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EDITORIAL

Nanotechnology, nanomedicine and nanosurgery
An exciting revolution in health care and med-
ical technology looms large on the horizon. Yet the
agents of change will be microscopically small,
future products of a new discipline known as
nanotechnology. Nanotechnology is the engineer-
ing of molecularly precise structures e typically
0.1 mm or smaller e and, ultimately, molecular
machines.

Nanomedicine1e4 is the application of nano-
technology to medicine. It is the preservation
and improvement of human health, using molecu-
lar tools and molecular knowledge of the human
body. Present-day nanomedicine exploits carefully
structured nanoparticles such as dendrimers,5 car-
bon fullerenes (buckyballs)6 and nanoshells7 to
target specific tissues and organs. These nanopar-
ticles may serve as diagnostic and therapeutic an-
tiviral, antitumor or anticancer agents. But as this
technology matures in the years ahead, complex
nanodevices and even nanorobots will be fabri-
cated, first of biological materials but later using
more durable materials such as diamond to
achieve the most powerful results.

Early vision

Can it be that someday nanorobots will be able to
travel through the body searching out and clearing
up diseases, such as an arterial atheromatous
plaque?8 The first and most famous scientist to
voice this possibility was the late Nobel physicist
Richard P. Feynman. In his remarkably prescient
1959 talk ‘‘There’s Plenty of Room at the Bottom,’’
Feynman proposed employing machine tools to
make smaller machine tools, these are to be
used in turn to make still smaller machine tools,
and so on all the way down to the atomic level,
noting that this is ‘‘a development which I think
cannot be avoided.’’9
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Feynman was clearly aware of the potential
medical applications of this new technology. He
offered the first known proposal for a nanorobotic
surgical procedure to cure heart disease: ‘‘A friend
of mine (Albert R. Hibbs) suggests a very interest-
ing possibility for relatively small machines. He
says that, although it is a very wild idea, it would
be interesting in surgery if you could swallow the
surgeon. You put the mechanical surgeon inside
the blood vessel and it goes into the heart and
looks around. (Of course the information has to be
fed out.) It finds out which valve is the faulty one
and takes a little knife and slices it out. .[Imag-
ine] that we can manufacture an object that
maneuvers at that level!. Other small machines
might be permanently incorporated in the body to
assist some inadequately functioning organ.’’9

Medical microrobotics

There are ongoing attempts to build microrobots
for in vivo medical use. In 2002, Ishiyama et al. at
Tohoku University developed tiny magnetically
driven spinning screws intended to swim along
veins and carry drugs to infected tissues or even to
burrow into tumors and kill them with heat.10 In
2003, the ‘‘MR-Sub’’ project of Martel’s group at
the NanoRobotics Laboratory of Ecole Polytechni-
que in Montreal tested using variable MRI magnetic
fields to generate forces on an untethered micro-
robot containing ferromagnetic particles, develop-
ing sufficient propulsive power to direct the small
device through the human body.11 Brad Nelson’s
team at the Swiss Federal Institute of Technology
in Zurich continued this approach. In 2005, they
reported the fabrication of a microscopic robot
small enough (w200 mm) to be injected into the
body through a syringe. They hope that this device
or its descendants might someday be used to de-
liver drugs or perform minimally invasive eye
blished by Elsevier Ltd. All rights reserved.
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surgery.12 Nelson’s simple microrobot has success-
fully maneuvered through a watery maze using ex-
ternal energy from magnetic fields, with different
frequencies that are able to vibrate different me-
chanical parts on the device to maintain selective
control of different functions. Gordon’s group at
the University of Manitoba has also proposed mag-
netically controlled ‘‘cytobots’’ and ‘‘karyobots’’
for performing wireless intracellular and intranu-
clear surgery.13

Manufacturing medical nanorobots

The greatest power of nanomedicine will emerge,
perhaps in the 2020s, when we can design and
construct complete artificial nanorobots using rigid
diamondoid nanometer-scale parts like molecular
gears (Fig. 1) and bearings.14 These nanorobots
will possess a full panoply of autonomous subsys-
tems including onboard sensors, motors, manipula-
tors, power supplies, and molecular computers.
But getting all these nanoscale components to
spontaneously self-assemble in the right sequence
will prove increasingly difficult as machine struc-
tures become more complex. Making complex
nanorobotic systems requires manufacturing

Figure 1 A molecular planetary gear is a mechanical
component that might be found inside a medical nanoro-
bot. The gear converts shaft power from one angular fre-
quency to another. The casing is a strained silicon shell
with predominantly sulfur termination, with each of
the nine planet gears attached to the planet carrier by
a carbonecarbon single bond. The planetary gear shown
here has not been built experimentally but has been
modeled computationally. Copyright 1995 Institute for
Molecular Manufacturing (IMM).
techniques that can build a molecular structure
by what is called positional assembly. This will in-
volve picking and placing molecular parts one by
one, moving them along controlled trajectories
much like the robot arms that manufacture cars
on automobile assembly lines. The procedure is
then repeated over and over with all the different
parts until the final product, such as a medical
nanorobot, is fully assembled.

The positional assembly of diamondoid struc-
tures, some almost atom by atom, using molecular
feedstock has been examined theoretically14,15 via
computational models of diamond mechanosyn-
thesis (DMS). DMS is the controlled addition of car-
bon atoms to the growth surface of a diamond
crystal lattice in a vacuum-manufacturing environ-
ment. Covalent chemical bonds are formed one by
one as the result of positionally constrained me-
chanical forces applied at the tip of a scanning
probe microscope apparatus, following a pro-
grammed sequence. Mechanosynthesis using sili-
con atoms was first achieved experimentally in
2003.16 Carbon atoms should not be far behind.17

To be practical, molecular manufacturing must
also be able to assemble very large numbers of
medical nanorobots very quickly. Approaches un-
der consideration include using replicative
manufacturing systems or massively parallel fabri-
cation, employing large arrays of scanning probe
tips all building similar diamondoid product struc-
tures in unison.18

For example, simple mechanical ciliary arrays
consisting of 10,000 independentmicroactuators on
a 1-cm2 chip have been made at the Cornell Nation-
al Nanofabrication Laboratory for microscale parts
transport applications, and similarly at IBM for me-
chanical data storage applications.19 Active probe
arrays of 10,000 independently actuated micro-
scope tips have been developed by Mirkin’s group
at Northwestern University for dip-pen nanolithog-
raphy20 using DNA-based ‘‘ink’’. Almost any desired
2D shape can be drawn using 10 tips in concert. An-
other microcantilever array manufactured by Proti-
veris Corp. has millions of interdigitated cantilevers
on a single chip. Martel’s group has investigated
using fleets of independently mobile wireless in-
strumented microrobot manipulators called Nano-
Walkers to collectively form a nanofactory system
that might be used for positional manufacturing
operations.21 Zyvex Corp. (www.zyvex.com) of
Richardson, TX has a $25million, five-year, National
Institute of Standards and Technology (NIST) con-
tract to develop prototype microscale assemblers
using microelectromechanical systems. This re-
search may eventually lead to prototype nanoscale
assemblers using nanoelectromechanical systems.

http://www.zyvex.com
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Respirocytes and microbivores

The abil ity to build compl ex diamondo id medi cal
nanoro bots to mole cular pre cision, and the n to
build the m cheaply enough in sufficient ly large
numbers to be useful thera peuticall y, will revo lu-
tioniz e the pra ctice of medi cine and surger y. 1 The
first theoreti cal de sign study of a compl ete medi-
cal nanorobo t ever publish ed in a peer-rev iewed
journal (in 1998) described a hy pothetica l artifici al
mecha nical re d blood cell or ‘‘re spirocyt e’’ made
of 18 b illion preci sely arr anged structur al atom s.22

The resp irocyte is a bloodborne spheri cal 1- m m di-
amo ndoid 1000-atm osphere pressure vess el with
revers ible molec ule-selec tive surface pumps pow-
ered by end ogenous serum glucos e. This nanoro bot
would deliver 236 times more oxygen to bod y tis-
sues per unit volume tha n nat ural red cells and
would ma nage carbo nic acidity, cont rolled by gas
conc entratio n sensors and an onboard nanoco m-
puter. A 5-cc thera peutic dose of 50% resp irocyte
saline suspen sion conta ining 5 trillio n nano robots
could exactly repl ace the gas car rying capaci ty of
the patient ’s entir e 5.4 l of blood.

Nanor obotic artifi cial phagocyt es called ‘‘micro-
bivores ’’ (Fig. 2) could patro l the bloodstrea m,
seekin g out and diges ting unwant ed pat hogens in-
clud ing bacte ria, virus es, or fungi. 23 Micro bivores
would achie ve compl ete clearan ce of even the
most severe septicem ic infections in hours or
less. This is far bett er than the weeks or months
need ed for ant ibioti c-assisted natu ral phagocyt ic
defen ses. The nanorobo ts do not increas e the risk
of seps is or septic shock because the pathoge ns
are completel y digested into harmle ss sugars, ami-
no aci ds and the like, which are the only effluent s
from the nanorobot.

Figure 2 Nanorobotic artificial phagocytes called ‘‘mi-
crobivores’’ could patrol the bloodstream, seeking out
and digesting unwanted pathogens. Copyright 2001
Zyvex Corp.; designer Robert Freitas, artist Forrest Bishop.
Surgical nanorobotics

Surgica l nano robots could be intr oduce d into the
body through the vascul ar system or at the ends of
cathe ters into vario us vessels and other cavi ties in
the human body. A surgica l nanorobo t, pro-
gramm ed or guided by a human surgeon, could
act as a sem i-auton omous on-site surgeon inside
the human bod y. Such a device could perform
variou s fun ctions such as searchi ng for patho logy
and then diagnosi ng and cor recting lesions b y
nanoma nipulati on, coor dinated by an onboa rd
comput er while ma intaining c ontact w ith the
supervi sing surgeo n via code d ultra sound signals.
The earli est for ms of cellular nanos urgery are
already being explored today. For example, a rap-
idly vibrating (100 Hz) micropipette with a <1-mm
tip diameter has been used to completely cut den-
drites from single neurons without damaging cell
viability.24 Axotomy of roundworm neurons was
performed by femtosecond laser surgery, after
which the axons functionally regenerated.25 A
femtolaser acts like a pair of ‘‘nano-scissors’’ by
vaporizing tissue locally while leaving adjacent tis-
sue unharmed. Femtolaser surgery has performed
the follo wing: (1) localized nanosu rgical abla tion
of focal adhesions adjoining live mammalian epi-
thelial cells,26 (2) microtubule dissection inside
yeast cells,27 (3) noninvasive intratissue nanodis-
section of plant cell walls and selective destruc-
tion of intracellular single plastids or selected
parts of them,28 and even (4) the nanosurgery of
individual chromosomes (selectively knocking out
genomic nanometer-sized regions within the nu-
cleus of living Chinese hamster ovary cells29).
These procedures do not kill the cells upon which
the nanosurgery was performed. Atomic force mi-
croscopes have also been used for bacterium cell
wall dissection in situ in aqueous solution, with
26 nm thick twisted strands revealed inside the
cell wall after mechanically peeling back large
patches of the outer cell wall.30

Future nanorobots equipped with operating
instruments and mobility will be able to perform
precise and refined intracellular surgeries which
are beyond the capabilities of direct manipulation
by the human hand. We envision biocompatible31

surgical nanorobots that can find and eliminate
isolated cancerous cells, remove microvascular
obstructions and recondition vascular endothelial
cells, perform ‘‘noninvasive’’ tissue and organ
transplants, conduct molecular repairs on trauma-
tized extracellular and intracellular structures,
and even exchange new whole chromosomes for
old ones inside individual living human cells.
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