, because of inter-domain policies (e.g.,partial

1https://github.com/nsg-ethz/swift

https://github.com/nsg-ethz/swift
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transit [60]), it does not know any backup path forS6 andS8: for
those pre!xes, AS 5 recovers connectivity after the failure via AS 2.

After the failure of(5, 6), AS 5 restores connectivity forS7 almost
immediately by rerouting tra$c to its alternate path (through AS 3).
Since AS 5 does not have backup paths forS6 andS8, a blackhole is
created for any "ow directed to the corresponding 11k pre!xes. In
the control plane, the failure causes AS 5 to send 10k path updates
to notify that it now uses new paths to reachS7, along with 11k path
withdrawals to communicate the unavailability of path(5,6,8).

2.1.1 BGP information hiding slows down convergence.

For AS 1 and AS 2, the failure of (5,6) is a remote outage, which
comes with loss of tra$c towardsS6 andS8. Convergence is inher-
ently slow, since AS 1 and AS 2 only have information about the
best paths used by their neighbors and not all the available ones.
Upon the failure, AS 1 and AS 2 are indeed forced to wait for the
propagation of a large stream of path updates and withdrawals,
potentially arriving one pre!x at the time. BGP update packing [58]
can reduce the number of messages by grouping updates together.
However, this mechanism only works if identical BGP attributes are
attached to the pre!xes to group Ð which is often not the case due to
the widespread use of BGP communities [21]. The absolute number
of messages is not the only causes of slow BGP convergence: other
reasons include slow table transfer [13], timers [49, 54] and TCP
stack implementation [1].

Slow convergence is afundamentalfeature of inter-domain rout-
ing. Two factors contribute to it. First, routing information must be
propagated on a per-pre!x basis, because any single AS can apply
distinct routing policies, hence use di#erent paths, on a per-pre!x
basis. Second, routing messages cannot specify network resources
that failed, because AS topologies and policies are hidden by the
routing system (mainly for scalability and AS-level privacy).

2.1.2 E!ect on data-plane connectivity.

To quantify how badly slow control-plane convergence can a#ect
data-plane connectivity, we reproduced the network in Fig. 1 with
recent Cisco routers (Cisco Nexus 7000 C7018, running NX-OS
v6.2). We then measured the downtime experienced by the AS 1
router upon the failure of(5,6). In successive experiments, we
con!gured AS 6 to advertise a growing number of pre!xes up to
290,000 (roughly half of the current full Internet routing table [5]).
As in [26], we injected tra$c towards 100 IP addresses randomly
selected among pre!xes advertised by AS 6, and measured the time
taken by AS 1 to retrieve connectivity for all of the probed pre!xes.
This methodology provided us with a lower bound estimation of
the downtime that any pre!x in the burst could experience.

Recent routers can lose tra�c for dozens of seconds upon
remote outages. Table 1 reports the downtime seen by the AS 1
router. Immediately after the link failure, the router starts to drop
packets for all monitored IPs. Connectivity is gradually recovered
as withdrawals are received from AS 2 and tra$c is redirected to
AS 3. The evolution of the downtime is roughly linear: for 290k
pre!xes, the router takes109 sto fully converge.

Withdrawals Downtime (sec)

10k 3.8
50k 19.0
100k 37.9
290k 109.0

Table 1: Data-plane downtime experienced by AS 1 in Fig. 1
as a function of the burst size. Even for relatively small
bursts, tra�c is lost for tens of seconds.

2.2 Slow BGP convergence in the Internet
We now report evidence of slow BGP convergence in the Internet,
along with a discussion on its data-plane impact and on the network
operatorsÕ perspectives.

2.2.1 Bursts of withdrawals propagate slowly.

We measured the duration of bursts of BGP withdrawals ex-
tracted from 213 RouteViews [51] and RIPE RIS [9] peering ses-
sions during November 2016. We extracted the bursts using a10 s
sliding window: a burst starts (resp. stops) when the number of
withdrawals contained in the window is above (resp. below) a given
threshold. We choose 1,500 and 9 withdrawals for the start and
stop threshold respectively, which correspond to the 99.99th and
the 90th percentile of the number of withdrawals received over any
10 speriod. Overall, we found a total of 3,335 bursts; 16% of them
(525) contained more than 10,000 withdrawals, and 1.5% of them
(49) contained more than 100,000 withdrawals. Our measurements
expose four major observations.

BGP routers often see bursts ofwithdrawals.We computed the
number of bursts that would be observed by a router maintaining
a growing number of peering sessions randomly selected amongst
the 213 RouteViews and RIPE RIS peering sessions. Fig. 2(a) shows
our results. The line in the box represents the median value, while
the whiskers map to the 5th and the 95th percentile. In the median
case, a router maintaining 30 peering sessions would see 104 (resp.
33) bursts of at least 5k (resp. 25k) withdrawals over a month. Even
if a router maintains a single session, it would likely see a few large
bursts each month. Indeed, 62% of the individual BGP sessions we
considered saw between 1 and 10 bursts of withdrawals, 24% saw
more than 10 bursts. Only 14% of the sessions did not see any. As a
comparison, single routers in transit networks routinely maintain
tens to hundreds of sessions [27] Ð even if not all those sessions
might carry the same number of pre!xes as the ones in our dataset.

Learning the full extent of an outage is slow. While most of
the bursts arrived within10 s, 37% (1,239) of them lasted more than
10 s, and 9.7% (314) lasted more than30 s(see Fig. 2(b)). This also
means that withdrawals within bursts tend to take a long time to
be received. In the median case (resp. 75th percentile), BGP takes
13 s(resp.32 s) to receive a withdrawal.
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Figure 2: Size and duration of bursts captured from 213 BGP
vantage points in November 2016.

Large bursts take more time to be learned. Unsurprisingly,
large bursts take more time to propagate than smaller ones (see
Fig. 2(b)). Overall, we found that 98 bursts took more than1 min to
arrive, with an average size of" 81k withdrawals.

A signi�cant portion of the withdrawals arrive at the end of
the bursts. We took the bursts lasting10 sor more and divided
each of them in three periods of equal duration: the head, the middle
and the tail. We found that although most of the withdrawals tend
to be in the head of a burst, 50% of the bursts have at least 26% (resp.
10%) of their withdrawals in the middle (resp. in the tail). For 25%
of the bursts, at least 32% of the withdrawals are in the tail.

84% of the bursts includewithdrawals of pre�xes announced
by “popular” ASes. We examined the Cisco ÒUmbrella 1 MillionÓ
dataset [6] which lists the top 1 million most popular DNS domains.
From there, we extracted the organizations responsible for the top
100 domains: Google, Akamai, Amazon, Apple, Microsoft, Facebook,
etc. (15 in total). 84% of the bursts we observed included at least
one withdrawal of a pre!x announced by these organizations.

2.2.2 Slow BGP convergence lead to significant tra!ic losses.

While countless studies have shown that BGP convergence can
cause long downtime on data-plane connectivity [18, 37, 43, 45,
53, 62, 63, 66], we con!rmed the data-plane impact of a few bursts
of withdrawals propagated by a national ISP (with more than 50
routers). Speci!cally, we analyzed the bursts sent by the ISP to its
BGP neighbors over a period of three months. Among them, we
selected three bursts which included more than 10k withdrawals
and which matched with an event logged by the ISP. By checking
their logs, the operators identi!ed the root causes of the bursts:
two maintenance operations and a peering failure at one of their
Internet eXchange Points (IXPs). At least two of these three bursts
induced downtime for transit tra$c towards up to 68k pre!xes,
including popular destinations.

2.2.3 Operators care: a 72-operators survey.

To substantiate the e#ect of slow convergence on operational
practices, we performed an anonymous survey among 72 operators
coming from a broad variety of networks (ISPs, CDNs, IXPs, etc.)
and providing services to a large customer base: 33% of them con-
nect >1 million users, and 66% connect 10k users or more (see [33]

for details). The survey contained 17 questions grouped in three
topics:(i) the operatorsÕ experiences with slow convergence;(ii)
the induced downtime; and(iii) their opinions on speeding up
convergence upon remote outages.

Operators care about slow convergence: 78% of the respondents
care about slow BGP convergence and actively aim at decreasing
their local convergence time by tweaking the various BGP timers (27
of them) or tuning the underlying TCP parameters (21); 41 respon-
dents use fast-detection mechanisms (BFD) and 21 of them deployed
fast-reroute techniques (BGP PIC [25] or MPLS fast-reroute [52]).
When considering transit networks (33 respondents), 67% of them
rely on fast-detection mechanisms, and 45% on fast-reroute.

Operators often observe slow convergence upon remote out-
ages: Among the 17 respondents who collect statistics about BGP
convergence (9 of which are transit ISPs), 52% observe anaverage
BGP convergence time upon remote outages above30 s. Only 4 of
them experience average convergence time below10 s. In addition,
87% of the respondents observe aworstconvergence time above
1 min, and 35% above5 min.

The vast majority of the operators would be interested in a
solution for remote outages like SWIFT: Namely, 95% of our
respondents indicated that they would consider adopting a fast-
reroute solution to speed up convergence upon remote outages.

3 OVERVIEW
Fig. 3 shows the work"ow implemented by aSWIFTEDrouter. We
now describe the result of implementing such work"ow on the BGP
border router2 of AS 1 in Fig. 1.

Before the outage. The SWIFTEDrouter in AS 1 continuously
pre-computes backup next-hops (consistently with BGP routes)
to use upon remote outages. This computation is done for each
pre!x and considering any link on the corresponding AS path. For
example, the AS 1 router chooses AS 3 or AS 4 as backup next-hop
for rerouting the 20k pre!xes advertised by AS 7 and AS 8 upon the
failure of link (1,2). In contrast, it can only use AS 3 as backup to
protect against the failure of link(5, 6) for the same set of pre!xes,
since AS 4 also uses(5, 6) prior to the failure.SWIFTthen embeds a
data-plane tag into each incoming packet. EachSWIFTtag contains
the list of AS links to be traversed by the packet, along with the
backup next-hop to use in the case of any link failure.

Upon the outage. After receiving a few BGP withdrawals caused
by the failure of(5, 6), theSWIFTEDrouter in AS 1 runs an inference
algorithm that quickly identi!es a set of possibly disrupted AS links
and a#ected pre!xes. The router then redirects the tra$c for all
the a#ected pre!xes to the pre-computed backup next-hops. To do
so, it uses a single forwarding rule matching the data-plane tags
installed on the packets. As a result, AS 1 reroutes the a#ected
tra$c in less than2 s(independently from the number of a#ected
pre!xes), a small fraction of the time needed by BGP (see Table 1).
When rerouting,SWIFTdoes not propagate any message in BGP.
We proved that this is safe provided that theSWIFTinference is
su$ciently accurate (¤3.3). When BGP has converged,i.e.,the burst

2Without loss of generality, we assume that a single router in AS 1 maintains all the
BGP sessions with AS 2, AS 3 and AS 4.
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of withdrawals has been fully received and BGP routes have been
installed in the forwarding table, the router removes the forwarding
rules installed bySWIFTand falls back to the BGP ones.

In the following, we provide more details about the main compo-
nents ofSWIFT. In ¤3.1, we overview the inference algorithm (fully
described in ¤4) and how its output is used in aSWIFTEDrouter.
In ¤3.2, we illustrate howSWIFTquickly reroutes data-plane pack-
ets on the basis of tags pre-computed by the encoding algorithm
detailed in ¤5. We !nally report aboutSWIFTguarantees in ¤3.3.

3.1 Inferring outages from few BGP messages
TheSWIFTinference algorithm looks for peaks of activity in the
incoming stream of BGP messages. Each detected burst triggers
an analysis of its root cause. To identify the set of links with the
highest probability of being a#ected by an outage, the algorithm
combines the implicit and explicit information carried by BGP
messages about active and inactive paths. For example, the failure
of (5,6) in Fig. 1 may cause BGP withdrawals indicating the un-
availability of paths(1,2,5,6) and(1,2,5,6,8) for all the pre!xes
originated by AS6 and8. Receiving these withdrawals makes the
algorithm assign a progressively higher failure probability to links
in {(1,2), (2,5), (5,6), (6,8)} . Over time, the algorithm decreases
the probability of links(1, 2) and(2, 5), because pre!xes originated
by ASes2 and5 are not a#ected, and the probability of link(6,8),
because not all the withdrawn paths traverse(6,8).

SWIFT aims at inferring failures quickly, yet keeping an eye
on accuracy. Inference accuracy and speed are con"icting objec-
tives. Indeed, precisely inferring the set of a#ected AS links might
be impossible with few BGP messages, as they might not carry
enough information. For instance,SWIFTcannot reduce the set
of likely failed links any further than the entire path(1,2,5,6,8)
until it receives other messages than withdrawals for that path.
Rerouting based on partial information can unnecessarily shift non-
a#ected tra$c,e.g.,all the pre!xes originated by ASes2 and5. In
contrast, waiting for BGP messages takes precious time (¤2) during
which tra$c towards actually-a#ected pre!xes can be dropped.

To avoid unnecessary tra$c shifts,SWIFTevaluates the like-
lihood that its inferences are realistic (e.g.,using historical data).
For instance,SWIFTevaluates the probability that a burst includ-
ing withdrawals for all the pre!xes originated by ASes6, 7 and8
happens. If a burst of similar size is unlikely,SWIFTwaits for the
reception of more messages to con!rm its inference. Given that
withdrawals for pre!xes from AS7 and8 will likely be interleaved
with path updates for AS6, this strategy quickly converges to an
accurate inference, as we show in ¤6.

SWIFT uses a conservative approach to translate inferences
into predictions of a�ected pre�xes. Remote failures are often
partial, that is, an outage can cause tra$c loss for a subset of the
pre!xes traversing the a#ected link(s). For instance, a subset of the
pre!xes traversing the failed link(5,6) in Fig. 1 can remain active
because of physical link redundancy between AS 5 and 6, or be
rerouted by intermediate ASes (e.g.,5) to a known backup path (like
the pre!xes originated by AS 7). As BGP messages do not contain
enough information to pinpoint the set of pre!xes a#ected by an
outage,SWIFTreroutes all the pre!xes traversing the inferred links.

Doing so minimizes downtime at the potential cost of short-lived
path sub-optimality (for a few minutes at most).

SWIFT inference works well in practice. Our experiments on
real BGP traces (see ¤6) show thatSWIFTenables to reroute 90%
(median) of the a#ected pre!xes after having received a small frac-
tion of the burst, and less than 0.60% of the non-a#ected pre!xes.

3.2 Fast data-plane updates independently of
the number of a�ected destinations

Upon an inference, aSWIFTEDrouter might need to update for-
warding rules for thousands of pre!xes. In general, routers are slow
to perform such large rerouting operations as they update their
data-plane rules on a per-pre!x basis.3 Previous studies [24, 64] re-
port median update time per-pre!x between 128 and 282µs. Hence,
current routers would take between2.7 and5.9 seconds to reroute
21k pre!xes (as the router in AS 1 has to do in Fig. 1), andmore
than 1 minutefor the full Internet table (650k pre!xes) Ð even if
BGP could converge instantaneously.

SWIFT speeds up data-plane updates by rerouting according
to packet tags instead of pre�xes. A SWIFTEDrouter relies on
a two-stage forwarding table to speed up data-plane updates. The
!rst stage contains rules for tagging traversing packets.SWIFT
tags carry two pieces of information:(i) the AS paths along which
they are currently forwarded; and(ii) the next-hops to use in the
absence (primary next-hops) or presence (backup next-hops) of any
AS-link failure. The second stage contains rules for forwarding the
packets according to these tags. By matching on portions of the
tags, aSWIFTEDrouter can quickly select packets passing through
any given AS link(s), and reroute them to a pre-computed next-hop.
Since tags are only used within theSWIFTEDrouter, they have local
meaning and are not propagated in the Internet (they are removed
at the egress of theSWIFTEDrouter).

Using again Fig. 1, we now describe the rules in the forwarding
table of theSWIFTEDrouter in AS 1. Fig. 3 shows the tags returned
by theSWIFTencoding algorithm. The !rst stage of the forwarding
table contains rules to add tags consistently with the used BGP
paths. Since pre!xes in AS 8 are forwarded on path(2,5,6,8), it
contains the following rule.

match(dst_prefix:in AS8) >> set(tag: 00111 10011)
The !rst part of the tag identi!es the AS path. It maps speci!c
subsets of bits to AS links in a given position of the AS path. The
!rst two bits represent the !rst link in the AS path, which is link
(2,5). Consistently with Fig. 3, those bits are therefore set to 00.
Similarly the second and third bits represent link(5,6) when it is
the second link in the AS path, etc.

The second part of the tag (in green) encodes the primary and
backup next-hops. Namely, the !rst bit identi!es the primary next-
hop, the second bit indicates the backup next-hop to use if link(1, 2)
fails, etc. This part of the tag enablesSWIFTto match on tra$c
that may have to be redirected to potentially di#erent next-hops
depending on the link that fails and the destination pre!x.

3Since the outage a#ects remote AS links, local fast-rerouting techniques [25] cannot
be applied.
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Figure 3: SWIFT work�ow.

Before the failure of(5,6), the second stage only contains the
forwarding rules consistent with BGP. Speci!cally,

match(tag: ***** 1**** ) >> fwd(2)

Upon the failure of(5, 6), SWIFTadds asinglehigh-priority rule to
the second stage Ð while not modifying at all the !rst stage.

match(tag: *01** ***1* ) >> fwd(3)

The added rule exploits the structure ofSWIFTtags to reroute tra$c
for all the a#ected 21k pre!xes, at once. The regular expression in
it matches all the packets such that:(5,6) appears as the second
link in their AS path (i.e.,the tag starts with *01**); and the backup
next-hop is 3 (i.e.,the tag ends with ***1*). This includes tra$c
for pre!xes in AS 6, 7 and 8. Note that one rule is su$cient in our
example, because theSWIFTEDrouter does not use any AS path
where(5, 6) appears in other positions before the failure (otherwise,
one rule per position would have been needed).

SWIFT compresses tags e�ciently. Assigning subsets of bits for
any AS link and possible position in the AS path does not scale
for the Internet AS graph that currently includes>220,000 AS
links. SWIFTencoding algorithm squeezes such graph in few bits
by leveraging two insights.First, many links in the AS graph are
crossed by few pre!xes, and their failure does not lead to bursts
large enough to even requireSWIFTfast-rerouting.SWIFTtherefore
does not encode those links at all.Second, the AS paths used by a
single router at any given time tend to exhibit a limited number of
AS links per position.SWIFTtherefore only encodes AS links and
positions that are present in the used BGP paths.

SWIFT supports rerouting policies. When computing backup
next-hops,SWIFTcomplies with rerouting policiesspeci!ed by
the operators. Indeed, rerouting to a safe path may not always be
desirable in practice Ðe.g.,because economically disadvantageous.
Rerouting policies express the preferences between backup next-
hops, or forbid the usage of speci!c onesÑi.e.,to mimic business
and peering agreements. For example, operators can preventSWIFT

from: (i) using an expensive link with a provider rather than a more
convenient one with a customer;(ii) rerouting to a link where free
tra$c is close to depletion (e.g.,according to the 95th percentile
rule [50]); or (iii) moving high volumes of tra$c to geographically
distant regions (e.g.,by sending to a remote egress point).

SWIFT supports both local and remote backup next-hops. In
addition to reroute locally to a directly connected next-hop an-
nouncing an alternate route, aSWIFTEDrouter can also fast-reroute
to remote next-hops, potentially at the other side of the network,
by using tunnels (e.g.,IP or MPLS ones). Remote backup next-hops
are learned via plain iBGP sessions.

SWIFT is easy to deploy. Only a software update is required to
deploySWIFTsince recent router platforms readily support a two-
stage forwarding table [3]. In ¤7 we show thatSWIFTcan also be
deployed on any existing router by interposing aSWIFTcontroller
and an SDN switch between theSWIFTEDrouter and its peers. The
two-stage forwarding table in that case spans two devices, similarly
to an SDX platform [30, 31].

3.3 Guarantees and limitations
We prove thatSWIFTrerouting strictly improves Internet-wide con-
nectivity, proportionally to the number ofSWIFTEDrouters. This
translates into incentives for both partial and long-term Internet-
scale deployment (e.g.,on all AS border routers).

T������ 3.1. The number of disrupted paths is decreased by every
SWIFTEDrouter which is on a path a!ected by an outage.

T������ 3.2. SWIFTrerouting causes no forwarding loop, irre-
spective of the set ofSWIFTEDrouters.

Both theorems are based on the following lemma.

L���� 3.3. When anySWIFTEDrouter fast-reroutes, it sends
packets over paths with no blackhole and loops.
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P���� ������. Upon a remote outage, anySWIFTEDrouter r
reroutes tra$c to an AS path that was o#ered tor by one of its BGP
neighbors before the outage (by de!nition ofSWIFT). This path
must have been free from blackholes and loops before the outage
(by de!nition of BGP). Also, it contains no failed linksÑprovided
that the inference is accurate enough. Hence, the path remains valid
and used by all ASes in it, which directly yields the statement.!

As evident from the proof sketch, the lemma and consequently the
theorems hold under the following two assumptions (see [33]).

Assumption 1:During an outage, routers only change inter-domain
forwarding paths that are a#ected by the outage. If this assumption
is violated, then inter-domain loops can be generated. Lets be a
SWIFTEDrouter andn the next-hop to whichs fast-reroutes to
avoid a certain outage. Ifn switches path for some fast-rerouted
pre!xes (e.g.,to re"ect a policy change uncorrelated with the out-
age), it may choose the BGP path used bys before the outage (not
updated bySWIFT): this would lead to a loop betweenn ands.

Nevertheless,SWIFTcan quickly detect and mitigate such a loop:
s can monitor whethern stops o#ering the BGP path to which it
has fast-rerouted, and select another backup next-hop.

Assumption 2: SWIFTinferences enable theSWIFTEDrouters to
avoid paths a#ected by an outage. TheSWIFTinference algorithm
implements a conservative approach for inferring links and select-
ing backup paths. Still, we cannot guarantee the validity of such
assumption, sinceSWIFTinferences are based on the partial and
potentially noisy information provided by BGP (and withdrawals
that reach di#erent ASes at di#erent times). Inferences that cause
SWIFTnot to rule out all paths a#ected by an outage might induce
packet loss: in these cases, aSWIFTEDrouter could reroute tra$c
to a disrupted backup, and multipleSWIFTEDrouters could create
an inter-domain loop (if the selected backup next-hop actually uses
exactly one of the disrupted paths missed by the inference). In both
cases, packets will be dropped, as it would have happened for the
a#ected pre!xes withoutSWIFT(i.e.,using vanilla BGP). However,
our evaluation with both real BGP traces and controlled simulations
(¤6), suggests that very fewSWIFTinferences lead to the selection
of disrupted backup next-hops.

4 SWIFT INFERENCE ALGORITHM
We now detail theSWIFTinference algorithm, its basics (¤4.1)
and how it accounts for real-world factors (¤4.2). Because of space
constraints, we include the pseudo-code of the algorithm along
with the full proof of its correctness (Theorem 4.1) in [33].

4.1 Fast and sound inference
In the following, we consider the stream of messages received on a
single BGP session since the algorithm run on a per-session basis
(enabling parallelism). We also initially assume that the algorithm
aims at inferring an outage produced by asinglefailed link.

Burst detection. SWIFTmonitors the received input stream of
BGP messages, looking for signi!cant increases in the frequency
of withdrawals. It classi!es a set of messages as the beginning of
a burst when such frequency (say, number of withdrawals per 10
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Figure 4: WS and PS metrics at the end of the burst of with-
drawals caused by the failure of (5,6).

seconds) in the input stream is higher than the 99.99th percentile
recorded in the recent history (e.g.,during the previous month).

Failure localization. When detecting a burst,SWIFTinfers the
corresponding failed link as the one maximizing a metric calledFit
Score (FS). Lett be the time at which this inference is done. For any
link l , the value of FS forl is theweighted geometric meanof the
Withdrawal Share(WS) andPath Share(PS):

FS(l , t ) = (W S(l , t )wW S #PS(l , t )wPS)1/( wW S +wPS)

WS is the fraction of pre!xes forwarded overl that have been
withdrawn at t over all the received withdrawals. PS is the fraction
of withdrawn pre!xes with a path vial at t over the pre!xes with
a path vial at t . More precisely,

W S(l , t ) =
W(l , t )
W(t )

PS(l , t ) =
W(l , t )

W(l , t ) + P(l , t )

whereW(l , t ) is the number of pre!xes whose paths includel and
have been withdrawn att ;W(t ) is thetotal number of withdrawals
received as oft ; P(l , t ) is the number of pre!xes whose paths still
traversel at t . wW S andwPS are the weights we assign to WS
and PS. By relying on WS and PS, the !t score aims at quantifying
the relative probability that a link is responsible for the received
withdrawals while being robust to real-world factors such as BGP
noise (¤4.2).

Example.Fig. 4 reports the WS and PS values at the end of the burst
of withdrawals generated by the failure of(5, 6) in Fig. 1. Link(5, 6)
is the only one with both WS and PS equal to 1, since all the AS
paths traversing it have been either withdrawn or changed with
another path not crossing(5, 6). In contrast, the PS values for links
(1,2) and(2,5) are smaller than 1 (11k/13k and 11k/12k), because
paths for the pre!xes of AS 2 and AS 5 have not been modi!ed
by the burst. The WS of(6,8) is smaller than 1 because not all
the withdrawals pertain to that link. At the end,(5,6) is therefore
correctly inferred as failed.

SWIFT inference is sound. By soundness, we mean that the in-
ference algorithm is always correct under ideal conditions. The
following theorem holds.

T������ 4.1. If all ASes inject at least one pre"x on every adjacent
link, SWIFTinference returns a set of links including the failed link if
run at the end of the corresponding stream of BGP messages.

P���� ������. Let f be the failed link andt the time at which
all the BGP messages triggered by the failure off are received.
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All pre!xes that have been withdrawn were previously forwarded
over the f , hence WS(f ,t ) = 1. Also, all the pre!xes previously
forwarded overf have been withdrawn (PS(f ,t ) = 1). This means
that the !t score of f has the maximum possible value, hence the
SWIFT inference algorithm returns it in the set of inferred links.!

4.2 Robustness to real-world factors
While actual streams of BGP messages do not always match the
ideal conditions assumed in Theorem 4.1,SWIFTinferences are
good in practice (see ¤6). We now explain why.

SWIFTmakes accurate inferences during the burst. Contrary
to the assumptions of Theorem 4.1,SWIFTruns its inference algo-
rithm at the beginning of a burst. Lack of information (i.e.,carried by
not yet received withdrawals) can therefore a#ect its accuracy. Be-
ing aware of this lack of information,SWIFTuses di#erent weights
for WS and PS in the geometric mean calculated in the !t score FS
(see ¤4.1). The key intuition is that early on during the burst, a large
number pre!xes are not yet withdrawn and are still using the failed
link. As a result, the PS for that link may not be the highest one.
The PS for the failed link actually increases whenSWIFTruns the
inference later in the burst. However, the WS for the failed link will
always be greater or equal than the WS of any other link, provided
that SWIFTdoes not receive unrelated withdrawals and that the
outage is produced by a single link failure.SWIFTthus performs
better whenwW S > wPS.

By performing a calibration study on real BGP data, we found
that SWIFTperformed better whenwW S was three times higher
than wPS (see details in [33]). We therefore use this weight for
SWIFT, including in the evaluation (¤6).

SWIFTminimizes the risk of inferring awrong link by being
adaptive. As discussed in ¤3, the accuracy ofSWIFTinferences
depends on the amount of information in its input.

SWIFTuses the number of withdrawals in an ongoing burst as an
estimation of the carried information. It launches a !rst inference
after a !xed number of withdrawals, which we calltriggering thresh-
old. If the likelihood of seeing an inferred burst of that size is high
enough with respect to historical data, then it returns the inferred
link. Otherwise, it waits for another !xed number of withdrawals,
and iterates. Using real BGP bursts as baseline (see [33]), we set
the default values of the triggering threshold to 2.5k withdrawals.
Also,SWIFTreturns the inferred link if the number of predicted
withdrawals is less than 10k for 2.5k received withdrawals, 20k for
5k received, 50k for 7.5k received, and 100k for 10k received. After
having received 20k withdrawals,SWIFTreturns the inferred link
regardless of the number of predicted pre!xes.

SWIFT applies a conservative strategy if failed links cannot
be univocally determined. It may happen thatSWIFTcannot
distinguish precisely which link has failed. For example, in Fig. 4,
assuming that the 1k pre!xes from AS 6 are updated and not with-
drawn,SWIFTcannot distinguish if(5, 6) or (6, 8) failed. Whenever
a failed link cannot be univocally determined,SWIFTinference
returns all the links with maximum FS,i.e.,both (5, 6) and(6, 8) in
the previous example.

SWIFTquantitativemetrics mitigate the e�ect of BGP noise.
Some received BGP messages may be unrelated to the outage caus-
ing a burst but due to contingent factors (e.g.,miscon!guration,
router bugs). They constitute noise that can negatively a#ect the
accuracy of any inference algorithm. InSWIFT, noise can distort FS
values. In Fig. 4, for instance, withdrawals for pre!xes originated
by AS 5 can be received by AS 1 during the depicted burst. This
would increase the likelihood that the FS of(2, 5) is higher than the
one of(5,6), especially at the beginning of the burst.

In practice,SWIFTis robust to realistic noise as the level of
BGP noise is usually much lower than a burst. Hence, its e#ect
on quantitative metrics like FS, WS, and PS, tends to rapidly drop.
This feature distinguishes our inference algorithm from simpler
approaches,e.g.,based on AS-path intersection, which are much
more sensible to single unrelated withdrawals.

SWIFT can infer concurrent link failures. To cover cases like
router failures that a#ect multiple links at the same time, the in-
ference algorithm computes the FS value for sets of links sharing
one endpoint. More precisely, the algorithm aggregates greedily
links with a common endpoint (from links with the highest FS to
those with the lowest one), until the FS for all the aggregated links
does not increase anymore. The !t score FS for any setSof links is
computed by extending the de!nition of WS and PS as follows.

W S(S,t ) =

!

l $S
W(l , t )

W(t )
PS(S,t ) =

!

l $S
W(l , t )

!

l $S
W(l , t ) + P(l , t )

The set of links (potentially, with a single element) with the highest
FS is returned. To ensure safety (see ¤3.3), for each link inferred,
SWIFTmust choose a backup route that does not traverse the
common endpoint of the links.4 This preventsSWIFTto reroute a
pre!x to a backup next-hop that uses another inferred link (because
all the inferred links have a common endpoint). By choosing backup
paths bypassing a superset of the inferred links,SWIFTalso ensures
safety in case the inference algorithm correctly localizes the ASes
involved in the outage instead of the precise links.

5 SWIFT ENCODING ALGORITHM
In this section, we describe howSWIFTtags are computed. Recall
that these tags are embedded onto the incoming packets in the
!rst stage of the forwarding table and are split in two parts: one
which encodes the AS links used by the packet, and another which
encodes the next-hops to reroute to should any of these links fail.
Thanks to these embedded tags, aSWIFTEDrouter can reroute
tra$c e$ciently upon an inference, independently on the number
of pre!xes impacted.

In section 7, and similarly to [30, 31], we show howSWIFT
can leverage the destination MAC to tag incoming tra$c. The
destination MAC is indeed a good Òtag carrierÓ as it provides a
signi!cant number of bits (48), and can easily be removed in the
second stage of the forwarding table by rewriting it to the MAC
address of the actual next-hop, as any IP router would do.

4This is enough to ensure safety. However,SWIFTcomputes the backup next-hops in
advance,i.e.,before the failure (see ¤3.2). AsSWIFTdoes not know which endpoint of a
link will be the common endpoint, it chooses backup paths (for the pre!xes traversing
this link) avoiding both endpoints of the link.
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Figure 5: A SWIFTED router embeds a tag into incoming
packets. The tag encodes the links traversed by the packet
(Part 1) alongwith backupnext-hops for each of the encoded
links (Part 2).

Encoding AS links. The !rst part of the tag (right side of Fig. 5)
encodes the AS path along which each packet will "ow. For each
pre!x, we consider the AS path associated with the best route for it,
and we store the position of ASes in that path. Namely, we de!nem
sets, withm being the length of the longest AS path, and we call the
i -th setpositioni . For any AS path(u0 u1 . . .uk ), with k %m, we
then add the AS identi!er ofui to positioni , for everyi = 1, . . . ,k.
Note that the !rst hop in any AS path is already represented as
primary next-hop (see Part 2 of Fig. 5). Hence, we do not model
position 1, and we have a di#erent AS-path encoding for every
SWIFTÕs neighbor. At the end of this process, AS paths can be
encoded by selecting speci!c AS identi!ers for every position.

Encoding all used AS paths may not be possible. Not only can
thousands of distinct ASes be seen for each position, but also the AS
paths may be very long (>10 hops). Fortunately, two observations
enableSWIFTto considerably reduce the required number of bits.
First, from the perspective of one router, many AS links carry few
pre!xes. A failure of these links will therefore produce small bursts
(if any), which allows for per-pre!x update. Thus, we ignore any
link that carries less than 1,500 pre!xes in ourSWIFTencoding.
Second, links that are far away from theSWIFTEDnode are less
likely to produce bursts of withdrawals than closer ones. Indeed,
for distant links, it is likely that intermediate nodes know a backup
path. Our measurements (¤6) con!rm this. Consequently, we only
encode the !rst few hops of the AS paths (up to position 5).

For the remaining AS links,SWIFTencodes !rst the links with
the highest number of pre!xes traversing them. To do that,SWIFT
uses an adaptive number of bits for each AS position: each position
is implemented by a di#erent bit group, whose length depends
on the number of ASes in this position. For each positionP, we
map all the ASes inP to a speci!c value (the AS identi!er) of the
corresponding bit group. Hence, the size of this group is equal to
the number of bits needed to represent all the values inP.

Encoding backup next-hops. The second part of the tag (left
side of Fig. 5) identi!es the primary next-hop as well as backup
next-hops for each encoded AS link. For each pre!xp, the pri-
mary next-hop is directly extracted as the !rst hop in the AS path

for p. For instance, the primary next-hop for pre!xp1 in Fig. 1(a)
is 2. Backup next-hops are explicitly represented to both re"ect
rerouting policies and prevent rerouting to disrupted backup paths.
Consider againp1. The primary path is(2, 5, 6). To protect against
a failure of the !rst AS link (2,5), we can select AS 3 or 4, since
neither of the two uses(2, 5) to reachp1. In contrast, for(5, 6), only
AS 3 can be used as a backup next-hop, since the AS paths received
from AS 4 also uses(5,6).

Partitioning bits across the two parts of the tag. A fundamen-
tal tradeo# exists between the amount of paths and the number of
backup next-hops that anySWIFTrouter can encode. On the one
hand, allocating more bits to represent AS links (!rst part of the
tag) allows aSWIFTEDrouter to cover more remote failures. On the
other hand, allocating more bits to represent (backup) next-hops
(second part of the tag) allows aSWIFTEDrouter to reroute tra$c
to a higher number of backup paths.

In ¤6.4, we show that allocating 18 bits to AS paths encoding is
su$cient to reroute more than 98% of the pre!xes. Assuming 48-
bits tags (i.e.,, using the destination MAC), 30 bits are left to encode
backup next-hops. If we con!gureSWIFTto support remote failures
up to depth 4, the bits allocated for the backup next-hops needs
to be divided by 5 (1 primary + 4 backup next-hops). As a result,
30/ 5 = 6 bits are reserved for each depth, which translates into
26 = 64possible next-hops. If one wants to consider remote failures
only up to depth 3, then the number of next-hops is27 = 128and
two more bits can be allocated to the AS links encoding. Operators
can !ne-tune such decision,e.g.,based on the (expected) number
of backup next-hops reachable by eachSWIFTEDrouter.

6 EVALUATION
We now evaluate our Python-based implementation (" 3,000 lines
of code) of theSWIFTinference algorithm (¤4) and the encoding
scheme (¤5). We !rst describe our datasets (¤6.1). We then evaluate
the accuracy of the inference algorithm, both in terms of failure
localization (¤6.2) and withdrawals prediction (¤6.3). We also eval-
uate the e$ciency ofSWIFTdata-plane encoding (¤6.4). Finally,
we show that the combination of the inference algorithm and the
encoding scheme leads to much faster convergence than BGP (¤6.5).

6.1 Datasets
We evaluateSWIFTusing two sources of bursts of BGP withdrawals.

Bursts from real BGP data, without outage ground truth. To
evaluate howSWIFTwould work in the wild, we use sets of actual
bursts extracted from the same dataset used in ¤2. It consists of
BGP messages dumped by 10 RouteViews [51] and 5 RIPE RIS [9]
collectors during the full month of November 2016. These collectors
received BGP messages from 213 peers.5 Our evaluation is based
on 1,802 bursts with more than 1,500 withdrawals. Amongst them,
942 (resp. 339) have more than 2,500 (resp. 15,000) withdrawals.

5We found 5 routers peering with these collectors that exhibit a "apping behavior,
with an anomalous large number of bursts of similar pattern; when including them, we
obtain a minimal change in overall results (" 2%), but sinceSWIFTperforms uniformly
on similar bursts, their large number (" 500 bursts) causes a signi!cant skew in the
population of bursts. We therefore omit these peers from our analysis.
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Bursts from simulations, with outage ground truth. To vali-
date the accuracy and the robustness of our inference algorithm,
we use bursts extracted from control-plane simulations conducted
with C-BGP [56]. We created a topology composed of 1,000 ASes
using the Hyperbolic Graph Generator [10]. We set the average
node degree to 8.4, which is the value observed in the CAIDA AS-
level topology [16] in October 2016, and use as degree distribution a
power law with exponent 2.1 [42]. We de!ned the AS relationships
as follows. The three ASes with highest degree are Tier1 ASes and
are fully-meshed. ASes directly connected to a Tier1 are Tier2s.
ASes directly connected to a Tier2 but not to a Tier1 are Tier3s,
etc. Two connected ASes have a peer-to-peer relationship if they
are on the same level, otherwise they have a customer-provider
relationship. We con!gured each AS to originate 20 pre!xes, for
a total of 20k pre!xes. Using C-BGP, we simulated random link
failures, and recorded the BGP messages seen on each BGP session
in the network. We collected a total of 2,183 bursts of at least 1k
withdrawals. The median (resp. max) size of the bursts is 2,184 (resp.
19,215) withdrawals.

6.2 Failure localization accuracy
In the following, we evaluate the accuracy of theSWIFTinference
algorithm on both datasets.

6.2.1 Validation on real BGP data.

Since real BGP traces do not provide the ground truth on burst
root causes, we estimate the accuracy of the inference algorithm
indirectly: we evaluate the match between the pre!xes withdrawn
in the entire burstW and the pre!xesW

&
whose path traversed

the links inferred bySWIFTas failed. This can be formalized as a
binary classi!cation problem, in which the true and false positives
are the pre!xes inW

&
' W andW

&
( W, respectively. We therefore

evaluate the accuracy ofSWIFTinference in terms of True Positive
Rate (TPR) and False Positive Rate (FPR).6

Fig. 6 shows the TPR and FPR on a per-burst basis. It is divided
into quadrants. The top left quadrant corresponds to very good
inferences,i.e.,for each burst, the links thatSWIFTinfers as failed
are traversed by most of the withdrawn pre!xes (high TPR) and
few of the non-a#ected pre!xes (low FPR). The top right quadrant
contains inferences that overestimate the extent of a failure (high
TPR and FPR): rerouting upon such inferences is still bene!cial as
the TPR is high (i.e.,connectivity is restored for many pre!xes actu-
ally disrupted). The bottom left quadrant corresponds to inferences
that underestimate the extent of a burst. Finally, the bottom right
quadrant includesbadinferences (with low TPR and high FPR).

We evaluate two scenarios forSWIFT. In the !rst one (Fig. 6(a)),
the inference algorithm runs only once, after 2.5k withdrawalsÑas it
would do without a history model (e.g.,after the !rst installation on
a router). In the second scenario (Fig. 6(b)), the inference algorithm
runs every 2.5k withdrawals while following the simple historical
model we described in ¤4.2. When considering history,SWIFTwaits
for more withdrawals to arrive before rerouting large numbers of
pre!xes early on in the burst.

6T PR= T P/(T P+ F N), F PR= F P/( F P+ T N); The negatives are all the pre!xes
announced in the session before the burst starts and not withdrawn during the burst.
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Figure 6: Despite having little information,SWIFT inference
is accurate. The vast majority of pre�xes are correctly in-
ferred as failed (top half quadrants). While some a�ected
pre�xes are missed (bottom left), no prediction is signi�-
cantly inaccurate (bottom right).

SWIFTmakes accurate inferences in themajority of the cases,
and never makes bad inferences. Even when using only 2.5k
withdrawals (Fig. 6(a)),SWIFTmakes accurate inferences in the
vast majority of the cases: TPR is more than60%for more than81%
of the bursts. However, it also overestimates the extent of the burst
(FPR is higher than50%) for about12%of the bursts.SWIFTinfer-
ence algorithm performs sensibly better when relying on history
(Fig. 6(b)). Better performance comes at the price of missing some
bursts because of the extra delay. Speci!cally, it missed a total of 256
bursts (53% of them smaller than 5k) compared to the history-less
version. Despite this, the history-based version of the inference
algorithm still completes the inference at the lowest threshold (2.5k)
for the majority of the bursts (65%). The increased density of the top
left quadrant in Fig. 6(b) is a clear indication of the gain obtained
by trading a bit of speed for better accuracy. Finally, we stress that
SWIFTneverfalls into the bottom right quadrant, irrespective of
whether the historical model is used or not.

6.2.2 Validation through simulation.

We now describe the results obtained bySWIFTinference algo-
rithm when run on the bursts generated in C-BGP (see ¤6.1).

Under ideal conditions, SWIFT inference is always correct.
We ran our inference algorithm at the end of each burst and found
that the inference is always correct, consistently with Theorem 4.1.

SWIFT inference is accurate enough to ensure safety, even
early on during the bursts.When we ran the inference algorithm
after only 200 withdrawals (1% of the total number of pre!xes
advertised, see ¤6.1),SWIFTidenti!ed a superset of the failed link
for 9% of the bursts. For the remaining 91%, it returned a set of links
adjacent to the failed one. Nevertheless, forall the 2,183 bursts but
one, SWIFTselected a backup path that bypasses the actual failed
link. This is becauseSWIFTchooses a backup route that does not
traverse the common endpoint of the inferred links (see ¤4.2).
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percentile of bursts
10th 20th 30th 50th 70th 80th 90th

Burst size between 2.5k and 15k
CPR 24.6% 48.9% 72.6% 89.5% 98.5% 99.7% 99.9%
FPR 0% 0.03% 0.07% 0.22% 0.50% 0.81% 1.8%

CP 47 178 349 901 2.1k 3.0k 4.3k
FP 24 125 301 802 2.2k 3.1k 5.0k

Burst size greater than 15k
CPR 5.6% 39.3% 80.4% 93.0% 98.1% 99.7% 99.9%
FPR 0% 0% 0.04% 0.60% 5.42% 13.9% 74.9%

CP 1.7k 5.7k 11.0k 19.6k 53.2k 78.1k 193k
FP 0 6 110 2.4k 19.8k 50k 402k

Table 2: Inference algorithm with history model: perfor-
mance of the prediction of future withdrawals.

SWIFT inference is robust to noise. We simulated BGP noise by
adding, in each burst, 1,000 withdrawals of pre!xes that are not
a#ected by the failure. This number is much greater than what we
observe in real BGP data, both in absolute terms (9 withdrawals
only in the 90th percentile, see ¤2.2) and as a percentage (since we
only advertise 20k pre!xes in C-BGP, whereas there are more than
600k pre!xes advertised in the real world [5]). When we triggered
the inference at the end of the burst,SWIFTidenti!ed the failed link
for 91% of the bursts (1991), a superset for 9% bursts (188), a set of
links adjacent to the failed one for 1 burst and did a wrong inference
for 3 bursts. When we triggered the inference after 200 withdrawals,
SWIFTstill selected backup paths that bypass the actual failed link
for all the bursts but one. SWIFTidenti!ed a superset of the failed
link for 12% of the bursts, while for the remaining 88%, it returned
a set of links adjacent to the failed one.

6.3 Withdrawals prediction accuracy
In the previous section (¤6.2), we showed thatSWIFTinference
algorithm is indeed able to identify the failed link, even with limited
information. In this section, we evaluate the ability ofSWIFTto pre-
dict withdrawals, we also give the absolute number of pre!xes fast
rerouted upon such inference, enabling us to quantify the bene!t
of SWIFT, as well as the possible under/overshooting induced.

Di#erently from the previous section, in order to evaluate specif-
ically the prediction, we consider as ÒpositivesÓ only the pre!xes
withdrawn after the inference was made. This change a#ects the
de!nition of TP (and TPR) but leaves FP (FPR) unaltered. Since we
already used TPR in ¤6.2, we denote with CPR (for Correctly Pre-
dicted Rate) the true positive rate of the prediction. We also denote
with CP and FP, the total numbers of pre!xes correctly predicted
or not, respectively.

6.3.1 Validation on real BGP data.

Table 2 shows results obtained by running theSWIFTinference
algorithm with the history model. Results for small (%15k) and
large (>15k) bursts are shown separately.

SWIFTcorrectly fast-reroutes a large number of a�ected pre-
�xes. For half (resp. 80%) of the small bursts,SWIFTcorrectly pre-
dicts at least 89.5% (resp. 48.9%) of the future pre!x withdrawals.
For half (resp. 80%) of the large bursts,SWIFTcorrectly predicts at
least 93% (resp. 39.3%) of the future pre!x withdrawals. In terms
of absolute numbers, we see thatSWIFTcorrectly fast-reroutes a
signi!cant amount of pre!xes, especially for larger (>15k) bursts,
where the number of pre!xes predicted is in the order of tens of
thousands for 60% of the bursts and in the order of hundreds of
thousands for more than 10%.

SWIFT only reroutes a small number of non-a�ected pre-
�xes. Both for small and large bursts, the fraction of fast-rerouted
pre!xes that were not a#ected by the failure is small in most of the
cases. In few cases (e.g.,90-th percentile of the large bursts) however,
the algorithm signi!cantly overestimates the number of pre!xes
to be rerouted (FP). This is because we deliberately designed and
tuned the algorithm to not minimize incorrectly rerouted pre!xes in
order to avoid missing pre!xes that should be rerouted. Incorrectly
rerouted pre!xes are indeed forwarded to a backup path which
is sub-optimal but not disrupted, just for the few minutes needed
for BGP to reconverge. Consistently, we note that less aggressive
weights do reduce the FPR (see [33]).

6.3.2 Validation through simulation.

We now evaluate the accuracy of the pre!xes prediction on the
bursts generated by C-BGP.

SWIFT accurately predicts pre�x withdrawals, even when
considering noise. When inferring the a#ected pre!xes after only
200 withdrawals, the FPR is equal to 0% for 98% of the bursts. The
highest FPR observed is only 13%. In the median case (resp. 25th
percentile), the CPR is equal to 88% (resp. 84%). The lowest CPR
observed is 37%.

To consider the impact of BGP noise on these numbers, we added,
to each burst, 1,000 withdrawals unrelated to the failure (as in ¤6.2.2).
We found that, for 53% of the bursts, the FPR is still 0%. The FPR
is greater than 9% for only 1% of the bursts. In the median case
(resp. 25th percentile), the CPR is 53% (resp. 50%). The CPR is far
from 100% because the withdrawals unrelated to the failure count
as positives. In practice, we observe that the CPR is less a#ected by
BGP noise, as the level of noise is usually much lower (see ¤2.2).

6.4 Encoding e�ectiveness
We now experimentally evaluateSWIFTencoding scheme (¤5) by
quantifying how many pre!xes can e#ectively be rerouted in the
data-plane by matching on the pre-provisioned tags. For each burst,
we de!ne theencoding performance, as the fraction of predicted
pre!xes that can be rerouted by the encoding scheme. The perfor-
mance depends on the number of bits allocated to the AS path part
of the tag (see ¤5). For this part of the evaluation, we rely on the
inference algorithm with the history model and consider the bursts
obtained from the real BGP data.
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Figure 7: With only 18 bits available for the AS paths encod-
ing,SWIFT can reroutemore than 98.7% of the predicted pre-
�xes in the median case.

Allocating 18 bits to the AS-path part of the tag enables to
reroute 98.7% of the predicted pre�xes. Fig. 7 shows the encod-
ing performance (over all bursts) as a function of the number of
bits reserved for the AS-path part of the tag. Each box shows the
inter-quartile range of the encoding performance: the line in the
box depicts the median value; the dot depicts the mean; and the
whiskers show the 5th and 95th percentiles. As the number of bits
allocated to the AS paths encoded increases, so does the encoding
performance. We see that18bits are already su$cient to reroute
98.7%of the predicted pre!xes in the median case (73.9% in average).
These results illustrate that the compression done by the encoding
algorithm is e$cient and manages to encode the vast majority of
the relevant AS links. In addition, Fig. 7 shows that for the large
bursts of at least 10k withdrawals, the encoding performance is bet-
ter (84.0% on average with 18 bits). This is explained by the design
of our encoding algorithm, which encodes with highest priority the
AS links with the largest number of pre!xes traversing them (and
which may cause large bursts in case of a failure).

Assuming a tag of 48 bits (e.g.,using the destination MAC), the
remaining 30 bits can be used to encode the backup next-hops. If
SWIFTencodes up to depth 4 (i.e.,position 5 in the AS path), 64
di#erent next-hops can therefore be used. This suggests thatSWIFT
encoding can work well even if theSWIFTEDdevice is connected to
a large number of external neighbors, like in IXPs [47]. The number
of backup next-hops can even be increased by reducing the number
of AS hops encoded (e.g.,up to depth 3 instead of 4).

6.5 Rerouting speed
In this section, we show that the combination of theSWIFTinfer-
ence algorithm and the encoding scheme enables fast convergence
in practice (within2 s) by quantifying:(i) the learning time required
for a prediction; and(ii) the number of rules updates to perform in
the data plane. Our results are computed on the bursts in the real
BGP data.

SWIFT learns enough information to converge within 2 sec-
onds (median). Compared to vanilla BGP,SWIFTconverges much
faster than a BGP router working at the per-pre!x level. Fig. 8
shows the CDF of the time elapsed between the beginning of the
burst and the actual time at which every withdrawal in the burst is
learned. For BGP, the learning time corresponds to the withdrawal
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Figure 8: SWIFT quickly learns about remote outages. In 2
(resp. 9) seconds, SWIFT learns more than 50% (resp. 75%) of
the withdrawals, BGP needs 13 seconds (resp. 32 seconds).

timestamp. ForSWIFT, it corresponds to the prediction time if the
withdrawal is predicted, otherwise the withdrawal timestamp. The
plot highlights that, in the median case,SWIFTlearns a withdrawal
within 2 s, while BGP needs13 s. We can observe a shift at41 sin
the SWIFTcurve. After investigation, we found that this is due to
a very large burst of 570k withdrawals which took a total of105 s
to arrive. The !rst 20k withdrawals (needed forSWIFTto launch
the prediction) took41 sto arrive. Observe that, even in such a
case,SWIFTwas still able to shave o# more than1 min of potential
downtime.

SWIFT requires few data-plane updates to reroute all the
predicted pre�xes. The number of data-plane updates required to
reroute all the predicted pre!xes depends on the number of failed
AS links reported by the inference algorithm. When executing the
inference algorithm after 2.5k withdrawals, in 29% of the cases, the
number of links predicted is 1 and the median number (resp. 90th
percentile) is 4 (resp. 29). For each reported link, one data-plane
update is required for each backup next-hop (¤5). As a result, in
the median case (resp. 90-th percentile) and with 16 backup next-
hops, 64 (resp. 464) data-plane updates are required. Considering
a median update time per-pre!x between 128 and 282µs [24, 64],
SWIFTcan update all the forwarding entries within 130 ms.

7 CASE STUDY
In this section, we showcase the bene!ts ofSWIFTby boosting the
convergence time of a recent Cisco router. As mentioned in ¤3.2,
SWIFTcan be implemented directly on existing routers via a simple
software update, since the only hardware requirement, a two-stage
forwarding table, is readily available in recent platforms [3] (we
con!rmed this implementation through discussion with a major
router vendor). Yet, to evaluateSWIFTwithout waiting for vendors
to implement it, we developed an alternative deployment scheme.

How to SWIFT any existing router. In our alternative deploy-
ment scheme, we interpose aSWIFTcontroller and an SDN switch
between theSWIFTEDrouter and its peers, respectively at the
control- and data-plane level (as in Fig. 9(b)). The setup is akin to
the SDX platform [30, 31]. It enables to deploySWIFTon any router
that supports BGP and ARP, that is, virtually any router.

Upon reception of the BGP updates coming from the peers of
the SWIFTEDrouter, the controller assigns 48-bit tags according to
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Figure 9: While a recent router takes 110 seconds to con-
verge upon a large remote outage (left), the corresponding
SWIFTED router (using the alternative deployment scheme
depicted on the right) converges within 2 seconds.

the SWIFTencoding scheme (see ¤5). The controller programs the
SWIFTEDrouter to embed the data-plane tags in the destination
MAC !eld in the header of incoming packets, using the same tech-
nique as in a SDX [31] (i.e.,with BGP and ARP). It also programs the
SDN switch to route the tra$c based on the tags, and rewrite the
destination MAC address with the one of the actual next-hop. The
two-stage forwarding table used bySWIFTthen spans two devices:
theSWIFTEDrouter (!rst stage) and the SDN switch (second stage).

Upon the detection of a burst coming from a peer, theSWIFT
controller runs the inference algorithm (¤4), and provisions data-
plane rules to the SDN switch for rerouting the tra$c. OurSWIFT
controller uses ExaBGP [7] to maintain BGP sessions.

Methodology. We reproduced the topology in Fig. 1(a) with a re-
cent router (Cisco Nexus 7k C7018, running NX-OS v6.2) acting
as AS 1, which we connected to its peers via a laptop running a
(software-based) OpenFlow switch (OpenVSwitch 2.1.3). We con-
!gured AS 6 to announce 290k pre!xes. Then, we failed the link
(5, 6), and we measured the downtime using the same technique as
in ¤2 (sending tra$c to 100 randomly selected IP addresses).

A 98% speed-up. Fig. 9(a) reports the downtime observed by the
SWIFTEDand non-SWIFTEDCisco router. While the vanilla Cisco
router takes109 sto converge, theSWIFTEDCisco router system-
atically converges within2 sÑa 98%speed-up.

8 RELATEDWORK

RootCauseAnalysis (RCA). Many prior works aim at identifying
the root cause of failures, be it in the Internet [14, 15, 19, 23, 36, 39,
40, 68Ð70], or within a network [20, 41, 59, 67]. SWIFTinference
algorithm di#ers from previous works both in objectives and scope.
To enable fast rerouting,SWIFTinference should be extremely
quick (in seconds or sub-seconds), while previous works typically
focus on a much longer timescale (minutes). Moreover,SWIFTdeals
with a speci!c type of failures, those generating large bursts of BGP
withdrawals, and only rely on the BGP messages reaching a single
vantage point (theSWIFTEDrouter). In contrast, previous RCA
e#orts typically use active measurements and multiple vantage
points. They also focus on pinpointing di#erent problems such as
per-pre!x path changes [36] or failures on the reverse path [39].

Another important di#erence is thatSWIFTactually usesits
fast RCA core to repair Internet connectivity problems (almost in
real time). Doing so goes beyond previous contributions, like [34],
which only show how to detect (not repair) path problems out of
passive packet-level traces collected from a single vantage point.

BGP convergence. Slow BGP convergence is a well-known prob-
lem [17, 22, 29, 44, 45, 48]. Most prior work aimed at reducing BGP
convergence timewithin a single domain, for instance, upon planned
maintenance or internal link failures. For example, LOUP [32] im-
proved internal BGP convergence by ordering external route up-
dates to avoid transient loops.SWIFTcomplements and generalizes
these approaches by speeding-uplocalrerouting uponremotefail-
ures.SWIFTgoals are similar to R-BGP [44] which enables faster
failover in inter-domain routing by pre-computing and propagating
few disjoint failover paths. UnlikeSWIFTthough, R-BGP is not
compatible with existing routers: it may also require many paths
to be propagated Internet-wide and stored in routers.

BGP burstiness. Several works [15, 23, 46, 49] focused on bursts of
BGP messages with the goal of studying per-pre!x instabilities and
dynamics. They de!ne an update burst as a sequence of messages
pertaining to a single pre!x and observed within a given timeout.
Our goal withSWIFTis di#erent, as we focus on events generating
concurrent withdrawals related to distinct pre!xes.

Fast data-plane updates. Several techniques can speed up for-
warding rule modi!cation upon local failures. For example, MPLS
fast reroute [52], IP fast reroute [11, 61] and PIC [25] can react in
sub-second to local link failures by pre-provisioning backup entries
and selectively activate them at runtime. SDN approaches, like Fat-
Tire [57], support the same use case in OpenFlow. None of these
works can fast reroute uponremotefailuresÑasSWIFTdoes.

9 CONCLUSION
We presentedSWIFT, the !rst fast-reroute framework for remote
outages.SWIFTis based on two key contributions:(i) a fast and
accurate inference algorithm; and(ii) a novel encoding scheme.

We performed a thorough evaluation ofSWIFTusing a fully
functional implementation and real BGP data. Our results indicate
that SWIFTis e$cient in practice: it achieves a prediction accuracy
and an encoding e$ciency both above 90%, and can boost the
convergence performance of a Cisco router by up to 98%.
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