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Abstract

In modeling nonlinear dynamical systems, error growth aa@seaoth
because of dynamical error in the model, and observatiamat & mea-
surements of the underlying system. Errors thus introdwaedbe further
amplified by the system dynamics. This paper develops a methap-
proximate error growth, based on the model drift, for theegahcase when
the model is given by a (possibly large) set of ordinary défdial equa-
tions. The ability of the model to shadow (stay close to) the system is
analyzed, and a criterion for model quality based on ther elynamics is
proposed. Examples are given with a range of models, whiellzwsen to

be representative of different types of model error.



1 Introduction

Nonlinear dynamical models are frequently used to appratenand predict ob-
served physical systems. Such models will be subject tosbath in the model
dynamics, and the observations of the underlying ‘truetesys Dynamical errors
may be the result of parameterised, unmodeled, or stoch@asiiesses in the true
system, or other shortcomings in the model equations. @asenal errors can be
caused either by errors in measurement of the variablegaause what is being
measured differs from the idealised model variables. Eiyy@e of error will be
acted on by the nonlinear dynamics; this is particularly mceon if the model is
strongly chaotic, since small errors may be magnified duensitivity to initial
condition.

In high dimension models, of the sort used in problems sucheather pre-
diction or increasingly the biological sciences, it can bedhto develop an intu-
itive understanding of model accuracy or error growth (&el2002). Perhaps the
ultimate example of complicated nonlinear models are thussal in biological
oceanography (Robinson et al., 1999), which combine genpalforecasts with
biological models. As models grow in complexity, so toolks eequired to test and
improve their accuracy.

Two types of questions typically arise when testing a modke first is how

3



well one model agrees with another. This will apply whenedi#ht models are
compared in inter-model experiments, or the effect of a ghan parameters
is assessed as in robustness tests (Morohashi et al., 2@Ueh experiments
take place on the computer, so all the relevant equationkreoen. There is
therefore no observational error, though there may be aivaqut type of error
in translating from the variables of one model to another.

The second type of question relates to the comparison of imedth real
data. For such observed systems the equations are not kiotvangise the best
model would be known), or do not exist. One then wishes to knwsther the
model is consistent with the data, and has the appropriatardics. Perhaps the
most fundamental, and desirable, quality of a model is thz able to accurately
predict the evolution of the system.

To address either type of question, a measure of model gusliequired; in
inter-model experiments, to see whether the models areme sense converging,
and in experiments with real data, to fit the model parameterdetermine how
well the model approximates the observations. We need tdleeta estimate
error magnitude, and determine whether it is primarily dueliservational error,
dynamical error, or the effects of chaos. If the cause is thdghdynamics, then

error analysis can not only lead to an improved model, but paagt towards an



unexpected feature of the system not present in the model.

A number of techniques have been used in the literature tgpacerand val-
idate models. Some are based on properties of the model atehswattractors,
such as dimension, entropy, Lyapunov estimates, or togdiSgall and Judd,
1998; Schreiber and Kantz, 1996; Letellier et al., 1995)c@mparing model
and system bifurcation diagrams as a parameter is changgdr(é& and Billings,
1994). While these methods provide useful insight into props of the model
attractor, our concern here is less with long-range siegishan short-term pre-
diction, although in some cases the two can be linked (Qr28i03). Other ap-
proaches for validating models include those based on nedkection techniques
(Kostelich and Yorke, 1990), or likelihood methods (Ozélale 2000; Heald and
Stark, 2000).

The approach of this paper differs in that it is based on aysiseof error
dynamics. Given a particular model, the aim is not so muchatlalate it or
optimize it, but rather to examine the various causes ofrggrowth, and then
develop a formula which approximates the error using gtiestthat are easily
testable even in high-dimensional models. This approaeh kkads naturally to
a particular measure of model quality based on the drift vlwas presented in

a previous work (Orrell, 2005). The methods apply in the gainease when



the model is given by a set of ordinary differential equagi@@DE’s), and apply
whether this is derived from first principles, or is obtaidmsdfitting the observed
data (see for example Brown et al., 1994).

Section 2 begins by examining the basic dynamics of errawtiraconsidering
both dynamical and observational errors. Section 3 prevel@mples of error
growth using a variety of model/system pairs, and Sectiorvkekbps an error
growth formula for the case when both dynamical and obsemait errors are
stochastic. Section 5 argues that the ability of a model &alstv (stay close to)
the true system is largely a function of the expected fotezrasr. Finally, Section
6 discusses how the results lead to a measure of model qudlity emphasis
is on predictability in the near to medium-range, which foe thaotic systems
translates to about 3 or 4 times the internal doubling time.

Results are illustrated using chaotic versions of the LoréB and '96 sys-
tems, which are typically used as toy systems in the atmogpkeiences or
geophysics; the Chua circuit; a non-chaotic version of thecé-Gilpin system,
which is a predator-prey model; and a weather model. Thelslefathe models
and systems are provided in the Appendix, and were chosemlér t illustrate

various types of model error and system behaviour.



2 Dynamicsof error growth

Suppose we have a model

® ~G(s(1) &)
of some process, and wish to compare the model predictiotisobiservations
y(t;) of the underlying system. In a physical system, the obsemnsitare not
usually expressed in the same variables as the model, soplieitty assume that
the observations have been mapped into the model parametersimplicity, we
also assume that the observations occur at equally spatesdalst; = jAt.

As illustrated in panel A of Figure 1, we defieg(t) for ¢ > t; to be the model

trajectory initiated at time; on the pointy(¢;). The drift vector is defined as

d(tx) = >_ £, ()

wheref; = s,(t,41) —y(t;j+1) are a series of short forecast errors. The propagated

drift is defined as

K-1
j=0
where
K
M(tk, t;) = eftj I((y())at (4)



is the model linear propagator (Strang, 1986) dn@/(¢)) is the Jacobian of the
model ODE. Since (t) is only known at times;, the linear propagator must be
evaluated in a discrete fashion. The calculations are stsaivamatically in Fig-
ure 2; the drift is a sum of forecast errors, while in the pggiad drift each short
forecast error is magnified by an amount corresponding tbrikar propagator.

We claim that the propagated drift can be used to approximaie growth
over the short to medium term. To see thisxét) be a piecewise linear interpo-
lation of the observations, sq(t;) = y(¢;) for all j, and is linear between these
points. Such a curve is illustrated by the solid line in pakef Figure 1. Setting
r(t) = s(t) — x(t), it follows that

de(t)  ds(t)  dx(2)
dt dt dt

~ I — (1) ©
where
)= 20 ax(), ©

which is defined almost everywhere (i.e. except at timgsAs can be seen by



direct substitution, a solution to this approximate groedfuation is
tk
r(te) ~ — / M (5, £)e™(t)dt. @)
0

Sincef; ~ —e™(t;) At, the propagated drift is a discrete form of this equation.

The length of time for which the approximation is valid wilepend on a
number of factors. Eq. 5 represents a linearization of theadycs around the
orbit x(¢), which for a nonlinear system will break down as errof§ become
larger. It will therefore be more accurate for shadow orldtscussed in Section
5, which have smaller errors by definition; or for systemshwaitstable attractor,
where the errors do not necessarily grow with time, as dsmisit the end of
Section 4. Another source of error is the discretizatiomeegnted by the timestep
At; this can be checked for example by using a smaller (or latyeestep to
see if the results are converging. The best way to get a teédinthe method’s
accuracy for a particular model/system pair is to compaFeghimates with actual
errors, as is done below for a number of examples.

In the above argument, we have not specified whether errerdus to obser-
vational errors, or dynamical errors, or a combination ef to. If a system is

known only through observations which contain unknownrethen it is not pos-



sible to isolate the error components without making exssumptions (Smith,
2000; Judd and Smith, 2001). For example, in panel A of Fidutes system tra-
jectoryx(t) is an interpolation of the observations, so observatiomak és zero
by definition and all errors appear as dynamical terms; bottesn choice ok(t),
as in panel B of Figure 1, which does not exactly interpollageabservations, will
include an observational error component.

Suppose then that we hypothesize that the observagion$ are obtained
from the ‘true’ system trajectorx(t), wherex(t) is a differentiable curve ex-

pressed in model variables. Setting

ey = X () ©

we can then write

dx(t) m
S = Gx) + e
y(t) = x(t;) +€(t)). 9)

Relative to the trajectory(¢), the model is therefore subject to dynamical errors
given bye™ (t) and observational erroe$(t). We can then ask what forecast errors

would result from this combination of observational andaiyical error.

10



Note that EqQ. 9 does not imply the equations of the systemsanenaed to be
the same, even in structure, as those of the model Eq. 1;rthetgt) represents
the difference between the two as measured on the particajactoryx(t). In-
deed, the system may be a function of variables other thamtiue| variables, as
seen in the next section; or may not be computed from an ODE &ica exam-
ple, in weather forecasting, errors are typically measuedative to a smoothed
version of the observations known as the analysis. The systgectoryx(t) is
therefore given by the analysis at each timeather than the integration of an
ODE. The error terma™(t) = d’;—(tt) — G(x(t)) in this case is a highly complicated
function of time. The reason for writing the system in theriaf Eq. 9 is because
we typically are interested in determining, and if possiBlucing, the magnitude
of the error terme™(t).

Using the approximations

s(ti+1) = y(t;) +AtG(y(t)) (10)
X(te1) ~ x(t;) + AtG(x(t;)) + Ate™(¢;) (11)
G(x(tj) +€°(t;) = Gx(t;)) + I(x(t)e’(t;) (12)

11



the drift is seen to satisfy

d(tg) ~ d™(tg) + d°(tx), (23)
where
K-1
d"(tx) = —At Y en(t;) (14)
j=0

is the drift due to the dynamical errors, and
K-1
d°(tx) = At Y I(x(t;))e’(t;) + € (to) — €*(tx) (15)
§=0

is the drift due to the observational error (Orrell, 2005).

Referring to Figure 1, ik(¢) equals the curve in panel A, then observational
error is zero and all error is dynamical; butft) is the curve in panel B, then
part of the error is observational. In either case the tai#tl &q. 2, is the same,
and the drift does not distinguish between them. Howevenefdbservational
error is assumed to be Gaussian noise, then Eq. 15 can beausstimate the
error components as discussed in (Orrell, 2005). Our aira tseto show how
the propagated drift can be used to estimate forecast éar@n assumed amount

of observational and dynamical error. In the next sectiorillwstrate its use for

12



a number of examples, before going on to develop approximatihat can be

applied even to high-dimension models.

3 Examplesof error growth

Dynamical errors can be the result, among other thingsyof arthe values of the
parameters, errors due to parameterization of complexepsas, and errors due to
stochastic effects. Figure 3 shows error growth for thréfemrint model/system
pairs, chosen to represent these basic types. In the uppelspshe system is
the standard Lorenz '63 system, but the model has the RegmpaEdameter set to
R = 28.28. Referring to Eqs. Al, the difference between the equatafribe
true system and the model occurs only in the equation fevhere it introduces
a dynamical error 00.28x (see also (Chu, 1999)). The error is therefore highly
correlated over time periods for whiehvaries only slightly. This model/system
pair is representative of situations where model erroeariie to parameter error.
The second system in the middle panels is the two-level loi@® system,
given by Egs. A3, which involves two sets of variables (Lael®96). The 40D
version involves & variables, which are relatively large-scale and slow-vayy

and 32y variables which are small-scale and fast-varying, and eavidwed as
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sub-gridscale processes. The large-s@al@ariables can therefore be modeled
with the constant model (so-named because of the constant forcing), which is
the regular Lorenz '96 model with forcing = 9.62 chosen to minimise the
expected RMS dynamical error. This model/system pair iefloee representative

of situations where model error is due to the parameteoratn this case by a
constant, of a complex process. The dynamical error #tth) in Eq. 9 has a
complicated dependence on th&ariables, which in turn are a function of the
variables.

The lower panels show errors for the Chua circuit (Madan3188atsumoto
et al., 1985), where the model is given by Egs. A5, but theesgdtas additional
stochastic dynamical terms of magnitufié’ = 1, updated eacthht = 0.01 time
units. It is representative of situations where model esrgges due to unparam-
eterized effects which are uncorrelated in time and can &é&ed as essentially
stochastic. This type of error is discussed in more detalémnext section.

The left panels of Figure 3 show the didft (¢) in the absence of observational
error, while the right panels include the effect of Gaussibservational error of

magnitudeS = 0.1. From Egs. 13 and 15,

dtx) = d™(tx) + At Y J(x(t,)e(t;) + (ko) — ().  (16)

=0
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Therefore the effect of the added noise is to increase tlftesdrthat

d(tg)? ~ d™(tg)? + S?B*x At + 252, (17)

whereg is the standard deviation &fJ (y(¢;))e°(t) as evaluated over a large sam-
ple of points (Orrell, 2005). The ter@5? is caused by the initial and final obser-
vational errors. The term involving is due to the effect of the observational error
on each small forecast error, and is often small enough tghered, in which
case

d(t)? ~ d™(t)* + 252. (18)

Error growth can in either case be approximated by the prateagrift, EQ.
3. The calculation can be simplified by noting that the ling@pagator over the
timet; = jAt to t,x can be written as a product of the linear propagators over
each intermediate time step. As shown by the solid line, tbpamated drift is a
good match for the errors over the times shown.

The accuracy of the propagated drift will vary from point toigt, and it is
clearly easier to match the root-mean-square error thamxhet error at each
point. For example, in the case of the Lorenz '63 model with@percent error in

R, the difference between the approximated and actual aeeeen to be greatest
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near the tips of the attractor, where both the model errorthedcceleration of

the system variables are greatest.

4 Stochasticerrors

While itis possible to calculate the linear propagator exby for low or medium-
dimensional models, this may not be the case when the nuniltBmensions
becomes very high. An example is weather models, which catagoof the order
107 variables. Even with smaller models, it may be desirablektimia a rapid
estimate of error magnitude without explicitly calculafithe linear propagator.
In this section, we show how RMS error growth can be approtechan such
situations if it is assumed that the errors are essentiaghastic.

Suppose that the dynamical errdt(¢;) is a vector whose components are
Gaussian random variables,with mean zero and a magnitisiarafard deviation
AF, updated ever)\t time units as in a Wiener process (Wiener, 1923). Referring

to Eq. 2, the total RMS drifé" (¢x ) due to dynamical error has

K-1
d™(tg)? = Y AF?A = AF?t At (19)

j=0
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SO

d™(tx) = AFV ATk, (20)

which grows in a square-root fashion like a random walk.

From Eq. 3, the propagated drift is

K-1

dpm(t]() = — Z M(tK,tj+1)6m(tj)At. (21)

J=0

Suppose that small perturbatioag of RMS magnitude:y, made to the model
initial condition, grow under the model dynamics to an expddRMS magnitude
of e(t); and let

p(t) = lim @. (22)

ep—0 €

The functionp(t) then accounts for the RMS growth of a small initial perturba-
tion under the action of the linear propagator. It can beutated by making an
ensemble of small perturbations to the model trajectorgnagdnsemble of initial
conditions, and determining the RMS error growth. Then tMSRnagnitude of

the propagated drift satisfies

K-1
d;n(tK)2 =~ Z p(tK — tj+1)2AF2At2. (23)

Jj=0
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Calculating the sum in an iterative manner gives

A (t)®> = 0
@) = A7)+ p(ty 1) AL, (24)

This approach to estimating error growth is demonstratefign 4 for the
Vance-Gilpin model (Vance, 1978; Gilpin, 1979), Eqs. A7he tAppendix. For
the parameters as given in the Appendix, the model has asiadl cycle shown
in the top left panel by the solid line, with a period of aboOtt8ne units. The
top right panel shows root-mean-square (RMS) errors due timiial error of
magnitude 0.1. Perturbations grow rapidly for the first feretunits, then begin
to oscillate. The perturbed orbit is drawn back onto thetlioycle, but is out
of phase with the unperturbed orbit. The estimate of forteeasr in the lower
panels, from Eq. 23, agrees well with the actual errors.

For many models, it is possible to develop a simple formutdte total error
growth due to the propagated drift by using an estimate ferwetinor propagation
functionp(t). As an example, the right panel of Figure 5 shows RMS erroes du
to an initial error of magnitude 0.5 for two chaotic systeffise first is the Lorenz

'63 system (Lorenz, 1963), given by Eqgs. Al in the Appendikhvireynold’s
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numberR = 28. The second system is the 8D Lorenz '96 system, given by
Egs. A2 (Lorenz, 1996; Orrell and Smith, 2003). The forcingsveet toF' =

13.2 so that the doubling time was comparable to that of the Loi@Bzystem;
however the two systems differ in both dimension and thereaifithe equations.
Typical time series plots of andz;, are shown for the Lorenz '63 and 96 systems
respectively in the left panels.

A possible choice fop(t) in this case might be an exponential growth func-
tion, based on the leading Lyapunov exponent. Howevergaadrilors in a chaotic
system typically grow for intermediate time scales in anaggntial-on-average
fashion (Smith et al., 1999) the error growth here actualytinree phases: an ini-
tial phase of nearly flat growth, a quasi-exponential groplthse, and (at higher
times) a final saturation phase. One way to approximateghisassume that the
initial condition error creates a displacement which gr@xponentially, but in
a direction orthogonal to the initial error. The error prgation functionp(t) is

then approximately given by

p(t) =~ /14 (e — 1) (25)

The doubling time in the exponential phases= log(2)/a. This estimate with
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tq = 0.17 (a = 4.1) is shown by the solid line in Figure 5. The fit is good until
aboutt = 0.3, and loses all accuracy at abaut= 0.7, so about 4 times the
doubling time.

Given this approximation fgs(t), one can estimate the RMS magnitukfet )
of the propagated drif,” (¢x) due to the model by summing the terms in Eq.

23. The resultis

K—-1
dr(tg)? ~ AF?Af? (Z 1+ (exK—i-DAt _ 1)2) (26)

§=0
= dm(tK)2 + AFQAt2q(tK)2 (27)

where
eatK —1 eatK + 1 tK

)" = —2)+ ). 28
(]( K) (eaAt -1 <6aAt+ 1 ) + At) ( )

The first term in Eq. 27 is the dynamical drift, while the seddarm, shown
schematically in the middle panel of Figure 2 by the dottee liaccounts for
the quasi-exponential magnification of dynamical errorgh@yerror propagation
function.

Suppose now that the target trajectory contains Gaussisaradtional noise,

uncorrelated over the time stéyt, with expected RMS magnitude The propa-
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gated drift can then be determined in the same way as abogw/ego

dy(tr)® = d™(tg)* + (AF? + S?B%) At?q(tx)* + S*p(tx)* + S° (29)

where is as in Eq. 17. The first two terms in the above equation addoun
the growth of the short forecast errors in the drift caldolat The last two terms
represent the growth of the initial and final observatiomedrs which appear in
Eq. 15.

Figure 6 compares actual and estimated error growth for treriz '63 and
Lorenz '96 systems for a range of dynamical and observdtiariae. The param-
eterg was calculated as 11.5in (Orrell, 2005) and makes only al soratribution
to the total error. The error estimates match actual resedisonably well, whether
the error is primarily due to observations (law/’, highS) or the dynamics (high
AF, low S). Itis interesting to note that, for these and other systemer growth
is often almost linear over a large range, as the negatiwvetune of the drift is
balanced by the positive curvature of the exponential tetmear error growth
does not imply a linear error mechanism.

This is seen also in Figure 7, which shows RMS errors for a hexanodel

over a 15 day period in December 2000 (circle symbols). Theeahis the opera-
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tional model used by the European Centre for Medium-Rangatee Forecasts
(ECMWEF), and errors are measured relative to the analysikartotal energy
metric, which accounts for wind and temperature errorslanatiel levels. De-
tails of the model and experiment are given in (Orrell et2001). As shown in
that paper, the short forecast errors have low correlatiom time to time, and
the drift grows in an approximately square-root fashionysacan approximately
model the errors as being stochastic model errors, with madmgequal to the 12
hour error. The analysis is obtained by the 4DVAR technigiehfy, 1997) which
adjusts the observations to better fit model predictionsdi&sussed in (Orrell,
2005), this has the effect of reducing the apparent obsenadterrors (which in
any case have a relatively small effect on the drift). Thebdiog time of small
perturbations in this metric is abotit = 3 days (Orrell, 2002). Using the fit Eq.
29 with this doubling time, and A F' which matches the initial error, gives the
curve shown by the solid line in Figure 7. The effect of therténvolving 8 was
ignored due to the model’s relatively low sensitivity totial condition. While it
is dangerous to read too much into such graphs - model erb@sitsmeasured by
methods such as the drift, and doubling time by measuringgtbeth of small
perturbations - we can at least say that the observed grdwtrerast errors is

consistent with previous estimates of these quantities.
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A formula for error growth is useful in that it shows how obssional and
dynamical errors convolute; can be used to compare essnudtéhese terms,
obtained from measurements of the drift and the error pragpagfunction, with
the total observed error; and can be applied even to largelmedch as weather
models. It can also be used to obtain rough confidence baodsdforecasts. For
example, suppose that we wish to estimate the standardidemid an otherwise
stable system when stochastic forcing terfx& are added; and that the error
propagation function for a model can be adequately appratachby the first-
order decay function

p(t) ~ e, (30)

wheret, is an exponential decay time. Then from Eq. 23, the propdgiié of

the stochastic orbit relative to the stable point is

K-
dr(tg)? = Z (tg — tj1)*AF?AL (31)
Kol tk—tin
= AFPPAP Y & & (32)
j=0
2 te —2K
~ ALY (1—6 " ) (33)

which asymptotes at largg to a variance o\ F>Ate. The magnitude of fluc-
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tuations can therefore be estimated from a knowledge ofttdehastic terms and
the decay dynamics, and can be interpreted as a dynamicaldeabetween the
former, which tend to push the system away from the attractod the latter,
which draw it back. This technique has been used to estimateifitions in bio-
logical systems at a cellular level (Orrell and Bolouri, 2D0vhich occur due to
the inherently stochastic nature of the reactions (Gileesi®76). Since an ODE
simulation of the system initiated at the steady-statebltonstant, the standard

deviation can be used to produce a confidence band aroundxBesGlution.

5 Shadowing

The preceding sections have explored how forecast ernses\@hen the model is
initiated on the observation of the true system. Since dwthtodel and the ob-
servations are assumed to have errors, it is interestingktavhether it is possible
to find some nearby initial condition for which the model é@&pry stays close to,
or shadows, the observed system (Smith, 1996; Gilmour,)1998

The ability to shadow presents a fundamental test of theldgiogtions and
assumptions that underly most models. For example, if a huasleshadow, then

a picture of the likely future behavior of the true system bandetermined by
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running a large number of model forecasts from perturbetlmionditions; while
if the model is incapable of shadowing, no such ensembleretasts will contain
a member that stays close to the true trajectory (Orrell, 58D0 Assimilation
schemes such as 4DVAR or ensemble-based techniques (@ioand Evensen,
2001; Hansen, 2002) will also be affected. Shadowing inineal dynamical
models is complicated by the effects of chaos and senyitwiinitial condition.
The latter seems a double-edged sword; if a model is highigiee to initial
condition, then forecast errors will grow rapidly, which kea the task of reducing
the error harder. On the other hand, a small change in iciadlition produces a
larger change downstream.

Given a shadow time and radius-, the shadowing problem consists of seek-

ing a model orbit(¢) for which the error vector

e(t) =s(t) —5(t) (34)

satisfieg|e(t)|| < r for 0 < ¢t < 7. * Model orbits which shadow a trajectory of

Note that this definition is distinct from the problem addessin theAnosov-Bowen shad-
owing lemma (Anosov, 1967; Bowen, 1975) which states conditions undeclwva true trajectory
can be found which shadows a numerical model trajectory. @nris the opposite: we wish
to determine whether model trajectories shadow the truie. ddmder this definition, there is no
question of whether a modedn shadow a target orbit, only within which radius; any moddl wi
shadow for timer if the shadow radius is set to the maximum error over the tieréop O tor.
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the true system can be found by optimization methods whiclos the optimal
initial condition. An example of a shadow orbit is shown irgiie 8 for the
Lorenz '63 system with shadow radius= 0.3. Such optimization methods can
become expensive in large systems, where the search muastiselout in a high-
dimensional space. In this section, however, we argue thatleehaves in a see-
saw fashion: choosing the correct initial condition wiltltee the forecast error,
but only (in an average sense) by a certain amount, whichughly equal to, or
even smaller than, the original displacement. To reducexpected final error,
one must introduce large initial displacements - even ifrtfeglel is sensitive to
initial condition. Thus shadowing behaviour is largely adtion of forecast error,
especially when model error is significant.
The result is derived by noting that an approximate equdiorthe error

growth with a small initial displacememt0) is given by

e(r) = M(7,0)e(0) + dp (7). (35)

A ball of initial conditions with initial displacement is therefore distorted into
an ellipse by the linear propagator (Golub and Loan, 198%),displaced by the

propagated drift. Following the argument in (Orrell et @001), and using the
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propagated drift rather than the drift as an estimate fadast error, then so long
as the model is dissipative and contracts volumes in phaseq®tt, 1993), the

expected shadow radiusvithin which the model can shadow for timesatisfies

Ipll

(r7) = 19

(36)

This relationship between shadow times and forecast earoboeak down for
at least two reasons. The first is that forecast times aretbatlthe linear propa-
gator does not accurately capture the dynamics of shadats ofithis can occur
for example at long forecast times. The second reason islations between the
propagated drift and the singular vector\fr, 0). In general, this is less likely
to occur if the propagated drift is dominated mostly by maatebr, which is as-
sumed to be uncorrelated with the singular vectors. As altrquide, the theory
should hold for times greater than the timet which forecast error is dominated
by the drift; but less than the timg at which the propagated drift ceases to be
accurate.

We here illustrate the shadowing process for three of theetmdtem pairs;
Lorenz '63 with a one percent error iR; the Lorenz '96 two-level system ap-

proximated by the constant model; and the Chua circuit witlstsastic dynam-
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ical terms. For a particular shadow radiysan optimization program based on
the simplex method (Press et al., 1986) was used to find a nratlal condition
such that the model trajectory stayed withiof a true trajectory for the maximum
time. Statistics were obtained by performing the experirfarb0 different initial
conditions of the true system. The entire process was thegated at different
values of the shadow radius

Figure 9 compares a plot of median forecast error as a funofibme, with a
reflected plot of median shadow time as a function of shadamwdter2r, for the
two systems. The left panels show the case without obsenadterrors, while
in the right panels Gaussian errors of standard deviatior 0.1 were added
to the observations of the system. Plots using root-meaarsgstatistics give
similar results in most cases, but the Lorenz '63 shadowiseare highly skewed
towards short shadow times, with the occasional very loragieW orbit, so the
median is more representative of shadow behaviour.

For either system, the forecast error is close to the shadoweder for shorter
times. The effect of noise is to increase both forecast emdrshadow diameter,
but the latter by a larger amount than the former. This reflénoe fact that it is
harder to shadow a noisy orbit than a smooth one.

The forecast error thus provides a useful guide to expetiadicsv behaviour.
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Of course, the best way to estimate shadow times is to seasstilg for shadow
orbits. However, not only can this be expensive, but one ntsylack confidence
in the results if the optimization technique fails or there @oncerns about multi-
ple minima. Comparing the results from shadow experimeritstivose predicted
from the forecast error provides a good ‘sanity check’ onrdsailts. If the two
methods differ significantly, then it should be possible étedmine the reason by
closer analysis of the error dynamics.

A model’s ability to shadow is of key importance to many arebphysical,
biological, or economic forecasting. If a model can not slvadithin a reason-
able radius, then even an ensemble of forecasts from pedunittial conditions
will not stay close to the true system. The results here intpdy shadowing is
a question of give and take; one can reduce the expected froal leut only by
giving up a large initial displacement. This holds even d thodel is sensitive to
initial condition, provided that model error is significaithe main determinant of
both shadowing and overall model quality is therefore synpé expected fore-

cast error.
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6 Conclusions

In this paper we have shown that error growth, even in highesisional models,
can be analyzed by use of the error propagation functiomekin Eq. 22, and
the drift, Eq. 2. The former is a measure of sensitivity tdiahicondition, while
the latter is a measure of model error and observation efitoe. two effects are
combined in the propagated drift, Eq. 3. For many modelsetha propagation
function can be modeled and a formula for total error grovettiveed. For models
which do not show simple error growth patterns, it is stikkpible to estimate error
by explicitly calculating the error propagation functidrhe error dynamics affect
not only the expected forecast error, but also as shown bg&the model’s abil-
ity to shadow the true system. While the techniques have desmonstrated for
only a few systems, they are based in the dynamics of errevtgr@o hold quite
generally and can be applied with suitable caution to a rarigaodel/system
pairs.

The results can be used in a number of ways. Both the drift hadetror
propagation functions can be determined from simple erpents. The formula
for error growth then gives an estimate of expected foregast, which can be
compared with, or used to predict, the observed error. Shadow behaviour is

related to forecast error, one can also estimate the radithswhich the model
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is expected to shadow. This information can be used to detertine perturbation
radius for ensemble schemes, or assess the effect of moolebavariational data
assimilation techniques. The techniques can be appligdfev@igh-dimensional
models of observed physical systems such as the atmosphere.

Perhaps the main application of these methods is to develepia for model
quality. The magnitude of error at a particular time will dapg on a number of
factors such as the extent of observation error, the modefisitivity to initial
condition, and the dynamical error. In many modeling sitreg, however, only
the latter is within the modeler’s direct control; so totatdcast error is best re-
duced by a decrease in dynamical error. For example, a smptbvement in
parameterization may have a minimal effect on the modefisigeity to initial
condition, but reduce model error quite significantly (0y2003). A simple cri-
terion for model quality is therefore that it should have thi@imum dynamical

error. Since the expected one-step forecast error for asicherrors is

e(At) = /252 + (FAt)?, (37)

and S is assumed to be a constant, this requirement translateyitegsthat the

model should minimise the expected one-step forecast, easoin conditional

31



least-squares (Klimko and Nelson, 1978; Dennis et al., 198&g, 1990). In
practice, however, it is often easier and more effectiveitamize the drift, since
it has the effect of amplifying the dynamical error relatieethe observational
error (Orrell, 2005). Because of the relationship betwedt forecast error and
shadow behaviour, a model which minimises the drift alsod@snal shadow
performance.

We assume of course that observations are sufficiently ér@ghowever there
is no need for the time stefdt to approach zero. The main requirement is that
error growth over one time step should be be primarily dubeéacbmbined effects
of the dynamical and observational noise, rather than tidimesar dynamics, so
that the discretization in Eq. 3 is accurate. This will cetiabe the case for most
inter-model experiments, but also for many physical situstas well.

In one sense, this result is rather trivial and obvious; rifeane wishes to
reduce the one-step forecast error and therefore the tiriitnother sense, how-
ever, it might be quite surprising, for it implies that theoditerm forecast errors
which make up the drift are not necessarily a transient “sgpiphenomenon, but
the major determinant of predictability. It also providefamework for ques-
tions about model optimization and comparison. For exapgien a particular

model structure, which is the best choice of parameters?i@na selection of
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different models, which gives the optimal performance? lseaarchy of pro-
gressively more refined models converging to a single swilutr does a small
change give radically different results? Techniques sgataéulating the model
drift or computing shadow orbits are simple to implement ahduld provide a

useful approach to answering these questions.
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Appendix

The equations for the Lorenz '63 system are:

dr

g = —ovtoy

d

d—?i = —wz+Rr—y

d

d—j = zy— Bz (A1)

where the parameters are sevte= 10 and B = 8/3. The classic value of the
Reynold’s number i = 28, for which the system is chaotic.
The equations for the Lorenz 96 system are

dx i
dt

= Zi—1(Tig1 — Tim2) — x; + F, (A2)

where the index = 1 to 8 is cyclic, sox;,s = x;. For forcingF = 13.2, the
system is chaotic and has approximately the same sengsitivihitial condition
as the Lorenz '63 system.

The two-level system is a higher-dimension version of theeba '96 system
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with equations:

dZ; N . . N -~ he .
— = @i — Ti2) — T+ F — — Uiy
dt b=
dy; ; . _ . . he .
ﬁ = cb¥ijr1(Tij-1 — Yij+2) — CYij + & T (A3)

fori = 1ton, andj = 1 tom. The variables are cyclic so that,,, ; = 7; ; and
Uij—m = Ui—1,;- We here set = 8, m = 4, which gives a system dimension of
40, and forcingF’ = 10, for which the system is chaotic. See (Orrell and Smith,
2003).

The equations for the stochastic versions of the Lorenz B laorenz '96
systems are the same as above, but a stochastic term is addadht equation.
For example, Eq. A2 for the Lorenz '96 system becomes

dl‘i
dt

=21 (Tip1 — Ti2) —x; + F + AF¢;, (A4)

whereg; is a random variable with standard deviati%] so that the error over all
8 variables has magnitudeF'. The value ofA F' is as specified.
The model for the Lorenz '63 system has the same equationgpethat the

Reynold’s numbeR = 28.28 has a one percent error. This introduces a dynamical
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error in the equation fog, but not the other equations.

The model for the stochastic version of Lorenz '63 is the Utoaenz '63
equations, so all error is due to the stochastic term in teeegy. Likewise for the
stochastic version of Lorenz "96.

The model for the two-level system is the Lorenz '96 equatiaith forcing
F = 9.62. This choice of forcing minimises the expected dynamicedrerSee
(Orrell, 2003) for a detailed discussion of this model.

The Chua circuit is given by

dx
- = aly—z-g)
d
d—?i = olz—y+=2)
dz
% = —cC3y, (AS)
where
myg —m
g(z) =miz + %(III + 1| = [lz — 1)) (A6)

Parameters ar@ = 15.6, ¢, = 1, ¢z = 25, mg = —8/7, m; = —5/7. We define
the model to be the above equations, while the true systere shbdowed has

Gaussian stochastic dynamical tertwg8' = 1.0, updated eacht = 0.01.
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The equations for the Vance-Gilpin model (with our choicpafameters) are:

dx 1
dt
dzs
dt
dxs
dt

We usec = 0.0025,

= 25(1 —0.0015z; — 0.001z, — 0.001z3)

= w3(—1 + ca1 + 0.0005). (A7)

for which the model has a stable limit cycle attractor. The

system has the same equations, but with dynamical noiseladde

Finally, the weather model errors were obtained using th&/¥&E opera-

tional model, relative to the ECMWEF analysis, over a 15 dayqgoein Decem-

ber 2000. See (Orrell et al., 2001; Orrell, 2002) for a dethdlescription. The

model/system pairs are summarised in Table 1.
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Table 1: Model/System Pairs

No. System Model Dynamical Error
1 Lorenz '63 + stochastic terms Lorenz '63 stoch. terms

2 Lorenz '96 + stochastic terms Lorenz '96 stoch. terms

3 Lorenz '63R = 28 Lorenz '63R = 28.28 errorinRR

4 Two-level 40DF = 10 Lorenz '96F = 9.62 | parameterizatior
5 Chua circuit + stochastic terms Chua circuit stoch. terms

6 Vance-Gilpin + stochastic terms  Vance-Gilpin stoch. terms

7 ECMWF analysis Weather model stoch. terms
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Figure 1: Schematic diagram showing observed system amtimbdel forecasts.
In panel A, the solid line represents a linear interpolattmough the observed
pointsy(¢,), while s;_;(¢;) is the model forecast from the previous point. In
panel B, the solid line represents a trajectory of the uydeglsystemx(t). The
pointsy(t;) differ from this trajectory because of observational error either
case, the observed forecast errors are the same.
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Figure 2: Schematic diagram of error components due to digzmrrors. The
drift, shown in the lower panel, is calculated by summinggbges of short fore-
cast errord; in the upper panel. Each error here has the same magnituldie, bu
generally in a different direction. If the errors are assdrwebe roughly orthog-
onal, then their sum grows in a square-root fashion. Theeffiethe propagated
drift is to grow each short forecast error as shown by theeddines in the top
panel. The result can be viewed as an additional term, shotheilower panel by
the dotted line, which adds orthogonally to the drift to teethe total dynamical
error (circle symbol).
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Figure 3: Error growth in three model/system pairs. Top fmsbow error in
Lorenz '63 model due to a one percent error in the paranfetevliddle panels
show errors in modeling the two level Lorenz '96 system wiith ¢onstant model.
Lower panels show the Chua circuit with stochastic dynaheicars of magnitude
AF = 1, updated each\t = 0.01 time units. Left panels show case without
observational error, right panels show case with Gausdiaargation of standard
deviationS. The propagated drift (solid line) is in each case a good fih&
forecast error. Model/system pairs used: 3, 4, 5 (see Tailéppendix).
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Figure 4: Error growth in the Vance-Gilpin system. For pagtens as in the
Appendix, the model describes a limit cycle, shown in theledppanel by the
solid line. Also shown is a system orbit where dynamical eemith AF" = 1.0,

At = 0.5 have been added to the system equations (see text). Toppagikt
shows error due to an initial perturbation of 0.1 in a perfeatiel experiment. The
error grows over the first ten time units, then begins to tadeil This curve defines
the error propagation functign(t) used to estimate the growth of forecast errors.
The lower panels show error growth f&rF" = 0.5 andAF' = 1.0, along with an
estimate as described in text. Errors are RMS over 1000 Model/system pair
used: 6 (see Table 1 in Appendix).
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Figure 5: Left panels show typical time series foin the Lorenz '63 system and
x1 in the 8D, F = 13.2 Lorenz '96 system. Dashed lines show orbits starting
from a perturbation of magnitude 0.5. Right panels compergshand estimated
error growth due to an initial error of magnitude 0.5, for &oz '63 (circle sym-
bol) and Lorenz '96 (square symbol). Solid line is given by. Etb, which is
used to estimate the error propagation funcgn. A time step of 0.005 is used
for the Runge-Kutta integration scheme. The parametarhich determines the
exponential growth rate, was set 40, which corresponds to a doubling time
ty = 0.17. Errors are RMS over 1000 runs.
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Figure 6: Comparison of actual and estimated error growthdéoenz '63 (circle
symbol) and 8D Lorenz '96 (square symbol). Dashed line ig#tienate using Eq.
29. From the left to the right, observation erroSis= 0, 0.5, and 1.0. From top to
bottom, dynamical error i&F' = 0, 10, and 20. The timesteit, which mostly
affects the relative strength of the dynamical error, isdiag).05. A smaller time
step of 0.005 is used for the Runge-Kutta integration scherhe parameted,
which determines the exponential growth rate, was séfitdErrors are measured
relative to observations, so the error at time zero is zerad@lIsystem pairs used:
1 and 2.
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Figure 7: Comparison of total energy errors for the ECMWFrapenal model
over a 15 day period in December 2000 (circle symbols), witrestimate ob-
tained using Eq. 29 with timestedt = 0.5 days, model erroAF = 5.67, and
doubling timet,; = 3.
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Figure 8: Views of a shadow orbit for the Lorenz '63 system. ddichas a one
percent error in parametdt. Shadow radius is = 0.3. Clockwise from top

left: portion of attractor shadowed, in— z plane, starting from point marked
‘0’ and ending at ‘+’; error of shadow orbit as a function ahg; displacement
of shadow orbit from true orbit, measured by projecting tirerevector onto the

plane tangent to the true orbit; zoomed view of radius 0.Zerde of points

mapped forward under the model. The ball of points is mappeal distorted

ellipse under the nonlinear dynamics. Model/system padus.
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