(Self) Driving Under the Influence: Intoxicating Adversarial Network Inputs

Roland Meier!, Thomas Holterbach!, Stephan Keck!, Matthias Stahli’,
Vincent Lenders?, Ankit Singla!, Laurent Vanbever!

1ETH Zirich, armasuisse

ABSTRACT

Traditional network control planes can be slow and require
manual tinkering from operators to change their behavior.
There is thus great interest in a faster, data-driven approach
that uses signals from real-time traffic instead. However,
the promise of fast and automatic reaction to data comes
with new risks: malicious inputs designed towards nega-
tive outcomes for the network, service providers, users, and
operators.

Adversarial inputs are a well-recognized problem in other
areas; we show that networking applications are suscepti-
ble to them too. We characterize the attack surface of data-
driven networks and examine how attackers with different
privileges—from infected hosts to operator-level access—may
target network infrastructure, applications, and protocols. To
illustrate the problem, we present case studies with concrete
attacks on recently proposed data-driven systems.

Our analysis urgently calls for a careful study of attacks
and defenses in data-driven networking, with a view towards
ensuring that their promise is not marred by oversights in
robust design.

ACM Reference Format:

Roland Meier, Thomas Holterbach, Stephan Keck, Matthias Stahli,
Vincent Lenders, Ankit Singla, Laurent Vanbever. 2019. (Self) Driv-
ing Under the Influence: Intoxicating Adversarial Network Inputs.
In Proceedings of The 18th ACM Workshop on Hot Topics in Net-
works (HotNets’19). ACM, New York, NY, USA, 9 pages. https:
//dOi.Org/IO.1145/3365609.3365850

1 INTRODUCTION

“Blue boxes” were popular electronic devices in the 1960s
which enabled to perform free long-distance calls by abusing
the phone switching system. To do so, these devices were
simply replicating the audio tones required to start and end

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotNets’19, November 14-15, 2019, Princeton NJ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7020-2/19/11...$15.00
https://doi.org/10.1145/3365609.3365850

calls, as well as the ones allowing long-distance connections.
The phone companies ultimately became aware of these
abuses and decided to switch from in-band-signaling, which
merges the data and the control channels together, to out-of-
band-signaling, which separates the two.

Thus far computer networks have been essentially spared
by “in-band-signaling” attacks since they, too, rely on out-of-
band-signaling. Indeed, the behavior of the control plane (e.g.,
to decide how to forward the traffic) does not depend on the
actual traffic being forwarded in the data plane. This means
that to influence the decision of a router, an attacker first
needs to access its control plane. While this is possible—BGP
hijacks are just one example—this separation heavily reduces
the control plane’s attack surface. Clearly, not everyone has
access to BGP-speaking routers.

Decoupling the data- and the control planes is not “all
roses” though. It also leads to suboptimal network behav-
ior such as slow convergence or suboptimal routing: control
planes can happily direct traffic into blackholes for hundreds
of seconds upon failures, or send all the traffic along subopti-
mal paths while vastly superior ones are left idle. Frustrated
by this and motivated by the emergence of programmable
data planes, many researchers have been arguing that net-
work control should be made traffic-aware. Among others,
such data-driven networks [1, 10, 15, 27, 28, 41, 58, 59] have
been proposed for: optimizing routing strategies [54]; quickly
reacting to failures [23]; improving traffic engineering [58],
streaming quality [39], or throughput in general [13].

While useful, we show that these systems are prone to
fake signals, just like the phone system was back in the 1960s.
Worse yet, we show that performing these attacks is both eas-
ier, and can have much more far-reaching consequences than
placing a few free calls. For some attacks, sending crafted
packets from a single host is enough to trick the system.
Likewise, by (maliciously) inducing, say rerouting events, at-
tackers can negatively impact the behavior of a large portion
of the traffic, and hence a large portion of users.

Thus, if we want data-driven network systems to be widely-
deployed—which they should be, given the amount of excit-
ing applications—we (as a community) must be able to: (i)
precisely understand their attack surface; (ii) formulate and
reason about the attacker model; and (iii) protect them from
adversarial inputs.

mailto:meierrol@ethz.ch
mailto:thomahol@ethz.ch
mailto:kecks@ethz.ch
mailto:mstaehli@ethz.ch
mailto:vincent.lenders@armasuisse.ch
mailto:ankit.singla@inf.ethz.ch
mailto:lvanbever@ethz.ch
https://doi.org/10.1145/3365609.3365850
https://doi.org/10.1145/3365609.3365850
https://doi.org/10.1145/3365609.3365850

HotNets’19, November 14-15, 2019, Princeton NJ, USA

@ Operator
Host

5 &®

MitM

Figure 1: Three types of attackers with different priv-
ileges (host, man in the middle and operator) and two
targets (network infrastructure and endpoints).

We start to answer these research questions in this paper
and make three main contributions.

First, we characterize the threat model (§2). We consider
two dimensions: the attackers (how powerful are they?),
and the targets (the network? the endpoints?). We believe
that this threat model can be expanded upon and used as a
blueprint for analyzing data-driven network systems.

Second, we present concrete attacks on recent data-driven
network systems, including Blink [23], Pytheas [29], and
PCC [13]. Each of these attacks is a representative of a dif-
ferent class of attack techniques, which generalize to a wide
variety of systems. For Blink, we show that a single host can
induce undesired, and possibly detrimental, rerouting events.
For Pytheas, we show how attackers can, by faking perfor-
mance reports, negatively impact the decisions made for a
large set of clients. Finally, for PCC, we show that by manip-
ulating packets, attackers can make its algorithm ineffective,
and exploit it to cause traffic fluctuations at a target.

Third, we outline a set of broad strategies for countermea-
sures (§5), which we hope will inform a substantial branch
of the community’s research in this direction.

The inspiration for our effort stems from recent work on
adversarial inputs in other communities. For instance, adver-
sarial examples—inputs that result in incorrect outputs—are
a well-known problem in machine learning applications [11,
21, 25, 57]. Specifically, neural networks have been proven to
be susceptible in a way that slight modifications of a benign
input can result in a wrong output [3]. Examples include
self-driving cars that are tricked by small stickers on street
signs [14] and facial recognition systems that are tricked by
crafted eyeglass frames [50]. Despite these fields of study
being far separated from networking, the techniques for at-
tacking and defending such systems share similarities. Thus,
as interest in data-driven networking increases, we should
use the experience gathered elsewhere to flesh out potential
attack vectors and defenses. In this paper, we take the first
steps towards this goal.

Meier et al.

2 THREAT MODEL

Who might attack what in a network using adversarial in-
puts? In this section, we model the threat and summarize a
(surely incomplete) view of these aspects in Fig. 1.

2.1 Attacker privileges

We consider three different levels of privilege an attacker
may have: host, man in the middle, and operator. For all the
attackers, we follow Kerckhoff’s principle [45] and assume
that they know everything about a system (e.g., code and
parameter values) except secrets such as cryptographic keys.
Host(s) This attacker has compromised one or more hosts
and can manipulate traffic that these hosts send or receive,
including being able to inject traffic from such a host.

Man in the middle (MitM) This attacker has intercepted
one or multiple links in the network. She can record, modify,
drop, and delay traffic that crosses these links, as well as
inject traffic. However, she cannot break encryption.

Operator This is the most powerful attacker, with full con-
trol over the network. She can record, modify, drop, delay
and inject traffic at any location in the network. Further-
more, she can manipulate the network configuration. For
example, this privilege level may be obtained by phishing or
social engineering of a benign operator.

2.2 Attack targets

Attackers may target the infrastructure or endpoints.

Network infrastructure (§3) These attacks target devices
that forward traffic (e.g., routers). Data-driven networks—as
we address them in this paper—rely on data-plane signals
to take decisions (e.g., to change the forwarding). Typical
signals are values in packet headers (e.g., TCP sequence
numbers), metadata (e.g., timing) or contents.

An attacker can manipulate the forwarding behavior of
a data-driven system by deceptive signaling. Especially, the
move from simple, stateless data planes towards complex
stateful ones (e.g., using P4 [6]) greatly expands the attack
surface. Such manipulations can deteriorate performance
(e.g., by sending traffic via a low-bandwidth link); compro-
mise privacy (e.g., by sending traffic through an eavesdropped
path); or prepare the ground for other types of manipulation.
Endpoints (§4) These attacks target endpoints and appli-
cations running on them (e.g., streaming, file transfer, con-
gestion control). Those applications typically trust the data
that they receive from the network. Although a large share
of the traffic is encrypted nowadays, it is easy to manipulate
the metadata of packets (e.g., headers) as well as the traffic
statistics (e.g., delay). Manipulating packets or traffic statis-
tics can have an impact on an application’s or protocol’s
performance (e.g., if an adversary manipulates TCP window
size) or the situational awareness of users (e.g., if an adver-
sary manipulates information in debugging tools such as
traceroute).

(Self) Driving Under the Influence

3 ADVERSARIAL INPUTS TO
DATA-DRIVEN NETWORKS

With researchers arguing for data-driven networks, more
and more network decisions rely on traffic, especially af-
ter the recent progress in data-plane programmability. As
the data plane and the control plane are often considered as
the ‘thinking fast’ and ‘slow’ components in networking re-
spectively!, eschewing the control plane’s careful-but-slow
decision-making in favor of the data plane’s speed is tempt-
ing. However, this can also make data-plane decisions vulner-
able in case tasks usually tackled by the control plane (e.g.,
routing [43]) are performed in the data plane. This is a big
risk because the data plane’s inputs are not tightly controlled
like the control plane’s: packets drive the data plane.

Two components determine the output of a data-driven
system and constitute the attack surface: algorithms that de-
cide which action to take based on the traffic, and their state.
Manipulating algorithms requires operator privileges, while
state can be manipulated by hosts or MitM attackers. Possi-
ble impacts of attacks against the forwarding behavior of a
network include (i) privacy (if the attacker can hijack traffic);
(ii) performance (if traffic is sent along longer or congested
paths); (iii) reachability (if the network is disconnected); and
(iv) revenue loss (if clients observe poor performance).

In this section, we explore the effect of adversarial inputs
and how they can negatively affect network decisions. We
start with a case study based on Blink [23], a system to
quickly reroute traffic upon network failures, where we show
that adversaries can fake link failures and hijack traffic (§3.1).
Afterwards, we show that many other data-driven network
applications are also vulnerable to adversarial inputs (§3.2).

3.1 Manipulating Blink

Blink [23] tries to detect and avoid failed paths without wait-
ing for BGP withdrawals. It infers connectivity disruption by
detecting an increase in retransmitted TCP packets. While
this significantly reduces the time to detect failures, it also
enables attackers to manipulate Blink’s decisions by faking
TCP signals, as we show in the following.

Blink runs in programmable network devices and monitors
a small sample of flows (e.g., 64) for each destination prefix.
If half of these monitored flows retransmit packets, it infers
a failure and reroutes this prefix along a different next-hop.
To choose the monitored flows, Blink computes a hash of
each flow’s 5-tuple and uses the hash value as an index in
an array of cells. Therefore, several flows may collide in one
cell. However, at any given time, only one flow occupies a
cell, and is thus monitored. This monitored flow is evicted
by freeing its cell if it finishes or becomes inactive for 2 s or
more. When a cell is free, Blink samples a new flow. Blink also
resets its monitored sample every 8.5 min. Every monitored
flow is thus eventually evicted, even if continuously active.

1With apologies to Daniel Kahneman [30]

HotNets’19, November 14-15, 2019, Princeton NJ, USA

(o)
(=]
|

I
(e}
|

Za
- - - 5th percentile (calculated)

Average (calculated)

]
(=]
|

95th percentile (calculated)
KA —— 50 simulations
0 F T T T T T
0 100 200 300 400 500
Time [s]

of sampled malicious flows

Figure 2: Malicious flows sampled by Blink over time
(tr = 8.37s, ¢;m = 0.0525). On average, it takes 172 s until
the sample contains enough (i.e., 32) malicious flows.

Attack Manipulating Blink may seem trivial since generat-
ing TCP retransmissions is easy. While this is an essential
ingredient, Blink’s sampling strategy necessitates for more
care. The attacker needs to generate flows that always re-
main active, so that once Blink samples a malicious flow, it
keeps monitoring it. Thus, the number of sampled malicious
flows increases over time, until the sample is reset. Below,
we show that an attacker can often ensure that her flows
are the majority of the sampled flows for a prefix. Once this
is the case, the attacker can easily trick Blink into rerout-
ing traffic, possibly onto a path that she controls. In practice,
one can perform this attack by sending the fake TCP retrans-
missions from a set of hosts that reach the victim prefix via
Blink. Observe that the attacker does not need to establish
TCP connections with the victim network, which makes the
attack easier to setup and harder to prevent.

Theoretical analysis Let tg be the average time a legit-
imate flow remains sampled. We assume a malicious flow
is always active, and thus once being sampled, it is never
evicted unless the sample is entirely reset. We define t5 as
the frequency at which Blink resets the sample (tg = 8.5 min,
by default). Thus, tp is the attacker’s time budget until all
the sampled flows are evicted. We define g, as the frac-
tion of traffic that is malicious. For a particular cell of the
array used for sampling, the probability p that it is occu-
pied by a malicious flow at the end of the time budget ¢ is
p=1-(1-q,) /') Now, consider X as a random variable
corresponding to the number of malicious flows monitored
across all cells at the end of the time budget, tg. As each
of the n cell acts independently, X is binomially distributed
with parameters n and p. We use this distribution to calculate
the practicality of the attack.

Fig. 2 shows the number of monitored malicious flows
over time. We consider tg = 8.37 s, the value computed for
one prefix of a CAIDA trace [8] used in Blink’s analysis, and
qm = 0.0525 (i.e., 5.25 % of the flows are malicious). After

HotNets’19, November 14-15, 2019, Princeton NJ, USA

200 s, there is a high chance that at least 32 monitored flows
(i-e., half) are malicious (purple lines), enabling a successful
attack. With longer tg, the attack is harder, i.e., requires
higher gq,,. We analyzed the top-20 prefixes of each CAIDA
trace used in [23] and found that for half of them the average
time a flow remains sampled is 10 s (the median is ~5 s). The
example in Fig. 2 is therefore representative. While 5 % of
traffic to a destination is substantial, it is within reach, even
for the most popular destinations, using a small botnet.

Experimental results To confirm our theoretical results,
we simulated a network with mininet [34] and the P44 im-
plementation of Blink. We generated 2000 legitimate and 105
malicious flows (g, = 0.0525), and used the same tg = 8.37 s.
The thin blue lines in Fig. 2 show the results of each exper-
iment. As expected from the theoretical results, half of the
sampled flows are malicious after ~200 s. We did experi-
ments with many values for tg and the results always match
the theoretical analysis. This confirms that an attacker can
manipulate Blink quickly and with a small amount of traffic.

3.2 Attacking other systems

While we concretely flesh out the attack on Blink, it is by
no means the only vulnerable system. Below, we list a set
of routing systems running in the control- and data plane
which are vulnerable to adversarial inputs.

Control-plane programs Several systems [2, 5] use data-
plane signals to improve path selection. For instance, RON [5]
is an overlay network which reroutes traffic from one node
to another when it detects a performance degradation. An
attacker in the path between two nodes could drop or delay
RON’s probes, so as to divert traffic to another next-hop.

Google Espresso [60] and Facebook EdgeConnect [49] use
passive measurements to extract information and send traffic
on the best-performing path. An attacker could lower the
performance (e.g., increase the delay) of the flows destined
to these networks so that they use another path.

Data-plane programs Several systems similar to Blink
have been proposed [24, 42, 43], and we expect similar vul-
nerabilities to arise in these contexts. DAPPER [18] relies on
TCP information to determine if a connection is limited by
the sender, the network, or the receiver. An attacker can im-
plicate either of these three for performance problems by
manipulating TCP packets, and falsely trigger the recourses
suggested by the authors.

SP-PIFO [4] approximates PIFO behavior using the strict-
priority queues available in programmable switches. The
proposed heuristic is based on the assumption that given
a rank distribution, the order in which packet ranks arrive
is random. An attacker could send packet sequences of par-
ticular ranks, resulting in packets being delayed or even
dropped.

Some existing data-plane applications also use a number
of states that scale according to the traffic (e.g., SilkRoad [42]

Meier et al.

maintains per-connection state). As programmable switches
have limited memory, these applications are more vulnerable
to DDoS attacks than their software-based counterparts.

FlowRadar [36] and LossRadar [35] use probabilistic data
structures such as bloom filters to monitor network perfor-
mance. These data structures are vulnerable against adver-
sarial inputs [12, 17] because they are often dimensioned for
the average case, rather than the worst case. An attacker can
pollute, or even saturate (cf. [17]) a bloom filter, resulting in
inaccurate network statistics.

Recently, Siracusano et al. [51] have shown how to run
the forward pass of a binary neural network in the data
plane. While promising, neural networks are vulnerable to
adversarial examples [3], and thus are particularly exposed
in a setting where anyone can inject inputs over the Internet.

Recent work also offloads a set of compute operations
from hosts into the data plane [43, 46, 47]. This also opens
up new doors for potential attacks, as switches are likely to
be shared among users, whereas applications are designed
to run in isolated environments.

4 ADVERSARIAL INPUTS TO
ENDPOINTS AND APPLICATIONS

In addition to network-based systems, many endpoint-based
systems also rely on network traffic to (locally) optimize
throughput, make better forwarding decisions or monitor
the network performance. A well-known example is TCP
and its congestion control algorithm [26].

As for network decisions though, relying on network traf-
fic makes endpoints vulnerable to adversarial network in-
puts.

The possible impacts include (i) security and privacy is-
sues (e.g., if addresses are changed such that traffic goes to
the wrong destination); (ii) loss of situational awareness (e.g.,
if probing tools are manipulated); (iii) performance loss (e.g.,
manipulated window size in TCP) and; (iv) broken debugging
tools (e.g., if ICMP packets are manipulated).

Each of the three attacker models (cf. §2) can feed adver-
sarial inputs to endpoints and their applications: An attacker
with host-privileges can only provide inputs to compromised
hosts or inject packets to other hosts; an attacker with MitM-
privileges can provide adversarial inputs to all endpoints
which communicate over the compromised links; and an at-
tacker with operator-privileges can provide adversarial inputs
to all endpoints in the network.

To illustrate the threat, we describe three case studies: First,
we analyze Pytheas [29], a framework to optimize Quality of
Experience (QoE), and show that malicious clients can influ-
ence the system such that other clients receive worse video-
streaming quality (§4.1). Second, we show how the through-
put of PCC [13], a transport protocol, can oscillate due to ad-
versarial inputs (§4.2). Third, we describe how NetHide [40],
a DDoS defense system, can be used to present wrong net-
work topologies to users (§4.3).

(Self) Driving Under the Influence

4.1 Manipulating Pytheas

Pytheas [29] is a framework to optimize Quality of Experi-
ence (QoE), for example for video streaming. Pytheas per-
forms data-driven QoE optimization through a real time
exploration and exploitation (E2) process. The driving sig-
nals are QoE measurements reported by individual clients,
which are grouped by their session similarity (e.g., hosts in
the same ISP or location). The E2 algorithms run on group
granularity, allowing Pytheas to scalably optimize traffic in
real time.

Attacking Pytheas Since decision-making happens at gr-
oup granularity, if multiple clients within a group report
manipulated QoE measurements, this can drive decisions
for other clients. For instance, a botnet can pollute mea-
surements for a group of clients seeing video streams by
reporting low throughput and poor QoE, such that the sys-
tem lowers video quality for all clients in the group. MitM
attackers can achieve similar outcomes if they drop packets
for a subset of the group members. In many settings, group
membership will not be hard to ascertain even for external
parties, as it is typically based on features like autonomous
system, IP prefix and location.

An operator with deep control of multiple devices can—of
course—make such attacks more powerful. An attacker with
operator-level privileges can program the data-plane hard-
ware to identify traffic of interest, and reduce its throughput,
increase loss, and even increase latency by either sending
packets along longer paths or bouncing them back-and-forth
between devices.

Another possible attack with MitM or operator privilege
is to throttle user flows to/from a particular content distribu-
tion network (CDN) site, while prioritizing traffic to others.
This way, the attacker can create imbalance and potentially
overload one site as entire groups of clients switch to it.

Note that both of these attacks require tampering with
only a small fraction of traffic to cause disproportionate
damage, by exploiting the group-based decision logic. For
Pytheas-like systems, this poses a challenge because other
than the observed performance differences, there are no fea-
tures that separate clients that are performing well from
those that are not, forcing a group-wide decision that is
potentially harmful, such as lowering the served video res-
olution. What makes these attacks even more damaging is
the prospect that clients that observe poor performance a
few times will use the service less (potentially causing rev-
enue loss for the service provider) or worse, even abandon
a service in favor of its competitors. Google, for instance,
observed that users that saw substantially increased Web
search response latency not only made fewer searches, but
that this effect persisted even after latency returned to nor-
mal [7]. Thus, a short-term active attack can have long-term
negative consequences.

HotNets’19, November 14-15, 2019, Princeton NJ, USA

4.2 Causing PCC to oscillate

PCC [13] is a novel transport protocol that takes a data-
driven approach to congestion control instead of using hard-
coded rules as in TCP (e.g., cut rate by half on loss). PCC does
A/B experiments with the transmission rate, trying rates that
are larger or smaller by a factor of € than the current one.
It measures a utility function defined in terms of loss and
throughput to pick a direction of movement, i.e., € fraction
larger or smaller rate.

By tracking PCC flows, a MitM attacker can try to en-
sure that they see the same utility with both larger and
smaller rates. In each monitoring interval, PCC does a rate
experiment. This monitoring interval can be estimated from
the RTT, which is easy to track in the data plane by pro-
grammable network devices.

Knowing the utility function, the attacker can drop pack-
ets in the +¢ and —e phases, such that PCC is unable to see
a large-enough utility difference. PCC then repeats its exper-
iment with increasing e until a threshold of 5%. Thus, the
attacker can cause PCC flows to fluctuate by +5%, without al-
lowing them to converge to the right rate. Further, by doing
this across a large number of PCC flows towards the same
destination, the attacker can create sizable traffic fluctua-
tions at the destination, causing challenges with managing
this variable traffic.

Not only is PCC’s logic neutralized in this setting, it is
effectively a tool for the attacker to cause disruption at the
destination.

4.3 Faking network topologies

Traceroute is widely used for debugging network connec-
tivity issues. It sends a series of IP packets with increasing
time-to-live (TTL) values, and receives the ICMP time ex-
ceeded messages from the routers where these TTLs expire.
From the source addresses of these replies, it reconstructs
the path that packets take.

Since there is no authentication of these ICMP replies, any
attacker who can manipulate them can control the path that
traceroute displays and thus the topology which the user
learns. To perform this attack, it is enough to rewrite the
source address of the ICMP replies or to reply to IP packets
directly (i.e., craft the entire ICMP replies).

NetHide [40] uses this technique to manipulate traceroute
packets such that attackers cannot identify parts of the topol-
ogy which are susceptible to a DDoS attack. While the focus
of NetHide is to use this technique for defense purposes
(NetHide limits the amount of lying to the minimum that is
required to meet the security requirements), the exact same
technique could be used by malicious operators to present
wrong information about the topology.

HotNets’19, November 14-15, 2019, Princeton NJ, USA

5 COUNTERMEASURES

There is clearly value in extracting actionable network con-
trol information from data-plane signals, but for such sys-
tems to be practical, we must guarantee that this does not
compromise security. We thus describe possible countermea-
sures to prevent malicious behavior in data-driven systems
and specify open questions for future research.

At a high level, we propose to extend data-driven systems
by external supervisors, which monitor the systems and
prevent them from misbehaving. We illustrate our proposed
architecture in Fig. 3, drawing on a self-driving car analogy.
A driver drives the network while a supervisor supervises the
driver and determines the directions in which the it can move.
The key idea is to not rely solely on data-plane signals but to
have an additional feedback loop that checks the plausibility
of the signals and controls system. In this framework, one
can apply countermeasures at many points: the inputs to
the system (I); its code and configuration (II, V); as well
as its outputs and behavior (I, IV). We next discuss some
possible countermeasures and how these would safeguard
the applications we discussed previously.

I Ensuring input quality Most attacks we outlined
stem from data-driven applications blindly trusting the in-
puts they receive, and the inputs not being protected against
manipulation. Possible countermeasures in this area include
(i) encrypting and/or authenticating inputs; (ii) improving
input quality by using many independent inputs; or (iii) ver-
ifying inputs, for example through active probing.
However, all these measures are challenging to implement:
(i) encryption and authentication would require changes in
today’s prevalent protocols and the required cryptographic
operations are not available in today’s programmable data
planes; (ii) deciding based on multiple signals is not possible
for every application and it is difficult to assess whether
two signals are truly independent and no adversary can
manipulate both of them; (iii) verifying signals increases the
decision time and thus conflicts with immediate reactions to
events, which is often desired in data-driven applications.
Research question Where is the sweet spot for maximizing
input quality given the cost of modifying existing protocols,
modifying applications, and impact on decision time?
II Testing and verifying program code To prevent at-
tacks in the first place, testing and verifying the code of
data-driven systems seems promising. However, these are
challenging problems. As an illustration, verifying stateful
(data-driven) network functions is known to be undecid-
able [55]. We propose to explore the following directions.
For testing, one can use fuzzing techniques that enable auto-
generation of (realistic) adversarial inputs (e.g., from existing
traces). For verification, we suggest to leverage recent ad-
vances in symbolic execution to capture and analyze the
behavior of data-driven systems. More particularly, one can
capture the semantics of data-driven systems as formulas

Meier et al.

@9 Supervisor

1\

Update
Update allowed
model range
N\
Il \\' I 1
) @ Driver Allowed

operating range

Figure 3: Countermeasures can be applied at many dif-
ferent points of a data-driven system.

for SMT solvers and rely on symbolic execution to find se-
quences of packets (or lack therefore) that could trigger in-
secure behaviors. Existing works (cf. §6) use a similar tech-
nique to find bugs in P4 programs. However, these works
are limited to single packets and focus on finding known
bugs. A promising strategy that uses a similar approach for
automated synthesis of malicious inputs would be to extend
the symbolic execution to multiple packets and stateful pro-
grams. Given a specified part within a data-plane program
(e.g., a register access), such a tool could compute inputs (i.e.,
sequences of packets) that reach this part of the program.
Kang et al. [31] present early work in this direction.
Research question How can we adapt and extend existing
works on automated program testing and verification for
applications in self-driving networks?

III Constraining the decision range of the driver As-
suming there exists a model which describes normal behavior
of a network with respect to the driver application, one can
(i) compare the behavior of the driver with the model and
determine whether it drives “under the influence” (i.e., re-
ceives adversarial inputs); (ii) use this model to constrain the
behavior of the driver proactively. That is, the driver is only
allowed to change its state as far as the model allows.

Research question How can we model plausible behaviors
of a network and constrain the driver accordingly?

IV Invoking supervisor checks A good supervisor needs
to fulfill two criteria: (i) it needs to be able to prevent (or at
least detect) adversarial inputs; and (ii) it needs to do this
without impact on the driver’s performance.

To satisfy (i), the supervisor needs a model of (non-)ad-
versarial behavior (see III) and ways to compute it. However,
this complex modeling and computation is difficult to per-
form in the data plane at line rate (i.e., without violating
(ii)) given the limited resources. Thus, while the driver oper-
ates in the data plane, we suggest that it invoke a supervisor
outside the data plane for safety checks.

The driver determines its current state (e.g., the congestion
in the network) and sends this information to the supervisor.

(Self) Driving Under the Influence

The supervisor then uses a model of plausible states to esti-
mate the risk of the driver being under influence, i.e., being
fed adversarial inputs. Then, the supervisor computes the
directions in which the driver can steer the network in the
future (i.e., possible future states) and sends this to the driver.
Always requiring synchronous driver-supervisor interaction
will slow down the driver, impacting its effectiveness. But
what types of decisions a driver can take asynchronously
(without waiting on the supervisor in real-time) may require
driver- and decision-specific analysis.

Research question How does an efficient driver-supervisor
interface look like, and how do we trade off fast, asynchro-
nous operation against delays in enforcing safety?

V' Obfuscating control logic Successful attacks require
a model of the control logic used in a data-driven system.
Obfuscating this logic, or varying it over time, can thus hin-
der attacks. This security-by-obscurity method, while less
preferable to the other methods discussed above, can form
part of a defense-in-depth approach.

Research question: How can control logic, configuration, and
state of self-driving networks be obfuscated in a way that
makes it hard for an attacker to invert but does not degrade
performance and functionality?

Applicability to Blink, Pytheas and PCC We briefly sk-
etch how some of our countermeasures could help protect
the systems that we discuss in this paper.

Blink could monitor the RTT distribution over a large
number of flows, approximate the expected RTO distribution
upon a failure, and use it to distinguish between actual fail-
ures and malicious events. Manipulating Blink would then
require an attacker to know the RTT distribution of the legit-
imate flows forwarded by the Blink router, information that
is hard to obtain for an attacker with host or MitM privileges.

Pytheas could look at the distribution of throughput across
all clients in a group. If only a few clients exhibit low through-
put while others exhibit high throughput, this is indicative of
either groups being ill-formed or malicious inputs from part
of the group population. Accordingly, the low-throughput
clients can be tackled separately, removing their impact on
the larger population.

PCC could monitor when packets are dropped in every +€
or —e phase as well as limit the amplitude of the oscillations
by decreasing the range of €.

6 RELATED WORK

In this section, we discuss work on adversarial inputs in
other areas (e.g., machine learning), on analyzing data-plane
programs and similar attacks.

Adversarial examples Adversarial examples are a well-
known and extensively addressed problem in machine learn-
ing applications, especially computer vision (cf. survey in
[3]). In contrast to these works, we focus on the special cir-
cumstances of data-driven systems in networks and do not

HotNets’19, November 14-15, 2019, Princeton NJ, USA

restrict our focus to machine learning applications. Further-
more, there exists work on adversarial examples for machine-
learning based network applications (e.g., malware classifi-
cation [21, 25, 53, 57] and intrusion detection [11]).

Data-plane software analysis Initial work on analyzing
data-plane programs focused on verification. Freire et al. [16]
present an approach to verify security and correctness prop-
erties of P4 programs. Vera [52] finds common known bugs
(e.g., invalid memory accesses) in P4 programs via symbolic
execution. Similarly, p4pktgen [44] uses symbolic execution
to automatically generate test cases for P4 programs and
p4v [37] can verify P4 programs including their control-
plane interface. While these approaches can be used with
malicious intents to find exploitable bugs, they are limited
in terms of which input they consider (typically only one
packet). Recent work by Kanget al. [31] aims at finding at-
tacks and defenses for P4 programs automatically. While [31]
is limited to simple programs, we agree that symbolically ex-
ecuting P4 programs in order to find and fix vulnerabilities
is a promising research direction (cf. §5).

Attacks against the forwarding behavior of a network
Existing attacks demonstrate how to manipulate routing
protocols. For example, to pollute forwarding tables (e.g.,
[9, 32, 56]) or to hijack traffic (e.g., [19, 38]). As we argue
in this paper, the rise of programmable data planes greatly
increases the attack surface.

Attacks against protocols There is a number of publica-
tions about attacking protocols such as IP (cf. [22]) and TCP
(e.g., [20, 33, 48]) and—as we show in this paper—many novel
protocols and algorithms allow new attacks.

7 CONCLUSION

Data-driven network control promises responsiveness and
automation, and has great potential to overcome the short-
comings of traditional network control. However, the clear
separation of the data- and the control channels has been a
huge security advantage in terms of reducing the attack sur-
face of networks. This is clearly not the case for data-driven
networks acting on Internet traffic: anybody with an Internet
connection can start injecting adversarial inputs into it.

In this work, we characterize the threat and highlight
its destructive potential on multiple concrete use cases. We
show that the impact is both real and worrying.

Not all is lost though. We do believe that there is a way
to combine the benefits of data-driven decisions with the
security benefits of data-agnostic ones. Doing so is challeng-
ing, but we highlight a promising research agenda in that
direction.

To sum up, we hope that our work will encourage the com-
munity to start considering security as a first-class citizen
when thinking about the next self-organizing, knowledge-
defined, cognitive, or self-driving network technologies.

HotNets’19, November 14-15, 2019, Princeton NJ, USA

REFERENCES

[1] Platform Lab. 2019. https : / / platformlab . stanford . edu /
platform-self-programming-networks.php.

[2] Aditya Akella, Bruce Maggs, Srinivasan Seshan, and Anees Shaikh. On
the Performance Benefits of Multihoming Route Control. IEEE/ACM
ToN’18.

[3] N. Akhtar and A. Mian. Threat of Adversarial Attacks on Deep Learn-
ing in Computer Vision: A Survey. IEEE Access’18.

[4] Albert Gran Alcoz, Alexander Dietmiiller, and Laurent Vanbever. SP-
PIFO: Approximating Push-In First-Out Behaviors using Strict-Priority
Queues. In USENIX NSDI'20.

[5] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Mor-
ris. Resilient Overlay Networks. In SOSP’01.

[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming protocol-independent
packet processors. ACM SIGCOMM CCR’14.

[7] Jake Brutlag. Speed Matters for Google Web Search. 2009. https:
//services.google.com/fh/files/blogs/google_delayexp.pdf.

[8] CAIDA. The CAIDA UCSD Anonymized 2013/2014/2015/2016/2018
Internet Traces. http://www.caida.org/data/passive/passive_2013_
dataset.xml.

[9] CISCO. CAM Overflow - CCNP Security Secure 642-637 Quick Ref-

erence: Cisco Layer 2 Security. 2011. http://www.ciscopress.com/

articles/article.asp?p=1681033 &seqNum=2.

David D Clark, Craig Partridge, J Christopher Ramming, and John T

Wroclawski. A knowledge plane for the internet. In ACM conference

on Applications, technologies, architectures, and protocols for computer

communications. 2003.

[11] Igino Corona, Giorgio Giacinto, and Fabio Roli. Adversarial attacks

against intrusion detection systems: Taxonomy, solutions and open

issues. Information Sciences, 2013.

Scott A. Crosby and Dan S. Wallach. Denial of Service via Algorithmic

Complexity Attacks. In USENIX Security’03.

Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael

Schapira. PCC: Re-architecting Congestion Control for Consistent

High Performance. In USENIX NSDI’15.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rah-

mati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song.

Robust physical-world attacks on deep learning visual classification.

In IEEE Conference on Computer Vision and Pattern Recognition. 2018.

[15] Nick Feamster and Jennifer Rexford. Why (and how) networks should
run themselves. arXiv, 2017.

[16] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto
Schaeffer-Filho, and Marinho Barcellos. Uncovering bugs in p4 pro-
grams with assertion-based verification. In ACM SOSR’18.

[17] T. Gerbet, A. Kumar, and C. Lauradoux. The Power of Evil Choices

in Bloom Filters. In IEEE/IFIP International Conference on Dependable

Systems and Networks. 2015.

Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper:

Data Plane Performance Diagnosis of TCP. In ACM SOSR’17.

Sharon Goldberg, Michael Schapira, Peter Hummon, and Jennifer Rex-

ford. How secure are secure interdomain routing protocols. ACM

SIGCOMM CCR’11.

F. Gont. RFC 5927 - ICMP Attacks against TCP. 2010. https://tools.

ietf.org/html/rfc5927.

Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael

Backes, and Patrick McDaniel. Adversarial examples for malware

detection. In European Symposium on Research in Computer Security.

2017.

[22] B. Harris and R. Hunt. TCP/IP security threats and attack methods.

Computer Communications. 1999.
Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto

Dainotti, Stefano Vissicchio, and Laurent Vanbever. Blink: Fast con-
nectivity recovery entirely in the data plane. In USENIX NSDI'19.

[10

=

[12

—

(13

=

(14

=

(18

=

[19

-

[20

=

[21

—

[23

—_

Meier et al.

[24] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, Praveen
Tammana, and David Walker. Contra: A Programmable System for
Performance-aware Routing. In USENIX NSDI’20.

[25] Weiwei Hu and Ying Tan. Generating adversarial malware examples
for black-box attacks based on GAN. arXiv, 2017.

[26] V. Jacobson. Congestion Avoidance and Control. ACM SIGCOMM
CCR’1988.

[27] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Data-Driven
Networking: Harnessing the “Unreasonable Effectiveness of Data” in
Network Design. 2016.

[28] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Unleashing the
potential of data-driven networking. In International Conference on
Communication Systems and Networks. 2017.

[29] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. Pytheas: En-
abling data-driven quality of experience optimization using group-
based exploration-exploitation. In USENLX NSDI'17.

[30] Daniel Kahneman. Thinking, fast and slow. 2011. Macmillan.

[31] Qiao Kang, Jiarong Xing, and Ang Chen. Automated attack discov-
ery in data plane systems. In USENIX Workshop on Cyber Security
Experimentation and Test. 2019.

[32] Alex Kirshon, Dima Gonikman, and Gabi Nakibly. Owning the Routing
Table New OSPF Attacks. BlackHat Briefings and Trainings USA+. 2011.

[33] Aleksandar Kuzmanovic and Edward W Knightly. Low-rate TCP-
targeted denial of service attacks: the shrew vs. the mice and elephants.
In ACM conference on Applications, technologies, architectures, and
protocols for computer communications. 2003.

[34] Bob Lantz, Brandon Heller, and Nick McKeown. A Network in a Laptop:
Rapid Prototyping for Software-defined Networks. In HotNets’10.

[35] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. LossRadar:
Fast Detection of Lost Packets in Data Center Networks. In ACM
CoNEXT'16.

[36] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. FlowRadar: A
Better NetFlow for Data Centers. In USENIX NSDI’16.

[37] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun
Lee, Robert Soulé, Han Wang, Calin Cascaval, Nick McKeown, and
Nate Foster. P4V: Practical Verification for Programmable Data Planes.
In ACM SIGCOMM’18.

[38] Robert Lychev, Sharon Goldberg, and Michael Schapira. BGP Secu-
rity in Partial Deployment: Is the Juice Worth the Squeeze?. In ACM
SIGCOMM’13.

[39] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adap-
tive video streaming with pensieve. In ACM SIGCOMM’17.

[40] Roland Meier, Petar Tsankov, Vincent Lenders, Laurent Vanbever, and
Martin Vechev. NetHide: Secure and Practical Network Topology
Obfuscation. In USENIX Security’18.

[41] Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-
Ros, Eduard Alarcon, Marc Solé, Victor Muntés-Mulero, David Meyer,
Sharon Barkai, Mike] Hibbett, et al. Knowledge-defined networking.
In ACM SIGCOMM CCR’17.

[42] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap
Using Switching ASICs. In ACM SIGCOMM’17.

[43] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever.
Hardware-accelerated network control planes. In HotNets’18.

[44] Andres Notzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and
Peter Athanas. P4Pktgen: Automated Test Case Generation for P4
Programs. In ACM SOSR’18.

[45] Fabien A. P. Petitcolas. Kerckhoffs’ Principle. Springer US. 2011.

[46] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. Can the
Network Be the AI Accelerator?. In In ACM Morning Workshop on
In-Network Computing. 2018.

[47] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. In-Network Computation is a Dumb Idea Whose
Time Has Come. In HotNets’17.

https://platformlab.stanford.edu/platform-self-programming-networks.php
https://platformlab.stanford.edu/platform-self-programming-networks.php
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.ciscopress.com/articles/article.asp?p=1681033&seqNum=2
http://www.ciscopress.com/articles/article.asp?p=1681033&seqNum=2
https://tools.ietf.org/html/rfc5927
https://tools.ietf.org/html/rfc5927

(Self) Driving Under the Influence

[48] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson.
TCP congestion control with a misbehaving receiver. ACM SIGCOMM
CCR’99.

Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett,

Harsha V. Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr

Lapukhov, and Hongyi Zeng. Engineering Egress with Edge Fabric:

Steering Oceans of Content to the World. In ACM SIGCOMM’17.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter.

Accessorize to a crime: Real and stealthy attacks on state-of-the-art

face recognition. In ACM CCS’16.

Giuseppe Siracusano and Roberto Bifulco. In-network Neural Net-

works. arXiv, 2018.

[52] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negre-
anu, and Costin Raiciu. Debugging P4 Programs with Vera. In ACM
SIGCOMM’18.

[53] Muhammad Usama, Junaid Qadir, and Ala Al-Fuqaha. Adversarial
Attacks on Cognitive Self-Organizing Networks: The Challenge and
the Way Forward. In IEEE Conference on Local Computer Networks
Workshops. 2018.

[49

-

[50

=

(51

—

[54]

[55]

[56]

[57]

[58]

[59]

[60]

HotNets’19, November 14-15, 2019, Princeton NJ, USA

Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar.
Learning to Route. In HotNets’17.

Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander Rabinovich,
Mooly Sagiv, Scott Shenker, and Sharon Shoham. Some complexity
results for stateful network verification. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
2016.

Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jennifer
Rexford. Central control over distributed routing. In ACM SIG-
COMM’15.

Weilin Xu, Yanjun Qi, and David Evans. Automatically evading classi-
fiers. In NDSS’16.

Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang,
Chi Harold Liu, and Dejun Yang. Experience-driven networking: A
deep reinforcement learning based approach. In IEEE INFOCOM’18.
H. Yao, C. Qiu, C. Fang, X. Chen, and F. R. Yu. A Novel Framework of
Data-Driven Networking. IEEE Access’16.

KK Yap et al. Taking the Edge off with Espresso: Scale, Reliability and
Programmability for Global Internet Peering. In ACM SIGCOMM’17.

	Abstract
	1 Introduction
	2 Threat model
	2.1 Attacker privileges
	2.2 Attack targets

	3 Adversarial inputs to data-driven networks
	3.1 Manipulating Blink
	3.2 Attacking other systems

	4 Adversarial inputs to endpoints and applications
	4.1 Manipulating Pytheas
	4.2 Causing PCC to oscillate
	4.3 Faking network topologies

	5 Countermeasures
	6 Related work
	7 Conclusion
	References

