
On the Impossibility of Batch Update
for Cryptographic Accumulators

Philippe Camacho and Alejandro Hevia

Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, 3er piso, Santiago, Chile.

{pcamacho,ahevia}@dcc.uchile.cl

Abstract. A cryptographic accumulator is a scheme where a set of elements is represented by a single
short value. This value, along with another value called witness, allows to prove membership into the
set. If new values are added or existent values are deleted from the accumulator, then the accumulated
value changes and the witnesses need to be updated. In their survey on accumulators [FN02], Fazio
and Nicolisi noted that Camenisch and Lysyanskaya’s construction[CL02] was such that the time to
update a witness after m changes to the accumulated value was proportional to m. They posed the
question whether batch update was possible, namely if a cryptographic accumulator where the time to
update witnesses is independent from the number of changes in the accumulated set exists. Recently,
Wang et al. answered positively by giving a construction for an accumulator with batch update in
[WWP07,WWP08]. In this work, we show that the construction is not secure by exhibiting an attack.
Moreover, we prove it cannot be fixed. If the accumulated value has been updated m times then the
time to update a witness must be at least Ω(m) in the worst case.

Keywords: cryptographic accumulators, batch update.

1 Introduction

An accumulator is a scheme that hashes elements of a set X into a single, short size value called the
accumulated value. Then it is possible to prove membership into X of an element x using a verification
algorithm that takes as input the accumulated value, the element x, and some value called witness. The first
construction of such scheme is due to Benaloh and De Mare [BdM94]. Several improvements later followed,
especially in the work of Camenisch and Lysanskaya [CL02] who showed how to build dynamic accumulators
(where the accumulated set can evolve), and how to use them as a tool to efficiently implement anonymous
credentials. In their survey on accumulators [FN02], Fazio and Nicolisi pointed out that, in the Camenisch
and Lysyanskaya’s construction, the time to recompute the witnesses once the accumulated set has been
modified was proportional to m, the number of changes of the accumulated value. This raised a natural
question: “Is it possible to construct dynamic accumulators in which the update of several witnesses can be
performed using a constant1 size update information?”

Wang et al. [WWP07,WWP08] answered positively this question by showing a construction that allows
batch update. Unfortunately, we show that this construction is not secure. Moreover, we prove that there is
no way to fix Wang et al.’s accumulator by giving a lower bound of Ω(m) in the time required to update
witnesses after m updates.

Related Work. The first construction for cryptographic accumulators with batch update was given in
[WWP07] and later revised in [WWP08]. Even though no other construction is known, the existence of
accumulators with batch update seems to have been taken for granted, and in fact assumed to exist in
subsequent work. Damgärd and Triandopoulos [DT08] cite their availability as an example of an accumulator

1 Constant in the number of update operations.

construction based on the Paillier cryptosystem. Camenisch et al. [CKS09] also mentioned Wang et al.’s
accumulator. We remark that our results also apply to any batch update variant of the accumulator schemes
proposed in [DT08,LLX07], which allow proving both membership and non-membership.

Organization of the paper. First, in Section 2, we briefly recall the notion of a dynamic accumulator,
and Section 3 we outline Wang et al.’s construction [WWP07,WWP08]. Our attack is described next in
Section 4. The general impossibility result is then presented in Section 5. Finally, we conclude in section 6.

2 Dynamic Accumulators

In this section, we briefly review the notion of dynamic accumulators.

Syntax. Accumulator schemes consider two types of participants: a manager who initializes the parameters,
computes the accumulated value and the witnesses, and users, whose role is to verify the membership of
elements into the set and possibly ask for elements insertion/deletion to the manager.

Definition 1. [CL02] Let k ∈ N be the security parameter. An accumulator scheme Acc consists of the
following algorithms.

– KeyGen(1k): this probabilistic algorithm takes k in unary as input and returns a pair of public and private
keys (PK,SK) and the initial accumulated value for the empty set Acc∅.

– AccVal(X,Acc∅, PK, [SK]): given a finite set of elements X (polynomial size in k), a public key, and the
initial accumulated value Acc∅, this algorithm returns the accumulated value AccX corresponding to the
set X. Depending on the implementation, the secret key SK may also be given as optional parameter,
often to improve the efficiency2.

– Verify(x,w,AccX , PK): given an element x, a witness w, an accumulated value AccX and a public key
PK, this deterministic algorithm returns Yes if the verification is successful, meaning that x ∈ X, or No
otherwise. This algorithm is run by a user.

– WitGen(x,AccX , PK, [SK]): this algorithm returns a witness w associated to the element x of the set X
represented by AccX .

– AddEle(x,AccX , PK, [SK]): this algorithm computes the new accumulated value AccX∪{x} obtained after
the insertion of x into set X.

– DelEle(x,AccX , PK, [SK]): this algorithm computes the new accumulated value AccX\{x} obtained by
removing the element x from the accumulated set X.

– UpdWitGen(X,X ′, PK, [SK]): suppose the set X after several updates (insertions/deletions) is trans-
formed into the set X ′. The algorithm UpdWitGen returns the information UpdX,X′ required to update
all the witnesses (using the algorithm UpdWit) of the elements of X that are still in X ′. This algorithm
is run by the manager.

– UpdWit(wx, UpdX,X′ , PK): this algorithm recomputes the witness wx for some element x that remains
in the set X ′. It takes as parameters an existent witness wx with respect to set X (represented by the
accumulated value AccX), some update information UpdX,X′ , and the public key PK. It returns a new
witness w′x for the element x with respect to the new set X ′ represented by some accumulated value
AccX′ . This algorithm is run by the user.

The above definition is slightly more general than the one proposed by Camenisch and Lysyanskaya
[CL02] as it does not depend on how these algorithms are implemented, and it explicitly includes the update
algorithms UpdWit and UpdWitGen in the syntax.

Correctness. The correctness property of an accumulator scheme simply says that if an element x be-
longs to the accumulated set X and if the corresponding witness w has been computed using WitGen or
UpdWitGen,UpdWit then the verification process should pass. Although the notion of correctness for accu-
mulators with batch update was informally used before, it appears it has not been formalized until now. If
2 The secret key may also be an optional parameter in the algorithms WitGen, AddEle, DelEle, and UpdWitGen.

2

Alg(·) is a possibly probabilistic algorithm, and a a parameter, let {Alg(a)} be the set of all possible values
output by running algorithm Alg with argument a.

Definition 2. (Correctness) Let X,Y be sets, AccX , AccY their respective associated accumulated values,
PK a public key, SK the corresponding private key, and y ∈ Y . Let wy a value (witness) that satisfies either

– wy ∈ {WitGen(y,AccY , PK, SK)}, or
– wy ∈ {UpdWit(w′y, UpdX,Y , PK)} with w′y witness of y with respect to AccX ,

and UpdX,Y ∈ {UpdWitGen(X,Y, PK, SK)}.

We say that an accumulator scheme Acc is correct if and only if Verify(y, wy, AccY , PK) = Yes, for every
such y, wy, X, Y .

Security. The security of an accumulator scheme is captured by an experiment where the adversary plays
the role of a user and attempts to forge a witness (i.e. finding a valid witness for an element that does not
belong to the set) while having access to an oracle that implements the operations relative to the manager.
Such adversary must succeed with at most negligible probability on the security parameter. The definition
proposed in [WWP07] is built on the one of [CL02] and includes the new algorithms AddEle,DelEle (for sets)
and UpdWit that are run by the oracle (manager).

Definition 3. ([CL02,WWP07]) Let Acc be an accumulator scheme. We consider the notion of security
denoted UF-ACC described by the following experiment: the adversary A has access to an oracle O that
replies to queries by playing the role of the accumulator manager. Using the oracle, the adversary can insert
and delete a polynomial number of elements of his choice. The oracle O replies with the new accumulated
value. The adversary can also ask for witness computations or update information. Finally, the adversary is
required to output a pair (x,w). The advantage of the adversary A is defined by:

AdvUF-ACC
Acc (A) = Pr [Verify(x,w,AccX , PK) = Yes ∧ x /∈ X]

where PK is the public key generated by KeyGen, and AccX is the accumulated value of X. The scheme Acc
is said to be secure if for every probabilistic polynomial time adversary A we have

AdvUF-ACC
Acc (A) = neg(k)

where neg : N→ N is some negligible function.

Batch Update. As originally proposed [FN02], the batch update property for an accumulator scheme states
that each user should be able to update each of its witness using the algorithm UpdWit in time independent
from the number of changes (additions and deletions) to the accumulated value.

Definition 4. (Batch update for accumulator schemes). Let k ∈ N be a security parameter and let Acc be
an accumulator scheme. Also, let Xi be a set of accumulated values at some time i, and Ui ⊂ Xi be a set
of elements for which some user U holds valid witnesses. Suppose that after any m > 0 updates (insertions
or deletions) to set Xi, the new accumulated set is Xi+m and its accumulated value is AccXi+m . We say
that Acc has the batch update property if given some information UpdXi,Xi+m , user U running UpdWit can
recompute a valid witness for an element in Ui

⋂
Xi+m in constant time (with respect to m), or equivalently,

time O(k).

3 Wang et al.’s construction

In this section, we introduce Wang et al.’s accumulator [WWP07,WWP08] with batch update. The first
version of their work [WWP07] suffered from two correctness problems which were later fixed [WWP08].

3

Syntax. The algorithms of Wang et al.’s scheme slightly deviate from the general syntax of section 2 as
they allow to add and delete sets of more than one element to the accumulator. However the general idea
remains the same. The detailed definition can be found in the Appendix A.1.

Construction. Wang et al.’s accumulator relies on the Pailler cryptosystem [Pai99] which we recall in
Appendix A.2. In the following λ will denote the value lcm(p− 1, q − 1) where n = pq with n safe modulus
of the Paillier cryptosystem. Moreover we define the function F : u → u

n−1 . We review here the improved
version [WWP08].

– KeyGen(1k): given the security parameter k in unary as argument compute a safe modulus n that is
k-bits long and create an empty set V . Let C = Z∗n2 \ {1} and T ′ = {3, ..., n2}. Let β R← Z∗Φ(n2) and

σ
R← Z+ two random numbers. We set the public key PK = (n, β) and the private key SK = (σ, λ). The

output is the parameter P = (PK,SK).
– AccVal(X,P): given a set X = {c1, ..., cm} with L ⊂ C, and the parameter P, take cm+1

R← C and
compute

xi = F (cλi mod n2) mod n(i = 1, ...,m+ 1)
AccX = σ

∑m+1
i=1 xi mod n

yi = cλσβ
−1

i mod n2(i = 1, ...,m+ 1)
ac = Πm+1

i=1 yi mod n2

Output the accumulated value AccX and the auxiliary information ac.
– WitGen(ac, X,P): given the auxiliary information ac, the set X = {c1, ..., cm} and the parameter P,

choose randomly a set of m numbers T = {t1, ..., tm} ⊂ T ′ \ {β}(i = 1, ...,m) and compute

wi = acc
−tiβ−1

i mod n2(i = 1, ...,m)

Output the witness Wi = (wi, ti) for ci(i = 1, ...,m).
– AddEle(X⊕, ac, AccX ,P): given a set X⊕ = {c⊕1 , ..., c

⊕
l }(X⊕ ⊂ C \ L) that need to be inserted, the

auxiliary information ac, the accumulated value AccX and the parameter P, choose c⊕l+1
R← C and a set

of l numbers T⊕ = {t⊕1 , ..., t
⊕
l }

R← T ′ \ (T ∪ {β}), and compute

x⊕i = F ((c⊕i)λ mod n2) mod n(i = 1, ..., l + 1)
AccX∪X⊕ = AccX + σ

∑l+1
i=1 x

⊕
i mod n

y⊕i = (c⊕i)λσβ
−1

mod n2, (i = 1, ..., l + 1)
au = Π l+1

i=1y
⊕
i mod n2

w⊕i = acau(c⊕i)−t
⊕
i β
−1

mod n2(i = 1, ..., l)

Set ac = acau mod n2, T = T ∪T⊕ and V = V ∪{au}. Then output the new accumulated value AccX∪X⊕
corresponding to the set X ∪X⊕, the witness W⊕i = (w⊕i , t

⊕
i) for the new added elements c⊕i (i = 1, ..., l)

and the auxiliary information au and ac.
– DelEle(X	, ac, AccX ,P): given a set X	 = {c	1 , ..., c

	
k }(X	 ⊂ X) to be deleted, the auxiliary information

ac, the accumulated value AccX and the parameter P, choose c	l+1
R← C and compute

x	i = F ((c	i)λ mod n2) mod n(i = 1, ..., l + 1)
AccX\X	 = AccX − σ

∑l
i=1 x

	
i + σx	l+1 mod n

y	i = (c	i)λσβ
−1

mod n2(i = 1, ..., l + 1)
au = y	l+1Π

l
j=1(y	j)−1 mod n2

Set ac = acau mod n2 and V = V ∪{au}. Then output the new accumulated value AccX\X	 correspond-
ing to the set X \X	 and the auxiliary information au and ac.

4

– Verify(c,W,AccX , PK): given an element c, its witness W = (w, t), the accumulated value AccX and the
public key PK, test whether {c, w} ⊂ C, t ∈ T ′ and F (wβct mod n2) ≡ AccX(mod n). If so, output Yes,
otherwise output No.

– UpdWit(Wi, au, PK) : given the witnessWi, the auxiliary information au and the public key PK, compute
w′i = wiau mod n2 then output the new witness W ′i = (w′i, ti) for the element ci.

In the following section we show that Wang et al.’s construction is not secure.

4 An attack on the Accumulator with Batch Update of Wang et. al
[WWP07,WWP08]

4.1 Problems with the proof

A security proof for the scheme was presented in the original paper by Wang et al. [WWP07]3. In this
work, a security reduction is presented assuming the Extended Strong RSA assumption (or es-RSA), also
proposed in [WWP07] as analogous to the Strong RSA assumption [BP97] but for the Paillier cryptosystem.
Unfortunately, there are two main problems in the proof. First the adversary B appears to run the KeyGen
algorithm which means it knows the factorization of the safe modulus n = pq, or at least has the knowledge
of Φ(n2) and λ = lcm(p − 1, q − 1) since β = σλ mod n2. In fact, without β computed in such a way, the
correctness of the construction cannot hold anymore. Therefore, it is not clear how the reduction to break
the es-RSA assumption can be achieved.

The second problem is that, to break the es-RSA assumption, B needs to find non trivial (y, s) such that
ys = x mod n2 where x is given as input to B. This value x does not seem to be mentioned in the proof.

4.2 Description of the attack

As to show that the construction is not secure, i.e., the proof of security cannot be fixed, we present an
attack. This attack considers the updated scheme of [WWP08]. The idea is simply to delete an element from
the set, and then update the witness of this element with the update information obtained by the execution
of the algorithm DelEle. We can then check that this new witness is a valid one for the deleted element,
which of course should not happen.

So we start with the set X = {c1} for some c1. We have x1 = F (cλ1 mod n2) mod n. Then a random
element c∗ is chosen and x∗ = F (cλ∗ mod n2) mod n is computed. The accumulated value is set to v =
σ(x1 + x∗) mod n. The witness value W1 = (w1, t1) for c1 is defined by w1 = acc

−t1β−1

1 mod n2 where
ac = y∗y1 mod n2, y1 = cλσβ

−1

1 mod n2, y∗ = cλσβ
−1

∗ mod n2, and t1 is random.
Then the adversary asks the manager to delete element c1. This means that the new accumulated value is

v′ = v−σx1 +σ(x∗∗) mod n = σ(x∗+x∗∗) mod n where x∗∗ = F (cλ∗∗ mod n2) mod n and c∗∗ is random. The
auxiliary value au used to update the witnesses is au = y∗∗y

−1
1 mod n2 where y∗∗ = cλσβ

−1

∗∗ mod n2.
So updating the witness w1 with au we obtain w′1 = auw1 mod n2 = y∗∗y

−1
1 y∗y1c

−t1β−1

1 mod n2 =
y∗∗y∗c

−t1β−1

1 mod n2. Then w′β1 c
t1
1 ≡ (y∗∗y∗c

−t1β−1

1)βct11 mod n2 = (y∗∗y∗)β mod n2 = (c∗∗c∗)λσ mod n2. It
follows that

F (w′β1 c
t1
1 mod n2) ≡ F ((c∗∗c∗)λσ mod n2) mod n

≡ σ(F (cλ∗∗ mod n2) + F (cλ∗ mod n2)) mod n
≡ σ(x∗ + x∗∗) mod n
≡ v′ mod n

This shows that (w′1, t1) is a valid witness for the deleted element x1. Therefore the scheme is not secure.
Indeed the problem is simply that the information au allows to update every old witness including w1 for
which such an update should not be possible.
3 As mentioned before, the subsequent paper [WWP08] fixes two correctness flaws in [WWP07] but does not give a

new security proof. The attack we consider, however, also works for the improved version [WWP08].

5

5 A Lower Bound for Updating the Witnesses

The attack of the last section is an indication that the proposed construction may have some design flaws. In
this section, we show that the problem indeed is more fundamental and the batch update property is essentially
unrealizable. We argue this by presenting a lower bound on the size of UpdX,X′ , the information needed to
update the witnesses afterm changes (more precisely deletions). Any deterministic4 update algorithm UpdWit
must at least read UpdX,X′ , and so it also bounds the running time of any such algorithm. In the following
theorem log refers to the logarithm in base two function.

Theorem 1. Let Acc be a secure accumulator scheme with deterministic UpdWit and Verify algorithms. For
an update involving m delete operations in a set of N elements, the size of the information UpdX,X′ required
by the algorithm UpdWit is Ω(m log N

m). In particular if m = N
2 we have |UpdX,X′ | = Ω(m) = Ω(N).

Proof. The idea of the proof is that the update information must encode a minimum amount of information
in order for the accumulator scheme to be correct and secure. We prove this by considering a theoretical
game between the accumulator manager and some user U . In the game, starting from an accumulated set
X, the accumulator manager updates the accumulator in a way that is not known to user U (namely, the
manager deletes some elements in an arbitrary set Xd ⊂ X) while still providing the update information
UpdX,X′ to U , where X ′ = X \Xd. We prove that, as long as the scheme is correct and secure, there is a
simple strategy that allows the user U to recover the exact changes made by the manager, that is, the set of
deleted elements Xd. We conclude that the information provided by the manager to the user must at least
encode a description of set Xd. Details follow.

Consider the following game. The set accumulated in some point of the time is X = {x1, x2, ..., xN},
and the corresponding accumulated value is AccX . We suppose the user possesses all the witnesses for each
element in X and knows the accumulated value. Then m DelEle operations are performed, that is the new
set obtained is X ′ = X \ Xd where Xd = {xi1 , xi2 , ..., xim}. The manager computes the new accumulated
value AccX′ and sends it to the user along with the update information UpdX,X′ required to update all the
witnesses that are still in X ′.

Armed with this information UpdX,X′ and the new accumulated value AccX′ , the user is able to recon-
struct the set Xd of deleted elements as follows: for each element in X, the user checks if the corresponding
witness can be successfully updated using algorithm UpdWit with input UpdX,X′ . That is, the user com-
putes w′x = UpdWit(wx, UpdX,X′ , PK) and checks whether or not w′x is a valid witness. If not, namely if
Verify(x,w′x, AccX′ , PK) = No, then the element x must have been deleted from X. Note that this condition
is necessary otherwise it would contradict the scheme’s correctness (there would be elements in X ′ for which
an updated witness cannot be computed) or the scheme’s security (it would be possible to update witnesses
for deleted elements).

Hence, the user is able to recompute the set of deleted elements Xd only from values UpdX,X′ and AccX′ .
We therefore conclude that (UpdX,X′ , AccX′) must contain at least the information required to encode any
subset withm elements of a set containingN elements. There are

(
N
m

)
such subsets, so the minimum amount of

information required is log
(
N
m

)
bits. Since |AccX′ | = O(1) with respect to N , and

(
N
m

)
≥ (Nm)m, by a standard

lower bound [CLRS01], we then have that log(
(
N
m

)
) ≥ m log N

m which implies that |UpdX,X′ | = Ω(m log N
m).

The result then follows.

Corollary 1. Cryptographic accumulators with batch update (and deterministic update and verification) do
not exist.

6 Conclusion

This result shows that the batch update property as proposed in [FN02] cannot be obtained, as the time
to update all the witnesses cannot be linear in the security parameter k, i.e O(k), but it must be at least
4 For simplicity, in the proof we focus on deterministic update (UpdWit) and verification (Verify) algorithms. This is

in fact the case for the construction of [WWP08]. We believe the result can be extended to the probabilistic case
but the proof becomes more involved.

6

O(m) = O(n) = O(p(k)) = ω(k) for some polynomial p. Notice that our lower bound is not tight since
Camenisch and Lysyanskaya’s accumulator requires O(p(k) · k) time to update the witnesses after O(p(k))
changes. Nonetheless, in principle, it leaves some (potential) room to improve their construction by at most
a factor of k.

Finally, one may consider getting around this impossibility result by not allowing deletions in the set.
Unfortunately, such an accumulator can be trivially implemented by signing the elements of the set, as in this
case there is no replay-attack. The witness for every element consists in its signature under the manager’s
private key, and clearly need not to be updated.

References

[BdM94] Josh Benaloh and Michael de Mare. One-way accumulators: a decentralized alternative to digital signatures.
In Proceedings of EUROCRYPT, volume 1440 of Lecture Notes in Computer Science, pages 274–285, 1994.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees.
In Proceedings of EUROCRYPT, volume 1233, pages 480–494, 1997.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In Proceedings of Public Key Cryptography - PKC, volume
5443 of Lecture Notes in Computer Science, pages 481–500, 2009.

[CL02] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of anony-
mous credentials. In Proceedings of CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages
61–76, 2002.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,
Second Edition. The MIT Press, September 2001.

[DT08] I. Damg̊ard and N. Triandopoulos. Supporting non-membership proofs with bilinear-map accumulators.
Cryptology ePrint Archive, Report 2008/538, 2008.

[FN02] Nelly Fazio and Antonio Nicolisi. Cryptographic accumulators: Definitions, constructions and applications.
Technical report, 2002.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership proofs. In
Proceedings of Applied Cryptography and Network Security - ACNS, volume 4521 of Lecture Notes in
Computer Science, pages 253–269. 2007.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of
EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages 223–238. 1999.

[WWP07] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. A new dynamic accumulator for batch updates. In
Proceedings of Information and Communications Security, volume 4861, pages 98–112, 2007.

[WWP08] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. Improvement of a dynamic accumulator at ICICS
07 and its application in multi-user keyword-based retrieval on encrypted data. In Proceedings of APSCC
- IEEE Asia-Pacific Services Computing Conference, pages 1381–1386, 2008.

A Appendix

A.1 Syntax of Wang et al.’s accumulator

Definition 5. ([WWP07]) Let k be the security parameter. A dynamic accumulator with batch update
AccBU consists of the following algorithms:

– KeyGen(1k): is a probabilistic algorithm that takes as input the security parameter k in unary and returns
a parameter P = (PK,SK) where PK is the public key and SK is the private key5.

– AccVal(X,P): is a probabilistic algorithm that computes an accumulated value. It takes as input the set
X = {c1, ..., cm} and the parameter P and returns an accumulated value AccX along with some auxiliary
information ac that will be used by other algorithms.

5 In the original paper, the authors mention another parameter M which is an upper bound to the number of
elements that can be accumulated. In order to simplify the notations, we omit it and recall that this upper bound
must be a polynomial in k.

7

– Verify(x,W,AccX , PK): this deterministic algorithm checks whether an element x belongs to the set X
represented by the accumulated value AccX using the witness W and the public key PK. It returns Yes
whether the witness W for x is valid or No otherwise.

– AddEle(X⊕, ac, AccX ,P): this probabilistic algorithm adds some new elements to the accumulated value.
The input values are the set of new elements to add X⊕ = {c⊕1 , ..., c

⊕
l }, the auxiliary information ac,

the accumulated value AccX and the parameter P. The returned values are AccX∪X⊕ the accumulated
value corresponding to the set X ∪X⊕, the witnesses {W⊕1 , ...,W

⊕
l } associated to the inserted elements

{c⊕1 , ..., c
⊕
l }, and the auxiliary information ac, au, that will be used for future update operations.

– DelEle(X	, ac, AccX ,P): this probabilistic algorithm is analogous to AddEle and allows to delete a set
of elements X	. The input values are the set of elements to delete X	 = {c	1 , ..., c

	
l }, the auxiliary

information ac, the accumulated value AccX and the parameter P. The returned values are AccX\X	 the
accumulated value corresponding to the set X \ X	, and the auxiliary information ac, au, that will be
used for future update operations.

– WitGen(ac, X,P): this probabilistic algorithm creates a witness for every element in the set X. It takes
as input an auxiliary information ac, the set X and the parameter P.

– UpdWit(Wi, au, PK) : this deterministic algorithm updates witnesses for the elements accumulated AccX
and that are still accumulated in AccX′ (the new set after update). The inputs are Wi, the witness to
update, the auxiliary information au and the public key PK. It returns an updated witness W ′i that allows
to prove that ci is still accumulated in the new accumulated value AccX′ .

Note that in this definition UpdWitGen does not appear. The reason is that in Wang et al.’s construction,
the update information required to recompute the witnesses is generated by algorithms AddEle and DelEle.

A.2 Paillier cryptosystem

The Paillier cryptosystem [Pai99] consists of the following three algorithms.

– KeyGen: let n = pq be a RSA modulus, with p, q large prime integers. Let g an integer multiple of nmodulo
n2. The public key is defined by PK = (n, g) and the private key by SK = λ = λ(n) = lcm(p− 1, q− 1).

– Encrypt: let M ∈ Zn be a plaintext message and r a random element in Z∗n, the encrypted message is
c = gMrn mod n2.

– Decrypt: to recover M from the ciphertext c, compute M = F (cλ mod n2)
F (gλ mod n2)

mod n where F : u→ u−1
n takes

as argument elements from the set Sn = {u < n2|u = 1 mod n}.

The homomorphic property of the Paillier cryptosystem follows from the fact that ∀x, y ∈ Sn and σ ∈ Z+:

F ((x.y)λ mod n2) mod n = F (xλ mod n2) + F (yλ mod n2) mod n
F (xσλ mod n2) mod n = σF (xλ mod n2) mod n

8

