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This is an compilation of solutions for the 2019 JMO. Some of the solutions
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§0 Problems

1. There are a+ b bowls arranged in a row, numbered 1 through a+ b, where a and
b are given positive integers. Initially, each of the first a bowls contains an apple,
and each of the last b bowls contains a pear. A legal move consists of moving an
apple from bowl i to bowl i+ 1 and a pear from bowl j to bowl j − 1, provided
that the difference i− j is even. We permit multiple fruits in the same bowl at the
same time. The goal is to end up with the first b bowls each containing a pear and
the last a bowls each containing an apple. Show that this is possible if and only if
the product ab is even.

2. For which pairs of integers (a, b) do there exist functions f : Z→ Z and g : Z→ Z
obeying

f(g(x)) = x+ a and g(f(x)) = x+ b

for all integers x?

3. Let ABCD be a cyclic quadrilateral satisfying AD2 +BC2 = AB2. The diagonals
of ABCD intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC.
Show that line PE bisects CD.

4. Let ABC be a triangle with ∠B > 90◦ and let E and F be the feet of the altitudes
from B and C. Can line EF be tangent to the A-excircle?

5. Let n be a nonnegative integer. Determine the number of ways to choose sets
Sij ⊆ {1, 2, . . . , 2n}, for all 0 ≤ i ≤ n and 0 ≤ j ≤ n (not necessarily distinct), such
that

• |Sij | = i+ j, and

• Sij ⊆ Skl if 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

6. Let m and n be relatively prime positive integers. The numbers m
n and n

m are
written on a blackboard. At any point, Evan may pick two of the numbers x and
y written on the board and write either their arithmetic mean 1

2(x + y) or their

harmonic mean 2xy
x+y . For which (m,n) can Evan write 1 on the board in finitely

many steps?
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§1 JMO 2019/1, proposed by Jim Propp

There are a + b bowls arranged in a row, numbered 1 through a + b, where a and b are given

positive integers. Initially, each of the first a bowls contains an apple, and each of the last b bowls

contains a pear. A legal move consists of moving an apple from bowl i to bowl i+ 1 and a pear

from bowl j to bowl j − 1, provided that the difference i− j is even. We permit multiple fruits in

the same bowl at the same time. The goal is to end up with the first b bowls each containing a

pear and the last a bowls each containing an apple. Show that this is possible if and only if the

product ab is even.

First we show that if ab is even then the goal is possible. We prove the result by
induction on a+ b.

• If min(a, b) = 0 there is nothing to check.

• If min(a, b) = 1, say a = 1, then b is even, and we can swap the (only) leftmost
apple with the rightmost pear by working only with those fruits.

• Now assume min(a, b) ≥ 2 and a+ b is odd. Then we can swap the leftmost apple
with rightmost pear by working only with those fruits, reducing to the situation of
(a− 1, b− 1) which is possible by induction (at least one of them is even).

• Finally assume min(a, b) ≥ 2 and a+ b is even (i.e. a and b are both even). Then
we can swap the apple in position 1 with the pear in position a+ b− 1, and the
apple in position 2 with the pear in position a+ b. This reduces to the situation of
(a− 2, b− 2) which is also possible by induction.

Now we show that the result is impossible if ab is odd. Define

X = number apples in odd-numbered bowls

Y = number pears in odd-numbered bowls.

Note that X − Y does not change under this operation. However, if a and b are odd,
then we initially have X = 1

2(a + 1) and Y = 1
2(b − 1), while the target position has

X = 1
2(a− 1) and Y = 1

2(b+ 1). So when ab is odd this is not possible.

Remark. Another proof that ab must be even is as follows.
First, note that apples only move right and pears only move left, a successful operation

must take exactly ab moves. So it is enough to prove that the number of moves made must
be even.

However, the number of fruits in odd-numbered bowls either increases by +2 or −2 in
each move (according to whether i and j are both even or both odd), and since it ends up
being the same at the end, the number of moves must be even.

Alternatively, as pointed out in the official solutions, one can consider the sums of squares
of positions of fruits. The quantity changes by[

(i+ 1)2 + (j − 1)2
]
− (i2 + j2) = 2(i− j) + 2 ≡ 2 (mod 4)

at each step, and eventually the sums of squares returns to zero, as needed.
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§2 JMO 2019/2, proposed by Ankan Bhattacharya

For which pairs of integers (a, b) do there exist functions f : Z→ Z and g : Z→ Z obeying

f(g(x)) = x+ a and g(f(x)) = x+ b

for all integers x?

The answer is if a = b or a = −b. In the former case, one can take f(x) ≡ x+ a and
g(x) ≡ x. In the latter case, one can take f(x) ≡ −x+ a and g(x) = −x.

Now we prove these are the only possibilities. First:

Claim — The functions f and g are bijections.

Proof. Surjectivity is obvious. To see injective, note that if f(u) = f(v) then g(f(u)) =
g(f(v)) =⇒ u+ b = v + b =⇒ u = v, and similarly for g.

Note also that for any x, we have

f(x+ b) = f(g(f(x))) = f(x) + a

g(x+ a) = g(f(g(x))) = g(x) + b.

If either a is zero or b is zero, we immediately get the other is zero, and hence done. So
assume ab 6= 0.

If |b| > |a|, then two of

{f(0), f(1), . . . , f(b− 1)} (mod |a|)

coincide, which together with repeatedly applying the first equation above will then give
a contradiction to injectivity of f . Similarly, if |a| > |b| swapping the roles of f and g
(and a and b) will give a contradiction to injectivity of g. This completes the proof.

Remark. Here is a way to visualize the argument, so one can see pictorially what is going
on. We draw two parallel number lines indexed by Z. Starting from 0, we draw red arrow
from 0 to f(0), and then a blue arrow from f(0) to g(f(0)) = b, and then a red arrow from
b to g(b) = f(0) + a, and so on. These arrows can be extended both directions, leading to
an infinite “squaretooth” wave. The following is a picture of an example with a, b > 0.

Z

Z

0 b 2b

f(0)− a f(0) f(0) + a f(0) + 2a

f

f f f
g

g g

g

The problem is essentially trying to decompose our two copies of Z into multiple squaretooth
waves. We expect for this to be possible, the “width” of the waves on the top and bottom
must be the same — i.e., that |a| = |b|.
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Remark. This also suggests how to classify all functions f and g satisfying the condition.
If a = b = 0 then any pair of functions f and g which are inverses to each other is okay.
There are thus uncountably many pairs of functions (f, g) here.

If a = b > 0, then one sets f(0), f(1), . . . , f(a − 1) as any values which are distinct
modulo b, at which point f and g are uniquely determined. An example for a = b = 3 is

f(x) =


x+ 42 x ≡ 0 (mod 3)

x+ 13 x ≡ 1 (mod 3)

x− 37 x ≡ 2 (mod 3),

g(x) =


x− 39 x ≡ 0 (mod 3)

x+ 40 x ≡ 1 (mod 3)

x− 10 x ≡ 2 (mod 3).

The analysis for a = b < 0 and a = −b are similar, but we don’t include the details here.
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§3 JMO 2019/3, proposed by Ankan Bhattacharya

Let ABCD be a cyclic quadrilateral satisfying AD2 + BC2 = AB2. The diagonals of ABCD

intersect at E. Let P be a point on side AB satisfying ∠APD = ∠BPC. Show that line PE

bisects CD.

Here are three solutions. The first two are similar although the first one makes use of
symmedians. The last solution by inversion is more advanced.

First solution using symmedians We define point P to obey

AP

BP
=
AD2

BC2
=
AE2

BE2

so that PE is the E-symmedian of 4EAB, therefore the E-median of 4ECD.
Now, note that

AD2 = AP ·AB and BC2 = BP ·BA.
This implies 4APD ∼ 4ABD and 4BPC ∼ 4BDP . Thus

]DPA = ]ADB = ]ACB = ]BCP

and so P satisfies the condition as in the statement (and is the unique point to do so), as
needed.

Second solution using only angle chasing (by proposer) We again re-define P to obey
AD2 = AP · AB and BC2 = BP · BA. As before, this gives 4APD ∼ 4ABD and
4BPC ∼ 4BDP and so we let

θ
def
= ]DPA = ]ADB = ]ACB = ]BCP.

Our goal is to now show PE bisects CD.
Let K = AC ∩ PD and L = AD ∩ PC. Since ]KPA = θ = ]ACB, quadrilateral

BPKC is cyclic. Similarly, so is APLD.

A B

D

P

C

K

L
E
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Finally AKLB is cyclic since

]BKA = ]BKC = ]BPC = θ = ]DPA = ]DLA = ]BLA.

This implies ]CKL = ]LBA = ]DCK, so KL ‖ BC. Then PE bisects BC by Ceva’s
theorem on 4PCD.

Third solution (using inversion) By hypothesis, the circle ωa centered at A with radius
AD is orthogonal to the circle ωb centered at B with radius BC. For brevity, we let Ia
and Ib denote inversion with respect to ωa and ωb.

We let P denote the intersection of AB with the radical axis of ωa and ωb; hence
P = Ia(B) = Ib(A). This already implies that

]DPA
Ia= ]ADB = ]ACB

Ib= ]BPC

so P satisfies the angle condition.

A B

D

P

C

K

L

Claim — The point K = Ia(C) lies on ωb and DP . Similarly L = Ib(D) lies on ωa

and CP .

Proof. The first assertion follows from the fact that ωb is orthogonal to ωa. For the other,
since (BCD) passes through A, it follows P = Ia(B), K = Ia(C), and D = Ia(D) are
collinear.

Finally, since C, L, P are collinear, we get A is concyclic with K = Ia(C), L = Ia(L),
B = Ia(B), i.e. that AKLB is cyclic. So KL ‖ CD by Reim’s theorem, and hence PE
bisects CD by Ceva’s theorem.
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§4 JMO 2019/4, proposed by Ankan Bhattacharya, Zack
Chroman, Anant Mudgal

Let ABC be a triangle with ∠B > 90◦ and let E and F be the feet of the altitudes from B and

C. Can line EF be tangent to the A-excircle?

We show it is not possible, by contradiction (assuming EF is indeed tangent). Thus
BECF is a convex cyclic quadrilateral inscribed in a circle with diameter BC. Note
also that the A-excircle lies on the opposite side from A as line EF , since A, E, C are
collinear in that order.

First solution by similarity Note that 4AEF is similar to 4ABC (and oppositely
oriented). However, since they have the same A-exradius, it follows they are congruent.

B

CE

F

A

Consequently we get EF = BC. But this implies BFCE is a rectangle, contradiction.

Second length solution by tangent lengths By t(•) we mean the length of the tangent
from P to the A-excircle. It is a classical fact for example that t(A) = s. The main idea
is to use the fact that

a cosA = EF = t(E) + t(F ).

Here EF = a cosA follows from the extended law of sines applied to the circle with
diameter BC, since there we have EF = BC sin∠ECF = a sin∠ACF = a cosA. We
may now compute

t(E) = t(A)−AE = s− c cosA

t(F ) = t(A)−AF = s− b cosA.

Therefore,

a cosA = 2s− (b+ c) cosA =⇒ (a+ b+ c) cosA = 2s

=⇒ cosA = 1.

This is an obvious contradiction.

Remark. On the other hand, there really is an equality case with A being some point at
infinity (meaning cosA = 1). So, this problem is “sharper” than one might expect; the
answer is not “obviously no”.

Third solution by Pitot and trigonometry In fact, the t(•) notation from the previous
solution gives us a classical theorem once we note the A-excircle is tangent to all four
lines EF , BC, BF and CE:
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Claim (Pitot theorem) — We have BF + EF = BC + CE.

Proof. Here is a proof for completeness. By t(B) we mean the length of the tangent from
B to the A-excircle, and define t(C), t(E), t(F ) similarly. Then

BF = t(B)− t(F ) EF = t(E) + t(F )

BC = t(B) + t(C) CE = t(E)− t(C)

and summing gives the result.

A

B C

E

F

J

We now calculate all the lengths using trigonometry:

BC = a

BF = a cos(180◦ −B) = a cos(A+ C)

CE = a cosC

EF = BC sin∠ECF = a sin∠ACF = a cosA.

Thus, we apparently have

cos(A+ C) + cosA = 1 + cosC

but this is impossible since cos(A + C) < cosC (since A + C = 180 − B < 90◦) and
cosA < 1.

Fourth solution by Pitot and Ptolemy (Evan Chen) We give a trig-free way to finish
from Pitot’s theorem

BF + EF = BC + CE.

Assume that x = BF , y = CE, and BC = 1; then the above relation becomes

1 + y − x = BC + CE −BF = EF = EF · 1 = xy +
√

(1− x2)(1− y2)
with the last step by Ptolemy’s theorem. This rearranges to give

(1 + y)(1− x) =
√

(1− x2)(1− y2) =⇒ 1 + y

1− y =
1 + x

1− x =⇒ x = y

but that means BECF is a rectangle: contradicting the fact that lines BE and CF meet
at a point A.
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Fifth solution, by angle chasing only! Let J denote the A-excenter. Then J should be
the intersection of the internal bisectors of ∠FEC and ∠FBC, so it is the midpoint of
arc F̂C on the circle with diameter BC.

A

B C

E

F

J

But now we get ∠BJC = 90◦ from J lying on this circle. Yet ∠BJC = 90◦ − 1
2∠A in

general, so ∠A = 0◦ which is impossible.

Sixth solution (Zuming Feng) This is similar to the preciding solution, but phrased
using contradiction and inequalities. We let X and Y denote the tangency points of the
A-excircle on lines AB and AC. Moreover, let J denote the A-excenter.

B

C
E

F

J

A

X

Y

Note that AB > AE and AX = AY , therefore BX < EY . By considering the
right triangles XBJ and Y EJ (which both have JX = JY ), we conclude tan∠XBJ >
tan∠Y EJ , thus

∠XBJ > ∠Y EJ.

However, if line EF was actually tangent to the A-excircle, we would have

2∠XBJ = ∠XBC = ∠FBC = ∠FEC = ∠FEY = 2∠JEY

which is a contradiction.

Seventh solution, by complex numbers, for comedic effect (Evan Chen) Let us
denote the tangency points of the A-excircle with sides BC, CA, AB as x, y, z. Assume
moreover that line EF is tangent to the A-excircle at a point P .
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Also, for brevity let s = xy + yz + zx. Then, we have

E =
2py

p+ y
=

1

2
(b+ y + y − y2b) =

zx

z + x
+ y − y2

z + x

=⇒ 2
1
p + 1

y

=
xy + xz + zx− y2

z + x
=⇒

1
p + 1

y

2
=

x+ z

s− y2 .

Similarly by considering the point F ,

1
p + 1

z

2
=

x+ y

s− z2 .

Thus we can eliminate P and obtain

=⇒
1
y − 1

z

2
=

x+ z

s− y2 −
x+ y

s− z2 =
−s(y − z) + x(y2 − z2) + (y3 − z3)

(s− y2)(s− z2)

⇐⇒ 1

2yz
=
s− x(y + z)− (y2 + yz + z2)

(s− y2)(s− z2) =
−(y2 + z2)

(s− y2)(s− z2)
⇐⇒ 0 = (s− y2)(s− z2) + 2yz(y2 + z2)

= [x(y + z) + y(z − y)] [x(y + z) + z(y − z)] + 2yz(y2 + z2)

= x2(y + z)2 − (y − z)2 · x(y + z) + yz(2y2 + 2z2 − (y − z)2)
= x2(y + z)2 − (y − z)2 · x(y + z) + yz(y + z)2

= xyz(y + z)

[
x

y
+
x

z
− y

z
− z

y
+ 2 +

y

x
+
z

x

]
.

However, 4XY Z is obtuse with ∠X > 90◦, we have y + z 6= 0. Note that

x
y + y

x = 2 Re x
y = 2 cos(2∠XZY )

x
z + z

x = 2 Re x
z = 2 cos(2∠XY Z)

y
z + z

y = 2 Re y
z < 2

and since cos(2∠XZY ) + cos(2∠XY Z) > 0 (say by sum-to-product), we are done.
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§5 JMO 2019/5, proposed by Ricky Liu

Let n be a nonnegative integer. Determine the number of ways to choose sets Sij ⊆ {1, 2, . . . , 2n},
for all 0 ≤ i ≤ n and 0 ≤ j ≤ n (not necessarily distinct), such that

• |Sij | = i+ j, and

• Sij ⊆ Skl if 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ n.

The answer is (2n)! · 2n2
. First, we note that ∅ = S00 ( S01 ( · · · ( Snn = {1, . . . , 2n}

and thus multiplying by (2n)! we may as well assume S0i = {1, . . . , i} and Sin =
{1, . . . , n+ i}. We illustrate this situation by placing the sets in a grid, as below for
n = 4; our goal is to fill in the rest of the grid.

1234 12345 123456 1234567 12345678
123
12
1
∅


We claim the number of ways to do so is 2n

2
. In fact, more strongly even the partial

fillings are given exactly by powers of 2.

Claim — Fix a choice T of cells we wish to fill in, such that whenever a cell is in T ,
so are all the cells above and left of it. (In other words, T is a Young tableau.) The
number of ways to fill in these cells with sets satisfying the inclusion conditions is
2|T |.

An example is shown below, with an indeterminate set marked in red (and the rest of T
marked in blue). 

1234 12345 123456 1234567 12345678
123 1234 12346 123467
12 124 1234 or 1246
1 12
∅ 2


Proof. The proof is by induction on |T |, with |T | = 0 being vacuous.

Now suppose we have a corner

[
B C
A S

]
where A, B, C are fixed and S is to be chosen.

Then we may write B = A ∪ {x} and C = A ∪ {x, y} for x, y /∈ A. Then the two choices
of S are A ∪ {x} (i.e. B) and A ∪ {y}, and both of them are seen to be valid.

In this way, we gain a factor of 2 any time we add one cell as above to T . Since we
can achieve any Young tableau in this way, the induction is complete.
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§6 JMO 2019/6, proposed by Yannick Yao

Let m and n be relatively prime positive integers. The numbers m
n and n

m are written on a

blackboard. At any point, Evan may pick two of the numbers x and y written on the board and

write either their arithmetic mean 1
2 (x+ y) or their harmonic mean 2xy

x+y . For which (m,n) can

Evan write 1 on the board in finitely many steps?

We claim this is possible if and only m + n is a power of 2. Let q = m/n, so the
numbers on the board are q and 1/q.
Impossibility: The main idea is the following.

Claim — Suppose p is an odd prime. Then if the initial numbers on the board are
−1 (mod p), then all numbers on the board are −1 (mod p).

Proof. Let a ≡ b ≡ −1 (mod p). Note that 2 6≡ 0 (mod p) and a+ b ≡ −2 6≡ 0 (mod p).
Thus a+b

2 and 2ab
a+b both make sense modulo p and are equal to −1 (mod p).

Thus if there exists any odd prime divisor p of m+ n (implying p - mn), then

q ≡ 1

q
≡ −1 (mod p).

and hence all numbers will be −1 (mod p) forever. This implies that it’s impossible to
write 1, whenever m+ n is divisible by some odd prime.

Construction: Conversely, suppose m+ n is a power of 2. We will actually construct
1 without even using the harmonic mean.

q q−1q+q−1

2
3q+q−1

4
q+3q−1

4

7q+q−1

8
5q+3q−1

8
3q+5q−1

8
q+7q−1

8

Note that
n

m+ n
· q +

m

m+ n
· 1

q
= 1

and obviously by taking appropriate midpoints (in a binary fashion) we can achieve this
using arithmetic mean alone.
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