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Abstract

Error in weather forecasting is due to inaccuracy both in themodels

used, and in the estimate of the current atmospheric state atwhich the model

is initiated. Because weather models are thought to be chaotic, and therefore

sensitive to initial condition, the technique of ensemble forecasting has been

developed in part to address the latter effect. An ensemble of forecasts is

made with perturbed initial conditions, the aim being to produce an estimate

of the probability distribution function for the future state of the weather.

Some ensemble schemes also include changes to the model. While the en-

semble approach is quite widely adopted, however, its verification is com-

plicated, and the effect of model error on ensemble performance is not clear.

In this paper, we investigate the effect of model error on ensemble behavior

for a version of the Lorenz ’96 system. It is shown that estimates of the

model’s ability to shadow the observations, obtained usingthe model drift,

are robust to observational error and smoothing schemes such as 4DVAR,

and help reveal the effect of model error on ensemble performance. Com-

parisons are made with full weather models. The aim is to provide a study

of ensemble error in the context of the Lorenz ’96 system, which may be

useful in formulating questions and experiments for weather models.
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1 Introduction

Ensemble techniques have become established in recent years as a method for gen-

erating probabilistic weather forecasts. By running forward an array of slightly

perturbed initial conditions, the ensemble forecast is intended to provide an ap-

proximation to the probability density function of the weather’s future state (Palmer,

2000). While ensemble schemes have proved to be useful toolsin understanding

the role of initial condition error for weather models, their verification can be

complicated (Ehrendorfer, 1997), and the influence of modelerror on ensemble

results is not clear. As ensemble techniques are extended torelated fields such as

biological oceanography (Robinson et al., 1999), the need to evaluate the effect of

model error becomes increasingly clear.

Ensemble schemes have evolved considerably over the years,and now often

include perturbations to the model (Buizza et al., 1999); however the original

motivation for their use (Toth and Kalnay, 1993) was to counter the effect of sen-

sitivity to initial condition (Lorenz, 1963). It was assumed that model error should

be relatively small, at least for short forecast times (Buizza et al., 2000), so that

forecast error would be dominated by the initial condition rather than the model

(Toth et al., 1996). In the spirit of ensemble forecasting, this paper starts from

a different initial condition, or set of assumptions, and examines ensemble fore-
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casting for a model/system pair, based on the Lorenz ’96 system (Lorenz, 1996),

where the model is not particularly sensitive to initial condition, and model error

is large.

Comparisons of the relatively simple system used here and weather models

are made for the purpose of motivating the choice of system parameters. An ad-

vantage of simple systems is that they are easy to experimentwith and understand

(cf for example (Anderson, 1996)); however they are of course no substitute for

full weather models. The aim is therefore to ask how robust ensemble schemes

are in general to the effects of model error, and motivate experiments, rather than

draw specific conclusions about weather models or provide a survey of current

forecasting techniques.

2 Error growth in the stochastic system

The system used here is a 16D scaled version of the one-level Lorenz ’96 sys-

tem (Lorenz, 1996; Orrell and Smith, 2003), with an additional stochastic forcing

term. In this section, we introduce the system and model and study the dynamics

of error growth, before examining the ensemble behavior.
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The equations for thestochastic system are

� � �
� � � � � � � � � � � � 	 � � � 
 � 	 � � � 
 � � 
 � � � �

(1)

for � � � to � � . The index� is cyclic so that
� � � � � � � � � � � � � �

. The
� �

’s are

scaled by a factor� � � � � to put in units of� �
� �

, and
�

by a factor� � � � � to

put in units of days. The parameter



is a constant forcing term, set to

 � � � .

� � � �
is a piecewise constant forcing term, that is updated each

� � � � hr, by

selecting from a Gaussian random variable with variance� . It is multiplied by

the factor
� 


here set to 1. The equation can therefore be viewed as a numerical

implementation of a Wiener process. The system is calculated using a Runge-

Kutta scheme with a timestep of one hour, and observed with a stochastic error

with standard deviation� � � � � � �
� �

. The model used to approximate the system

has the same equations, but without the stochastic forcing error or observation

error. The dimension was chosen as 16 to provide a sufficiently high dimension

space, while the scaling was chosen to allow comparison withweather models

in both sensitivity to initial condition (as measured by doubling time) and error

growth (as measured by deviation from the target orbit), as seen below.

The root-mean-square (RMS) error growth for the model is shown in the top
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left panel of Figure 1, along with the drift and the propagated drift. As discussed

in the Appendix, the drift is a sum of short forecast errors, which approximates the

total error for short times, in this case out to about 2 days. The propagated drift

accounts for the growth of the short forecast errors under the model dynamics,

and is a good approximation to the forecast error to beyond 4 days.

The drift has components related to the effect of both observation error and the

error in the equations. For the stochastic system, the two can be computed directly

(Orrell, 2005). The tendency error due to the model equations alone is
� 
 � � � �

.

Because of the stochastic nature of the model error, the drift due to the model

equations grows in a square-root fashion, like a random walk, with magnitude

� � � � � � � 
 � � � � � (2)

Here
� � � � hr is the time at which the stochastic forcing is updated. In cases

as here where the observation error is uncorrelated with themodel error, it con-

tributes a drift of

� � � � � � � � � � (3)
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and the two components can be summed orthogonally to give

� � � � � � � � � � � 
 � � � � � � 

� (4)

This partitioning of the drift into two components is shown in the top panel of

Figure 2. For this model, the partitioning shows that most ofthe error for times

between 1 and 4 days is due to the model equations. In the next sections, the drift

is used as a tool for determining the effect of model error on shadow behavior and

ensemble performance.

3 Ensemble performance

The above analysis showed that most of the forecast error forthis model/system

pair, over the time period of interest, is introduced by model error. The doubling

time of initial errors for the model, due to the effect of sensitivity to initial con-

dition alone, is around three days, which is about the same asthe doubling time

in total energy of weather models (Orrell, 2002). In this section, we consider the

effect of model error on ensemble performance.

The lower left panel of Figure 1 shows ensemble errors for thestochastic sys-

tem. The ensemble was formed by taking +/- perturbations of magnitude� � � � �
� �
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in the directions of the leading four singular vectors, withthe singular vectors op-

timized for a time of two days. For this small ensemble, the increasing errors show

that the ensemble members are moving away from truth. The effect is more evi-

dent in the top left panel of Figure 4, which shows an ensembleof 1000 randomly

perturbed members.

For a higher-dimension system, a suitably large ensemble would probably

need millions of members to properly sample the space in a similar way. Another

approach might be statistical techniques such as rank histograms. As an example,

the lower left panel of Figure 4 shows a rank histogram diagram for an 8-member

ensemble, which is formed again from perturbations in the positive and negative

directions of the leading 4 singular vectors, computed for atime of 48 hours.

These diagrams, which are discussed for example in (Ehrendorfer, 1997; Wilks,

1995), provide a statistical test of the ensemble by counting the distribution of the

true system relative to the ensemble predictions. Ideally,the distribution should

be flat, but here there is a distinct U-shape which indicates that the true values are

often falling above or below the ensemble’s range. The same effect is typically

seen with weather models (Strauss and Lanzinger, 1996). However, while it is

obvious that the ensemble has a problem, it is hard to determine whether this is

due to model error or just an inappropriate choice of ensemble members.
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The best method to determine whether a model ensemble can contain a mem-

ber which stays near truth is by searching for such model orbits directly. Given a

time
�

and radius� , we define a shadow orbit as a model orbit� � � �
for which the

error vector

� � � � � � � � � 	 �� � � �
(5)

satisfies
� � � � � � � � for � � � � �

. (Note that under this definition, there is no

question of whether a modelcan shadow a target orbit, only within which radius;

any model will shadow for time
�

if the shadow radius is set to the maximum error

over the time period 0 to
�
.) For a particular radius� , model orbits which shadow

a trajectory of the true system for the longest possible time
�

can be found by

optimization methods which choose the optimal initial condition.

The lower panel of Figure 2 shows the result of a series of shadow experiments

for the stochastic Lorenz system. For a particular shadow radius � , the maximum,

minimum and median shadow times were determined by use of an optimization

program. The results were then plotted in a reflected sense asradius versus time.

Also shown is a plot of the drift divided by two. As discussed in (Orrell et al.,

2001), the shadow behaviour is limited by the forecast errorand drift. In particu-

lar, an approximate lower bound for the expected radius at which the model can

shadow for time
�

is given by � � � 	
 . More loosely, a curve of the median shadow
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time should lie close to or above a plot of the drift divided bytwo, as in the fig-

ure. The performance of the ensemble in terms of shadow behavior is therefore

directly related to the degree of model error as measured by the drift.

For comparison with weather models, and to better motivate the above results,

the top right panel of Figure 1 shows error growth for an experiment in which

the ECMWF T42 model was compared with the TL159 model. The metric is

total energy (Rabier et al., 1996; Buizza and Palmer, 1995),scaled so that units

are � �
� �

. In this experiment, which was described in (Orrell et al., 2001), the

model error is created by the difference between the two setsof equations, while

the observation error, clearly visible in the initial error, is caused by the truncation

from high-resolution to low-resolution. The two-day driftfor T42 was estimated

to be � � � � �
� �

(compared to� � � � �
� �

for the stochastic system). The top right

panel of Figure 1 shows a T42 shadow orbit of the high-resolution trajectory,

found using a sensitivity code (Rabier et al., 1996) which minimised the error at

48 hours. Also shown is the bound from the drift over two: as expected, the code

was incapable of finding an initial condition which shadowedwithin this radius.

Of course, this does not mean that such an orbit does not exist, but the result is

consistent with the behavior expected from the drift calculation.
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4 Errors relative to an analysis

Experiments which compare different models, such as weather models of different

resolution, are interesting in that they reveal whether or not models are converg-

ing to a solution. Because they involve the comparison of onemodel with another,

the cause of the errors can be attributed either to the difference in equations, or

the mismatch in translating data from one model to the other.Error growth in

actual weather forecasts is more complicated because the errors are measured rel-

ative not to another model but to the analysis, a smoothed version of atmospheric

observations. Furthermore, the assimilation procedure used to smooth the obser-

vations often involves making them compatible with model predictions. Errors in

the model can therefore affect both the analysis, and estimates of observational

error obtained by comparing the analysis with the original observations. In this

section, we show that estimates of model error and shadow behavior obtained

using the drift are robust to such smoothing schemes for the system studied here.

To simulate the effect of the analysis procedure on forecasterrors, the mag-

nitude of the stochastic terms in the system was first increased to
� 
 � � � � and

� � � � so as to give errors comparable (for the same scaling as before) with oper-

ational weather models. From Eq. 2, this represents an effective increase of about

3.7 in the model drift. The observation error was increased to � � �
� �

. The up-
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per panel of Figure 3 shows a plot of the resulting forecast error, when measured

relative to the untreated observations.

The next step was to treat the observations using 4DVAR (Cohn, 1997; Courtier

and Talagrand, 1997; Lewis and Derber, 1988). Each point of the analysis� � �
� � � � �

was determined by minimising the cost function

��� � � � � � � � � � � � 	 � � � � � � � � 

� (6)

Here� � � represents the number of points in the ‘assimilation window’, which

is the time period over which the model fit is optimized, and� � � � � � � �
for

� � � �
is the model trajectory initiated at time

� � on the point� � . Operational 4DVAR

schemes usually also contain an additional term	 � � 	 
 � � � � � � 

, where


 �
is some

prior estimate of the background state, so the version here is somewhat simplified.

The resulting forecast error and drift relative to the analysis is shown in the

top panel of Figure 3 by the solid line. The forecast error compares with errors

for the ECMWF operational model (circle symbol). The drift is still a good ap-

proximation to the error up to about two days. Note that the effect of the analysis

procedure is primarily to reduce the observational component, but the square-root

component due to model error remains. If model error is large, then the assimi-
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lation procedure adjusts the observations to fit the faulty model prediction. The

result is an apparent decrease in short-term errors; however the dynamical model

errors continue to assert themselves over the longer term. In general, due to their

cumulative nature, dynamical errors are not susceptible tosmoothing procedures.

Also, if model error is large compared to observational errors, the analysis errors

can actually be worse than the original observational errors. Operational assimi-

lation schemes are of course more complicated than the simple scheme presented

above, and assign weights to the model and observational errors; but any scheme

which places too much weight on model predictions will suffer if those predictions

are affected by model error. This problem goes away if the forecast is compared

directly with the observations.

The lower panel of Figure 3 shows the result of a series of shadow experiments

performed with the stochastic system relative to the observations treated by the

4DVAR scheme. The median shadow time was again determined asa function of

radius, and the results plotted as radius versus time. Also shown is a plot of the

drift divided by two. The shadow plot is above or near the drift curve, as expected.

The drift is therefore still a reliable indicator of shadow performance, despite the

assimilation procedure.

In fact, it is interesting to note that the optimization procedure involved in
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minimizing the cost function Eq. 6 is similar to that of finding shadow orbits.

Perhaps the best evidence that a model can not shadow the observations, within a

tolerance equal to the observational error, is that significant forecast errors remain

after the observations are treated with 4DVAR.

5 Improving ensemble performance

Given the fact that the stochastic Lorenz system experiences large errors which

affect ensemble performance, the obvious question is whether ensemble perfor-

mance can be improved. One approach might be to add stochastic terms to the

model. The idea would be to compensate for the ‘missing’ terms, and thus in-

crease the ensemble spread.

For the Lorenz system, we can actually go further, and add exactly the same

stochastic terms, so that the model is identical to the system, except for differ-

ent realizations of the stochastic forcing. The effect on ensemble performance is

shown in the upper panels of Figure 4. The ensemble spread is larger, as expected,

but the error of the ensemble mean (not shown) is little changed. Similar behavior

has been noted when stochastic perturbations are made to weather models (Buizza

et al., 1999), though note that the stochastic perturbations made here are relatively
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speaking much larger than normally would be made to an operational model.

The middle panels show the RMS forecast error for the model with stochas-

tic terms. The tendency error between the stochastic model and system is now

the difference between two stochastic terms of equal magnitude, so its expected

magnitude increases by
� � . This similarly affects the drift and therefore the RMS

forecast error, which is about a factor of
� � higher in the middle right panel.

Despite the fact that the RMS drift has increased, some of the1000 ensemble

members shown have reduced errors in the top right panel. This might appear to

contradict the relationship between expected shadow performance and the drift.

However, this ensemble effectively consists of 1000 different models, each with a

different stochastic forcing and consequently a differentdrift. Therefore increased

RMS drift does not translate in this case to worsened shadow performance for an

individual member; only to the expected shadow performanceof a typical mem-

ber. In fact, if the number of ensemble members is taken sufficiently large, one

member will eventually replicate the true system over any time period.

Because the model now has the same climatology as the system,the rank his-

togram diagram in the lower right panel gives near-perfect statistics. Other statis-

tical tests of course exist; however this serves to emphasise the point that getting

the ensemble statistics right does not guarantee that performance is improved if
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the aim is short to medium term prediction.

Another approach might be to incorporate changes in the model parameters, or

even completely different models (Harrison et al., 1999; Hansen, 2002). However

the model used is actually optimal in the sense that it minimises the expected drift.

The only contributors to the drift, by construction, are stochastic terms which

by definition can not be predicted or eliminated (weather models would also be

expected to have some systematic component to the error).

This points to a fundamental difference between initial condition and model

errors. The ensemble approach is well-suited to initial condition error, because

the errors only occur at the initial time, have a magnitude assumed to be smaller

than some limit, and exist in the space of model variables. Model error, however,

is altogether different. The errors do not occur only at the initial time, but are cu-

mulative and state-dependent. Thus it is more challenging to apply the ensemble

approach to model errors (though see Barkmeijer et al., 2003).

6 Discussion - how long are the shadows?

Through a detailed study of ensemble performance in the context of the Lorenz

’96 system, we have been able to establish or confirm a number of points about
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ensemble behavior. The ability for the model to shadow an observed target or-

bit was limited by the drift, which in this case was dominatedby model error.

The drift could therefore be used to quantify the extent to which ensemble perfor-

mance was affected by model error. The result was robust bothto the presence

of observational error, and the effect of smoothing techniques such as 4DVAR.

Statistical tests in themselves were not enough to describean ensemble’s ability

to provide useful predictions over the short to medium range. Adding random

forcing terms to the equations improved the spread, but depending on one’s aims,

did not necessarily make the ensemble much more useful as a predictive tool.

The stochastic system in this paper is particularly difficult to model, and is

intended only as a rather extreme example. Fortunately, forweather models the

errors are not completely stochastic, but are the result of unparameterized phys-

ical processes. Even if it is not possible to perfectly modelthese processes, it is

always possible to improve the parameterizations, which ofcourse is what mod-

elers continuously do. Techniques such as calculating the drift will not directly

improve the models, but may help identify flaws.

Of course, shadowing is metric-dependent, so it is possiblethat a weather

model could shadow a local variable such as temperature in a specific location,

even though it fails to shadow in a more general metric. An ensemble will there-
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fore generate a spread of temperatures, and the correct answer can be expected to

lie within that range. Our point, though, is that, if a model does not shadow in a

global metric, then that is because of the model drift. Therefore, while perturbing

the initial condition will result in a certain spread (as will any kind of perturba-

tion), and stand a good chance of including the correct temperature, it will not

address the underlying problem. An alternative method to obtain a similar result

might be to simply add error bars to the predicted temperature, where the size of

the error bars is determined from error statistics.

While weather models are very different from the highly simplified stochastic

system considered here, the present study may provide a framework to address

similar questions in more complicated models. For example,the drift technique

could be applied to errors relative to both the analysis and the untreated observa-

tions, in order to estimate the components of error due to themodel equations and

the observations, and to estimate shadow times. Techniquessuch as the sensitivity

code used here for intermodel experiments could be applied to find model trajec-

tories which shadow the analysis, and the results compared with estimates from

the drift. The experiments with simple models suggest the question: how long

are the shadows? It is hoped that similar experiments with weather models in the

coming years will help answer this question.
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Appendix

This appendix collates an overview of the drift techniques presented in (Orrell et

al., 2001; Orrell, 2002, 2003, 2005); further details can befound in those refer-

ences. Suppose the observed target orbit, which includes the observation error, is

�� � � �
, and the model equations are written in the form

� �� � � � � � � � � � � (A1)

where� is the state space vector. If observations are made at discrete time points

� � � � � �
, then the observed orbit is only known at these times. For convenience,

we first assume that
�� � � �

is a continuous interpolation through the data points.

Alternatively, the equations can be formulated in a discrete fashion as seen below.

The forecast error

� � � � � � � � � 	 �� � � �
(A2)

then satisfies
� � � � �

� � � � � �� � � � � � � � � � � � � �� � � � � � (A3)
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where

� � � �� � � � � � � � �� � � � � 	 � �� � � �
� � (A4)

is the model’s tendency error, and
�

is the Jacobian of� . As can be seen by direct

substitution, a solution to Eq. A3 is given by

� � � � � �
� �� � � � � � � � � � �� � � � � � � � (A5)

where� � � � � �
is the model linear propagator (Strang, 1986) evaluated along the

target orbit from time
�

to time
�
. The error can therefore be approximated over

the short to medium-term by

� � � � � � � � � �
(A6)

which we denote the propagated drift vector (continuous form). The � � term

represents the tendency error, while the linear propagatorterm � � � � � �
reflects

the amplification of the tendency error by the dynamics.

A disadvantage of the propagated drift is that it requires computation of the

linear propagator, and may therefore be impractical to calculate for large models

such as weather models (although its effect can be estimatedby considering the
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exponential magnification of the forecast errors that constitute the drift calculation

as in (Orrell et al., 2001)). If the effect of the linear propagator is neglected, we

obtain thedrift vector, given in continuous form by

� � � � �
� �� � � � �� � � � � � �

(A7)

For sufficiently short times
�
, the drift will be approximately equal to the prop-

agated drift, where what is meant by short depends on the particular model/system

pair. However, because the action of the propagator in most chaotic models is on

average to expand propagations (though this needs to be checked since contrac-

tive effects may dominate at some time scales), we can usually assume to good

approximation

� � � � � � � � � � � � � � � (A8)

The drift
� � � � � � � � � � �

therefore provides either an underestimate, or at shorter

times an estimate, of the propagated drift.

In practice, the drift and propagated drift are evaluated ina discrete fashion at

points corresponding to the observation times
� � � � � �

. Let � � � � �
for

� � � � be the

model trajectory initiated at time
� � on the observed point

�� � � � �
. Using a forward

difference approximation to the tendency error in Eq. A7, the drift becomes a sum
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of short forecast errors

� � � � � �
� � ��
� � �

� � � (A9)

where
� � � � � � � � � � � 	 �� � � � � � �

(Orrell, 2002). Similarly the expression for the

propagated drift in discrete form is

� � � � � � �
� � ��
� � � � � � � � � � � � � � � � (A10)

The timestep
� �

should be small enough that the calculation converges; one check

is to calculate the drift with a larger timestep of� � �
and see if the result is signif-

icantly different.
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Captions

Figure 1. Comparison of the stochastic system with intermodel experiments.

Top left panel shows error growth, drift, and propagated drift for the stochastic

system. Results are RMS over 1000 initial conditions. Lowerleft panel shows

ensemble errors for an ensemble generated from +/- perturbations of the leading

four singular vectors, optimized for two days. Right panel shows error growth in

square root of total energy for T42 relative to TL159, from (Orrell et al., 2001).

Also shown is a shadow orbit, and the bound on shadow radius from the drift cal-

culation. Lower right panel shows a T42 ensemble relative toTL159.

Figure 2. Top panel shows components of drift in the stochastic system. Solid

line shows total drift, dashed line is the drift component due to the stochastic forc-

ing error, dotted line is the drift component due to the observation error, ‘+’ sym-

bols is the orthogonal sum of the two components. Lower panelshows a curve of

shadow times for the stochastic system. Results are over 40 shadow experiments

at each radius. Also shown is the curve of drift over two. The median shadow

curve is always above or near the drift bound.
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Figure 3. Plot of errors for the high-error stochastic system (
� 
 � � � � ,

� � � � ). Curve with ‘+’ symbol shows errors relative to untreated observations.

The solid line is errors relative to the observations smoothed by 4DVAR, dashed

line is drift. These compare with a plot of total energy errors for the ECMWF

operational model over a 15 day period in December 2000 (circle symbol). Lower

panel compares a curve of median shadow times with a plot the drift over two.

Figure 4. Plot comparing 48 hour errors for the stochastic system (normal

version), with and without stochastic forcing in the model.In the left panels, the

model is the usual model, while in the right panels stochastic forcing is added.

The model and the true system are therefore identical, except for different re-

alizations of the stochastic forcing. Upper panels show a density plot of 1000

ensemble members with initial perturbations of 0.5� �
� �

; at each time point, the

grayscale indicates the number of ensemble members with theerror given by the

vertical axis. The effect of the stochastic forcing in the model (top right panel) is

to increase the spread. The RMS forecast error, measured over 1000 initial condi-

tions, also increases by a factor of about
� � (middle panels). Lower panels show

rank histogram diagrams for an 8-member ensemble. The diagram at right shows

nearly perfect statistics, despite the fact that the model is not better in terms of
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short-term errors.
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