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Abstract

Nonlinear dynamical models are frequently used to approximate and predict observed

physical, biological, and economic systems. Such models will be subject to errors both

in the model dynamics, and the observations of the underlying system. In order to

improve models, it is necessary to understand the causes of error growth. A

complication with chaotic models is that small errors may be amplified by the model

dynamics. This paper proposes a technique for estimating levels of both dynamical

and observational noise, based on the model drift. The method is demonstrated for a

number of models, for cases with both stochastic and non-stochastic dynamical errors.

The effect of smoothing or treating the observations is also considered. It is shown

that use of variational smoothing techniques in the presence of dynamical model

errors can lead to potentially deceptive patterns of error growth.
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1. Introduction

Dynamical models of observed physical systems, be it the movements of the

atmosphere or the dynamics of a living cell, will be subject to two types of noise: that

caused by imperfect observations of the physical system, and that caused by imperfections

in the model itself. These errors may also be amplified by the effects of chaos. In order to

improve model predictions, it is necessary to separate out the levels of observational and

dynamical noise, and so determine the causes of error. One approach for estimating noise

levels is to begin with the observed data, and then determine a model trajectory which

minimises some weighted combination of the dynamical and observational errors. This may

be based for example on noise reduction techniques (Kostelich & Yorke, 1990) or a

likelihood method (Ozaki et al., 2000; Heald & Stark, 2000). The noise levels can then be

estimated from the optimal trajectory. This paper supplements these methods by providing

a technique to estimate noise levels from the growth of root-mean-square (RMS) forecast

errors, based on the model drift.

We begin in Section 2 by developing the basic theory for the case where the model

experiences errors of a general form both in the model equations (dynamical noise or model

error) and in the observations. The situation where model errors are stochastic or

approximately stochastic, as in models of a physical system where all apparent correlations

and biases in errors have been balanced out, is considered in detail. A number of examples

using low and medium-dimensional systems are presented in Section 3, for both stochastic

and non-stochastic dynamical errors. Section 4 examines the effect on error growth of data

smoothing techniques. Finally, the results are summarised and discussed in Section 5.



3

2. The model drift

Suppose we have a model
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of some physical process, and wish to compare the model predictions with an equally

spaced series of observations y(tj), at times tj= j∆t, of the underlying system x(t) given by
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Relative to the underlying system, the model is therefore subject to both dynamical (or

model) errors, given by mε , and observational errors given by o
yε . The subscript in the

observational errors o
yε  reflects the fact that they are dependent on the choice of y. It might

seem preferable that errors be measured relative to the underlying system x, but in a real

physical system we normally do not have access to x. (Perhaps a better word for error in

this context would be discrepancy, since zero error does not mean perfect.)

Let sj(t) for t ≥ tj be the model trajectory initiated at time tj on the point y(tj). The

drift vector is defined as a sum of short forecast errors:
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The drift magnitude gives an approximation of the total error growth at short times, and for

most chaotic systems an underestimate at higher times (Orrell, 2002). Because it is

generated from short forecasts, it is relatively unaffected by forecast error due to chaos. The
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aim here is to show how it can be used to separate out the errors due to dynamical and

observational noise. Using Eq. 1 and the O(∆t2) or O(Sy
2) approximations

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )j
o
yjjj

o
yj

j
m

jjj

jjjj

ttttt

tttttt

tttt

εxJxGεxG

εxGxx

yGys

+≅+

∆+∆+≅

∆+≅

+

+

1

1

(4)

where J is the Jacobian of G, we find that
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is the drift due to the dynamical error in the model equations, and
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is the drift due to the observational error.

Suppose that the observational error term o
yε  is a vector whose components are

independent identically distributed (iid) Gaussian noise processes, updated each ∆t, with

vector magnitude of mean 0 and standard deviation Sy. If the standard deviation of

( )( ) ( )j
o
yj tt εxJ  is ySβ , then the expected RMS magnitude of the observational drift for t ≥∆t

is

KyyK
o
y ttSStd ∆+= 2222)( β . (8)
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Therefore

2222 2)()( yKyK
m
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which as Kt  goes to zero approaches a value, denoted ( )0yd , of

( ) 20 yy Sd = . (10)

This suggests that the observational noise level Sy can be estimated simply by plotting the

RMS drift versus time, and finding the intercept with the vertical axis by interpolation. The

drift due to the dynamical error can be determined from Eq. 9, and used to deduce

properties of the model error as discussed in the next section.

The situation is further simplified if the dynamical term mε  is also assumed to be a

vector whose components are iid Gaussian noise processes, updated each ∆t, with vector

magnitude of mean 0 and standard deviation ∆F. Note that for this to be the case, at least in

an approximate sense, it is not required that the model perfectly reproduce the deterministic

portion of the system, only that it be balanced in such a way that correlations over time

have been eliminated and the remaining errors are essentially Gaussian. From Eq. 6, the

component of drift due to the dynamical error then has expected RMS magnitude

KK
m
y ttFtd ∆∆=)( . (11)

Combining the separate sources as in Eq. 9, the total drift vector has an expected RMS

magnitude which satisfies

( ) .2)( 22222
yKyKy SttStFtd +∆+∆∆= β (12)
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The error noise levels ∆F and Sy can be estimated by plotting the RMS drift squared versus

time. The result should be an approximately straight line, with a slope of ( ) tSF y ∆+∆ 222 β

and an intercept ( ) 22 20 yy Sd = .

The term β reflects the model’s sensitivity to initial condition. It can be measured in

a number of ways. One method is to calculate it directly from the Jacobian. Another, as

seen below, is to perform a perfect model experiment, in which Gaussian observational

error is artificially imposed on an orbit of the model, and the drift relative to this orbit is

computed. Since the drift in this case is entirely due to the observational error, Eq. 8 will

apply. A plot of the drift squared versus time should then have slope TS ∆22β . In many

cases the term is small enough to be ignored. The next section illustrates use of the method

for two systems due to Lorenz, and the Chua circuit.

3. Numerical examples

The technique for measuring error components using the drift is demonstrated in

Figure 1 for two chaotic systems. The first is the Lorenz ’63 system (Lorenz, 1963) with

equations
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where the parameters are set to σ=10, B=8/3, and R=28. The second, higher-dimension

system is the 8D Lorenz ’96 system (Lorenz, 1996; Orrell and Smith, 2003; Orrell, 2003)

for which the equations are

Fxxxx
dt

dx
iiii

i +−−= −+− )( 211 (14)

where i=1 to 8 is a cyclic index, and the forcing is F=13.2. In either case, the model is as

above, while the underlying system has stochastic dynamical noise of standard deviation

∆F added to the equations, updated each ∆t=0.025 time units. The system is observed with

a stochastic observational error of standard deviation Sy. The noise levels are different for

the two systems.

The left panel shows the RMS forecast error and drift for each model/system pair.

The total error growth after amplification by the effects of chaos is quite similar for either

system, so it would be hard to deduce the levels of dynamical and observational noise from

the forecast error alone. The right panel shows a plot of the drift squared, along with a

linear interpolation. The difference between the two cases is now clearly visible, and the

estimates of ∆F and Sy from the linear fit are close to the correct values.

The value of β  was determined by a perfect model experiment. Figure 2 is a plot of

RMS drift squared for S=0.1 and 0.2 for the Lorenz ’63 and ’96 models. Using Eq. 8, the

slope in either case gives 5.11=β . This term has a relatively small effect on the total drift

if, as here, 
yS

F∆<<β , in which case Eq. 12 reduces to

( ) .2)( 222
yKKy SttFtd +∆∆≅ (15)
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In applying this technique, the time step ∆t should be sufficiently small that the

O(∆t2) approximations in Eq. 4 are valid and the drift calculation converges (it usually

suffices to be 3 or 4 times smaller than the doubling time td). For this reason, the method

does not generalise well to maps where the variables may experience large changes

between iterations. The metric should be global, and account for all major error sources

(see (Orrell, 2002) for a discussion). Results here were RMS over 500 initial conditions,

though a smaller number can also suffice.

Of course, the system need not be chaotic for the method to be used. As an example,

Figure 3 demonstrates the technique for the Chua circuit (R. Madan, 1993; T. Matsumoto et

al., 1985). The model equations are:
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The parameter values are here set to 6.151 =c , 12 =c , 
7

8
0

−=m , 
7

5
1

−=m . Two values of

the parameter 3c  were used: at 503 =c  the model is periodic, while at 253 =c  the model is

chaotic. The error terms were set smaller than for the Lorenz systems, corresponding to the

smaller attractor dimension. The left panel shows the calculation of β, which is 30 for the

periodic case and 16 for the chaotic case. The values of ∆F and Sy estimated from the slope

and intercept in the right panel are in accord with the actual values.
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The method can also be used when the errors are not Gaussian. Consider for

example a model of the Lorenz ’63 system Eqs. 13, where the model is the same as the

system but has a Reynold’s parameter Rm=28.28, an error of one percent. The effect is to

introduce a model error of ( )xRRm −  in the equation for 
dt

dy
. The resulting drift is shown

in the top left panel of Figure 4, for an observational error of standard deviation 2.0=yS .

Because the errors are non-stochastic, the drift does not grow in a square-root fashion, but

almost linearly. However, since observational errors are Gaussian, it still follows from Eq.

10 that the expected intercept is ( ) 20 yy Sd = . The observational error can therefore be

estimated by interpolating the drift, using an appropriate interpolation scheme. For

example, a linear interpolation using the first two nonzero points gave an estimate of 0.19.

The drift due to the model is then  KyyKyK
m
y ttSStdtd ∆−−≅ 2222 2)()( β , as shown by the

dashed line.

Since the error is parametric rather than stochastic, it is possible to use the drift as a

measure to optimize the model parameters. The top right panel shows the RMS forecast

error, total drift and model drift at time t=0.2 for various values of Rm. The minimum of

either curve occurs at  Rm=28 which agrees with the system. However, because the model

drift filters out the effects of observational error and chaos, and focuses on the component

of error due to the model equations, it provides a more distinct minimum and therefore

more reliable optimization (the remaining model drift after optimization is mostly due to

the small error in estimating yS ). For more complex cases where none of the parameters

are known, the drift technique can be combined with multivariate optimization techniques

to determine the optimal parameters. The time t at which the drift is evaluated can be

chosen to correspond to a desired forecast time. In principle, the one-step forecast t=∆t

could be used, however it is preferable to use a longer time since this allows the model drift

to accumulate and provide a stronger signal relative to the observational component.
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 A similar calculation is shown in the lower panels for the Chua circuit with

253 =c , where the model now contains two types of dynamical error, parametric and

stochastic. The model equations have the 3c  parameter set to 5.253 =mc , an error of two

percent. There is also a stochastic error 5.0=∆F , updated each 01.0=∆t . The

observational error is 2.0=yS , which can again be estimated by interpolating the drift

curve. The drift at time t=0.1 (lower right panel) has a minimum at the correct value of

253 =mc . The stochastic component of error which remains cannot be corrected by

optimizing the parameters. Its magnitude can be estimated from the minimum of the model

drift in the lower right panel, which is 0.0147. This corresponds to the stochastic drift at

t=0.1. From Eq. 11 we obtain 465.0≅∆F  which is close to the correct value of 0.5.

The main advantage of the drift technique is that it links noise levels to RMS error

growth, and does not require treatment of the observations or an estimate of the trajectory

x. It can therefore be easily applied to large models with many variables. In such models,

nonetheless, the observational data will often be smoothed or treated before use. Because

errors are measured relative to the observations y, the errors will change if y changes to

some altered version u, and the observational errors may become correlated with the

dynamical errors. In the next section, we use the drift to determine the (sometimes peculiar)

effect of smoothing observations in the presence of dynamical model errors.

4. The effect of smoothing schemes

Smoothing schemes can be global over all data, or local to a particular time frame

specified by an assimilation window. Beginning with the former, the essence of most
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techniques based on noise reduction or likelihood methods is to minimize a weighted sum

of forecast and observational errors
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where w is a weighting factor, and sj(t) for t ≥ tj is the model trajectory initiated at time tj on

the point u(tj) (the dependence of sj(t) on the choice of u(tj) has been omitted for clarity).

Other schemes may use both the forward and backward dynamics to give an optimal fit

(Kantz and Schreiber, 1997). While the methods differ in their details, their aim is to yield a

u(tj) which is close to the trajectory x(tj) of the presumed, idealised underlying system

(which, if derived from observations of a physical system, is not the same thing as the true

system (Smith, 2000)).

If errors are measured relative to the smoothed trajectory u(tj), then Eq. 1 becomes
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where ( )j
o
u tε  with expected RMS magnitude Su represents the difference between u(tj) and

x(tj). In this system, the quantity Su does not then correspond to errors in the observations of

the physical system, but to the artificial residual of an optimization calculation. If the

smoothing technique is working, then this residual should be small: in particular, Su < Sy.

The effect on a plot of the drift squared will be to reduce the intercept, but the estimate of

dynamical errors, determined from the slope, should be relatively unaffected (and can be

compared with any estimate obtained from the smoothing procedure). The accuracy of the

calculation should also be improved, since the data is cleaner. However errors which were
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originally iid Gaussian may not remain so after smoothing, which might need to be taken

into account.

Local smoothing techniques, such as the 4DVAR (Cohn, 1997) variational scheme

used in geophysics, present a more complicated type of data treatment. There are many

different flavours of 4DVAR; we will use the term to mean the very simplest form, in

which each point of the trajectory uj =u(tj) is determined by minimising the cost function

( ) ( ) ( )( )∑
=

++ −=
n

k
kjkjjj ttC

0

2ysu . (20)

Here n represents the number of points in the local time frame specified by the assimilation

window, and as before sj(t) for t ≥ tj is the model trajectory initiated at time tj on the point

uj. Operational 4DVAR schemes usually also contain an additional term ( )( )2

j
b

j txu − ,

where xb is some prior estimate of the background state.

As an example of 4DVAR, Figure 5 shows a zoomed view of the Lorenz ’96 errors

recalculated relative to a trajectory that has been treated by 4DVAR over an assimilation

window of 2∆t=0.05, so n=2 in Eq. 20. A peculiar feature is that the intercept ( )02
ud  in the

right panel (line with circle symbols) is near zero. A similar effect has been noted with

weather forecasts in a global metric, where the error increases in a near-exact square-root

fashion over the first two days (Orrell et al., 2001), even though observational errors are

known to be large. It doesn’ t seem plausible that 4DVAR has perfectly recovered a

trajectory with Su=0; so where did all the observational error go?

To address this question, we need to consider more carefully how 4DVAR affects

the drift. Referring to Eq. 5, the main contribution of non-dynamical errors to the drift

du(tK), calculated now relative to u, is from ( )0t
o
uε  and ( )K

o
u tε . These terms represent the
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difference between u(tj) and the idealised trajectory x(tj), as opposed to u(tj) and the

observations. To obtain Eq. 12, it was assumed that they are uncorrelated with the

dynamical errors, and so add in an orthogonal sense to the RMS error. This will still be true

of ( )K
o
u tε , however 4DVAR will choose ( )0t

o
uε  in a direction to offset the initial errors, and

so will be correlated to an extent with the dynamical errors in the assimilation window.

Therefore it will not add in an orthogonal sense to the RMS drift, and the intercept ( )02
ud  of

the drift squared can not be used directly as an estimate for Su. The terms ( )j
o
u tε , though,

are chosen to minimize the cost function Eq. 19. If n=1, and the approximations in Eq. 4

are valid, their magnitude can be solved directly, and we find

( )
2222

41

1
Ft

n
S

n
S yu ∆∆+

+
≅ (21)

which also holds approximately when n=2. Because ( )0t
o
uε  is chosen to offset the

dynamical errors in the initial assimilation window, the intercept of the drift squared is

reduced to a first-order estimate of

( ) 2222

2

1
0 tFSd yu ∆∆−≅ (22)

for n=1, and somewhat lower for higher n.

While 4DVAR affects the estimate of Su, it has less impact on the dynamical

component of the drift. So long as j> n, ( )0t
o
uε  will be independent of the dynamical terms

( )j
m tε , so the slope of the drift squared remains relatively unchanged. Indeed the estimate

of ∆F in Figure 5, based on a linear interpolation over points outside the initial assimilation

window, is within five percent of its correct value.
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One way to interpret this is that 4DVAR uses the dynamical model error terms to

rebase u so as to reduce the short-term forecast errors relative to u. Since the dynamical

errors remain much the same, the contribution of the drift to total error depends on the

intercept ( )02
ud . If the model were perfect, then from Eq. 22 the intercept would be about

( ) 22 0 yu Sd = , which is an improvement on the unsmoothed value of ( ) 22 20 yy Sd = . If the

dynamical errors are large, however, the intercept can be reduced to near zero, thus

reducing the total errors relative to u (the intercept is unlikely to become significantly

negative, because this would require large adjustments to the observations, which would

normally be limited by the assimilation procedure).

The key difference between the 4DVAR and untreated cases is therefore that in the

former, 4DVAR has selected a reference orbit for which all errors appear as dynamical

errors. Given the choice between the forecast errors in the left panel, one would say that the

smoothed errors represent a huge improvement. However the 4DVAR version of u, with

Su=0.39, is a relatively small improvement on the untreated observations y with Sy =0.5.

Thus u is only much better than the observations as a representation of truth if model errors

are small compared to observational errors. This points to an interesting contradiction about

the simplified 4DVAR scheme phrased above: it assumes that the model is perfect, and

adjusts the observations to fit model predictions; achieves the greatest reduction in error Su

if model error is small; yet yields the best apparent improvement in forecast accuracy when

model error is large.
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5. Conclusions

The above results show that, by filtering the effects of chaos, the model drift makes

it possible to separate out the effects of dynamical and observational errors. It can be

applied not only to small models such as those considered here, but in principle at least to

large models such as those used in geophysics, biological oceanography (Robinson and

Lermusiaux, 2002), or economics. It is of course necessary that observations be sufficiently

frequent, however there is no need for the timestep ∆t to approach zero. It is only required

that the approximations in Eq. 4 be valid, which can be tested on a case-by-case basis. The

drift calculation works not as a result of taking vanishingly small time steps, but by

integrating the short forecast errors over time, so that the dynamical model errors

accumulate relative to the observational term. The method can be applied to situations

where the errors are both stochastic or non-stochastic, and used as a criterion for

optimization of model parameters.

A common feature in models of observed physical systems is the use of data

smoothing techniques, such as 4DVAR, which must be taken into account when

interpreting the results as shown in Section 4. Of course, operational assimilation schemes

vary significantly, and do not necessarily assume that the model is perfect. However, two

things are shown. Firstly, 4DVAR techniques must be used with caution if there exist large

dynamical errors, for which square-root growth of the kind seen in Figure 5 may be an

indicator. Secondly, the drift technique, when used to measure dynamical errors, is quite

robust to data manipulation, including that from noise reduction or variational methods. In

general, because dynamical errors act in a cumulative manner, they are resistant to attempts

at smoothing or masking. Indeed, perhaps the strongest evidence of dynamical errors is

when procedures such as 4DVAR are unable to reduce them.
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Error growth in nonlinear systems is a complex convolution of dynamical errors,

observational errors, and magnification by the nonlinear dynamics. Its interpretation is

further complicated by the smoothing or treating of observations. By effectively filtering

out the effects of chaos, however, the drift calculation provides a simple method to estimate

the levels of dynamical and (treated or untreated) observational noise. Applied to physical,

biological, or economical models, it has the potential to provide a check on whether the

total error growth is primarily due to the accumulation of dynamical model errors, or the

effects of chaos. This is especially useful in the modeling of large, complex systems, where

dynamical model errors can be expected to be significant.
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Figures

Figure 1. Left panel shows forecast er rors and dr ift for  two cases: the Lorenz ’63 system with 
�

F=25,
Sy=0.2, and the Lorenz ’96 system with 

�
F=15, Sy=0.5. Observations are each 

�
t=0.025; a smaller  time

step of 0.005 was used for  the Runge-Kutta integration scheme. Error  growth in either  case is similar .
Right panel shows the dr ift squared: the difference between the two cases is now clear ly visible. The
linear  fit gives an estimate for  the Lorenz ’63 case of 

�
F=23.6, Sy=0.18, and for  the Lorenz ’96 system

�
F=15.2, Sy=0.47, which are close to the cor rect values.  Results are RMS over  500 initial conditions.
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Figure 2. Plot of dr ift squared for  Sy=0.1 and 0.2 for  the Lorenz '63 and '96 models. Model and system
are the same, so all er ror  is due to the Gaussian observational noise. The slope can be used to estimate

�
, and in either  case gives 

�
 =11.5.  Results are RMS over  500 initial conditions.
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Figure 3. Left panel shows measurement of 
�

 in the Chua circuit, for  two values of the parameter  c3. At
c3=50 the circuit has a per iodic attractor , while at c3=25 the circuit is chaotic. Per turbation size is
Sy=0.03 for  the former  case and Sy=0.05 for  the latter . The values of 

�
 determined from the slope are 30

and 16 respectively. Right panel shows the dr ift squared for  the cases shown. Observations are each
�

t=0.01; a smaller  time step of 0.001 was used for  the Runge-Kutta integration scheme.  Predicted
errors are in agreement with the actual terms. Results are RMS over  500 initial conditions.
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Figure 4. Top left panel shows plot of dr ift in the Lorenz ’63 system, due to a one percent er ror  in the
Reynold’s parameter  R, and an observational er ror  of Sy=0.2. Observations are each 

�
t=0.025. The

expected y-intercept is shown by the solid square symbol. I ts value was estimated by a linear
interpolation from the first two points, giving an estimate of  0.19. The dr ift due to the model only,
shown by the dashed line, can then be estimated by subtracting off the observational component, as
discussed in the text. Top r ight panel shows forecast er ror and dr ift at time 0.2 for  var ious values of Rm;
the optimum value is 28 which is the same as the system.  The model dr ift provides the most distinct
minimum of the three curves.  Lower  panels show same calculation for  the Chua system with c3=25,
where the model er ror  includes both a stochastic component and a component due to a two percent
er ror  in the parameter  c3.  Stochastic component of dr ift can be estimated from the minimum model
dr ift. Results are RMS over 500 initial conditions.
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Figure 5. Left panel shows zoomed view of forecast er rors for  the Lorenz ’96 system, with 
�

F=15,
Sy=0.5, and 

�
T=0.025, for  the untreated and 4DVAR case with assimilation window n=2. The 4DVAR

dr ift (circles) takes on a square-root shape. Right panel shows the dr ift squared. The linear  fit gives an
estimate for  the 4DVAR case of 

�
F=15.6. The value Su=0.39 was measured from the actual var iance;

the exact value has little impact on the estimate of 
�

F. Results are RMS over  500 initial conditions.


