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Abstract—Snowshoe spam is a type of spam that is notoriously
hard to detect. Anti-abuse vendors estimate that 15% of spam
can be classified as snowshoe spam. Differently from regular
spam, snowshoe spammers distribute sending of spam over
many hosts, in order to evade detection by spam reputation
systems (blacklists). To be successful spammers need to appear
as legitimate as possible, for example, by adopting email best
practices, such as the Sender Policy Framework (SPF). This
requires spammers to register and configure legitimate DNS
domains. Many previous studies have relied on DNS data to detect
spam. However, this often happens based on passive DNS data.
This limits detection to domains that have actually been used
and have been observed on passive DNS sensors. To overcome
this limitation, we take a different approach. We make use
of active DNS measurements, covering more than 60% of the
global DNS namespace, in combination with machine learning
to identify malicious domains crafted for snowshoe spam. Our
results show that we are able to detect snowshoe spam domains
with a precision of over 93%. More importantly, we are able
to detect a significant fraction of the malicious domains up to
100 days earlier than existing blacklists, which suggests our
method can give us a time advantage in the fight against spam.
In addition to testing the efficacy of our approach in comparison
to existing blacklists, we validated our approach over a 3-month
period in an actual mail filter system at a major Dutch network
operator. Not only did this demonstrate that our approach works
in practice, the operator has actually decided to deploy our
method in production, based on the results obtained.

Index Terms—<Spam Detection, Active DNS Measurements,
Blacklisting.>

I. INTRODUCTION

Spam is a major problem on the Internet. In particular, the
kind of spam containing URLSs to malicious content, or viruses,
is troublesome. Pfleeger and Bloom [1] have reported that the
sending of one million spam emails costs around US$250 for
the sending party, but that on average, the time spent deleting
them costs the receiving party about US$2,800 in lost wages.
Spam is a cat-and-mouse game between the spammers and
email providers. Spammers often try to bypass mail filters by
developing new methods of distributing spam. Snowshoe spam
is one of these methods.

In ‘normal’ types of spam the entire burden of transmitting
the spam messages is often put on only a few hosts. In contrast,
in the case of snowshoe spam the sending is spread out over
many hosts, to avoid detection by spam reputation systems
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(blacklists). A second characteristic of snowshoe spam is that
spammers want to appear as legitimate as possible, by adopting
email best practices. An example of such a best practice
is Sender Policy Framework (SPF), a technique to ensure
only authorized email servers can send email for specific
domains. However, SPF requires spammers to also register and
configure a legitimate Domain Name System (DNS) domain.
Additionally, it requires them to create a DNS record for
every host that should be able to send email for that domain.
This results in a domain with a large number of records. The
creation of such domains is often called crafting. Cisco [2]
reported that 15% of spam in 2014 was classified as snowshoe
spam.

Spam detection has been studied intensely by the security
research and anti-abuse communities. A number of studies link
the use of data in the DNS to spam detection. However, this
usually happens in a passive manner. The goal of this paper,
on the other hand, is to detect crafted snowshoe spam domains
using active DNS measurements. Our approach combines
active DNS measurements with supervised machine learning.
The active DNS measurements are retrieved from the unique
OpenINTEL platform®, which actively queries more than 60%
of all registered domain names worldwide. We verify our
results by comparing them to well-known blacklists.

The main contributions of this paper are that we:

« perform detection of domains crafted for snowshoe spam,
using active DNS measurements;

o show that our method can identify domains earlier than
existing blacklists, which allows us to block spam that
would otherwise bypass a mailfilter;

« make the resulting blacklist available for researchers and
spam filter operators, for further study and to improve
detection of spam.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work. In Section III we present
our methodology. The datasets we use are introduced in
Section IV. Section V discusses our results. A real-world
deployment of our work is presented in Section VI. We
analyse the ethical impact of our work in Section VII. Finally,
Section VIII details our conclusions.

Uhttps://openintel.nl/



II. RELATED WORK
A. Passive and active DNS monitoring

Many security-related studies have looked at passively mon-
itoring DNS. Especially when done at a large scale, passive
monitoring of DNS can yield important information about the
use and security of DNS. A notable approach is passive DNS
(pDNS) [3], a system that monitors DNS queries and responses
issued from a recursive resolver towards authoritative name
servers. pDNS is used to investigate DNS anomalies [4]-[7],
such as domains used for spam campaigns and malware.
Perdisci et al. [8] used passive DNS to measure the growth of
IP addresses in order to determine if a domain would be used
in flux service networks. The biggest advantage of pDNS is
that it reflects live use of the DNS. However, this also means
that pDNS is in general usage-biased and that only anomalous
behavior in the monitored network can be detected. In this
paper, we take a different approach. We use actively collected
DNS data, which allow us to detect anomalous domains at a
global scale and independently from their being accessed by
users.

A few studies have already looked at how active DNS
measurements can be used to identify malicious activities.
Konte et al. [9] monitor changes in DNS records of known
spam domains to investigate at which rate and to which extent
malicious domains change their characteristics, e.g., in relation
to fast-flux domains. Hao et al. [10] use zone transfer records
to obtain DNS data to characterize, among others, the time
between registration of a malicious domain and its appearance
on a spam blacklist and the location of the name servers used
for the domain. Felegyhazi et al. [11] investigate the use of
DNS in proactive blacklisting of malicious domains. Hao et
al. [12] also look at the history of a domain name and the
details of new registrations to single out malicious domains.
While these studies share our same intuition, that is that
malicious domains need to be registered and configured before
they can be used, our contribution differs in the following
aspects. First, while several other contributions are limited to
analyzing only a handful of zones, our work covers more than
60% of currently registered domain names. Secondly, most
of the previous studies start from a set of known malicious
domains, and use this for inferring general characteristics. We
focus instead on building a model of malicious behavior using
a machine learning approach.

B. Spam

Syed et al. [13] and Moura et al. [14] report that spam
sources can be identified using only network-based character-
istics. Their works are based on the observation that spam
sources tend to be clustered in relative address proximity,
e.g. in the same subnet or autonomous system. Yamakawa
et al. [15] show that this address clustering also exists geo-
graphically, since large volumes of spam comes from the same
countries. To be effective these approaches need to observe
large volumes of spam to identify bad neighborhoods (tainted
address space), and they can only perform just-in-time spam
identification, namely at the time spam has already been sent.

There exists very little related work specifically focusing on
snowshoe spam. Bhowmick et al. [16] mention snowshoe spam
as an emerging threat. In this work, we focus on snowshoe
spam in particular.

C. Machine learning

Supervised machine learning is a way to build a predictive
model (classifier) based on labeled data. It is often used
to detect malicious activity on networks [17], [18]. Several
studies combine the subjects of spam detection and machine
learning. Youn et al. [19] provide an overview of classifier
types and their performance. Clustering and decision trees are
techniques frequently used [5]-[8]. Drucker et al. [20] use a
Support Vector Machine (SVM) to classify email, based on
the content, as spam or ham. In the work of Sakkis et al. [21],
classifiers are used sequentially to increase the accuracy of the
classification. Bhowmick et al. [16] look at how spam evolves
and what tools emerge, or change, to combat these new types
of spam. All techniques presented focus on the headers of an
email and/or the content of the email.

While we also use a machine learning approach, we differ
from the state of the art in the fact that our methods is
independent from the content of an email, but it relies only
on domain names configurations.

III. METHODOLOGY

In this section, we present our methodology. Figure 1 shows
a high-level overview of our approach. From left to right, it
displays four parts (A)-(D) that together make up our detection
process. In addition to this, a fifth part, (E), is shown in the
gray rectangle, which represents the training of the machine
learning classifier that our detection relies on.

At a high-level, our method for detection does the following.
Every day, based on data from the OpenINTEL platform (A),
we perform a filtering step, called the long tail analysis (B),
to extract candidate domains. We then use a machine learning
classifier (C) to perform a binary prediction of domains to
blacklist, which are then added to our Real-time Blackhole
List (RBL) (D).

In the section ‘Building and training a classifier’ (E) we
explain the parts of Figure 1 with a gray background. These
parts concern the training of the classifier.

A. DNS data collection

Both our training and detection make extensive use of
data from the OpenINTEL platform. Since February 2015,
the OpenINTEL! large scale active DNS measurement plat-
form collects daily snapshots of the data in the DNS [22].
The measurement currently queries 60% of the global DNS
namespace. At the time of writing, the measurement covers the
zones .com, .net, .org, .info, .mobi, the new gTLDs
defined by ICANN, and a set of ccTLDs such as .nl, .se,
.ca, .fi, .at, .dk, .nu and . ru. For each domain name,
the measurement performs a fixed set of queries including 2,
AAAA, MX, TXT, etc. The result from these queries forms the
basis for the features we use. These features are described in
Section III-E
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Figure 1. High level overview of our approach

B. Long Tail Analysis

Snowshoe spammers aim at spreading the sending load
among a large number of hosts. At the same time, they are
likely to use SPF in order to make their domains appear
legitimate. Therefore, we expect that snowshoe spam domains
will have a large number of A or MX records and large (in
terms of number of characters) TXT records. Domains with
these characteristics will likely show up in a long tail analysis
of DNS domains. The long tail typically refers to the outliers
of a distribution. In our case, the majority of domains will have
only a few DNS records of a given type, whereas snowshoe
spam domains will exhibit many records of the certain types.
Thus, these domains appear far away from the mean, in the
long tail of the DNS. In this paper we look at two types
of long tail of the DNS. The first tail holds domains with
a large number of records. The second type holds domains
with exceptionally large TXT records. We have defined four
thresholds for what we consider to be the long tail: 99.9%,
99%, 98% and 97%. We have chosen these thresholds to
range from very conservative to more permissive selections.
We stopped at 97% to limit the number of domains to we need
to analyze, so we can perform daily detections in a timely
manner.

C. Classification

To cope with the dynamic nature of spam, we have opted
to use machine learning to do the detection. The reason for
this is that a classifier can easily be retrained on new data if
spam trends change. In addition to this, the vast amount of
data makes a manual creation of signatures unfeasible. In this
step, we match the domains selected from the long tail analysis
against a machine learning classifier. The classifier has been
chosen as described in Section III-E. The classifier takes into
account a set of features derived from the DNS records for the
candidate domains (see Table II). The output of the classifier
is a binary decision detailing if a domain should be considered
as a snowshoe domain.

D. Realtime Blackhole List (RBL)

To make our results easily available and usable, we store
them in the form of an RBL. In this section, we explain how
the RBL is kept up to date. As said, every day we run our
detection process. The classifier outputs a list of domains that
it considers to be snowshoe spam domains. Domains from

this list, which are not already present on the RBL, are added
to it. For validation purposes, all domains on the RBL are
then checked against existing public blacklists (Table I). We
mark it as soon as a domain on our RBL also appears on
a public blacklist. This allows us to do time analysis of our
detections. The blacklists from Table I were selected based on
their popularity among operators.

E. Building and training a classifier

In this section we describe the building of the training
dataset and the training of the classifier. Figure 1 shows these
steps with a grey background.

1) Dataset: To build a training dataset for our classifier,
we label the dataset of candidate domains extracted from the
long tail of the DNS. We do this by checking the domains
against public blacklists (Table I). Depending on the nature
of the public blacklist, we either check the domain name of a
candidate domain against the blacklist or an Internet Protocol
(IP) address from one of the DNS records (A and MX) for
the domain. If the domain is listed, we label the domain as
a positive, otherwise, it is labeled as a negative. In order to
increase the accuracy of the training dataset, we filter the
positives from the dataset and balance them with and equal
number of negatives from the Alexa top one million list. While
domains on the Alexa list are not guaranteed to be benign,
the probability of them being benign is much higher than the
negative instances extracted from the long tail.

Additionally, we created an evaluation dataset which does
not perform this extra filtering step. This evaluation dataset is
used to compare different classifier types.

Both the training and evaluation dataset consist of 35
features. The features we have used and their sources are
listed in Table II. Most of these features measure how many
records of a certain type a domain contains. Some features
are more complex and rely on evaluating regular expressions.
For example, the ‘spfvl_ip_count’ feature uses a regular
expression to count the number of IP addresses in an SPF
record. The output of all of the features is numerical, because
all the evaluated classifiers are able to make predictions based
on numeric features and only a few (special) classifiers are
able to process raw strings [23]. Thus to reach maximum
compatibility we make sure all features are in numeric form.

Not all features are equally important. Following the output
from a trained ‘Decision Tree’, the ‘response_name_matches’
feature is the most important, since it has the highest Gini
index. This feature details if the query name in the response
is the same as in the request. The ‘ip4_count’ and ‘mx_count’
features are, after the ‘response_name_matches’, equally im-
portant.

2) Classifier: In order to perform optimal detection, we first
needed to select a suitable classifier. Below, we explain our
methodology for finding the ‘best’ classifier for our problem.
We also explain what we mean by ‘best’.

We evaluated classifiers in a number of categories. In
the Naive Bayes category, we looked at the ‘BernoulliNB’,
‘GaussianNB’ and ‘MultinomialNB’ classifiers. For Decision



Tree-type classifiers, we tested the ‘DecisionTreeClassifier’
and the ‘RandomForestClassifier’. Of the Nearest Neighbor
variant, we evaluated the ‘KNeighborsClassifier’ and ‘Radius-
NeighborsClassifier’. From the Gradient Descend type we took
the ‘GradientBoostingClassifier’ and ‘SGDClassifier’. Finally
we also looked at the ‘Support Vector Classifier (SVC)’,
‘MLPClassifier’ and the meta-classifier ‘AdaBoostClassifier’2.
Our selection of classifiers was primarily motivated by the
combination of classifiers used in related work [6]-[8], [13],
[16], [19]-[21], and the availability of classifiers in the
‘sklearn’ [24] Python library.

Selection of the ‘best’ classifier is done in two steps.
First, we establish the optimal parameters for each of the 13
classifiers selected. This step aims at understanding what the
optimal performance of each classifier is, given our training
set. This also allows us to compare the classifiers later on. This
was done as follows. The training set is split in training data
and test data. The classifier is then trained on the training data
following the K-Fold Cross Validation [25] method, which
is visualized in Figure 2. The training part of the dataset is
split into K folds. A classifier is trained K times on K — 1
folds of the training part, for example, in the figure parts
k(1) through k(4). During the training process the chosen
algorithm builds a model of the (labeled) data, in particular the
boundaries between the positive and negative entries. Based
on such a model predictions can be made on new, unseen,
data. Then the performance of the classifier is validated in
the K-th fold, in our example k(5). This is done K times,
where the validation fold is a different fold each time. The
performance of the classifier is the average over each fold.
Based on this performance, we select the parameters for each
classifier that lead to the highest precision, where precision is
expressed as the number of True Positives (TP) relative to the
total amount of positives, which also includes False Positives
(FP) (Equation 1). We repeat this procedure for every type of
classifier.

. TP
Precision = TPLFP (D

The second step consists of comparing the optimal perfor-
mance of the different classifiers. The performance of each
classifier is measured on the evaluation dataset. The one with
the best precision on this dataset is selected as the classifier
that will be used for our daily detection.

2Documentation on these classifiers is available at http://scikit-learn.org/
stable/modules/classes.html

TABLE I
THE USED BLACKLISTS AND THEIR PURPOSE
Name Domain IP address
multi.uribl.com v
dbl.spamhaus.org v
rbl.rbldns.ru v
zen.spamhaus.org v

TABLE 11

USED FEATURES AND THEIR DATA SOURCES
Data source Feature
as as_count
cname_name cname_count, cname_in_domain, cname_out_domain
country country_codes
ip4_address ip4_count, ip4_prefixes
ip6_address ip6_count, ip6_prefixes
mx_address mx_cloud, mx_count
ns_address ns_count, ns_domain_count
query_name p_numeric
query_name & response_name_matches

response_name
soa_minimum
txt_text

soa_minimum

p_txt_numeric, spfvl_{a,cidr,include,ip}_count,
spfvl_{a,cidr,include,ip}_ratio,
spfvl_{a,cidr,include,ip}_unique_count,
txt_length,verification_{globalsign,google}_count,
verification_{ globalsign,google}_ratio, verifica-
tion_{ globalsign,google} unique_count

[ k() 1 k@) ' k@) | k@) 1 k©) |

training data test data

Figure 2. Visualization of split in training dataset

IV. DATASETS

Based on the approach discussed in Section III, we have
performed daily detection from May 24, 2017 till September
5, 2017. This section discusses the details on the datasets used,
either in the training, validation or during the daily detections.

A. Distinction positives & negatives

Before we dive into the results of our method, we verify
that there is a clear difference between the positives (spam)
and negatives (ham). For this goal we have made a dataset
from April 2017. We have selected domains above the 99
percentile, since this percentile threshold gave a clear distinc-
tion between positives and negatives. After labeling the dataset
we filtered this dataset following the same method as for the
training dataset. This resulted in a dataset with both 136441
positives and negatives. We do so by plotting the Cumulative
Distribution Function (CDF) for two features, these plots are
visible in Figure 3. This analysis indicates that at the 90™"
percentile for the A record distribution, spam domains have on
average 16.2 records more than regular domains. Similarly, at
the 98 percentile of the MX record distribution, spam domains
have 77 records more than regular domains. The fact that not
all domains show this clear distinction motivated us to make
use of the many features available to us.

B. Training and evaluation dataset

For the selection of the ‘best’ classifier we have made two
datasets. The first is the training dataset, the classifier is trained
upon this dataset, it consists of data from April 18, 2017 till
April 24, 2017. The second dataset, the evaluation dataset,
consists of data from April 25, 2017. Table III lists how many



TABLE IV

0.9 16.6 CLASSIFIER PERFORMANCE ON THE ‘REAL’ DATA SET
23
[a) 0.8 11.2 . Classifier Type P FN FP TN Accuracy | Precision
O —— positives AdaBoost 6688 | 7842 | 110 | 10741 68.69% 98.38%
o7 —— negatives frpioyed
o6 | | | | : | AdaBoost 5971 8559 | 164 | 10687 65.63% 97.32%
0 o 2 20 40 0 MLP 7273 | 7257 | 707 | 10144 68.62% O1.14%
DecisionTree 6279 | 8251 | 695 | 10156 64.75% 90.03%
Number of A records MultinomialNB 12179 | 2351 | 1397 | 9454 85.23% 89.70%
RandomForest 11156 | 3374 | 1488 | 9363 80.84% 88.23%
KNeighbors 4562 | 9968 | 676 | 10175 58.06% 87.09%
C . ¢ th ber of A d GaussianNB 13330 | 1200 | 2075 | 8776 87.10% 86.53%
(2) Comparison of the number of A records SVC 13449 | 1081 | 2339 | 8512 86.53% 85.18%
15 RadiusNeighbors | 13318 | 1212 | 2367 | 8484 85.90% 84.90%
l 77.0 ( SGD 3599 | 10931 | 674 | 10177 54.28% 84.22%
g, 098 . 7 BernoulliNB 12995 1535 | 2507 | 8344 84.07% 83.82%
a — GradientBoosting | 12645 | 1885 | 9605 | 1246 54.73% 56.83%
O 46 — positives
—— negatives
0.94 7 " i " i ! We have decided to look for a classifier with a low number
0 20 40 60 80 100

Number of MX records

(b) Comparison of the number of MX records

Figure 3. CDF of two features in the test data set

domains there are in both datasets, along with how many
positives and negatives. As intended the training dataset is
balanced.

C. Daily detection datasets

Since May 24, 2017, we have been doing daily detections
of possible snowshoe spam domains. The basis of these detec-
tions is a dataset of that day containing domains exceeding the
99.9, 99, 98 or 97 percentile. On average there are about 2.7K
domains in the dataset of the 99.9 percentile. This figure grows
to 57.3K domain names in the dataset of the 97 percentile.
Table VI shows the average size of each of the daily datasets.

V. RESULTS

This section has been split into two parts. First, we discuss
the results from selecting the ‘best’ classifier. Secondly, we
discuss the daily detections made for the RBL.

A. Selecting the ‘best’ classifier

As discussed in Section III-C, the selection of the best clas-
sifier is a two step process. First, select the optimal parameters
for each classifier. Then, we select the ‘best’ classifier, as the
one with the best performance. For brevity sakes we omit the
results of the first step and directly present a comparison of
the classifiers, in Table IV.

TABLE III
STATISTICS OF TRAINING AND EVALUATION DATASET

%-tile #Domains (total, positive, negative)
Training dataset Evaluation dataset
99.9 2018 (1009 — 1009) 1407 (1261 — 146)
99 3540 (1770 — 1770) 5453 (5199 — 254)
98 4806 (2403 — 2403) | 20534 (20177 — 357)
97 5526 (2763 — 2763) | 25381 (24968 - 413)

of FP. This is because is spam detection it is far more costly
to make an FP, a ham domain marked as spam, than any other
error. The cost of making a FP outweighs making a correct
classification, a TP. The reasoning can be put in perspective
by an example; the cost of marking an important email as
spam, or discarding the email, is much higher than receiving
a spam message. This is the reason we have chosen to rank
our classifiers on their precision metric (Eq 1), since it is more
closely related to the number of FPs made by the classifier than
other metrics.

The performances from the second step are listed in Ta-
ble IV. The ‘AdaBoost’ classifier has the highest precision
on our evaluation dataset, and it has the lowest number of
false positives. However, it does not have the highest number
of true positives. We improve this classifier by taking a
closer look at the parameters of the classifier. We managed
to increase the number of TPs by 717 and reduce the number
of FPs by 54. The resulting classifier is labeled as ‘AdaBoost
Improved’ in Table IV. The ‘AdaBoostClassifier’ is a meta-
classifier. “It begins by fitting a classifier on the original
dataset and then fits additional copies of the classifier on the
same dataset but where the weights of incorrectly classified
instances are adjusted such that subsequent classifiers focus
more on difficult cases" [26]. To improve our classifier we
changed the base estimator from the ‘DecisionTreeClassifier’
to the ‘MultinomialNB’ and set the number of estimators to
1. The additional parameters are in Table V.

Table IV makes clear why we rank the classifiers based
on their precision metric rather than, for example, the accu-
racy. If we compare the classifier with the highest accuracy,
‘GaussianNB’, with the improved ‘AdaBoostClassifier’, we
see about double the TPs but there are more than 18 times
as many FPs. The cost of making a FP is much higher than
the gain of a TP, since it may mean important benign email
is discarded. Thus, for our goal the ‘AdaBoostClassifier’ is
‘better’ than the ‘GaussianNB’ classifier.

B. Detection results

In this section we discuss the general detection results.
During our measurement period, our detection method marked
35,004 domains as snowshoe spam domains. 32,677 of these
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Figure 4. Early detection categories

domains (93.35%) appeared on an existing blacklist at some
point during the measurement period. This indicates that
our method is highly effective at detecting snowshoe spam
domains. The remaining 2,327 domains (6.65%) are either
false positives or they have not yet appeared in one of the
existing blacklists. This second case occurs when our detection
mechanism reports snowshoe domains (much) earlier than
blacklists. We analyze this case in the next section.

Table VI lists how many domains per day on average are in
the long tail dataset (per percentile), how many are detected
by the classifier and how many are newly added to the RBL.

C. Early detection

In this section we analyze if our approach has a time ad-
vantage over regular, existing blacklists, such as the Spamhaus
blacklist. By time advantage we mean the window between de-
tection by our method and the time at which the same domains
appears on one of the existing blacklists we considered (see
Table I).

In the context of early detection, we distinguish three
categories of domains. Figure 4 depicts these categories, and
they are described in more detail below:

(a) domains that are already on a blacklist at the time of
detection, or have only a day difference. There can be a
one day difference since the daily data is of the previous
day, while the blacklist query happens in real-time.

TABLE V
PARAMETERS OF THE IMPROVED ADABOOSTCLASSIFIER

Name of parameter | Value
base_estimator MultinomialNB
n_estimators 1

learning_rate 1.
algorithm SAMME.R

TABLE VI
PER-DAY AVERAGES OF THE DATASETS AND DETECTIONS

Percentile | Avg. domains in | Avg. domains Avg. added to
dataset detected the RBL

99.9 2728.07 243.96 18.99

99 19179.59 3228.75 149.37

98 37202.64 5226.31 205.72

97 57250.48 6805.55 239.37

100000

10000
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domains

100

Number of detected

0 20 40 60 80 100

Detection in advance (days)

Figure 5. Early detection of domains

(b) domains with a detection difference of at least two days
or more.

(c) domains that — on the day of writing — have not (yet)
been blacklisted.

Figure 5 shows how many domains have been detected, with
how much of a time difference before being blacklisted. The
y-axis is log-scaled to make the spread more visible.

In total 35,004 domains have been detected. The majority of
domains by far falls in the first category (a), 30,705 domains
(87.72%) appear on a blacklist less than two days after
detection via our method. In the second category (b), where
our detection is at least two days in advance, contains 1,972
domains (5.63%). Of these 1,972 domains, 1,154 domains
(3.30%) were detected at least a week in advance, 1,105
domains (3.16%) were detected more than two weeks in
advance, and 971 domains (2.77%) were detected at least
a month in advance. There are even 949 domains (2.71%)
which were detected at least 60 days before they appeared on
a blacklist. The maximum time difference we observed so far
is 104 days. 2,327 domains (6.65%) fall in the last category
(c), and have not (yet) been blacklisted. While these numbers
may seem small percentage-wise, it should be noted that this
type of email often makes it past an email filter.

VI. OPERATIONAL DEPLOYMENT

To validate our method in a real-world scenario, we de-
ployed the RBL (Section III-D) in an operational mail fil-
tering service. This allows us to measure how effective our
detections are. This deployment was done in collaboration
with SURFnet, the National Research and Education Network
in The Netherlands. The email of most of their connected
universities and colleges is handled by SURFmailfilter. Hence,
this is an excellent vantage point for evaluating if the domains
we detect are in use for sending spam. In this section we
discuss the results of this case study.

A. Method

First we describe the setup of this case-study. SURFmail-
filter works, like many mail filters, with a scoring system;
the higher the score, the more likely it is that the email is
spam. The operators of SURFmailfilter have set the defaults
for tagging an email as spam to a score of 5, and discard
any email with a score higher than 10. While these thresholds
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are configurable, in this paper we follow the thresholds as
set by the SURFmailfilter operators. To test our approach, we
configured our RBL as an extra source for blacklisted domains
in SURFmailfilter. To not influence the normal spam score
an email would get by too much, we have given the RBL a
minimum score (0.1). This has the effect that the mail filter
will not ignore the RBL, but at the same time our detection
system will not accidentally turn ham into spam in case a
benign domain happens to be on our RBL.

Then, to assess the effectiveness of our method, we retrieve
the email IDs which have hit the RBL, and we extract the
domains that have triggered the RBL. Of these emails we
record the triggering domain, the spam score, the date the
domain was detected, if the domain was blacklisted, and if so,
when.

B. Results

We discuss the results from SURFmailfilter in two ways.
Firstly, via the domains which have been seen by SURFmail-
filter. The initial goal was to confirm that the detected domains
are in use, but these results can also be used to confirm that
the domains are actually spam domains. And secondly, via
the emails themselves which have hit the RBL. With these
results we can answer how much extra spam could be tagged
or blocked by using our approach.

1) Domains: The domains which have been seen by SURF-
mailfilter can, roughly, be categorized into the same three cat-
egories as used in Section V-C. The first category (a) consists
of domains which have appeared on a blacklist shortly after
detection by our method (one day or less of a difference). The
second category (b) contains domains which have appeared on
a blacklist some time after detection by our method (two days
or more of a difference). Finally, the last category (c) is for
domains which have, during our measurement period, never
appeared on a blacklist.

Figure 6 exemplifies 6 domains from these 3 categories.
This graph is built by looking at each domain separately. The
upper row displays their maximum score per day. A black
color means no email containing the domain was observed
that day. The score visualization ranges from a low score, in
blue, to a high score, in red. The score is cut off at five. This
means that while emails may have scored higher than five,
these are all displayed in red.

In overlay, we have the status of the domain. A domain is
either detected only by our system (purple) or it is detected
and appears in one of the blacklists (green). The visualization

in Figure 6 summarizes the various possible cases we face
when comparing our method with blacklists.

In total, 130 domains that appear on our RBL have been
seen by SURFmailfilter in the body of an email. These
domains can roughly be categorized in three ways:

1) The first category, where the detection difference is one
day or less, contains 23 domains (17.69%). Of these, 16
have an average score above five. The other four domains
appear in emails scoring both below and above the five
point mark, but on average score below five. The reason
many domains in this category have a high spam score
can be explained by the fact that the blacklist status
causes an increase in spam score, and thus it exceeds
the threshold of five more easily. This also means that in
this category many of the emails are already marked as
spam, because of their high score, and that our approach
does not offer much gain for this category.

2) In the second category, where the detection difference
is two days or more, there are 38 domains (29.23%). Of
these domains, 22 have an average score above five. Four
domains have only been seen in an email once, scoring
below five. Two domains have been seen in multiple
emails, all scoring less than five points. The remaining
10 domains, appear in emails with scores above and
below the five point mark, but do not make the five point
average. Percentage wise there are fewer domains with an
average score above five compared to the first category,
thus our approach may make difference in this category
of domains.

3) The last category, where detected domains have not
appeared on a blacklist in the measurement interval,
contains 69 domains (53.08%). Of these 69 domains,
there are 38 with an average spam score above five.
12 domains have appeared in emails which have all
scored below the five point mark. However, seven of
these domains have only been seen in a single email. The
remaining 19 domains were seen in emails scoring both
below and above the five point mark, but with an average
score of below five. Our approach is most beneficial in
this category. About half of the domains in this category
score, on average, below five, this means that emails
containing these domains are able to bypass the mail
filter. However, since the domains do appear on our RBL
the score of those emails can be increased by assigning
a higher score of hitting the RBL.

A large portion of detected domains have an average score
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above five, this gives confidence that our method is effective
in detecting domains associated with spam.

2) Emails: Over our measurement period, SURFmailfilter
processed 3,773 emails that triggered the RBL. Of these
emails, 1695 come from the latter two categories presented
in Section V-C at the time of receiving the emails. We only
evaluate emails containing domains which are not blacklisted.
560 emails have a score equal to, or above five. While this
means that the email would have been marked as spam with or
without our method, it also gives confidence that our method is
effective at detecting spam. In the pool of 1,135 emails scoring
below five, 77 emails contain domains in the body which have
not appeared in emails scoring higher than five.

This pool of 1,135 emails, which have scored below the
five point mark, has been used to evaluate how many emails
could additionally be blocked, at what assigned score for the
RBL. Figure 7 visualizes the results of this analysis. As a
conservative measure the RBL could be awarded a single
point. In our situation this would have marked 19.1% of those
1,135 emails as spam. If the score is increased to two, 52.3%
of emails would have been marked as spam.

While we have strong reasons to assume that all domains
on our RBL are linked to spam, this approach lets mail filter
operators control how much they trust these results.

C. Uptake

SURFnet has used our RBL for three months as discussed
above. At first glance, the amount of additional spam that
could potentially be filtered seems small. Typically, spam fil-
tering systems catch a large percentage of spam messages [2],
and very few actually end up in a user’s inbox. SURFnet has
indicated that the emails detected by our method are actually
those that currently slip through the cracks and end up in
users’ inboxes. This makes our approach valuable to operators.
In fact, SURFnet has decided to start using our method in
production, and will assign a score of two to the RBL.

VII. ETHICS

The SURFmailfilter case study raises obvious privacy con-
cerns, as the system processes actual private email. There-
fore, the operators at SURFnet protected the privacy of their
customers by only giving us enough information to do our
research. We did not have access to the actual body of emails.

Occasionally we were given access to the subject line, in order
to get a better idea if a message could be spam or not.
Another concern is that the RBL resulting from our method
may contain benign entries (false positives). This is true for
all blacklists. While blacklist operators try to ensure that
only malicious domains end up on their list, sometimes false
positives slip through the cracks. This problem is doubled for
our RBL since our classifier is only as good as the training set
is. The training set is labeled by looking up the domains on
existing blacklists, if their accuracy is not one hundred percent,
the predictions from the classifier are not going to be perfect.
We therefore caution against treating our RBL as ‘absolute
truth’, and instead advocate that it is treated as circumstantial
evidence that supports the suspicion of a message being spam.

VIII. CONCLUSIONS

In this paper we investigate how domains crafted for sending
snowshoe spam can be detected using active DNS measure-
ments. Using the unique large-scale OpenINTEL dataset of
the DNS and by applying machine learning techniques, we
are able to detect malicious domains. 93.25% of domains we
have detected have appeared on an existing blacklist at some
point during the measurement period. Additionally, we have
shown that our method is able to detect domains from 2 to 104
days in advance, when compared to regular blacklists, such as
the Spamhaus blacklist.

In the operator case-study at SURFnet, we demonstrated
that the time advantage translates into additional emails being
marked as spam. In addition to this, we verified that these
emails actually contain domains known to be associated with
spam. These emails would otherwise bypass the email filter.

A. Future work

This paper has shown the potential of active DNS measure-
ments in the search for snowshoe spam domains. We realise,
however, that this is just a starting point. First, the next obvious
step is to collaborate with spam filter operators in order to
have more measurement points. Since spam is highly targeted
it is reasonable to assume that SURFnet, the Internet service
provider for academia in the Netherlands, receives a different
kind of spam than, say, for example, an email provider in the
United States. Since SURFnet is planning to add two points
to emails hitting the RBL we will follow up with SURFnet
after some time to learn from their experience. Secondly, the
optimal period for obtaining a fresh training set and retraining
the classifier needs further investigation.
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