
A conversation with Professor Shaul Druckmann, September 5, 2019 
 
Participants 
 

● Professor Shaul Druckmann - Assistant Professor of Neurobiology and of Psychiatry 
and Behavioral Sciences, Stanford University 

● Joseph Carlsmith - Research Analyst, Open Philanthropy  
 

Note: These notes were compiled by Open Philanthropy and give an overview of the major 
points made by Prof. Druckmann. 
 

Summary 
 
Open Philanthropy spoke with Prof. Shaul Druckmann of Stanford University as part of its 
investigation of what we can learn from the brain about the computational power 
(“compute”) sufficient to match human-level task performance. The conversation focused 
on the compute necessary to model different processes in the brain. 
 

Categorization of neural processes 
 
Mr. Carlsmith suggested the following categorization of signaling processes in the brain: 
 

● canonical neuron signaling (e.g., mappings from synaptic inputs to firing decisions, 
and from pre-synaptic spiking to immediate impacts on the post-synaptic neuron), 

● learning (e.g., experience-dependent changes to neurons and synapses over time), 
● alternative signaling mechanisms (e.g. glia, neuromodulation, ephaptic effects, and 

others), 
● other unknowns. 

 
This sounded like a reasonable classification to Prof. Druckmann.  
 
Setting aside plasticity, most people assume that modeling the immediate impact of a 
pre-synaptic spike on the post-synaptic neuron is fairly simple. Specifically, you can use a 
single synaptic weight, which reflects the size of the impact of a spike through that synapse 
on the post-synaptic membrane potential. 
 

Experimental barriers 
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Here are a few examples of experimental barriers faced by neuroscientists, which make it 
difficult to determine the level of biophysical detail models need to include in order to 
capture the dynamics relevant to the brain’s task-performance in vivo. 
 
Uncertainty about inputs and outputs 
 
It is very difficult to tell what spatio-temporal patterns of inputs are actually arriving at a 
neuron’s synapses in vivo. You can use imaging techniques, but this is very messy.  
 
Similarly, it is very difficult to tell how a neuron responds to arbitrary patterns of synaptic 
input. You can stimulate a pre-synaptic neuron and observe the response, but you can’t 
stimulate all pre-synaptic neurons in different combinations. And you can only patch-clamp 
one dendrite while also patch-clamping the soma (and this already requires world-class 
skill). 
 
Ion channel densities 
 
Technology for measuring the properties relevant to detailed biophysical modeling has 
improved very little in the past 20 years (though technology for recording the spiking of 
neurons has improved a huge amount). Neurons can have a few dozen of some 200-300 
types of ions channels, which are strongly non-linear, with large effects, and which are 
spread out across the neuron. These cannot be modeled based on recordings of neuron 
spiking activity alone, and staining neurons for these ion channels is very difficult.  
 
In vitro experiments 
 
Experiments involving current injection into the soma are typically done in vitro, because it 
is easier to patch-clamp neurons in vitro. 
 
Limitations of animal models 
 
The tasks that neuroscientists tend to study in model animals are very simple. Many, for 
example, are some variant on a two-alternative forced choice task (e.g., teaching an animal 
to act differently, depending on which of two stimuli it receives). This task is extremely 
easy to model, both with a small number of highly simplified neurons, and with models that 
do not look like neurons at all. In this sense, tasks like these provide very little evidence 
about what level of modeling detail is necessary for reproducing more interesting behavior.  
 

Attempts at simplification 
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We can distinguish between two approaches to the brain’s biophysical complexity. One 
camp argues: “let’s not assume we need to include a given type of biophysical complexity in 
our models, until doing so becomes necessary.” The other argues: “If this complexity were 
in fact important, we would not currently be able to tell.” Prof. Druckmann tends to be in 
this latter camp, though he thinks that the former is a fair and practical approach.  
 
Simplifying complex models 
 
Some neuroscientists have explored the possibility that detailed biophysical models can be 
reduced to simpler neuron models or equivalent deep neural networks. Biophysical models 
involve a very large number of differential equations, so we know that there is some input 
regime in which it would be impossible to capture what this model does without a giant 
neural network, since there are a large number of non-linear operations that are difficult to 
approximate. But we don’t know how much of that regime is actually sampled in the 
neuron’s normal life.  
 
What’s more, many dendritic non-linearities contribute more strongly when triggered by 
synaptic inputs arriving at similar times to similar dendritic locations (“clustering”), and 
there is evidence that such clustering occurs in vivo. In this sense, a random input regime is 
unrepresentative, more weakly non-linear than it should be and therefore may be 
particularly easy to model. 
 
Prof. Druckmann does not think that appeals to the manageable compute burdens of 
modeling of dendrites as comparatively small multi-layer neural networks (for example, 
with each dendritic sub-unit performing its own non-linearity on a subset synaptic inputs) 
definitively  address the possibility that modeling dendritic non-linearities requires very 
large amounts of compute. Small multi-layer network models are really just a guess about 
what’s required to capture the neuron’s response to realistic inputs.  
 
For example, in a recent unpublished paper, David Beniaguev, Idan Segev, and Michael 
London found that adding NMDA currents to the detailed model increased the size of the 
neural network required to replicate its outputs to seven layers (the long time-constant of 
NMDA receptors increases the complexity of the neuron’s input-output transformation). 
Adding in other neuron features could require many more layers than this. 10 layers might 
be manageable, but 500 is a pain, and the true number is not known. 
 
Neuron modeling competition 
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One neuron modeling competition proceeded by assuming that dendritic inputs are 
randomly distributed, and that dendrites just integrate inputs linearly -- assumptions used 
to create a pattern of current to be injected into the soma of the neurons whose spikes 
were recorded. If these assumptions are true, then there is good reason to think that fairly 
simple models are adequate. However, these assumptions are very friendly to the 
possibility of non-detailed modeling. The point of complex models is to capture the 
possibly non-linear dendritic dynamics that determine what current goes into the soma: 
after that point, modeling is much easier. And we don’t know to what extent non-random 
inputs trigger these dendritic dynamics. 
 
There were also a few other aspects of this neuron modeling competition that were not 
optimal. For example, it was fairly easy to game the function used to evaluate the models. 
 
More complex models 
 
Prof. Druckmann does not think it obvious that the kind of multi-compartmental 
biophysical models neuroscientists generally use are adequate to capture what a neuron 
does, as these models, too, involve a huge amount of simplification. Calcium dynamics are 
the most egregious example. Real neurons clearly do things with calcium, which moves 
around the cell in a manner that has consequences for e.g. calcium-dependent ion channels. 
Most biophysical models, however, simplify this a lot, and in general, they treat ions just as 
concentrations affected by currents.  
 
There are also probably other things that matter that these models leave out, but that we 
aren’t aware of. 
 
Examples of the relevance of low-level details 
 
There are some edge cases where specialized biophysical dynamics are known to be 
important -- for example, in the Calyx of Held, a synapse that allows for precise timing in 
the auditory cortex. But it’s not clear how generic such cases are.  
 

Hypotheses about the brain’s architecture 
 
In the 1980s and 1990s, many neuroscientists thought of the brain’s computations in terms 
of sensory-motor transformations. However, it is unclear that you actually need a huge 
brain for this: flies, for example, can see and walk around fairly well, but their brains are 
tiny.  
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Prof. Druckmann thinks that the need for large brains grew out of the need to create more 
sophisticated models of the world. It’s easy to underestimate the complexity of the 
world-models humans work with, which involve millions of objects with arbitrary 
dynamics in space and time. The brain is keeping a running tally of many things in the 
world, without your conscious knowledge. For example, if one of your roommates drinks a 
lot of the milk while you’re asleep, the next morning you will lift up the container too 
forcefully. 
 
Matching the brain’s modeling in this respect is beyond the current reach of deep neural 
networks, and may require greater understanding of the logic behind the brain’s 
architecture. For example, the brain is much more recurrent than deep neural networks. It 
would be nice to know what role this recurrence is playing. 
 
There is also another school of thought that hypothesizes that the brain’s complexity 
emerges centrally in order to facilitate efficient learning (much more efficient than current 
reinforcement learning systems). Neuroscientists aren’t currently in a position to tell if this 
is true.  
 

The possibility of simplification 
 
There is no evidence that replicating the brain’s task-performance strictly requires 
replicating its biophysical dynamics, and it’s unclear what such evidence would even look 
like. After all, we can model almost any input-output transformation using a sufficiently 
complex neural network. 
 
The argument would need to be that the brain’s methods are much more efficient. But in 
order to make and evaluate this type of argument, we need to understand the brain’s 
computation much better than we do, and we are very far away from being able to evaluate 
such claims using actual experiments.  
 
Prof. Druckmann would be extremely surprised if future working models of human 
intelligence incorporate large amounts of biophysical detail (e.g., molecular dynamics). He 
is confident that the type of non-linearities generated by real biophysics can be more 
efficiently emulated in different ways in a model. Therefore, these models will look more 
like giant networks of simple artificial neurons than giant networks of Hodgkin-Huxley 
models.  
 
The route forward 
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The question is: what is the best route to achieving the type of understanding necessary to 
know which aspects of the brain’s architecture can be bypassed? In this respect, Prof. 
Druckmann is sympathetic to approaches that proceed from the bottom up -- e.g., by 
attempting to understand how the brain works in detail, as a means to understanding how 
to simplify it.  
 
This sympathy emerges centrally out of pessimism about the progress made by alternative 
approaches. Prof. Druckmann feels that neuroscience hasn’t yet managed to make a lot of 
progress on the general question of the detailed logic of building a brain, or a cortical area. 
A conceptual understanding of computation in strongly recurrent, broadly distributed 
networks is still in its infancy. This is true both of conceptual/formal approaches to the 
problem, and of approaches in engineering and robotics.  
 
In this sense, Prof. Druckmann believes that work in the 80s by David Marr was overly 
optimistic about how easy biology would be (though he admires Marr’s work regardless). 
Outside of early sensory systems, we have made very little progress in understanding the 
brain at a normative or algorithmic level. This makes Marr’s research program very 
difficult. Accordingly, attempting to proceed via the implementation level is the option that 
remains. 
 
Constraints faced by the brain 
 
Once we figure out how the brain works, though, there’s no reason to think you couldn’t 
implement the same computations in a different way. Any time you have a dynamical 
system, and you’re only interested in one slice of that system’s behavior, it’s unlikely that 
replicating the whole system is the only way to replicate that slice.  
 
This seems especially unlikely given that the brain was designed to meet many constraints 
that would not apply to human engineers. For example, artificial systems probably won’t 
need to include the same repertoire of ion channels, as non-linearities can be encoded in 
different ways. Similarly, the brain has to learn at a certain rate, has to be specifiable 
genetically, has to fit through the birth canal and so forth.  

 
Sources of neuroscientific opinion 
 
Prof. Druckmann believes that at our current conceptual understanding of neural 
computation, many statements in neuroscience to the effect that “we can reduce X to Y” are 
based mostly on personal opinion,  sometimes influenced in part by what current 
technology allows us to do, rather than in well-justified, first-principles reasoning. The 
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history of neuroscience sometimes seems like a process in which even though some 
process or level of detail is important, if it is very difficult to understand it, the community 
often shifts away from that level, and moves on to another level. 
 
The decrease in investment of the general neuroscience community in single neuron 
biophysics is one example. The field has basically given up on detailed biophysical 
modeling. In the 1990s, there were many papers in top journals on the topic, but now there 
are almost none. Prof. Druckmann expects that the large majority of people who do not 
work in early sensory systems would say that detailed biophysical modeling is unnecessary 
for understanding the brain’s computation.  
 
A charitable rationale for this appeals to the possibility that more detailed dynamics 
average out at the level of neuron populations. But Prof. Druckmann does not think that 
there are real results that definitively suggest this. Rather, he thinks that people don’t do 
detailed modeling because these models are ill-constrained at the current level of data that 
can be collected and it would require major investment to get the relevant data. 
 
Prof. Druckmann also does not think that neuroscientists have much of an incentive to 
settle the debate about what level of modeling detail is adequate to match the human 
brain’s computational complexity. Most do not expect the timescale of their career to 
include a working copy of the human brain, the work they are currently doing does not 
require detailed modeling, and it’s very hard to have informed views about what will 
ultimately be necessary. 
 

All Open Philanthropy conversations are available at 
http://www.openphilanthropy.org/research/conversations 
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