
The Performance Impact of Elliptic Curve Cryptography
on DNSSEC for Constrained Hardware Architectures

Breus Blaauwendraad
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

b.blaauwendraad@gmail.com

ABSTRACT
The Domain Name System (DNS) is an Internet protocol,
with one of its tasks being the translation and mapping
of human memorable domain names to computer usable
IP addresses. Due to major security flaws in the DNS,
security measures were needed. DNS Security Extensions
(DNSSEC) are a suite of extensions that provide authen-
ticity and integrity to DNS responses, using digital sig-
natures. Unfortunately, DNSSEC is not without its flaws
as well. Earlier research has shown that many of these is-
sues are caused by the use of RSA as default cryptosystem
for DNSSEC. Switching to an Elliptic Curve Cryptogra-
phy (ECC-)based cryptosystem, will significantly mitigate
these problems; however, verification of an ECC-based sig-
nature requires much more computing power. Earlier re-
search has shown that for server-class architectures this
is not an issue. However, local DNS resolving comes with
privacy benefits for users. Therefore, we analyse whether
the performance impact is problematic for home routers
with a constrained hardware architecture. We examine the
question “Will switching the cryptosystem of DNSSEC to
an ECC-based one lead to performance issues for DNS re-
solvers on a constrained hardware architecture?” In this
research, we construct a DNS scenario test and adopt a
model to determine a worst-case value for the amount of
signatures a constrained hardware resolver should be able
to verify. Subsequently, we benchmark a variety of ECC
verification algorithms and implementations to determine
whether this amount is obtainable for mentioned archi-
tectures. Provided that certain implementation choices
are made, we conclude that switching the cryptosystem
of DNSSEC to an ECC-based one is feasible for home
routers.
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1. INTRODUCTION
The Domain Name System (DNS) is one of the most im-
portant network protocols in the Internet protocol suite.
One of its prime functions is the translation and mapping
of human readable domain names (e.g. www.google.com)
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to computer comprehensible IP addresses (e.g. 216.58.204.4).
Due to security flaws found in DNS[2], there was the need
for security measures. DNS Security Extensions (DNSSEC)
are a suite of extensions that provide authentication and
integrity for DNS responses, using digital signatures. In
July 2008, Dan Kaminsky uncovered a major security breach
in DNS, called cache poisoning[7]. Abusing this flaw makes
it possible for an attacker to falsify DNS information at
will. The discovery of this flaw significantly accelerated
the development and deployment of DNSSEC.

RSA is the default cryptosystem for DNSEC, used for the
signing and verification of the digital signatures. It has
the disadvantage of making the DNS responses very long,
due to the size needed for an RSA digital signature to be
secure. Over time, larger RSA keys were prescribed to
guarantee security against brute force attacks. As com-
puter power further increases, this issue becomes more se-
vere for the future.

Earlier research has shown that the large signatures are the
root of two problems[12]. First of all, due to the large dig-
ital signatures, the DNS responses are significantly larger
than the initiated queries. This increase in message size
can be misused for amplification in DDoS attacks[11].
Second, due to the size of a secure RSA digital signature,
it can take more than one Internet packet to send the DNS
response. Due to the firewall configurations, up to 10% of
Internet hosts are unable to receive fragmented DNSSEC
messages. [9, 10].
To achieve the same security in bits for Elliptic Curve
Cryptography (ECC), much shorter digital signatures are
required[6], as shown in subsection 2.3. The switch of
the cryptosystem for the DNSSEC digital signatures from
RSA to ECC mitigates both response size issues. In the
future, the difference between RSA and ECC signature
sizes is likely to increase vastly, as will be shown later in
the paper.

However, ECC comes with its own problems. In commonly
used scenarios, verification of an ECC-based digital signa-
ture requires up to an order of a magnitude more comput-
ing power than an RSA-based one.[4]. This could result
in a slow Internet connection when the DNS resolver lacks
the capacity to verify all the incoming signatures rapidly
enough. In the paper which has led to this research[5],
the authors ascertained that for resolvers on server-class
machines, this will not be the case; however, that does not
imply it will not cause performance issues for home routers
with a constrained hardware architecture. Since running
a DNS resolver on a home router comes with great privacy
benefits, as we will explain in the next section, we anal-
yse this topic. We examine it with the following defined
question: “Will switching the cryptosystem of DNSSEC
to an ECC-based one lead to performance issues for DNS
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resolvers on a constrained hardware architecture?”

We need a reliable estimate of how many signatures a con-
strained hardware architecture should be able to verify for
it to function for DNSSEC. We execute a real life DNS sce-
nario test for this prediction, and adopt a model based on
another one presented in an earlier paper [5]. With the
result from the scenario test as input for the model, we
come to a worst-case scenario of how many signatures the
resolver would presumably be able to verify. Subsequently,
we benchmark ECC-based validation for home routers by
benchmarking various algorithms and implementations, on
a representative architecture.

The contribution of this work is the answer to the ques-
tion whether an ECC-based cryptosystem is, performance
wise, suitable for DNSSEC for constrained hardware ar-
chitectures, such as home routers. Additionally, we con-
tribute two sets of ECC signature verification benchmark
results on two different hardware architectures.

1.1 Goals, research questions and approach
The purpose of this work is to determine if switching the
cryptosystem used in DNSSEC to an ECC-based one will
cause performance problems for constrained hardware re-
solvers such as home routers. The main question: “will
switching the cryptosystem of DNSSEC to an ECC-based
one lead to performance issues for DNS resolvers on a
constrained hardware architecture?”, is split up in two re-
search questions:

RQ1: How many signatures per second would a home router
presumably have to verify in a worst-case scenario?

Examining this question provides a worst-case scenario of
how many signatures a home resolver should be able to
verify, to function for DNSSEC. The methods we use to
study this question are the adoption of a model based on
earlier presented work[5], in combination with a real life
DNS scenario test on a home resolver to obtain a repre-
sentative input for the model.

RQ2: How do ECC implementations perform on the CPU
architectures that are common in home routers?

After finding out how many ECC signatures a home re-
solver should be able to verify in a worst-case, we need to
determine how many signatures such a resolver is capable
to verify. Therefore, we benchmark a representative con-
strained hardware architecture, similar to the one used for
home resolvers, to come to a reliable estimate.

To be future proof, the worst-case parameters are taken,
which cannot be outgrown by growth of DNSSEC. Right
now, only about 3% all domain names are employing DNSSEC
1[5]. In this model it is assumed to be 100%, including a
higher amount of signatures per response than the current
average, as discussed in subsection 4.1.

1.2 Paper structure
In section 2, background information on various important
topics for this research, such as the DNS, DNSSEC and
ECC are provided. Section 3 discusses related work to pro-
vide context for our research, and shows the fit with the
existing knowledge in the field. In section 4, the research
methods we adopt are explained in depth. Section 5 dis-
cusses the results obtained, with these research methods.
In section 6, various issues are discussed concerning the
results and potential weaknesses in the research methods.
In section 7 the conclusion of the research is presented. At
last, in section 8 future work is proposed.

1http://internetsociety.org/deploy360/dnssec/statistics/

2. BACKGROUND
2.1 Domain Name System (DNS)
The Domain Name System is a tree-structured hierarchi-
cal system and network protocol. An actual part of the
current DNS tree is shown in figure 2.1, to give an illus-
tration of how this works. The root of the DNS tree is
managed by the Internet Corporation for Assigned Names
and Numbers (ICANN). It authorizes domain name reg-
istries, who manage Top-level domains (TLD’s) and regis-
trars, through which domain names may be registered and
reassigned. Sub domains can be created and modified by
the registrant, which is a person or company who registers
a domain name.

Figure 2.1: Tree shaped hierarchical structure of the DNS

An implementation of the DNS generally consists of three
parts: a DNS client, a recursive caching name server (DNS
resolver), and the authoritative name servers. The exact
implementation can be different in various scenarios, as
shown in figure 2.2 and 2.3.

The DNS client and DNS resolver both keep separate caches.
When a requested DNS record is in the cache and the Time
to live (TTL) has not expired, this record will be used;
however, when the demanded record is not in any of both
caches, recursive DNS resolving is required. A common
scenario of how this could work is illustrated in figure 2.2:

1. A DNS client sends a DNS query, via the router, to
the DNS resolver.

2. The DNS resolver requests the IP address of the cor-
responding TLD from the root server.

3. The root server provides the requested IP address.

4. The resolver requests the IP address of the desired
Second-level domain (SLD) from the TLD authori-
tative name server.

5. The TLD name server provides the requested IP ad-
dress.

6. The resolver requests the IP address of the sub do-
main from the SLD authoritative name server

7. The SLD server provides the requested IP address.

8. The DNS resolver provides the response to the re-
quested query to the DNS client.

The scenario as illustrated in 2.2 is, privacy-wise, not op-
timal for the user. The recursive caching DNS server is
generally owned by an ISP, or a large company such as
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Figure 2.2: Common DNS implementation with external
resolver

Google. Every IP address is asked from their servers from
which the logs are stored.2 Essentially, the user gives up
the privacy of his web history. An implementation which
provides significantly better privacy is presented in figure
2.3. A local device, such as the home router, functions
as DNS resolver. Instead of sending the DNS queries via
a company owned resolver, the router communicates di-
rectly with the authoritative name servers. This research
focuses on this kind of DNS resolving; a constrained hard-
ware architecture such as a home router as DNS resolver.

Figure 2.3: DNS implementation with home router as re-
solver

2.2 DNSSEC
The DNS protocol is vulnerable to certain attacks. DNS
cache pollution, also referred to as DNS spoofing, can be
used to introduce false DNS data in the resolver’s cache.
The result of DNS spoofing is, that traffic which was meant
to be sent to a certain server, can be send to a server
of someone with bad intents. The cause of DNS pol-
lution is that the DNS communication is not authenti-
cated with cryptographic primitives. To solve this prob-
lem, the DNS protocol is extended with the DNS Secu-
rity Extensions (DNSSEC). DNSSEC protects DNS re-
sponses using digital signatures, to make it impossible
to falsify the responses. Currently, the digital signatures
used for DNSSEC are making use of the widely-used RSA
cryptosystem. The disadvantages of this cryptosystem for
DNSSEC have been extensively addressed in the introduc-
tion of this paper[3].

2https://developers.google.com/speed/public-
dns/privacy/

2.3 Elliptic Curve Cryptography
Elliptic Curve Cryptography (ECC) is a way of public-key
encryption based on elliptic curves over finite fields. This
section focuses on aspects of elliptic curve cryptography
that are relevant for the research in this paper. We simply
use it as a tool for encryption, and keep its characteristics
in mind. For an in-depth explanation of ECC, see [1].

The main advantage of an ECC-based cryptosystem is that
it requires a smaller key, compared to RSA, for the same
security in bits. Due to the increase of computer power,
RSA needs increasingly larger keys. Non-ECC algorithms,
such as RSA, are sub-exponentially growing in key size for
a doubling of security in bits. Doubling the number of
bits of security, requires more than a doubling of the key
lengths. For ECC, this is not the case. In order to double
the strength in bits, one needs double the key size. In table
5.3, a comparison between RSA and ECC, on required key
length, is shown.

ECC as cryptosystem for DNSSEC could thus mitigate
the two problems it currently has with RSA, due to the
required key lengths. Due to the difference in key-size
growth, the switch to an ECC-based cryptosystem for
DNSSEC is becoming increasingly crucial. At this mo-
ment, the general consensus is that 128-bit security is
enough for personal use[8]. If 256-bit security will be
needed, due to growing computer power, the difference
between RSA and ECC is a 15360-bit key length versus a
512-bit key length respectively. This shows that the need
for a change in the DNSSEC cryptosystem for the future
seems unavoidable[8].

Table 2.1: Required key length for different securities in
bits for ECC and RSA

Security
in bits

RSA Encryp-
tion method

RSA key in
bits

ECC key in
bits

80 3DES (2 keys) 1024 ≥ 160
112 3DES 2048 ≥ 224
128 AES-128 3072 ≥ 256
256 AES-256 15360 ≥ 512

3. RELATED WORK
In the paper [12] by van Rijswijk-Deij et al., researchers
from the DACS group at the University of Twente pre-
sented the idea of ECC as a solution for problems in DNSSEC,
caused by RSA. The performance impact of ECC for DNSSEC
on DNS resolvers has also been studied. In the paper [5],
also by van Rijswijk-Deij et al., the authors found that
the performance impact of switching DNSSEC to ECC
would not cause problems for DNS resolvers with a com-
mon server-class hardware architecture. Furthermore, in
said paper, the authors came up with a method to cal-
culate how many signatures a resolver should be able to
verify, given a workload of initialized queries. We base our
model on this work, to determine the presumable amount
of verifications a home router should be able to verify.

Current research does not consider the impact of an ECC-
based cryptosystem for constrained hardware architectures.
This research specifically focuses on the constrained hard-
ware architectures to determine if the switch of cryptosys-
tems will be a problem for DNS resolvers on home routers,
since they generally have a constrained hardware archi-
tecture. We thus will find out if the switch to ECC for
DNSSEC will cause performance problems for the DNS
set-up as shown in figure 2.3.
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4. RESEARCH METHODS
This section presents the research methods used in the pa-
per. It discusses the approach taken, to predict the impact
an ECC-based cryptosystem has for DNSSEC on resolvers,
with a constrained hardware architecture. In order to con-
clude anything about this impact, we need to determine
how many DNS queries such resolvers should be able to
handle. It is nearly impossible to execute a representative
measurement, since this would require measurements on
potentially thousands of DNS resolvers. Not only would
this be extremely labour-intensive, but also difficult due
to privacy reasons. Therefore, a well-founded worst-case
scenario is constructed in section 4.1.
Subsequently, a method to benchmark ECC-based valida-
tion is presented in section 4.3.

4.1 First research question
A set of mathematical functions executed on a computer
will fluctuate much less than the amount of ECC-verifications
needed on constrained hardware architectures to function
for DNSSEC. For every network, this number can be sig-
nificantly different. In houses with ten or more people,
much more DNS queries will be initialized than in the
home of a single person.
For these reasons, we try to derive a realistic worst-case
scenario, and see if this resulting amount can be met in
the benchmark tests.

A model is adopted to determine the actual amount of
signatures that a hardware architecture should be able to
verify per second, to function for DNSSEC. The model
is based on another model, proposed in a previous paper
[5], in section III B. We use it to accurately predict the
number of signatures verifications (Sv) a DNS resolver has
to perform, given a certain workload in terms of queries
(Q) it sends to the authoritative name servers.

In the earlier work [5], the input parameter Q is the num-
ber of queries that a DNS resolver sends upstream to au-
thoritative name servers. Queries from individual clients
are not considered. In contrast, in this work, we assume
a worst-case approach, where every query from a client
leads to a query from the resolver to upstream authorita-
tive name server. In essence this means that we assume
that the resolver does not gain any benefits from caching
at all. The function of the model is as follows:

f : Q→ Sv (1)

Function (1) was built upon different sub-equations[5],
which are disregarded for this paper; however, we use the
relation equations which consist of the sub-equations and
their variables.
The variable R represents the number of responses from
authoritative name servers. Rs represents the number of
responses with a signature. Responses can have more than
one signature, therefore, S are the actual amount of sig-
natures. Not all signatures have to be verified, therefore,
Sv represents the amount of signatures that need to be
verified.

The authors of [5] examined representative empirical data
of these parameters. By plotting these parameters against
each other, they found an estimate for the correlation co-
efficients. The results of their research are linear relation-
ships between all variables.
For the scope of this research, we use the worst-case sce-
nario for the linear models. We avoid many risks by taking
a worst-case scenario, because the future of DNSSEC is
uncertain and we have no representative data from DNS
resolvers on home routers. DNSSEC adoption could, theo-

retically, grow faster than the speed of DNS resolvers. If it
turns out that using ECC for DNSSEC will be feasible in
our worst-case scenario, it will likely stay so for the future.
The model for the parameters R, Rs, S and Sv is defined
as the following set of linear functions f1...f4 below, from
the model [5]:

f1 : R = r̄Q+ β1 f3 : S = s̄Rs + β3

f2 : Rs = asR+ β2 f4 : Sv = avS + β4

with:
r̄: the average number of responses per query
as: the fraction of responses with signatures
s̄: the average number of signatures per response
av: the fraction of signatures that is validated

These functions can then be combined to obtain f :

f : Sv = aQ+ b

a = av s̄asr̄

b = av(s̄(asβ1 + β2) + β3) + β4

Sv is an answer to the first key question of our research,
the amount of ECC-verifications a constrained hardware
architecture would presumably be able to verify, to func-
tion for DNSSEC. The parameters in the equations f1...f4
are determined using linear regression over empirical data.
However, in this paper, a worst-case scenario is built based
on a number of assumptions. The value for β in the linear
equations are an artefact of the fact that [5] uses linear
regression. Hence that in this paper we can set β to 0, as
we build a hypothetical worst-case scenario.

For the other parameters, r̄, aS , s̄ and av, a couple of
assumptions are made for the worst-case values. For r̄,
the average number of responses from the authoritative
server per initiated query, we take 1. This would mean
that every query to an authoritative name server gets a
response back. Since we want a worst-case scenario, we
assume that every response contains signatures. Hence, for
the fraction of responses with a signature (as) we also take
1. In previous research [5], the makers of the model found
that signed responses contain 2.1 signatures per response
on average. To avoid risk, we round this number up to 3
and use this for s̄. Furthermore, we will assume that all
the signatures have to be validated. Thus av, the fraction
of signatures that have to be validated, is set to 1.

A very important part of DNS resolving is the cache of
the resolver. Especially when a lot of DNS requests are
made from the clients to the resolver, IP addresses will be
still available in the cache; however, we ignore the cache
to make our worst-case scenario even stronger. With these
values for the parameters, an absolute worst-case situation
is established to avoid risks. If it turns out that DNSSEC
would work even in this worst-case scenario, it most def-
initely will in practise. By taking these values for the
variables, and ignoring the cache, we can rewrite the func-
tion f : Sv = aQ + b with a = av s̄asr̄ and for each β = 0
as follows:

f : Sv = 3Q+ b

f : Sv = 3Q+ av(s̄(asβ1 + β2) + β3) + β4

f : Sv = 3Q+ 0

Thus, for every query Q the DNS resolver initializes, it re-
quires the capability to validate three signatures. As said
earlier, we suppose that every DNS request that comes
from the clients, and goes to the resolver, will result in a
query to the authoritative name servers (Q).
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4.2 Ethical DNS scenario test
We attempt to establish a realistic amount for Q. We
do this by configuring a DNS resolver and determine the
maximum burst rate in a DNS scenario test. The DNS sce-
nario test will be held in a home environment. A time is
chosen for which the most people are connected to the net-
work. The burst rates are probably the highest achievable
in that period. Because people outside of our research will
get involved, privacy issues should be held into account.
We execute our test for a constrained period of time, and
notify everyone involved that the DNS traffic on our net-
work is monitored. Visitors can choose whether or not to
use our network, providing informed consent if they do.
After explaining what would happen with the obtained
data, all the guests declared that they did not mind the
monitoring.

4.3 Second research question
The question: “How do ECC implementations perform on
the CPU architectures that are common in home routers?”
is analysed. This is done through extensive benchmarking
of various ECC algorithms and implementations on a con-
strained hardware architecture, similar to the architecture
of a basic home router. For comparison, we also bench-
mark the same ECC algorithms and implementations on
a server-class hardware architecture. The switch of the
cryptosystem of DNSSEC not causing performance issues
for server-class hardware architectures does not imply the
same for constrained hardware architectures.

The constrained hardware architecture used for the anal-
ysis, is a single core of a Raspberry Pi 3. The CPU of
this device is a quad core ARM Cortex-A53, clocked at
1.2GHz . The environment running on this architecture
is the operating system (OS) Ubuntu Mate, completely
stripped from its graphical user interface. The hardware
architecture in combination with the lightweight OS is a
representative set-up, comparable to a home router archi-
tecture.
For the server-class hardware architecture we use an Asus
UX301LA having an Intel 4500U processor clocked at 1.8GHz.

For the ECC algorithms, we first pick one of the most
used ECC validation algorithms: ECDSA. Both the 256-
bits variant ECDSA P-256, as well as the 384-bit variant,
ECDSA P-384 are benchmarked; however, Ed25519 is said
to be faster, which could potentially change the answer
to the main question. Hence, the curve Ed25519 in the
Donna implementation is benchmarked as well. Perhaps
Ed25519 is suitable for DNSSEC on constrained hardware
architectures, while ECDSA turns out to be too slow. We
benchmark the ECDSA algorithms in various versions of
OpenSSL, because the implementation will influence the
results. We take the, still widely used, legacy version
OpenSSL 1.0.1f, the current version in Linux Ubuntu 16,
OpenSSL 1.0.2k, and the state-of-the-art version, 1.1.0e.

Furthermore, the 1024, 2048 and 4096 bit-versions of RSA
are benchmarked to verify that ECC signature verification
indeed requires more CPU power than RSA signature ver-
ification. It also shows the relevance of this research ques-
tion stating that the switch could indeed be problematic
because the performance differences are significant.

The average values of the benchmarks are calculated over
100 independent speed tests. The corresponding standard
deviations, are calculated over the 100 results. A single
speed test consists of a 10-second run with continuous calls
to signature verification functions, from which the average
number of verifications, per second, is calculated.

5. RESULTS
This part first contains the results of the DNS scenario
test executed as described in the previous section. Sub-
sequently, we use this result in the model, constructed in
the previous section, to answer our first research question.
The section is concluded with the results from extensive
benchmarking of ECC validation on two different hard-
ware architectures.

5.1 DNS scenario test
Previously in this paper, we reasoned about a worst-case
scenario for the amount of signatures a constrained hard-
ware architecture should be able to verify to function for
DNSSEC. Because the amount of DNS queries required
per second is user-dependent, we tried to find a moment
for which the amount of DNS requests would be as high
as possible in our situation.

Tests were conducted in a student dorm, and the data
was collected over a period of 24 hours. During this pe-
riod, the number of occupants using the network peaked
at 11 users. All the guests were asked to connect to our
network with their smart phones. Besides 9 people using
the network via their smart phones, a NAS was function-
ing and the TV was used for music on various applications
via Chrome Cast. Two other students used the Internet
on a laptop, until around 21:00 for studies, and later for
amusement.
Since DNS monitoring is extremely privacy sensitive, all
participants were asked for an informed consent as dis-
cussed in subsection 4.2.

Figure 4.1 illustrates the results of the DNS scenario test.
It is clear to see that the event started around 20:00,
and ended quite early, at 0:30. The next day, three stu-
dents were working on their computers for their studies;
however, as expected, the highest burst rate was already
achieved at the time of the event, at around 21:45, with 58
DNS queries in one second. This value is used as input for
the model, to find the amount of signatures that a DNS
resolver should be able to validate, per second.

5.2 Signature validation model
The model proposed in the research methods section is
used to find the amount of signature verifications that
need to be achieved by the constrained hardware archi-
tecture, to function for DNSSEC. We found the following
equation through inductive reasoning, in combination with
substitution of worst-case values for the multipliers, in the
original model.
All things combined provided the following function, as
explained in subsection 4.1.

f : Sv = 3Q (2)

For the value Q, a maximum burst rate of 58 queries per
second is found. Substitution of this value in the equation
(2), gives Sv = 3 ∗ 58 = 174 signature verifications.
For convenience, and because the maximum burst rate
could variate, this is rounded this up to 200 signature ver-
ifications per second that have to be achieved, in one sec-
ond, for the worst-case scenario.

5.3 Benchmarks
Earlier researchers[5] have benchmarked ECC validation
on a server-class hardware architecture. Since the bench-
marks in [5] were performed, the state of the art in terms
of implementations of ECC has improved. Therefore, a
full new set of benchmarks is conducted, with the set of
algorithms and implementations discussed in section 4.3.
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Table 5.1: Signature verifications per second, on a single core ARMv8 @ 1.2GHz benchmarks

Implementation
RSA Elliptic Curve Cryptography

RSA 1024-bit RSA 2048-bit RSA 4096-bit ECDSA P-256 ECDSA P-384 Ed25519
mean σ mean σ mean σ mean σ mean σ mean σ

OpenSSL 1.0.1f 4792.3 15.9 1317.4 3.1 343.2 0.6 243.2 2.0 98.2 0.7 - -
OpenSSL 1.0.2k 7185.7 21.1 2060.2 2.3 554.7 1.4 312.5 3.4 101.2 0.8 - -
OpenSSL 1.1.0e 10761.5 33.2 3525.5 10.1 1006.7 2.9 786.4 2.1 93.7 0.7 - -
ed25519-donna - - - - - - - - - - 716.5 6.4

Table 5.2: Signature verifications per second, on a single core Intel i7 4500U @ 1.8GHz benchmarks

Implementation
RSA Elliptic Curve Cryptography

RSA 1024-bit RSA 2048-bit RSA 4096-bit ECDSA P-256 ECDSA P-384 Ed25519
mean σ mean σ mean σ mean σ mean σ mean σ

OpenSSL 1.0.1f 87585.9 382.6 26349.4 64.3 7097.3 25.0 2413.2 25.3 1157.6 17.1 - -
OpenSSL 1.0.2k 103624.0 593.2 32049.6 193.9 8764.8 36.7 8900.9 35.5 1162.6 13.3 - -
OpenSSL 1.1.0e 100446.0 443.9 31845.9 122.6 8746.6 42.2 8606.3 53.9 1100.8 11.4 - -
ed25519-donna - - - - - - - - - - 14960.1 125.1

Table 5.3: Multipliers of signature verifications, per sec-
ond, differences between the architectures.

Algorithm
OpenSSL version

1.0.1f 1.0.2k 1.1.0e X
RSA-1024 18.3 14.4 9.3 -
RSA-2048 20.0 15.6 9.0 -
RSA-4096 20.7 15.8 8.7 -
ECDSA P-256 9.9 28.5 10.9 -
ECDSA P-384 11.8 11.5 11.7 -
Ed25519 - - - 20.9

The results of the ECC validation benchmarking on both
hardware architectures are shown in table 5.1 and 5.2. In
table 5.1, the benchmark results of the constrained hard-
ware architecture are shown. In table 5.2, the benchmark
results of the server-class hardware architecture are pre-
sented.

In table 5.3, the comparison between the differences among
the constrained and server-class hardware architectures is
illustrated. Each value represents the multiplier of how
many more signature verifications per second the server-
class hardware architecture achieved, on average, for every
algorithm and implementation. The reason for comparison
of architecture speeds is because optimization conclusions
from this table can be drawn. This will be discussed in the
subsection 6.1, where we go more in-depth on the results.

Examining the results, the first thing that stands out is
the huge difference between the amounts of signature val-
idations between the different hardware architectures. As
expected, the constrained hardware architecture is much
slower, despite the quite limited difference in clock speeds.
Another noticeable fact is the occurrence of large differ-
ences between one implementation and another, on the
same hardware architecture, with the same algorithm. The
difference between ECDSA P-256 in

OpenSSL 1.0.1f and in OpenSSL 1.1.0e, for example. The
determined means are respectively 243.2 and 786.4 ver-
ifications. The latter value would be sufficient, even in
a worst-case scenario, while the first would certainly not.
Promising results are the mean of ECDSA P-256 and Ed25519
for the constrained hardware architecture. The results are
respectively 786.4 for ECDSA P-256 with OpenSSL 1.10e
and 716.5 for Ed25519. We go more in depth on these two
ECC algorithms in section 6.

Currently, it is clear that ECDSA P-384 performs insuf-
ficient on the constrained hardware architecture, based
on the worst-case scenario as presented in subsection 5.2;
however, this implementation is not yet optimised for both
x86 and ARM architectures.
Looking at the enormous performance improvements shown
in previous optimizations, this could change in the future
in combination with possible faster home routers.

Figure 4.1: Graph of DNS queries per second over 24 hours
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6. DISCUSSION
In this section, first the results obtained through our re-
search are discussed and looked in more deeply.
Subsequently, the research methods used to obtain these
results are discussed and seemingly potential weaknesses
in our research methods are shown.

6.1 Results
Mentioned in the previous section, there are significant in-
equalities among the differences between the benchmarked
architectures, as illustrated in table 5.3.
Since OpenSSL 1.0.1f, there have been various optimiza-
tions, both for x86 and ARM architectures. As illustrated
in table 5.3, the differences between the architectures ap-
proach towards an order of a magnitude; however, the
difference of Ed25519 between the ARM architecture and
the x86 architecture is 20.9. The Ed25519 implementa-
tion is optimised for the x86 architecture, but not for
the ARM architecture. We know this from the results
of the server-class hardware architecture and the under-
lying mathematical primitives of Ed25519. The focus of
this elliptic curve is on performance, which is clearly visi-
ble in table 5.2, illustrating the difference between ECDSA
P-256 and Ed25519, on an x86 architecture .

Provided the state-of-the-art version of OpenSSL – 1.1.0e,
is used, the amount of signature validations per second
for ECDSA P-256 is roughly 8, 600 while the amount for
Ed25519 is roughly 15, 000. Hence, an optimised imple-
mentation of the Ed25519 algorithm can be up to 1.5 times
faster than the ECDSA P-256 algorithm. The Ed25519
version for ARM is not optimal, because otherwise the
difference between the architectures would be around an
order of a magnitude, just like the other algorithms.

Assuming that an optimised implementation of Ed25519
for ARM also outperforms ECDSA P-256 by a factor of
1.5x, this would yield a maximum of 1074.4 signature ver-
ifications per second. This is significantly higher than the
already optimised ECDSA P-256 algorithm for ARM ar-
chitectures, which achieves 768.4 signature verifications
per second.

In the benchmarks, the full capacity of the CPU was avail-
able for signature verification, while in reality this will not
be the case; however, even if only half of the CPU capacity
is available, the results of this research are still the same.

6.2 Research methods
In this work, we have used the maximum burst rate from
a single worst-case DNS scenario that was achievable in
our case; however, in reality this amount could differ and
potentially be higher. Nonetheless, this will not result in
a different answer to the main question of this research.

We found that in the worst-case scenario, the architecture
should be able to handle about 200 signature validations
per second. Even if the burst rate would be doubled, it
is still achievable with the right implementation and algo-
rithm to use an ECC-based cryptosystem for DNSSEC.

Another important aspect to realize is the assumption that
the cache of the resolver does nothing; however, the cache
is the most efficient during bursts, because clients ask in
many situations for the same IP addresses, which are al-
ready stored in the cache. In the conclusion section, we
go more in depth into what the answer on our research
question would be.

7. CONCLUSION
In this work, we analysed the question “will switching the
cryptosystem of DNSSEC to an ECC-based one lead to
performance issues for DNS resolvers on a constrained
hardware architecture?”. The main question is split up
in two different parts, with two corresponding research
questions. During the research, we found that the first
research question: “How many signatures would a home
router presumably have to verify in a worst-case scenario
per second?”, consists of two segments. The first part cov-
ers how many queries are initiated by a DNS client in a
realistic scenario, at the maximum burst rate. The sec-
ond part determines how many signatures validations this
would require for the DNS resolver to handle in one sec-
ond.
Based on a real-world measurement in a student dorm, and
based on the worst-case scenario we established, we find
that a resolver on a constrained platform should be able
to perform at least 200 signature validations per second.

Through benchmarking on multiple architectures with var-
ious implementations and algorithms, we can determine
that the established amount of signature validations per
second, is achievable on a constrained hardware architec-
ture.

However, certain implementation choices are necessary.
First of all, DNSSEC signers should use a suitable sign-
ing algorithm. The recommended algorithm for DNSSEC
validation is either ECDSA P-256 or Ed 25519. Secondly,
the algorithm implementation choice is crucial. ECDSA
P-256 requires the state-of-the-art version of OpenSSL —
1.1.0e, to function for DNSSEC validation. For Ed 25519,
the current implementation is sufficient, but further im-
provements can be made for the ARM architectures im-
plementation. We find that the constrained architecture
we benchmarked can perform around 786 signature vali-
dations per second for the commonly used ECDSA P-256
signature algorithm. This amount could be even higher
for an optimised implementation of Ed25519 for ARM ar-
chitectures.

The final conclusion is that switching to an ECC-based
cryptosystem will not lead to performance issues for DNS
resolvers on a constrained hardware architecture, provided
that certain implementation choices are made. Our hypo-
thetical worst-case scenario was quite extreme. We as-
sumed no caching, a response for every initiated query,
100% DNSSEC employment, more than average signatures
per response and only half of the CPU power available for
signature verification. Despite these extreme worst-case
assumptions, there were no performance issues, provided
that certain implementation choices were met.

8. FUTURE WORK
For future work it would be of great value if a larger set
of DNS resolvers on home routers could be tested, in or-
der to find an average maximum burst rate, which can be
used to predict more precisely how many signature valida-
tions such an architecture should be able to perform. This
set of data, in combination with an optimised version of
ECDSA P-384 for ARM architectures, could result in an
even better DNSSEC suite. If, for example, it turns out
that in 99% of the cases an optimised version of ECDA
P-384 performs well enough for DNSSEC.
Currently, we do not have the right amount of empirical
data on home resolvers to form such a conclusion.
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