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Abstract

In modeling nonlinear dynamical systems, error growth can arise both

because of dynamical error in the model, and observational error in mea-

surements of the underlying system. Errors thus introducedcan be further

amplified by the system dynamics. This paper develops a method to ap-

proximate error growth, based on the model drift, for the general case when

the model is given by a (possibly large) set of ordinary differential equa-

tions. The ability of the model to shadow (stay close to) the true system is

analyzed, and a criterion for model quality based on the error dynamics is

proposed. Examples are given with a range of models, which are chosen to

be representative of different types of model error.
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1 Introduction

Nonlinear dynamical models are frequently used to approximate and predict ob-

served physical systems. Such models will be subject to errors both in the model

dynamics, and the observations of the underlying ‘true’ system. Dynamical errors

may be the result of parameterised, unmodeled, or stochastic processes in the true

system, or other shortcomings in the model equations. Observational errors can be

caused either by errors in measurement of the variables, or because what is being

measured differs from the idealised model variables. Either type of error will be

acted on by the nonlinear dynamics; this is particularly a concern if the model is

strongly chaotic, since small errors may be magnified due to sensitivity to initial

condition.

In high dimension models, of the sort used in problems such asweather pre-

diction or increasingly the biological sciences, it can be hard to develop an intu-

itive understanding of model accuracy or error growth (Keller, 2002). Perhaps the

ultimate example of complicated nonlinear models are thoseused in biological

oceanography (Robinson et al., 1999), which combine geophysical forecasts with

biological models. As models grow in complexity, so tools are required to test and

improve their accuracy.

Two types of questions typically arise when testing a model.The first is how
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well one model agrees with another. This will apply when different models are

compared in inter-model experiments, or the effect of a change in parameters

is assessed as in robustness tests (Morohashi et al., 2002).Such experiments

take place on the computer, so all the relevant equations areknown. There is

therefore no observational error, though there may be an equivalent type of error

in translating from the variables of one model to another.

The second type of question relates to the comparison of models with real

data. For such observed systems the equations are not known (otherwise the best

model would be known), or do not exist. One then wishes to knowwhether the

model is consistent with the data, and has the appropriate dynamics. Perhaps the

most fundamental, and desirable, quality of a model is that it be able to accurately

predict the evolution of the system.

To address either type of question, a measure of model quality is required; in

inter-model experiments, to see whether the models are in some sense converging,

and in experiments with real data, to fit the model parameters, or determine how

well the model approximates the observations. We need to be able to estimate

error magnitude, and determine whether it is primarily due to observational error,

dynamical error, or the effects of chaos. If the cause is the model dynamics, then

error analysis can not only lead to an improved model, but maypoint towards an
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unexpected feature of the system not present in the model.

A number of techniques have been used in the literature to compare and val-

idate models. Some are based on properties of the model and system attractors,

such as dimension, entropy, Lyapunov estimates, or topology (Small and Judd,

1998; Schreiber and Kantz, 1996; Letellier et al., 1995); orcomparing model

and system bifurcation diagrams as a parameter is changed (Aguirre and Billings,

1994). While these methods provide useful insight into properties of the model

attractor, our concern here is less with long-range statistics than short-term pre-

diction, although in some cases the two can be linked (Orrell, 2003). Other ap-

proaches for validating models include those based on noisereduction techniques

(Kostelich and Yorke, 1990), or likelihood methods (Ozaki et al., 2000; Heald and

Stark, 2000).

The approach of this paper differs in that it is based on an analysis of error

dynamics. Given a particular model, the aim is not so much to validate it or

optimize it, but rather to examine the various causes of error growth, and then

develop a formula which approximates the error using quantities that are easily

testable even in high-dimensional models. This approach then leads naturally to

a particular measure of model quality based on the drift which was presented in

a previous work (Orrell, 2005). The methods apply in the general case when
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the model is given by a set of ordinary differential equations (ODE’s), and apply

whether this is derived from first principles, or is obtainedby fitting the observed

data (see for example Brown et al., 1994).

Section 2 begins by examining the basic dynamics of error growth, considering

both dynamical and observational errors. Section 3 provides examples of error

growth using a variety of model/system pairs, and Section 4 develops an error

growth formula for the case when both dynamical and observational errors are

stochastic. Section 5 argues that the ability of a model to shadow (stay close to)

the true system is largely a function of the expected forecast error. Finally, Section

6 discusses how the results lead to a measure of model quality. The emphasis

is on predictability in the near to medium-range, which for the chaotic systems

translates to about 3 or 4 times the internal doubling time.

Results are illustrated using chaotic versions of the Lorenz ’63 and ’96 sys-

tems, which are typically used as toy systems in the atmospheric sciences or

geophysics; the Chua circuit; a non-chaotic version of the Vance-Gilpin system,

which is a predator-prey model; and a weather model. The details of the models

and systems are provided in the Appendix, and were chosen in order to illustrate

various types of model error and system behaviour.
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2 Dynamics of error growth

Suppose we have a model � �� � � � � � � � � �
(1)

of some process, and wish to compare the model predictions with observations

� � � � �
of the underlying system. In a physical system, the observations are not

usually expressed in the same variables as the model, so we implicitly assume that

the observations have been mapped into the model parameters. For simplicity, we

also assume that the observations occur at equally spaced intervals
� � � 	 
 �

.

As illustrated in panel A of Figure 1, we define
� � � � �

for
� � � �

to be the model

trajectory initiated at time
� �

on the point� � � � �
. The drift vector is defined as

� � � 
 � �

 � ��� � � � � � (2)

where� � � � � � � � � � � � � � � � � � �
are a series of short forecast errors. The propagated

drift is defined as

� � � � � 
 � �

 � ��� � � � � � 
 � � � � � � � � � (3)

where

� � � 
 � � � � � � � � �� �
 ! ! " ! # $ $ % #

(4)
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is the model linear propagator (Strang, 1986) and� � � � � � � �
is the Jacobian of the

model ODE. Since� � � �
is only known at times

� �
, the linear propagator must be

evaluated in a discrete fashion. The calculations are shownschematically in Fig-

ure 2; the drift is a sum of forecast errors, while in the propagated drift each short

forecast error is magnified by an amount corresponding to thelinear propagator.

We claim that the propagated drift can be used to approximateerror growth

over the short to medium term. To see this, let� � � �
be a piecewise linear interpo-

lation of the observations, so� � � � � � � � � � �
for all 	 , and is linear between these

points. Such a curve is illustrated by the solid line in panelA of Figure 1. Setting

� � � � � � � � � � � � � �
, it follows that

� � � � �� � � � � � � �� � � � � � � �� �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

(5)

where

� � � � � � � � � � �� � � � � � � � � � � (6)

which is defined almost everywhere (i.e. except at times
� �

). As can be seen by
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direct substitution, a solution to this approximate growthequation is

� � � 
 � � � � #
�� � � � 
 � � � � � � � � � � �

(7)

Since� � � � � � � � � � 
 �
, the propagated drift is a discrete form of this equation.

The length of time for which the approximation is valid will depend on a

number of factors. Eq. 5 represents a linearization of the dynamics around the

orbit � � � �
, which for a nonlinear system will break down as errors� � � �

become

larger. It will therefore be more accurate for shadow orbits, discussed in Section

5, which have smaller errors by definition; or for systems with a stable attractor,

where the errors do not necessarily grow with time, as discussed at the end of

Section 4. Another source of error is the discretization represented by the timestep


 �
; this can be checked for example by using a smaller (or larger) timestep to

see if the results are converging. The best way to get a feeling for the method’s

accuracy for a particular model/system pair is to compare the estimates with actual

errors, as is done below for a number of examples.

In the above argument, we have not specified whether errors are due to obser-

vational errors, or dynamical errors, or a combination of the two. If a system is

known only through observations which contain unknown error, then it is not pos-
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sible to isolate the error components without making extra assumptions (Smith,

2000; Judd and Smith, 2001). For example, in panel A of Figure1 the system tra-

jectory � � � �
is an interpolation of the observations, so observational error is zero

by definition and all errors appear as dynamical terms; but another choice of� � � �
,

as in panel B of Figure 1, which does not exactly interpolate the observations, will

include an observational error component.

Suppose then that we hypothesize that the observations� � � � �
are obtained

from the ‘true’ system trajectory� � � �
, where� � � �

is a differentiable curve ex-

pressed in model variables. Setting

� � � � � � � � � � �� � � � � � � � � �
(8)

we can then write

� � � � �� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

(9)

Relative to the trajectory� � � �
, the model is therefore subject to dynamical errors

given by
� � � � �

and observational errors
� � � � �

. We can then ask what forecast errors

would result from this combination of observational and dynamical error.
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Note that Eq. 9 does not imply the equations of the system are assumed to be

the same, even in structure, as those of the model Eq. 1; the term
� � � � �

represents

the difference between the two as measured on the particulartrajectory� � � �
. In-

deed, the system may be a function of variables other than themodel variables, as

seen in the next section; or may not be computed from an ODE at all. For exam-

ple, in weather forecasting, errors are typically measuredrelative to a smoothed

version of the observations known as the analysis. The system trajectory� � � �
is

therefore given by the analysis at each time
�
, rather than the integration of an

ODE. The error term
� � � � � � % � ! # $% # � � � � � � � �

in this case is a highly complicated

function of time. The reason for writing the system in the form of Eq. 9 is because

we typically are interested in determining, and if possiblereducing, the magnitude

of the error term
� � � � �

.

Using the approximations

� � � � � � � � � � � � � � 
 � � � � � � � � �
(10)

� � � � � � � � � � � � � � 
 � � � � � � � � � � 
 � � � � � � �
(11)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
(12)
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the drift is seen to satisfy

� � � 
 � � � � � � 
 � � � � � � 
 � � (13)

where

� � � � 
 � � � 
 � 
 � ��� � � � � � � � �
(14)

is the drift due to the dynamical errors, and

� � � � 
 � � 
 � 
 � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
 �
(15)

is the drift due to the observational error (Orrell, 2005).

Referring to Figure 1, if� � � �
equals the curve in panel A, then observational

error is zero and all error is dynamical; but if� � � �
is the curve in panel B, then

part of the error is observational. In either case the total drift, Eq. 2, is the same,

and the drift does not distinguish between them. However if the observational

error is assumed to be Gaussian noise, then Eq. 15 can be used to estimate the

error components as discussed in (Orrell, 2005). Our aim here is to show how

the propagated drift can be used to estimate forecast error,for an assumed amount

of observational and dynamical error. In the next section weillustrate its use for
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a number of examples, before going on to develop approximations that can be

applied even to high-dimension models.

3 Examples of error growth

Dynamical errors can be the result, among other things, of error in the values of the

parameters, errors due to parameterization of complex processes, and errors due to

stochastic effects. Figure 3 shows error growth for three different model/system

pairs, chosen to represent these basic types. In the upper panels, the system is

the standard Lorenz ’63 system, but the model has the Reynold’s parameter set to

� � � �
�
� � . Referring to Eqs. A1, the difference between the equationsof the

true system and the model occurs only in the equation for� , where it introduces

a dynamical error of�
�
� � � (see also (Chu, 1999)). The error is therefore highly

correlated over time periods for which� varies only slightly. This model/system

pair is representative of situations where model error arises due to parameter error.

The second system in the middle panels is the two-level Lorenz ’96 system,

given by Eqs. A3, which involves two sets of variables (Lorenz, 1996). The 40D

version involves 8�� variables, which are relatively large-scale and slow-varying,

and 32 �� variables which are small-scale and fast-varying, and can be viewed as
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sub-gridscale processes. The large-scale�� variables can therefore be modeled

with the constant model (so-named because of the constant forcing), which is

the regular Lorenz ’96 model with forcing� � � � �
� chosen to minimise the

expected RMS dynamical error. This model/system pair is therefore representative

of situations where model error is due to the parameterization, in this case by a

constant, of a complex process. The dynamical error term
� � � � �

in Eq. 9 has a

complicated dependence on the�� variables, which in turn are a function of the��

variables.

The lower panels show errors for the Chua circuit (Madan, 1993; Matsumoto

et al., 1985), where the model is given by Eqs. A5, but the system has additional

stochastic dynamical terms of magnitude
 � � � , updated each
 � � �
�
� � time

units. It is representative of situations where model errorarises due to unparam-

eterized effects which are uncorrelated in time and can be viewed as essentially

stochastic. This type of error is discussed in more detail inthe next section.

The left panels of Figure 3 show the drift
� � � � �

in the absence of observational

error, while the right panels include the effect of Gaussianobservational error of

magnitude� � �
� � . From Eqs. 13 and 15,

� � � 
 � � � � � � 
 � � 
 � 
 � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
 � �
(16)
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Therefore the effect of the added noise is to increase the drift so that

� � � 
 � � � � � � � 
 � � � � � � � � 
 
 � �
� � � � (17)

where
�

is the standard deviation of
�
� � � � � � � � � � � � � �

as evaluated over a large sam-

ple of points (Orrell, 2005). The term� � �
is caused by the initial and final obser-

vational errors. The term involving
�

is due to the effect of the observational error

on each small forecast error, and is often small enough to be ignored, in which

case

� � � � � � � � � � � � �
� � � �

(18)

Error growth can in either case be approximated by the propagated drift, Eq.

3. The calculation can be simplified by noting that the linearpropagator over the

time
� � � 	 
 �

to
� 


can be written as a product of the linear propagators over

each intermediate time step. As shown by the solid line, the propagated drift is a

good match for the errors over the times shown.

The accuracy of the propagated drift will vary from point to point, and it is

clearly easier to match the root-mean-square error than theexact error at each

point. For example, in the case of the Lorenz ’63 model with a one percent error in

�
, the difference between the approximated and actual errorsis seen to be greatest
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near the tips of the attractor, where both the model error andthe acceleration of

the system variables are greatest.

4 Stochastic errors

While it is possible to calculate the linear propagator explicitly for low or medium-

dimensional models, this may not be the case when the number of dimensions

becomes very high. An example is weather models, which can contain of the order

� � � variables. Even with smaller models, it may be desirable to obtain a rapid

estimate of error magnitude without explicitly calculating the linear propagator.

In this section, we show how RMS error growth can be approximated in such

situations if it is assumed that the errors are essentially stochastic.

Suppose that the dynamical error
� � � � � �

is a vector whose components are

Gaussian random variables,with mean zero and a magnitude ofstandard deviation


 � , updated every
 �
time units as in a Wiener process (Wiener, 1923). Referring

to Eq. 2, the total RMS drift
� � � � 
 �

due to dynamical error has

� � � � 
 � � �

 � ��� � � 
 � � 
 � � � 
 � � � 
 
 �

(19)
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so

� � � � 
 � � 
 �
� 
 � � � 
 � (20)

which grows in a square-root fashion like a random walk.

From Eq. 3, the propagated drift is

� � � � � 
 � � � 
 � ��� � � � � � 
 � � � � � � � � � � � � 
 � �
(21)

Suppose that small perturbations� �
, of RMS magnitude� �

, made to the model

initial condition, grow under the model dynamics to an expected RMS magnitude

of � � � �
; and let

� � � � � � � �� � � � � � � �
� � �

(22)

The function� � � �
then accounts for the RMS growth of a small initial perturba-

tion under the action of the linear propagator. It can be calculated by making an

ensemble of small perturbations to the model trajectory, atan ensemble of initial

conditions, and determining the RMS error growth. Then the RMS magnitude of

the propagated drift satisfies

� �	 � � 
 � � �

 � ��� � � � � � 
 � � � � � � � 
 � � 
 � � �

(23)
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Calculating the sum in an iterative manner gives

� �	 � � � � � � �

� �	 � � � � � � � �	 � � � � � � � � � � � � � � � � 
 � � 
 � � �
(24)

This approach to estimating error growth is demonstrated inFig. 4 for the

Vance-Gilpin model (Vance, 1978; Gilpin, 1979), Eqs. A7 in the Appendix. For

the parameters as given in the Appendix, the model has a stable limit cycle shown

in the top left panel by the solid line, with a period of about 30 time units. The

top right panel shows root-mean-square (RMS) errors due to an initial error of

magnitude 0.1. Perturbations grow rapidly for the first ten time units, then begin

to oscillate. The perturbed orbit is drawn back onto the limit cycle, but is out

of phase with the unperturbed orbit. The estimate of forecast error in the lower

panels, from Eq. 23, agrees well with the actual errors.

For many models, it is possible to develop a simple formula for the total error

growth due to the propagated drift by using an estimate for the error propagation

function� � � �
. As an example, the right panel of Figure 5 shows RMS errors due

to an initial error of magnitude 0.5 for two chaotic systems.The first is the Lorenz

’63 system (Lorenz, 1963), given by Eqs. A1 in the Appendix, with Reynold’s
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number
� � � � . The second system is the 8D Lorenz ’96 system, given by

Eqs. A2 (Lorenz, 1996; Orrell and Smith, 2003). The forcing was set to� �
� � �

� so that the doubling time was comparable to that of the Lorenz’63 system;

however the two systems differ in both dimension and the nature of the equations.

Typical time series plots of� and�
�
are shown for the Lorenz ’63 and ’96 systems

respectively in the left panels.

A possible choice for� � � �
in this case might be an exponential growth func-

tion, based on the leading Lyapunov exponent. However, while errors in a chaotic

system typically grow for intermediate time scales in an exponential-on-average

fashion (Smith et al., 1999) the error growth here actually has three phases: an ini-

tial phase of nearly flat growth, a quasi-exponential growthphase, and (at higher

times) a final saturation phase. One way to approximate this is to assume that the

initial condition error creates a displacement which growsexponentially, but in

a direction orthogonal to the initial error. The error propagation function� � � �
is

then approximately given by

� � � � � � � � � � � # � � � � �
(25)

The doubling time in the exponential phase is
� % � � � � � � � � �

. This estimate with
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� % � �
� � � (

� � � � � ) is shown by the solid line in Figure 5. The fit is good until

about
� � �

� � , and loses all accuracy at about
� � �

� � , so about 4 times the

doubling time.

Given this approximation for� � � �
, one can estimate the RMS magnitude

� �	 � � 
 �
of the propagated drift

� � � � � 
 �
due to the model by summing the terms in Eq.

23. The result is

� �	 � � 
 � � � 
 � � 
 � �
�� 
 � ��� � � � � � � � ! 
 � � � � $ � # � � � � �� (26)

� � � � � 
 � � � 
 � � 
 � � � � � 
 � �
(27)

where � � � 
 � � � � � � #
� � �� � � # � � � � � #

� � �� � � # � �
�

� 	 � � 


 � 	 �

(28)

The first term in Eq. 27 is the dynamical drift, while the second term, shown

schematically in the middle panel of Figure 2 by the dotted line, accounts for

the quasi-exponential magnification of dynamical errors bythe error propagation

function.

Suppose now that the target trajectory contains Gaussian observational noise,

uncorrelated over the time step
 �
, with expected RMS magnitude� . The propa-
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gated drift can then be determined in the same way as above, togive

� 	 � � 
 � � � � � � � 
 � � � � 
 � � � � � � � � 
 � � � � � 
 � � � � � � � � 
 � � � � �
(29)

where
�

is as in Eq. 17. The first two terms in the above equation account for

the growth of the short forecast errors in the drift calculation. The last two terms

represent the growth of the initial and final observational errors which appear in

Eq. 15.

Figure 6 compares actual and estimated error growth for the Lorenz ’63 and

Lorenz ’96 systems for a range of dynamical and observational noise. The param-

eter
�

was calculated as 11.5 in (Orrell, 2005) and makes only a small contribution

to the total error. The error estimates match actual resultsreasonably well, whether

the error is primarily due to observations (low
 � , high � ) or the dynamics (high


 � , low � ). It is interesting to note that, for these and other systems, error growth

is often almost linear over a large range, as the negative curvature of the drift is

balanced by the positive curvature of the exponential terms: linear error growth

does not imply a linear error mechanism.

This is seen also in Figure 7, which shows RMS errors for a weather model

over a 15 day period in December 2000 (circle symbols). The model is the opera-

21



tional model used by the European Centre for Medium-Range Weather Forecasts

(ECMWF), and errors are measured relative to the analysis inthe total energy

metric, which accounts for wind and temperature errors at all model levels. De-

tails of the model and experiment are given in (Orrell et al.,2001). As shown in

that paper, the short forecast errors have low correlation from time to time, and

the drift grows in an approximately square-root fashion, sowe can approximately

model the errors as being stochastic model errors, with magnitude equal to the 12

hour error. The analysis is obtained by the 4DVAR technique (Cohn, 1997) which

adjusts the observations to better fit model predictions. Asdiscussed in (Orrell,

2005), this has the effect of reducing the apparent observational errors (which in

any case have a relatively small effect on the drift). The doubling time of small

perturbations in this metric is about
� % � � days (Orrell, 2002). Using the fit Eq.

29 with this doubling time, and a
 � which matches the initial error, gives the

curve shown by the solid line in Figure 7. The effect of the term involving
�

was

ignored due to the model’s relatively low sensitivity to initial condition. While it

is dangerous to read too much into such graphs - model error isbest measured by

methods such as the drift, and doubling time by measuring thegrowth of small

perturbations - we can at least say that the observed growth of forecast errors is

consistent with previous estimates of these quantities.
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A formula for error growth is useful in that it shows how observational and

dynamical errors convolute; can be used to compare estimates of these terms,

obtained from measurements of the drift and the error propagation function, with

the total observed error; and can be applied even to large models such as weather

models. It can also be used to obtain rough confidence bands around forecasts. For

example, suppose that we wish to estimate the standard deviation of an otherwise

stable system when stochastic forcing terms
 � are added; and that the error

propagation function for a model can be adequately approximated by the first-

order decay function

� � � � � � � # � # � � (30)

where
� � is an exponential decay time. Then from Eq. 23, the propagated drift of

the stochastic orbit relative to the stable point is

� �	 � � 
 � � �

 � ��� � � � � � 
 � � � � � � � 
 � � 
 � �

(31)

� 
 � � 
 � �


 � ��� � � � � � � � � � � �
�
�

(32)

� 
 � � 
 � � �
�

�
� � � � � � ��

� � � (33)

which asymptotes at large
� 


to a variance of
 � � 
 � # �
� . The magnitude of fluc-

23



tuations can therefore be estimated from a knowledge of the stochastic terms and

the decay dynamics, and can be interpreted as a dynamical balance between the

former, which tend to push the system away from the attractor, and the latter,

which draw it back. This technique has been used to estimate fluctuations in bio-

logical systems at a cellular level (Orrell and Bolouri, 2004), which occur due to

the inherently stochastic nature of the reactions (Gillespie, 1976). Since an ODE

simulation of the system initiated at the steady-state willbe constant, the standard

deviation can be used to produce a confidence band around the ODE solution.

5 Shadowing

The preceding sections have explored how forecast errors arise when the model is

initiated on the observation of the true system. Since both the model and the ob-

servations are assumed to have errors, it is interesting to ask whether it is possible

to find some nearby initial condition for which the model trajectory stays close to,

or shadows, the observed system (Smith, 1996; Gilmour, 1998).

The ability to shadow presents a fundamental test of the simplifications and

assumptions that underly most models. For example, if a model can shadow, then

a picture of the likely future behavior of the true system canbe determined by
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running a large number of model forecasts from perturbed initial conditions; while

if the model is incapable of shadowing, no such ensemble of forecasts will contain

a member that stays close to the true trajectory (Orrell, 2005a). Assimilation

schemes such as 4DVAR or ensemble-based techniques (Gronnevik and Evensen,

2001; Hansen, 2002) will also be affected. Shadowing in nonlinear dynamical

models is complicated by the effects of chaos and sensitivity to initial condition.

The latter seems a double-edged sword; if a model is highly sensitive to initial

condition, then forecast errors will grow rapidly, which makes the task of reducing

the error harder. On the other hand, a small change in initialcondition produces a

larger change downstream.

Given a shadow time� and radius� , the shadowing problem consists of seek-

ing a model orbit
� � � �

for which the error vector

� � � � � � � � � � �� � � �
(34)

satisfies
�
� � � � � �

� for �
� � �

� . 1 Model orbits which shadow a trajectory of

1Note that this definition is distinct from the problem addressed in theAnosov-Bowen shad-
owing lemma (Anosov, 1967; Bowen, 1975) which states conditions under which a true trajectory
can be found which shadows a numerical model trajectory. Ouraim is the opposite: we wish
to determine whether model trajectories shadow the true orbit. Under this definition, there is no
question of whether a modelcan shadow a target orbit, only within which radius; any model will
shadow for time� if the shadow radius is set to the maximum error over the time period 0 to� .
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the true system can be found by optimization methods which choose the optimal

initial condition. An example of a shadow orbit is shown in Figure 8 for the

Lorenz ’63 system with shadow radius� � �
� � . Such optimization methods can

become expensive in large systems, where the search must be carried out in a high-

dimensional space. In this section, however, we argue that error behaves in a see-

saw fashion: choosing the correct initial condition will reduce the forecast error,

but only (in an average sense) by a certain amount, which is roughly equal to, or

even smaller than, the original displacement. To reduce theexpected final error,

one must introduce large initial displacements - even if themodel is sensitive to

initial condition. Thus shadowing behaviour is largely a function of forecast error,

especially when model error is significant.

The result is derived by noting that an approximate equationfor the error

growth with a small initial displacement� � � �
is given by

� � � � � � � � � �
� � � � � � � � � � � �

(35)

A ball of initial conditions with initial displacement� is therefore distorted into

an ellipse by the linear propagator (Golub and Loan, 1989), and displaced by the

propagated drift. Following the argument in (Orrell et al.,2001), and using the
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propagated drift rather than the drift as an estimate for forecast error, then so long

as the model is dissipative and contracts volumes in phase space (Ott, 1993), the

expected shadow radius� within which the model can shadow for time� satisfies

� � � � � � � � � �

�
�

(36)

This relationship between shadow times and forecast error can break down for

at least two reasons. The first is that forecast times are suchthat the linear propa-

gator does not accurately capture the dynamics of shadow orbits. This can occur

for example at long forecast times. The second reason is correlations between the

propagated drift and the singular vectors of� � � � �
�
. In general, this is less likely

to occur if the propagated drift is dominated mostly by modelerror, which is as-

sumed to be uncorrelated with the singular vectors. As a rough guide, the theory

should hold for times greater than the time
� �

at which forecast error is dominated

by the drift; but less than the time
�
� at which the propagated drift ceases to be

accurate.

We here illustrate the shadowing process for three of the model/system pairs;

Lorenz ’63 with a one percent error in
�

; the Lorenz ’96 two-level system ap-

proximated by the constant model; and the Chua circuit with stochastic dynam-
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ical terms. For a particular shadow radius� , an optimization program based on

the simplex method (Press et al., 1986) was used to find a modelinitial condition

such that the model trajectory stayed within� of a true trajectory for the maximum

time. Statistics were obtained by performing the experiment for 50 different initial

conditions of the true system. The entire process was then repeated at different

values of the shadow radius� .

Figure 9 compares a plot of median forecast error as a function of time, with a

reflected plot of median shadow time as a function of shadow diameter� � , for the

two systems. The left panels show the case without observational errors, while

in the right panels Gaussian errors of standard deviation� � �
� � were added

to the observations of the system. Plots using root-mean-square statistics give

similar results in most cases, but the Lorenz ’63 shadow results are highly skewed

towards short shadow times, with the occasional very long shadow orbit, so the

median is more representative of shadow behaviour.

For either system, the forecast error is close to the shadow diameter for shorter

times. The effect of noise is to increase both forecast errorand shadow diameter,

but the latter by a larger amount than the former. This reflects the fact that it is

harder to shadow a noisy orbit than a smooth one.

The forecast error thus provides a useful guide to expected shadow behaviour.
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Of course, the best way to estimate shadow times is to search directly for shadow

orbits. However, not only can this be expensive, but one may also lack confidence

in the results if the optimization technique fails or there are concerns about multi-

ple minima. Comparing the results from shadow experiments with those predicted

from the forecast error provides a good ‘sanity check’ on theresults. If the two

methods differ significantly, then it should be possible to determine the reason by

closer analysis of the error dynamics.

A model’s ability to shadow is of key importance to many areasof physical,

biological, or economic forecasting. If a model can not shadow within a reason-

able radius, then even an ensemble of forecasts from perturbed initial conditions

will not stay close to the true system. The results here implythat shadowing is

a question of give and take; one can reduce the expected final error, but only by

giving up a large initial displacement. This holds even if the model is sensitive to

initial condition, provided that model error is significant. The main determinant of

both shadowing and overall model quality is therefore simply the expected fore-

cast error.
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6 Conclusions

In this paper we have shown that error growth, even in high-dimensional models,

can be analyzed by use of the error propagation function, defined in Eq. 22, and

the drift, Eq. 2. The former is a measure of sensitivity to initial condition, while

the latter is a measure of model error and observation error.The two effects are

combined in the propagated drift, Eq. 3. For many models, theerror propagation

function can be modeled and a formula for total error growth derived. For models

which do not show simple error growth patterns, it is still possible to estimate error

by explicitly calculating the error propagation function.The error dynamics affect

not only the expected forecast error, but also as shown by Eq.36 the model’s abil-

ity to shadow the true system. While the techniques have beendemonstrated for

only a few systems, they are based in the dynamics of error growth, so hold quite

generally and can be applied with suitable caution to a rangeof model/system

pairs.

The results can be used in a number of ways. Both the drift and the error

propagation functions can be determined from simple experiments. The formula

for error growth then gives an estimate of expected forecasterror, which can be

compared with, or used to predict, the observed error. Sinceshadow behaviour is

related to forecast error, one can also estimate the radius within which the model
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is expected to shadow. This information can be used to determine the perturbation

radius for ensemble schemes, or assess the effect of model error on variational data

assimilation techniques. The techniques can be applied even for high-dimensional

models of observed physical systems such as the atmosphere.

Perhaps the main application of these methods is to develop criteria for model

quality. The magnitude of error at a particular time will depend on a number of

factors such as the extent of observation error, the model’ssensitivity to initial

condition, and the dynamical error. In many modeling situations, however, only

the latter is within the modeler’s direct control; so total forecast error is best re-

duced by a decrease in dynamical error. For example, a small improvement in

parameterization may have a minimal effect on the model’s sensitivity to initial

condition, but reduce model error quite significantly (Orrell, 2003). A simple cri-

terion for model quality is therefore that it should have theminimum dynamical

error. Since the expected one-step forecast error for stochastic errors is

� � 
 � � � � � � � � � � 
 � � � � (37)

and � is assumed to be a constant, this requirement translates to saying that the

model should minimise the expected one-step forecast error, as in conditional
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least-squares (Klimko and Nelson, 1978; Dennis et al., 1995; Tong, 1990). In

practice, however, it is often easier and more effective to minimize the drift, since

it has the effect of amplifying the dynamical error relativeto the observational

error (Orrell, 2005). Because of the relationship between drift, forecast error and

shadow behaviour, a model which minimises the drift also hasoptimal shadow

performance.

We assume of course that observations are sufficiently frequent, however there

is no need for the time step
 �
to approach zero. The main requirement is that

error growth over one time step should be be primarily due to the combined effects

of the dynamical and observational noise, rather than the nonlinear dynamics, so

that the discretization in Eq. 3 is accurate. This will certainly be the case for most

inter-model experiments, but also for many physical situations as well.

In one sense, this result is rather trivial and obvious; clearly one wishes to

reduce the one-step forecast error and therefore the drift.In another sense, how-

ever, it might be quite surprising, for it implies that the short term forecast errors

which make up the drift are not necessarily a transient ‘spin-up’ phenomenon, but

the major determinant of predictability. It also provides aframework for ques-

tions about model optimization and comparison. For example, given a particular

model structure, which is the best choice of parameters? Or given a selection of

32



different models, which gives the optimal performance? Is ahierarchy of pro-

gressively more refined models converging to a single solution, or does a small

change give radically different results? Techniques such as calculating the model

drift or computing shadow orbits are simple to implement andshould provide a

useful approach to answering these questions.

33



Appendix

The equations for the Lorenz ’63 system are:

�
�� � � � �

�
� �

��
�� � � �

� � � � �
�

�� �� � � � �
� � � (A1)

where the parameters are set to
� � � � and

� � �
� � . The classic value of the

Reynold’s number is
� � � � , for which the system is chaotic.

The equations for the Lorenz ’96 system are

�
� �� � � � � � � � � � � � �

� � � �
� �

� � � � � (A2)

where the index� � � to � is cyclic, so� � � � � � � . For forcing � � � � �
� , the

system is chaotic and has approximately the same sensitivity to initial condition

as the Lorenz ’63 system.

The two-level system is a higher-dimension version of the Lorenz ’96 system
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with equations:

�
�� �� � � �� � � � � �� � � � �

�� � � �
� �

�� � � �� � � ��
��� � � �� � ��

�
�� � ��� � � � �

�� � �� � � � �� � �� � � �
�� � �� �

�
� � � �� � �� � � �� �� � (A3)

for � � � to � , and	 � � to � . The variables are cyclic so that�� � � � �� � �� � �� and

�� � �� � � � �� � � � �� . We here set� � � , � � � , which gives a system dimension of

40, and forcing �� � � � , for which the system is chaotic. See (Orrell and Smith,

2003).

The equations for the stochastic versions of the Lorenz ’63 and Lorenz ’96

systems are the same as above, but a stochastic term is added to each equation.

For example, Eq. A2 for the Lorenz ’96 system becomes

�
� �� � � � � � � � � � � � �

� � � �
� �

� � � � � 
 � � � � (A4)

where
� � is a random variable with standard deviation

�
� � , so that the error over all

8 variables has magnitude
 � . The value of
 � is as specified.

The model for the Lorenz ’63 system has the same equations, except that the

Reynold’s number
� � � �

�
� � has a one percent error. This introduces a dynamical
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error in the equation for� , but not the other equations.

The model for the stochastic version of Lorenz ’63 is the usual Lorenz ’63

equations, so all error is due to the stochastic term in the system. Likewise for the

stochastic version of Lorenz ’96.

The model for the two-level system is the Lorenz ’96 equations with forcing

� � � � �
� . This choice of forcing minimises the expected dynamical error. See

(Orrell, 2003) for a detailed discussion of this model.

The Chua circuit is given by

�
�� � � � � � � �

�
� � � � � �

�
�� � � � � � � �

�
� � �

� �� � � � � � � � (A5)

where

� � � � � � �
�

� � � � � �
�

� �
�

� �
� � �

�
� �

� � �
(A6)

Parameters are� � � � � � �
, � � � � , � � � � �

, � � � �
�

� � , � � � � � � � . We define

the model to be the above equations, while the true system to be shadowed has

Gaussian stochastic dynamical terms
 � � � �
� , updated each
 � � �

�
� � .
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The equations for the Vance-Gilpin model (with our choice ofparameters) are:

�
�

�� � � �
� � � �

�
�
� � � �

� �
�

�
� � � � �

�
�

�
� � � �

�
�
� �� � � � � � � �

�
�
� � � � �

� �
�

�
� � � � �

�
�

�
� � � � �

�
�
� �� � � � � � � � � � �

� �
�

�
� � � � � �

� �
(A7)

We use� � �
�
� � � �

, for which the model has a stable limit cycle attractor. The

system has the same equations, but with dynamical noise added.

Finally, the weather model errors were obtained using the ECMWF opera-

tional model, relative to the ECMWF analysis, over a 15 day period in Decem-

ber 2000. See (Orrell et al., 2001; Orrell, 2002) for a detailed description. The

model/system pairs are summarised in Table 1.
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Table 1: Model/System Pairs

No. System Model Dynamical Error

1 Lorenz ’63 + stochastic terms Lorenz ’63 stoch. terms

2 Lorenz ’96 + stochastic terms Lorenz ’96 stoch. terms

3 Lorenz ’63
� � � � Lorenz ’63

� � � �
�
� � error in

�

4 Two-level 40D �� � � � Lorenz ’96� � � � �
� parameterization

5 Chua circuit + stochastic terms Chua circuit stoch. terms

6 Vance-Gilpin + stochastic terms Vance-Gilpin stoch. terms

7 ECMWF analysis Weather model stoch. terms
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Figure 1: Schematic diagram showing observed system and short model forecasts.
In panel A, the solid line represents a linear interpolationthrough the observed
points � � � � �

, while
� � � � � � � �

is the model forecast from the previous point. In
panel B, the solid line represents a trajectory of the underlying system� � � �

. The
points � � � � �

differ from this trajectory because of observational error. In either
case, the observed forecast errors are the same.
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Figure 2: Schematic diagram of error components due to dynamical errors. The
drift, shown in the lower panel, is calculated by summing theseries of short fore-
cast errors� � in the upper panel. Each error here has the same magnitude, but is
generally in a different direction. If the errors are assumed to be roughly orthog-
onal, then their sum grows in a square-root fashion. The effect of the propagated
drift is to grow each short forecast error as shown by the dotted lines in the top
panel. The result can be viewed as an additional term, shown in the lower panel by
the dotted line, which adds orthogonally to the drift to create the total dynamical
error (circle symbol).
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Figure 3: Error growth in three model/system pairs. Top panels show error in
Lorenz ’63 model due to a one percent error in the parameter

�
. Middle panels

show errors in modeling the two level Lorenz ’96 system with the constant model.
Lower panels show the Chua circuit with stochastic dynamical errors of magnitude
 � � � , updated each
 � � �

�
� � time units. Left panels show case without

observational error, right panels show case with Gaussian observation of standard
deviation � . The propagated drift (solid line) is in each case a good fit tothe
forecast error. Model/system pairs used: 3, 4, 5 (see Table 1in Appendix).
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Figure 4: Error growth in the Vance-Gilpin system. For parameters as in the
Appendix, the model describes a limit cycle, shown in the topleft panel by the
solid line. Also shown is a system orbit where dynamical terms with 
 � � � �

� ,
 � � �
� �

have been added to the system equations (see text). Top rightpanel
shows error due to an initial perturbation of 0.1 in a perfectmodel experiment. The
error grows over the first ten time units, then begins to oscillate. This curve defines
the error propagation function� � � �

used to estimate the growth of forecast errors.
The lower panels show error growth for
 � � �

� �
and
 � � � �

� , along with an
estimate as described in text. Errors are RMS over 1000 runs.Model/system pair
used: 6 (see Table 1 in Appendix).
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Figure 5: Left panels show typical time series for� in the Lorenz ’63 system and
�

�
in the 8D, � � � � �

� Lorenz ’96 system. Dashed lines show orbits starting
from a perturbation of magnitude 0.5. Right panels compare actual and estimated
error growth due to an initial error of magnitude 0.5, for Lorenz ’63 (circle sym-
bol) and Lorenz ’96 (square symbol). Solid line is given by Eq. 25, which is
used to estimate the error propagation function� � � �

. A time step of 0.005 is used
for the Runge-Kutta integration scheme. The parameter

�
, which determines the

exponential growth rate, was set to� � � , which corresponds to a doubling time� % � �
� � � . Errors are RMS over 1000 runs.
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Figure 6: Comparison of actual and estimated error growth for Lorenz ’63 (circle
symbol) and 8D Lorenz ’96 (square symbol). Dashed line is theestimate using Eq.
29. From the left to the right, observation error is� � � , 0.5, and 1.0. From top to
bottom, dynamical error is
 � � � , 10, and 20. The timestep
 �

, which mostly
affects the relative strength of the dynamical error, is fixed at �

�
� �

. A smaller time
step of 0.005 is used for the Runge-Kutta integration scheme. The parameter

�
,

which determines the exponential growth rate, was set to� � � . Errors are measured
relative to observations, so the error at time zero is zero. Model/system pairs used:
1 and 2.
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Figure 8: Views of a shadow orbit for the Lorenz ’63 system. Model has a one
percent error in parameter

�
. Shadow radius is� � �

� � . Clockwise from top
left: portion of attractor shadowed, in�

� � plane, starting from point marked
‘o’ and ending at ‘+’; error of shadow orbit as a function of time; displacement
of shadow orbit from true orbit, measured by projecting the error vector onto the
plane tangent to the true orbit; zoomed view of radius 0.3 ensemble of points
mapped forward under the model. The ball of points is mapped to a distorted
ellipse under the nonlinear dynamics. Model/system pair used: 3.
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Figure 9: Plot comparing median forecast error as a functionof time, with a re-
flected plot of median shadow time as a function of shadow diameter. Top panels
are Lorenz ’63 with a one percent error in the parameter

�
, middle panels are the

two level Lorenz ’96 system modeled with the constant model,lower panels are
the Chua circuit with stochastic terms in the true system. Left panels show the
case without observational error, in the right panels the system was observed with
Gaussian errors of standard deviation� � �

� � . Model/system pairs used: 3, 4, 5.

53


