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Abstract

Nonlinear dynamical models ar e frequently used to approximate and predict observed
physical, biological, and economic systems. Such modelswill be subject to errorsboth
in the model dynamics, and the observations of the underlying system. In order to
improve models, it isnecessary to understand the causes of error growth. A
complication with chaotic modelsisthat small errors may be amplified by the model
dynamics. This paper proposes a technique for estimating levels of both dynamical
and observational noise, based on the model drift. The method is demonstrated for a
number of models, for cases with both stochastic and non-stochastic dynamical errors.
The effect of smoothing or treating the observationsisalso considered. It isshown
that use of variational smoothing techniquesin the presence of dynamical model

errorscan lead to potentially deceptive patternsof error growth.
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1. Introduction

Dynamical models of observed physical systems, be it the movements of the
atmosphere or the dynamics of aliving cell, will be subject to two types of noise: that
caused by imperfect observations of the physical system, and that caused by imperfections
in the model itself. These errors may also be amplified by the effects of chaos. In order to
improve model predictions, it is necessary to separate out the levels of observational and
dynamical noise, and so determine the causes of error. One approach for estimating noise
levelsisto begin with the observed data, and then determine a model trgjectory which
minimises some weighted combination of the dynamical and observational errors. This may
be based for example on noise reduction techniques (Kostelich & Yorke, 1990) or a
likelihood method (Ozaki et a., 2000; Heald & Stark, 2000). The noise levels can then be
estimated from the optimal trgjectory. This paper supplements these methods by providing
atechnique to estimate noise levels from the growth of root-mean-square (RMS) forecast

errors, based on the mode! drift.

We begin in Section 2 by developing the basic theory for the case where the model
experiences errors of a general form both in the model equations (dynamical noise or model
error) and in the observations. The situation where model errors are stochastic or
approximately stochastic, asin models of aphysical system where all apparent correlations
and biases in errors have been balanced out, is considered in detail. A number of examples
using low and medium-dimensional systems are presented in Section 3, for both stochastic
and non-stochastic dynamical errors. Section 4 examines the effect on error growth of data

smoothing techniques. Finally, the results are summarised and discussed in Section 5.



2. The model drift

Suppose we have a model
as(t) _
= Csw) (1)

of some physical process, and wish to compare the model predictions with an equally
spaced series of observations y(t;), at times t;= jAt, of the underlying system x(t) given by

dx(t) _ m
a (x(t))+="(t) @

y(ti)zx(tj)+83(ti)

Relative to the underlying system, the model is therefore subject to both dynamical (or
model) errors, given by &, and observational errors given by &7 . The subscript in the

observational errors | reflects the fact that they are dependent on the choice of y. It might

seem preferable that errors be measured relative to the underlying system x, but in areal
physical system we normally do not have access to x. (Perhaps a better word for error in

this context would be discrepancy, since zero error does not mean perfect.)

Let 5(t) for t > t; be the model trgjectory initiated at timet; on the point y(t;). The

drift vector is defined as a sum of short forecast errors;

dy(tK) =§[Sj (ti+1)_y(ti+1)]' (©)

The drift magnitude gives an approximation of the total error growth at short times, and for
most chaotic systems an underestimate at higher times (Orrell, 2002). Becauseit is

generated from short forecasts, it is relatively unaffected by forecast error due to chaos. The



aim hereisto show how it can be used to separate out the errors due to dynamical and

observational noise. Using Eq. 1 and the O(At?) or O(S,?) approximations

s, {t.0) Cylt;)+ DGy (e, )

0 0 ) axal, ) avet) @

G(X(ti) 8y(j))DG( (J)) ((t;))8 (ti)
where J isthe Jacobian of G, we find that

d, (te) Ody(t, ) +dj (ty) (5)
where

dn(t,) = —Atfam(tj) 6)
isthe drift due to the dynamical error in the model equations, and

ds () =ty 3, D )+ 5 0) -5 U

isthe drift due to the observational error.

Suppose that the observational error term &7 is avector whose components are

independent identically distributed (iid) Gaussian noise processes, updated each At, with

vector magnitude of mean 0 and standard deviation S,. If the standard deviation of
J (x(t j ))s‘; (t j ) is5S, , then the expected RM S magnitude of the observational drift for t >At

is

do(ty) =287 + SIB°ALt, (8)



Therefore

d, (te) = /AP (t, )? + S2B°Att, + 257 (9)
which as t, goesto zero approaches avalue, denoted d, (O) , of
d,(0)=s,v2. (10)

This suggests that the observational noise level S, can be estimated simply by plotting the
RMS drift versus time, and finding the intercept with the vertical axis by interpolation. The
drift due to the dynamical error can be determined from Eq. 9, and used to deduce

properties of the model error as discussed in the next section.

The situation is further smplified if the dynamical term ™ isalso assumed to be a
vector whose components are iid Gaussian noise processes, updated each At, with vector
magnitude of mean 0 and standard deviation AF. Note that for thisto be the case, at least in
an approximate sense, it is not required that the model perfectly reproduce the deterministic
portion of the system, only that it be balanced in such away that correlations over time
have been eliminated and the remaining errors are essentially Gaussian. From Eg. 6, the

component of drift due to the dynamical error then has expected RM'S magnitude

dl(t,) = AFVALL, (12)

Combining the separate sources as in Eq. 9, the total drift vector has an expected RMS

magnitude which satisfies

d, (tc)? = (AF At + S B2tk +2S2. (12)



The error noise levels AF and S, can be estimated by plotting the RMS drift squared versus
time. The result should be an approximately straight line, with asiope of (AF2 +S?32 At

and an intercept d’(0) = 2S7.

Theterm f reflects the model’ s sensitivity to initial condition. It can be measured in
anumber of ways. One method isto calculate it directly from the Jacobian. Another, as
seen below, isto perform a perfect model experiment, in which Gaussian observational
error is artificially imposed on an orbit of the model, and the drift relative to this orbit is
computed. Since the drift in this case is entirely due to the observational error, Eq. 8 will
apply. A plot of the drift squared versus time should then have slope S*B%AT . In many
cases the term is small enough to be ignored. The next section illustrates use of the method

for two systems due to Lorenz, and the Chua circuit.

3. Numerical examples

The technique for measuring error components using the drift is demonstrated in

Figure 1 for two chaotic systems. Thefirst isthe Lorenz ' 63 system (Lorenz, 1963) with

eguations
X vy
dt
%:—xz+Rx—y (13)
ﬁzxy—Bz



where the parameters are set to 6=10, B=8/3, and R=28. The second, higher-dimension
system isthe 8D Lorenz ' 96 system (Lorenz, 1996; Orrell and Smith, 2003; Orrell, 2003)

for which the equations are

dx
d_)ilzxi—1(xi+1_xi—2)_xi +F (14)

wherei=1to 8isacyclicindex, and theforcing is F=13.2. In either case, the model is as
above, while the underlying system has stochastic dynamical noise of standard deviation
AF added to the equations, updated each At=0.025 time units. The system is observed with
astochastic observational error of standard deviation S,. The noise levels are different for

the two systems.

The left panel shows the RM S forecast error and drift for each model/system pair.
The total error growth after amplification by the effects of chaosis quite similar for either
system, so it would be hard to deduce the levels of dynamical and observational noise from
the forecast error alone. The right panel shows a plot of the drift squared, along with a
linear interpolation. The difference between the two casesis now clearly visible, and the

estimates of AF and S, from the linear fit are close to the correct values.

Thevalue of # was determined by a perfect model experiment. Figure 2 is aplot of

RMS drift squared for S=0.1 and 0.2 for the Lorenz ' 63 and ' 96 models. Using Eq. 8, the
slopein either case gives S =11.5. Thisterm has arelatively small effect on the total drift

if, ashere, << AS—F in which case Eq. 12 reducesto
y

d, (t¢)? D(aF2at)k, +2s2. (15)



In applying this technique, the time step At should be sufficiently small that the
O(At?) approximations in Eq. 4 are valid and the drift calculation converges (it usually
suffices to be 3 or 4 times smaller than the doubling time tq). For this reason, the method
does not generalise well to maps where the variables may experience large changes
between iterations. The metric should be global, and account for all major error sources
(see (Orrell, 2002) for adiscussion). Results here were RM S over 500 initial conditions,

though a smaller number can aso suffice.

Of course, the system need not be chaotic for the method to be used. As an example,
Figure 3 demonstrates the technique for the Chua circuit (R. Madan, 1993; T. Matsumoto et
al., 1985). The model equations are:

dx _ o
5 = alr=x=g(x)
%:cz(x—y+z) (16)
92_
dt 3Y
where
g(x)=mlx+m°;lex+]j—|x—]j). (17)

The parameter values are heresetto ¢, =15.6, ¢, =1, m, =_78, m, :_75. Two values of

the parameter ¢, were used: at ¢, =50 the model is periodic, whileat ¢, =25 the mode is

chaotic. The error terms were set smaller than for the Lorenz systems, corresponding to the
smaller attractor dimension. The left panel shows the calculation of 5, which is 30 for the
periodic case and 16 for the chaotic case. The values of 4F and S, estimated from the slope

and intercept in the right panel are in accord with the actual values.



The method can also be used when the errors are not Gaussian. Consider for
example amodel of the Lorenz ’ 63 system Eqgs. 13, where the modél is the same as the
system but has a Reynold’ s parameter R,=28.28, an error of one percent. The effect isto

introduce amodel error of (R, — R)x in the equation for % . The resulting drift is shown

in the top | eft panel of Figure 4, for an observational error of standard deviation S, = 0.2.

Because the errors are non-stochastic, the drift does not grow in a square-root fashion, but
almost linearly. However, since observational errors are Gaussian, it still follows from Eq.
10 that the expected intercept is d, (0)= S, /2. The observational error can therefore be
estimated by interpolating the drift, using an appropriate interpol ation scheme. For

example, alinear interpolation using the first two nonzero points gave an estimate of 0.19.
The drift due to the model isthen dJ(t, ) D\/dy(tK )? -2S; - S; B°Att, , as shown by the

dashed line.

Since the error is parametric rather than stochastic, it is possible to use the drift asa
measure to optimize the model parameters. The top right panel shows the RM S forecast
error, total drift and model drift at time t=0.2 for various vaues of Ry,. The minimum of
either curve occurs at R=28 which agrees with the system. However, because the model
drift filters out the effects of observational error and chaos, and focuses on the component
of error due to the model equations, it provides a more distinct minimum and therefore
more reliable optimization (the remaining model drift after optimization is mostly dueto
the small error in estimating S, ). For more complex cases where none of the parameters
are known, the drift technique can be combined with multivariate optimization techniques
to determine the optimal parameters. Thetimet at which the drift is evaluated can be
chosen to correspond to adesired forecast time. In principle, the one-step forecast t=At
could be used, however it is preferable to use alonger time since this allows the model drift

to accumulate and provide a stronger signal relative to the observational component.
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A similar calculation is shown in the lower panels for the Chua circuit with

¢, = 25, where the model now contains two types of dynamical error, parametric and

stochastic. The model equations have the ¢, parameter set to c,,, = 25.5, an error of two

percent. Thereis also a stochastic error AF = 0.5, updated each At =0.01. The
observational error is S, = 0.2, which can again be estimated by interpolating the drift

curve. Thedrift at timet=0.1 (lower right panel) has a minimum at the correct value of

C,,, = 25. The stochastic component of error which remains cannot be corrected by
optimizing the parameters. Its magnitude can be estimated from the minimum of the model
drift in the lower right panel, which is 0.0147. This corresponds to the stochastic drift at

t=0.1. From Eq. 11 we obtain AF [ 0.465 which is close to the correct value of 0.5.

The main advantage of the drift technique isthat it links noise levelsto RMS error
growth, and does not require treatment of the observations or an estimate of the trajectory
X. It can therefore be easily applied to large models with many variables. In such models,
nonetheless, the observational data will often be smoothed or treated before use. Because
errors are measured relative to the observations y, the errors will changeif y changesto
some altered version u, and the observational errors may become correlated with the
dynamical errors. In the next section, we use the drift to determine the (sometimes peculiar)

effect of smoothing observationsin the presence of dynamical model errors.

4. The effect of smoothing schemes

Smoothing schemes can be global over al data, or local to a particular time frame

specified by an assimilation window. Beginning with the former, the essence of most
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techniques based on noise reduction or likelihood methods is to minimize a weighted sum

of forecast and observational errors

Q(u)=z[ ) Ul )+ w2 () -t )] (18)

where w is aweighting factor, and s(t) for t > t; is the model trajectory initiated at time t; on
the point u(t;) (the dependence of s(t) on the choice of u(t;) has been omitted for clarity).
Other schemes may use both the forward and backward dynamics to give an optimal fit
(Kantz and Schreiber, 1997). While the methods differ in their details, their aimisto yield a
u(t)) whichis close to the trajectory x(t;) of the presumed, idealised underlying system
(which, if derived from observations of a physical system, is not the same thing as the true

system (Smith, 2000)).

If errors are measured relative to the smoothed trajectory u(t;), then Eqg. 1 becomes

dx(t)
= olk)+"() (19

u)=xt;)+<2le;)

where g (t j ) with expected RM'S magnitude S, represents the difference between u(t;) and

X(t). In this system, the quantity S, does not then correspond to errors in the observations of
the physical system, but to the artificial residual of an optimization calculation. If the
smoothing technique is working, then this residual should be small: in particular, S, < S,.
The effect on aplot of the drift squared will be to reduce the intercept, but the estimate of
dynamical errors, determined from the slope, should be relatively unaffected (and can be
compared with any estimate obtained from the smoothing procedure). The accuracy of the

calculation should also be improved, since the data is cleaner. However errors which were
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originally iid Gaussian may not remain so after smoothing, which might need to be taken

into account.

Local smoothing techniques, such asthe 4DV AR (Cohn, 1997) variational scheme
used in geophysics, present a more complicated type of data treatment. There are many
different flavours of 4DV AR; we will use the term to mean the very simplest form, in
which each point of the trajectory u; =u(t;) is determined by minimising the cost function

C(ui)ZZ(Si (tj+k)_y(ti+k))2' (20)

k=0
Here n represents the number of pointsin the local time frame specified by the assimilation
window, and as before s(t) for t > t; is the model trajectory initiated at time t; on the point

u;. Operational 4DV AR schemes usually aso contain an additional term (u [ =x° (t j ))2 ,

where x is some prior estimate of the background state.

As an example of 4DV AR, Figure 5 shows a zoomed view of the Lorenz ' 96 errors
recalculated relative to atrgectory that has been treated by 4DV AR over an assimilation
window of 2At=0.05, so n=2in Eq. 20. A peculiar feature is that the intercept d2(0) inthe
right panel (line with circle symbols) is near zero. A similar effect has been noted with
weather forecasts in a global metric, where the error increases in a near-exact square-root
fashion over the first two days (Orrell et al., 2001), even though observational errors are
known to be large. It doesn’t seem plausible that 4ADV AR has perfectly recovered a

tragectory with §,=0; so where did all the observational error go?

To address this question, we need to consider more carefully how 4DV AR affects

the drift. Referring to Eq. 5, the main contribution of non-dynamical errorsto the drift

du(tx), calculated now relativeto u, isfrom €°(t,) and £°(t, ). These terms represent the
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difference between u(t;) and the idealised trajectory x(t;), as opposed to u(tj) and the
observations. To obtain Eq. 12, it was assumed that they are uncorrelated with the
dynamical errors, and so add in an orthogonal sense to the RMS error. Thiswill still be true
of £°(t, ), however 4DVAR will choose £°(t, ) in adirection to offset the initial errors, and
so will be correlated to an extent with the dynamical errorsin the assimilation window.
Thereforeit will not add in an orthogonal sense to the RMS drift, and the intercept d?(0) of
the drift squared can not be used directly as an estimate for S,. Theterms ¢ (t j ) though,

are chosen to minimize the cost function Eq. 19. If n=1, and the approximationsin Eq. 4

arevalid, their magnitude can be solved directly, and we find

1

(n+1)

2O s2+ a2 aF? (21)
4

which also holds approximately when n=2. Because £°(t, ) is chosen to offset the
dynamical errorsin theinitial assimilation window, the intercept of the drift squared is

reduced to afirst-order estimate of

d2(0)Os; - %AF 2At? (22)

for n=1, and somewhat lower for higher n.

While 4DV AR affects the estimate of S,, it has less impact on the dynamical

component of the drift. Solong asj> n, aﬁ(to) will be independent of the dynamical terms

g™ (t j ) , S0 the slope of the drift squared remains relatively unchanged. Indeed the estimate

of AF in Figure 5, based on alinear interpolation over points outside the initial assimilation

window, iswithin five percent of its correct value.
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One way to interpret thisis that 4DV AR uses the dynamica model error termsto
rebase u so as to reduce the short-term forecast errors relative to u. Since the dynamical

errors remain much the same, the contribution of the drift to total error depends on the

intercept dj(O). If the model were perfect, then from Eq. 22 the intercept would be about

dZ(0) = S, which is an improvement on the unsmoothed value of d2(0) = 2S_. If the

dynamical errors are large, however, the intercept can be reduced to near zero, thus
reducing the total errorsrelative to u (the intercept is unlikely to become significantly
negative, because this would require large adjustments to the observations, which would

normally be limited by the assimilation procedure).

The key difference between the 4DV AR and untreated casesis therefore that in the
former, 4DV AR has selected areference orbit for which all errors appear as dynamical
errors. Given the choice between the forecast errors in the left panel, one would say that the
smoothed errors represent a huge improvement. However the 4ADVAR version of u, with
S=0.39, isarelatively small improvement on the untreated observationsy with §, =0.5.
Thus u is only much better than the observations as a representation of truth if model errors
are small compared to observational errors. This points to an interesting contradiction about
the simplified 4DV AR scheme phrased above: it assumes that the mode is perfect, and
adjusts the observationsto fit model predictions; achieves the greatest reduction in error §,
if model error is small; yet yields the best apparent improvement in forecast accuracy when

model error islarge.
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5. Conclusions

The above results show that, by filtering the effects of chaos, the model drift makes
it possible to separate out the effects of dynamical and observational errors. It can be
applied not only to small models such as those considered here, but in principle at least to
large models such as those used in geophysics, biological oceanography (Robinson and
Lermusiaux, 2002), or economics. It is of course necessary that observations be sufficiently
frequent, however there is no need for the timestep At to approach zero. It isonly required
that the approximationsin Eqg. 4 be valid, which can be tested on a case-by-case basis. The
drift calculation works not as aresult of taking vanishingly small time steps, but by
integrating the short forecast errors over time, so that the dynamical model errors
accumulate relative to the observational term. The method can be applied to situations
where the errors are both stochastic or non-stochastic, and used as a criterion for

optimization of model parameters.

A common feature in models of observed physical systemsis the use of data
smoothing techniques, such as 4DV AR, which must be taken into account when
interpreting the results as shown in Section 4. Of course, operational assimilation schemes
vary significantly, and do not necessarily assume that the model is perfect. However, two
things are shown. Firstly, 4DV AR techniques must be used with caution if there exist large
dynamical errors, for which sguare-root growth of the kind seen in Figure 5 may be an
indicator. Secondly, the drift technique, when used to measure dynamical errors, is quite
robust to data manipulation, including that from noise reduction or variational methods. In
general, because dynamical errors act in a cumulative manner, they are resistant to attempts
at smoothing or masking. Indeed, perhaps the strongest evidence of dynamical errorsis

when procedures such as 4DV AR are unable to reduce them.
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Error growth in nonlinear systems is a complex convolution of dynamical errors,
observational errors, and magnification by the nonlinear dynamics. Itsinterpretation is
further complicated by the smoothing or treating of observations. By effectively filtering
out the effects of chaos, however, the drift calculation provides a simple method to estimate
the levels of dynamical and (treated or untreated) observational noise. Applied to physical,
biological, or economical models, it has the potential to provide a check on whether the
total error growth is primarily due to the accumulation of dynamical model errors, or the
effects of chaos. Thisis especialy useful in the modeling of large, complex systems, where

dynamica model errors can be expected to be significant.
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Figure 1. L eft panel showsforecast errorsand drift for two cases: the Lorenz’63 system with AF=25,
S,~=0.2, and the Lorenz ' 96 system with AF=15, S=0.5. Observations ar e each 4t=0.025; a smaller time
step of 0.005 was used for the Runge-Kutta integration scheme. Error growth in either caseissimilar.
Right panel showsthe drift squared: the difference between the two casesisnow clearly visible. The
linear fit gives an estimate for the Lorenz ' 63 case of 4F=23.6, S,=0.18, and for the Lorenz ’ 96 system
AF=15.2, S~=0.47, which are close to the correct values. Resultsare RMSover 500 initial conditions.
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Figure 2. Plot of drift squared for S§=0.1 and 0.2 for the Lorenz '63 and '96 models. M odel and system
arethesame, so all error isdueto the Gaussian observational noise. The slope can be used to estimate
B, and in either casegivesp =11.5. Resultsare RM S over 500 initial conditions.
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Figure 3. Left panel shows measurement of g in the Chua circuit, for two values of the parameter c;. At
c3=50 the circuit hasa periodic attractor, while at c;=25 the circuit is chaotic. Perturbation sizeis
§,=0.03 for theformer case and S=0.05 for thelatter. The values of # deter mined from the ope are 30
and 16 respectively. Right panel showsthedrift squared for the cases shown. Observations are each
At=0.01; a smaller time step of 0.001 was used for the Runge-K utta integration scheme. Predicted
errorsarein agreement with the actual terms. Resultsare RM S over 500 initial conditions.
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Figure 4. Top left panel showsplot of drift in the Lorenz’63 system, dueto a one percent error in the
Reynold’s parameter R, and an observational error of S=0.2. Observations are each 4t=0.025. The
expected y-inter cept is shown by the solid square symbol. Its value was estimated by a linear
interpolation from thefirst two points, giving an estimate of 0.19. Thedrift due to the model only,
shown by the dashed line, can then be estimated by subtracting off the observational component, as
discussed in thetext. Top right panel showsforecast error and drift at time 0.2 for variousvalues of Ry;
the optimum value is 28 which isthe same asthe system. The model drift providesthe most distinct
minimum of the three curves. Lower panels show same calculation for the Chua system with c;=25,
where the model error includes both a stochastic component and a component due to a two per cent
error in the parameter c;. Stochastic component of drift can be estimated from the minimum model
drift. Resultsare RM S over 500 initial conditions.
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Figure5. L eft panel shows zoomed view of forecast errorsfor the Lorenz’96 system, with AF=15,
§,=0.5, and 4T=0.025, for the untreated and 4DV AR case with assimilation window n=2. The ADVAR
drift (circles) takes on a square-root shape. Right panel showsthedrift squared. Thelinear fit givesan
estimate for the 4DVAR case of 4F=15.6. The value S,=0.39 was measur ed from the actual variance;
the exact value haslittleimpact on the estimate of AF. Resultsare RM Sover 500 initial conditions.



