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Abstract

Error in weather forecasting is due to inaccuracy both inrtraels
used, and in the estimate of the current atmospheric statiiclh the model
is initiated. Because weather models are thought to be ichaod therefore
sensitive to initial condition, the technique of ensemble€asting has been
developed in part to address the latter effect. An ensentblerecasts is
made with perturbed initial conditions, the aim being toduee an estimate
of the probability distribution function for the future staof the weather.
Some ensemble schemes also include changes to the modé¢ ttéhen-
semble approach is quite widely adopted, however, its eatitin is com-
plicated, and the effect of model error on ensemble perfoomés not clear.
In this paper, we investigate the effect of model error oreeride behavior
for a version of the Lorenz '96 system. It is shown that estéwaf the
model’s ability to shadow the observations, obtained ustiregmodel drift,
are robust to observational error and smoothing schemésagidDVAR,
and help reveal the effect of model error on ensemble pedooe Com-
parisons are made with full weather models. The aim is toigeoa study
of ensemble error in the context of the Lorenz '96 systemctvimay be

useful in formulating questions and experiments for waathedels.



1 Introduction

Ensemble techniques have become established in receatagsamethod for gen-
erating probabilistic weather forecasts. By running favan array of slightly
perturbed initial conditions, the ensemble forecast isnded to provide an ap-
proximation to the probability density function of the wieatt's future state (Palmer,
2000). While ensemble schemes have proved to be usefulitoofederstanding
the role of initial condition error for weather models, theerification can be
complicated (Ehrendorfer, 1997), and the influence of medar on ensemble
results is not clear. As ensemble techniques are extendethted fields such as
biological oceanography (Robinson et al., 1999), the needdluate the effect of
model error becomes increasingly clear.

Ensemble schemes have evolved considerably over the yaats)ow often
include perturbations to the model (Buizza et al., 1999)wédncer the original
motivation for their use (Toth and Kalnay, 1993) was to ceutite effect of sen-
sitivity to initial condition (Lorenz, 1963). It was assuthihat model error should
be relatively small, at least for short forecast times (Baigt al., 2000), so that
forecast error would be dominated by the initial conditiather than the model
(Toth et al., 1996). In the spirit of ensemble forecastimgs paper starts from

a different initial condition, or set of assumptions, andmines ensemble fore-
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casting for a model/system pair, based on the Lorenz '9@&sy$torenz, 1996),
where the model is not particularly sensitive to initial dgion, and model error
is large.

Comparisons of the relatively simple system used here aradhee models
are made for the purpose of motivating the choice of systa@anpeters. An ad-
vantage of simple systems is that they are easy to experimgnand understand
(cf for example (Anderson, 1996)); however they are of ceurs substitute for
full weather models. The aim is therefore to ask how robusestble schemes
are in general to the effects of model error, and motivateergents, rather than
draw specific conclusions about weather models or providereeyg of current

forecasting techniques.

2 Error growth in the stochastic system

The system used here is a 16D scaled version of the one-lewehk '96 sys-
tem (Lorenz, 1996; Orrell and Smith, 2003), with an addiilcstochastic forcing
term. In this section, we introduce the system and model amtyshe dynamics

of error growth, before examining the ensemble behavior.



The equations for thstochastic system are

dz i
dt

= $i,1(l‘i+1 — .I’Z',Q) —T; + F+ AFC(t) (1)

for: = 1to 16. The index; is cyclic so thatr; 1§ = x;116 = ;. Thex;’s are
scaled by a factor, = 22 to put in units ofms—!, andt by a factorc; = 16 to
put in units of days. The parametEris a constant forcing term, set o = 10.
€(t) is a piecewise constant forcing term, that is updated esch= 1 hr, by
selecting from a Gaussian random variable with varianhcdt is multiplied by
the factorAF here set to 1. The equation can therefore be viewed as a raaheri
implementation of a Wiener process. The system is calalilastng a Runge-
Kutta scheme with a timestep of one hour, and observed witbchastic error
with standard deviatiol = 0.2ms~!. The model used to approximate the system
has the same equations, but without the stochastic forairmy er observation
error. The dimension was chosen as 16 to provide a suffigiigh dimension
space, while the scaling was chosen to allow comparison waather models
in both sensitivity to initial condition (as measured by dwg time) and error
growth (as measured by deviation from the target orbit) cas $elow.

The root-mean-square (RMS) error growth for the model isvshio the top



left panel of Figure 1, along with the drift and the propagdadeft. As discussed
in the Appendix, the driftis a sum of short forecast erronsicl approximates the
total error for short times, in this case out to about 2 dayse propagated drift
accounts for the growth of the short forecast errors undemtbdel dynamics,
and is a good approximation to the forecast error to beyoray4.d

The drift has components related to the effect of both olagenv error and the
error in the equations. For the stochastic system, the twbe@omputed directly
(Orrell, 2005). The tendency error due to the model equatalane isA F'e(t).
Because of the stochastic nature of the model error, thedlré to the model

equations grows in a square-root fashion, like a random watk magnitude

d™(r) = AFVAtr. )

Here At = 1 hr is the time at which the stochastic forcing is updated. dses
as here where the observation error is uncorrelated witimthdel error, it con-
tributes a drift of

d°(1) = V28, ®3)



and the two components can be summed orthogonally to give

d(r) ~ \Jdm(r)? + do(r)2. (4)

This partitioning of the drift into two components is shownthe top panel of
Figure 2. For this model, the partitioning shows that mogheferror for times
between 1 and 4 days is due to the model equations. In the eebiass, the drift
is used as a tool for determining the effect of model errorl@dsw behavior and

ensemble performance.

3 Ensemble performance

The above analysis showed that most of the forecast errahimmodel/system
pair, over the time period of interest, is introduced by m@ieor. The doubling
time of initial errors for the model, due to the effect of séasy to initial con-
dition alone, is around three days, which is about the santkeadoubling time
in total energy of weather models (Orrell, 2002). In thistset we consider the
effect of model error on ensemble performance.

The lower left panel of Figure 1 shows ensemble errors fostbehastic sys-

tem. The ensemble was formed by taking +/- perturbationsagfitude).5ms—*



in the directions of the leading four singular vectors, wita singular vectors op-
timized for a time of two days. For this small ensemble, tlregasing errors show
that the ensemble members are moving away from truth. Tleeta# more evi-
dent in the top left panel of Figure 4, which shows an ensewfil®00 randomly
perturbed members.

For a higher-dimension system, a suitably large ensemblddnvorobably
need millions of members to properly sample the space in desimay. Another
approach might be statistical techniques such as rankghetts. As an example,
the lower left panel of Figure 4 shows a rank histogram diagia an 8-member
ensemble, which is formed again from perturbations in tr@tpe and negative
directions of the leading 4 singular vectors, computed fdimee of 48 hours.
These diagrams, which are discussed for example in (EhrEnd@997; Wilks,
1995), provide a statistical test of the ensemble by cogritie distribution of the
true system relative to the ensemble predictions. Idetlbydistribution should
be flat, but here there is a distinct U-shape which indicdtasthe true values are
often falling above or below the ensemble’s range. The sdfeetas typically
seen with weather models (Strauss and Lanzinger, 1996).et#awwhile it is
obvious that the ensemble has a problem, it is hard to datermhether this is

due to model error or just an inappropriate choice of ensemmambers.



The best method to determine whether a model ensemble céaircarmem-
ber which stays near truth is by searching for such modetodbiectly. Given a
time 7 and radiug-, we define a shadow orbit as a model osit) for which the

error vector

e(t) = s(t) —5(t) (5)

satisfieg|e(t)|| < r for 0 < ¢t < 7. (Note that under this definition, there is no
guestion of whether a modedn shadow a target orbit, only within which radius;
any model will shadow for time if the shadow radius is set to the maximum error
over the time period 0 te.) For a particular radius, model orbits which shadow
a trajectory of the true system for the longest possible tintan be found by
optimization methods which choose the optimal initial ctiod.

The lower panel of Figure 2 shows the result of a series of@@&tperiments
for the stochastic Lorenz system. For a particular shaddwsa, the maximum,
minimum and median shadow times were determined by use optimiaation
program. The results were then plotted in a reflected sens&las versus time.
Also shown is a plot of the drift divided by two. As discussedOrrell et al.,
2001), the shadow behaviour is limited by the forecast eanat drift. In particu-
lar, an approximate lower bound for the expected radius attwthe model can

shadow for timer is given by%ﬁ. More loosely, a curve of the median shadow
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time should lie close to or above a plot of the drift dividedtlwp, as in the fig-
ure. The performance of the ensemble in terms of shadow ehawherefore
directly related to the degree of model error as measuretdogrift.

For comparison with weather models, and to better motiveg@bove results,
the top right panel of Figure 1 shows error growth for an expent in which
the ECMWF T42 model was compared with the TL159 model. Therimet
total energy (Rabier et al., 1996; Buizza and Palmer, 1995)led so that units
arems—!. In this experiment, which was described in (Orrell et aQQ2), the
model error is created by the difference between the twodfetquations, while
the observation error, clearly visible in the initial efrisrcaused by the truncation
from high-resolution to low-resolution. The two-day difié T42 was estimated
to be1.8ms~! (compared tal.6ms~! for the stochastic system). The top right
panel of Figure 1 shows a T42 shadow orbit of the high-resoiutrajectory,
found using a sensitivity code (Rabier et al., 1996) whichimised the error at
48 hours. Also shown is the bound from the drift over two: gseeted, the code
was incapable of finding an initial condition which shadowethin this radius.
Of course, this does not mean that such an orbit does not éxisthe result is

consistent with the behavior expected from the drift caltah.
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4 Errorsrelativeto an analysis

Experiments which compare different models, such as weatbdels of different
resolution, are interesting in that they reveal whetheratrmodels are converg-
ing to a solution. Because they involve the comparison ofroadel with another,
the cause of the errors can be attributed either to the diffax in equations, or
the mismatch in translating data from one model to the otkeror growth in
actual weather forecasts is more complicated becausertirs are measured rel-
ative not to another model but to the analysis, a smoothesdoreof atmospheric
observations. Furthermore, the assimilation procedugd ts smooth the obser-
vations often involves making them compatible with modeidictions. Errors in
the model can therefore affect both the analysis, and etsrd observational
error obtained by comparing the analysis with the origirtsesvations. In this
section, we show that estimates of model error and shadoavimhobtained
using the drift are robust to such smoothing schemes fontstes studied here.
To simulate the effect of the analysis procedure on foreeasts, the mag-
nitude of the stochastic terms in the system was first inectesAF = 1.5 and
At = 6 S0 as to give errors comparable (for the same scaling asd)efdh oper-
ational weather models. From Eq. 2, this represents antefdncrease of about

3.7 in the model drift. The observation error was increasezhts'. The up-
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per panel of Figure 3 shows a plot of the resulting forecasirewhen measured
relative to the untreated observations.

The next step was to treat the observations using 4DVAR (CH#®i7; Courtier
and Talagrand, 1997; Lewis and Derber, 1988). Each poirfieahalysia1; =
u(¢;) was determined by minimising the cost function

((tjsk) — ¥ (tir))” - (6)

)

Heren = 2 represents the number of points in the ‘assimilation windeaich
is the time period over which the model fit is optimized, and ;) for t > ¢,
is the model trajectory initiated at timg on the pointu;. Operational 4DVAR
schemes usually also contain an additional tétm— x”(tj))Q, wherex’ is some
prior estimate of the background state, so the version Ba@mnewhat simplified.
The resulting forecast error and drift relative to the as@lys shown in the
top panel of Figure 3 by the solid line. The forecast error paras with errors
for the ECMWEF operational model (circle symbol). The drsftstill a good ap-
proximation to the error up to about two days. Note that tifecebf the analysis
procedure is primarily to reduce the observational compgreit the square-root

component due to model error remains. If model error is lafgen the assimi-
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lation procedure adjusts the observations to fit the faulbgleh prediction. The
result is an apparent decrease in short-term errors; howsyeynamical model
errors continue to assert themselves over the longer tergeneral, due to their
cumulative nature, dynamical errors are not susceptibsetoothing procedures.
Also, if model error is large compared to observational eirthe analysis errors
can actually be worse than the original observational srr@perational assimi-
lation schemes are of course more complicated than the siscpeme presented
above, and assign weights to the model and observatiomakebut any scheme
which places too much weight on model predictions will suifithose predictions
are affected by model error. This problem goes away if thedast is compared
directly with the observations.

The lower panel of Figure 3 shows the result of a series of@@&tperiments
performed with the stochastic system relative to the oladiems treated by the
4DVAR scheme. The median shadow time was again determinadiuansction of
radius, and the results plotted as radius versus time. Alsws is a plot of the
drift divided by two. The shadow plot is above or near thetdtive, as expected.
The drift is therefore still a reliable indicator of shadoerformance, despite the
assimilation procedure.

In fact, it is interesting to note that the optimization pedare involved in
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minimizing the cost function Eq. 6 is similar to that of findishadow orbits.
Perhaps the best evidence that a model can not shadow theathses, within a
tolerance equal to the observational error, is that sigmifitorecast errors remain

after the observations are treated with 4DVAR.

5 Improving ensemble performance

Given the fact that the stochastic Lorenz system expergelarge errors which
affect ensemble performance, the obvious question is \ehethsemble perfor-
mance can be improved. One approach might be to add stachestis to the
model. The idea would be to compensate for the ‘missing’ $eramd thus in-
crease the ensemble spread.

For the Lorenz system, we can actually go further, and addtlgxidne same
stochastic terms, so that the model is identical to the sysexcept for differ-
ent realizations of the stochastic forcing. The effect oseenble performance is
shown in the upper panels of Figure 4. The ensemble spread)ey] as expected,
but the error of the ensemble mean (not shown) is little cedn&imilar behavior
has been noted when stochastic perturbations are made tivavezodels (Buizza

et al., 1999), though note that the stochastic perturbsatizexde here are relatively
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speaking much larger than normally would be made to an dpaedtmodel.

The middle panels show the RMS forecast error for the model stbchas-
tic terms. The tendency error between the stochastic madebgstem is now
the difference between two stochastic terms of equal mad@jtso its expected
magnitude increases hy2. This similarly affects the drift and therefore the RMS
forecast error, which is about a factor¢® higher in the middle right panel.

Despite the fact that the RMS drift has increased, some af@@ ensemble
members shown have reduced errors in the top right panes. mitght appear to
contradict the relationship between expected shadow ipeaioce and the drift.
However, this ensemble effectively consists of 1000 déiféimodels, each with a
different stochastic forcing and consequently a diffedeift. Therefore increased
RMS drift does not translate in this case to worsened sha@ofenmance for an
individual member; only to the expected shadow performaricetypical mem-
ber. In fact, if the number of ensemble members is taken seiftiy large, one
member will eventually replicate the true system over amgtperiod.

Because the model now has the same climatology as the sysenank his-
togram diagram in the lower right panel gives near-perfeatisics. Other statis-
tical tests of course exist; however this serves to empadsespoint that getting

the ensemble statistics right does not guarantee thatrpefe is improved if
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the aim is short to medium term prediction.

Another approach might be to incorporate changes in the hpag@ameters, or
even completely different models (Harrison et al., 1999 $¢a, 2002). However
the model used is actually optimal in the sense that it misésithe expected drift.
The only contributors to the drift, by construction, arec$iastic terms which
by definition can not be predicted or eliminated (weather et®evould also be
expected to have some systematic component to the error).

This points to a fundamental difference between initialdibon and model
errors. The ensemble approach is well-suited to initialdtiion error, because
the errors only occur at the initial time, have a magnitudiaged to be smaller
than some limit, and exist in the space of model variablesdéllerror, however,
is altogether different. The errors do not occur only at theal time, but are cu-
mulative and state-dependent. Thus it is more challengiragpply the ensemble

approach to model errors (though see Barkmeijer et al., 2003

6 Discussion - how long are the shadows?

Through a detailed study of ensemble performance in theegbof the Lorenz

'96 system, we have been able to establish or confirm a nunil@iots about
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ensemble behavior. The ability for the model to shadow aremesl target or-
bit was limited by the drift, which in this case was dominatgdmodel error.
The drift could therefore be used to quantify the extent tecchvensemble perfor-
mance was affected by model error. The result was robusttbatie presence
of observational error, and the effect of smoothing techesgsuch as 4DVAR.
Statistical tests in themselves were not enough to desaritensemble’s ability
to provide useful predictions over the short to medium rangdding random
forcing terms to the equations improved the spread, butr#pg on one’s aims,
did not necessarily make the ensemble much more useful &slecive tool.

The stochastic system in this paper is particularly diffitalmodel, and is
intended only as a rather extreme example. Fortunatelyvéather models the
errors are not completely stochastic, but are the resulhpatameterized phys-
ical processes. Even if it is not possible to perfectly mdbebke processes, it is
always possible to improve the parameterizations, whiatoofse is what mod-
elers continuously do. Techniques such as calculating tiftendll not directly
improve the models, but may help identify flaws.

Of course, shadowing is metric-dependent, so it is possitde a weather
model could shadow a local variable such as temperature preafs location,

even though it fails to shadow in a more general metric. Areptide will there-
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fore generate a spread of temperatures, and the correceanawbe expected to
lie within that range. Our point, though, is that, if a modekd not shadow in a
global metric, then that is because of the model drift. Tfoges while perturbing
the initial condition will result in a certain spread (as lveihy kind of perturba-
tion), and stand a good chance of including the correct teatypes, it will not
address the underlying problem. An alternative method taiota similar result
might be to simply add error bars to the predicted tempegatuhere the size of
the error bars is determined from error statistics.

While weather models are very different from the highly dlifigd stochastic
system considered here, the present study may provide &\rark to address
similar questions in more complicated models. For exantphkedrift technique
could be applied to errors relative to both the analysis Aeduntreated observa-
tions, in order to estimate the components of error due totheel equations and
the observations, and to estimate shadow times. Technsguésas the sensitivity
code used here for intermodel experiments could be apmi&dd model trajec-
tories which shadow the analysis, and the results compaithdestimates from
the drift. The experiments with simple models suggest thestion: how long
are the shadows? It is hoped that similar experiments wititlveg models in the

coming years will help answer this question.
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Appendix

This appendix collates an overview of the drift techniquesspnted in (Orrell et
al., 2001; Orrell, 2002, 2003, 2005); further details carfdaend in those refer-
ences. Suppose the observed target orbit, which incluéesitbervation error, is
§(t), and the model equations are written in the form

ds

e —Gls(1), (A1)

wheres is the state space vector. If observations are made at tidore points

t; = jAt, then the observed orbit is only known at these times. Fovamience,

we first assume thai(¢) is a continuous interpolation through the data points.

Alternatively, the equations can be formulated in a digcfashion as seen below.
The forecast error

e(t) =s(t) —5(t) (A2)

then satisfies

~ J(8(1))e(t) + Ge(3(1)), (A3)
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where

(A4)

is the model’'s tendency error, adds the Jacobian o&. As can be seen by direct

substitution, a solution to Eqg. A3 is given by
dp(7) = [ M(r,0)G.(5(0)d, (A5)
0

whereM(r, t) is the model linear propagator (Strang, 1986) evaluateagaioe
target orbit from time to timer. The error can therefore be approximated over
the short to medium-term by

e(r) = dp(1) (A6)

which we denote the propagated drift vector (continuousmjor The G, term
represents the tendency error, while the linear propadatar M (7, t) reflects
the amplification of the tendency error by the dynamics.

A disadvantage of the propagated drift is that it requirammatation of the
linear propagator, and may therefore be impractical toutale for large models

such as weather models (although its effect can be estinbgtednsidering the
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exponential magnification of the forecast errors that gtutstthe drift calculation
as in (Orrell et al., 2001)). If the effect of the linear prgp#or is neglected, we

obtain thedrift vector, given in continuous form by

d(r) = /0 "G ((t))dt (A7)

For sufficiently short times, the drift will be approximately equal to the prop-
agated drift, where what is meant by short depends on thiepartmodel/system
pair. However, because the action of the propagator in ni@gitc models is on
average to expand propagations (though this needs to b&ezhsimce contrac-
tive effects may dominate at some time scales), we can ysasdume to good

approximation

()] < lldp(7)]]- (A8)

The driftd(r) = ||d(7)]| therefore provides either an underestimate, or at shorter
times an estimate, of the propagated drift.

In practice, the drift and propagated drift are evaluateal discrete fashion at
points corresponding to the observation times: jAt. Lets;(t) fort > t; be the
model trajectory initiated at timg on the observed poirs{(¢,). Using a forward

difference approximation to the tendency error in Eq. Aé,dhft becomes a sum
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of short forecast errors
K-1
d(tx) = Z f;, (A9)
j=0

wheref; = s;(tj41) — §(tj+1) (Orrell, 2002). Similarly the expression for the

propagated drift in discrete form is

K-1

dp(tx) = Y Mtk t;+1)E; (A10)

J=0

The timestep\¢ should be small enough that the calculation converges; loeekc
is to calculate the drift with a larger timestep2ikt and see if the result is signif-

icantly different.
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Captions

Figure 1. Comparison of the stochastic system with intermodel expants.
Top left panel shows error growth, drift, and propagatedt @isr the stochastic
system. Results are RMS over 1000 initial conditions. Loleérpanel shows
ensemble errors for an ensemble generated from +/- petiomsaof the leading
four singular vectors, optimized for two days. Right parehss error growth in
square root of total energy for T42 relative to TL159, frontr@l et al., 2001).
Also shown is a shadow orbit, and the bound on shadow radchus tine drift cal-

culation. Lower right panel shows a T42 ensemble relativELib59.

Figure 2. Top panel shows components of drift in the stochastic sys&vlid
line shows total drift, dashed line is the drift componerg tluthe stochastic forc-
ing error, dotted line is the drift component due to the obestgon error, ‘+' sym-
bols is the orthogonal sum of the two components. Lower psimalvs a curve of
shadow times for the stochastic system. Results are overatibss experiments
at each radius. Also shown is the curve of drift over two. Thedian shadow

curve is always above or near the drift bound.
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Figure 3. Plot of errors for the high-error stochastic systefy?{ = 1.5,
At = 6). Curve with ‘+’ symbol shows errors relative to untreatdsservations.
The solid line is errors relative to the observations smedtty 4DVAR, dashed
line is drift. These compare with a plot of total energy esrtor the ECMWF
operational model over a 15 day period in December 2000écssanbol). Lower

panel compares a curve of median shadow times with a plotrifi@der two.

Figure 4. Plot comparing 48 hour errors for the stochastic systermniab
version), with and without stochastic forcing in the modalthe left panels, the
model is the usual model, while in the right panels stochdsticing is added.
The model and the true system are therefore identical, éxoemlifferent re-
alizations of the stochastic forcing. Upper panels show rssithe plot of 1000
ensemble members with initial perturbations of :57!; at each time point, the
grayscale indicates the number of ensemble members witrtbegiven by the
vertical axis. The effect of the stochastic forcing in thed®lo(top right panel) is
to increase the spread. The RMS forecast error, measured @@ initial condi-
tions, also increases by a factor of abg(® (middle panels). Lower panels show
rank histogram diagrams for an 8-member ensemble. Theatragt right shows

nearly perfect statistics, despite the fact that the maglebt better in terms of
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short-term errors.
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