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Abstract. Verifiably encrypted signatures were introduced by Boneh,
Gentry, Lynn, and Shacham in 2003, as a non-interactive analogue to in-
teractive protocols for verifiable encryption of signatures. As their name
suggests, verifiably encrypted signatures were intended to capture a no-
tion of encryption, and constructions in the literature use public-key
encryption as a building block.

In this paper, we show that previous definitions for verifiably encrypted
signatures do not capture the intuition that encryption is necessary, by
presenting a generic construction of verifiably encrypted signatures from
any signature scheme. We then argue that signatures extracted by the
arbiter from a verifiably encrypted signature object should be distributed
identically to ordinary signatures produced by the original signer, a prop-
erty that we call resolution independence. Our generic construction of
verifiably encrypted signatures does not satisfy resolution independence,
whereas all previous constructions do. Finally, we introduce a stronger
but less general version of resolution independence, which we call res-
olution duplication. We show that verifiably encrypted signatures that
satisfy resolution duplication generically imply public-key encryption.
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cryption

1 Introduction

Verifiably encrypted signatures were introduced by Boneh, Gentry, Lynn, and
Shacham in 2003 [5] as a non-interactive analogue to interactive protocols for
verifiable encryption of signatures [3,4] and of other cryptographic objects [7].
As their name suggests, verifiably encrypted signatures were intended to incor-
porate a notion of encryption: the signer encrypts her signature in such a way
that a special trusted party, called the arbiter, can later decrypt and reveal the
underlying ordinary signature. Indeed, ElGamal encryption of BLS signatures [6]
was at the heart of the original verifiably encrypted signature construction.



In this paper, we show that this intention — incorporating a notion of en-
cryption — is not actually achieved by the definitions given in previous papers.
To demonstrate this, we first in Section 3 give a generic construction of verifiably
encrypted signatures from any existentially unforgeable signature scheme. The
intuition behind our construction is fairly straightforward: to form a verifiably
encrypted signature, the signer includes an annotation with her signature asking
users not to verify it; later, the arbiter can append to this signature another
annotation, under his own key, telling users that verification is now allowed.
Our generic construction satisfies both the original security model for verifi-
ably encrypted signatures and the tweaked definitions later given by Hess [11],
Rückert and Schröder [16], and Rückert, Schneider, and Schröder [15].

Given that our generic construction therefore yields a secure verifiably en-
crypted signature yet makes no use of encryption, thus seemingly contradicting
the spirit of the primitive, we are left with a number of different ways to in-
terpret this result. One possible interpretation is that the current definitions
are fine as is, and verifiably encrypted signatures are simply misnamed. They
remain equally useful as a building block in larger protocols such as optimistic
fair exchange [2] whether or not they involve encryption.

A second interpretation is that previous definitions have failed to capture
something fundamental about verifiably encrypted signatures. If the signer es-
crows her ordinary signature and the arbiter is later meant to recover that sig-
nature, then the start and end points of that process — the signer’s signature,
and the signature obtained by the arbiter — should look the same. Previous def-
initions do not model this requirement, and in fact our generic construction
does not satisfy it. In Section 4, we therefore formalize this notion, which we
call resolution independence. We then provide a “separation” of sorts between
our generic construction and existing ones (which, again, do use some form of
public-key encryption) by arguing that all previous constructions of verifiably
encrypted signatures do satisfy it.

A third, perhaps more extreme, interpretation is that a verifiably encrypted
signature should not merely be “encryption-like” in facilitating the transfer of a
signature from signer to arbiter, but should actually make use of public-key en-
cryption in a fundamental way. To this end, we introduce in Section 5 a stronger
version of resolution independence that requires the signer to be able to produce
a signature that is identical to the one that the arbiter will output. We show
that verifiably encrypted signatures that satisfy this property, which we call res-
olution duplication, generically imply the existence of public-key encryption; this
approach is inspired by Abdalla and Warinschi [1], who showed that group signa-
tures generically imply public-key encryption. Although resolution duplication is
a less general property than resolution independence, all previous constructions
of verifiably encrypted signatures except one — that of Lu et al. [12] — satisfy
resolution duplication.



2 Definitions and Notation

In this section we provide the basic definitions for verifiably encrypted signatures
as defined by Boneh et al. [5] and Hess [11]. Formally, a verifiably encrypted
signature (VES) consists of seven algorithms. The first three, KeyGen, Sign, and
Verify, comprise an ordinary signature scheme. The fourth, AKeyGen, generates a
keypair (apk , ask) to be used by the arbiter (previously called the adjudicator);
the fifth, VESign, takes as input (sk , apk ,m) and outputs a verifiable encrypted
signature ω; the sixth, VEVerify, takes as input (pk , apk , ω,m) and outputs 1
if ω is a valid verifiably encrypted signature on m and 0 otherwise; and finally
the seventh, Resolve, takes as input (ask , pk , ω,m) and outputs a valid regular
signature σ on m under pk (i.e., a value σ such that Verify(pk , σ,m) = 1).

In order to say that the scheme is complete, we would like to ensure that
an honestly computed VES will indeed verify as such, and also that once this
VES is honestly resolved it will produce a valid signature as desired. This can
be summarized formally as follows:

Definition 2.1. [5] A VES (KeyGen,Sign,Verify,AKeyGen,VESign,VEVerify,

Resolve) is complete if for all (apk , ask)
$←− AKeyGen(1k), (pk , sk)

$←− KeyGen(1k),

and m ∈M, for ω
$←− VESign(sk , apk ,m) it holds that VEVerify(pk , apk , ω,m) =

1 and Verify(pk ,Resolve(ask , pk , ω,m),m) = 1.

As we show in Section 3, completeness, as well as all the security properties
below, can be satisfied by a construction based solely on signatures. We therefore
define in Section 4 a new notion for verifiably encrypted signatures intended to
capture the “verifiable encryption” functionality.

Briefly, there are three main security properties we consider for VES schemes:
unforgeability, opacity, and extractability. The first of these says that, for a given
public key pk , no one except the signer in possession of the corresponding sk
should be able to form a verifiably encrypted signature under pk . We alter
slightly the original definition; as completeness does not guarantee that signa-
tures produced by Sign and Resolve look the same (although our new definition
in Section 4 does), we additionally provide the adversary with access to the Sign
oracle, as otherwise the underlying signature scheme could be completely broken
and the VES would still be considered unforgeable.

Definition 2.2. For a VES (KeyGen,Sign,Verify,AKeyGen,VESign,VEVerify,
Resolve) and an adversary A, define the following game:

– Step 1. (pk , sk)
$←− KeyGen(1k), (apk , ask)

$←− AKeyGen(1k).

– Step 2. (m,ω)
$←− ASign(sk ,·),VESign(sk ,apk ,·),Resolve(ask ,pk ,·,·)(pk , apk).

Then the verifiably encrypted signature scheme is unforgeable (more precisely,
secure against existential forgeries) if for all PPT algorithms A there exists
a negligible function ν(·) such that the probability (taken over the choices of
KeyGen, AKeyGen, Sign, VESign, Resolve, and A) that VEVerify(pk , apk , ω,m) =
1 but m was not queried to any of the three oracles is at most ν(k).



The next property, opacity, says that a user given just the verifiably encrypted
signature should not be able to pull out the underlying signature without help
from the arbiter.

Definition 2.3. [5] For a VES (KeyGen,Sign,Verify,AKeyGen,VESign,VEVerify,
Resolve) and an adversary A, define the following game:

– Step 1. (pk , sk)
$←− KeyGen(1k), (apk , ask)

$←− AKeyGen(1k).

– Step 2. (m,σ)
$←− AVESign(sk ,apk ,·),Resolve(ask ,pk ,·,·)(pk , apk).

Then the verifiably encrypted signature scheme is opaque if for all PPT algo-
rithms A there exists a negligible function ν(·) such that the probability (taken
over the choices of KeyGen, AKeyGen, VESign, Resolve, and A) that Verify(pk , σ,
m) = 1 but (m, ·) was not queried to the Resolve oracle is at most ν(k).

While opacity promises that no user can pull out the underlying signature
given just the verifiable encrypted signature, we still need to guarantee that
the arbiter can in fact do just this if necessary. While such a guarantee was
not defined in the original BGLS paper, this property was proposed shortly
thereafter by Hess [11] (and later formalized by Rückert and Schröder [16], who
called it extractability).

Definition 2.4. [11] For a VES (KeyGen,Sign,Verify,AKeyGen,VESign,
VEVerify,Resolve) and an adversary A, define the following game:

– Step 1. (apk , ask)
$←− AKeyGen(1k).

– Step 2. (pk , ω,m)
$←− AResolve(ask ,·,·,·)(apk).

Then the verifiably encrypted signature scheme is extractable if for all PPT al-
gorithms A there exists a negligible function ν(·) such that the probability (taken

over the choices of AKeyGen, Resolve, and A) that, for σ
$←− Resolve(ask , pk , ω,m),

VEVerify(pk , apk , ω,m) = 1 but Verify(pk , σ,m) = 0 is at most ν(k).

In addition to these three basic properties, there is another property we
might consider called abuse freeness, as defined by Rückert and Schröder [16];
briefly, this says that even an adversary colluding with the arbiter cannot forge
verifiably encrypted signatures for another user. Although we limit our focus here
and do not consider this definition formally, we note that our signature-based
construction in the next section does satisfy abuse freeness.

3 A Signature-Based Verifiably Encrypted Signature

In this section, we show how to generically construct a secure verifiable encrypted
signature using just an unforgeable signature scheme. As mentioned in the in-
troduction, our scheme works intuitively as follows: to run VESign, a user will
sign the message, but then stamp, or annotate, the signed message to say “Do



Not Verify.” To verify that this is a valid VES, VEVerify will ensure that it is a
signed message with this stamp. To resolve this VES, Resolve will simply add its
own stamp “Yes Do Verify.” The verification algorithm will then check for these
cases: if the signed message has a “Do Not Verify” stamp then it will output 0
(i.e., it will not verify), unless the signed message also has a “Yes Do Verify”
stamp, in which case it will output 1 (i.e., it will verify).

More formally, let (KeyGen′,Sign′,Verify′) be an unforgeable (i.e., EUF-CMA
secure) signature scheme with message spaceM′. To construct a VES with mes-
sage spaceM, let T be a function that takes a tuple of four elements: a message
M ∈ M, an arbiter public key apk ∈ {0, 1}∗, a bit b ∈ {0, 1}, and a verifiably
encrypted signature ω ∈ {0, 1}∗, and encodes it into a binary string M ′ ∈ M′.
We will use b = 0 to indicate “Do Not Verify” and b = 1 to indicate “Yes Do
Verify,” and will use ⊥ to indicate that the given field is being left empty. Fur-
thermore, to avoid possible collisions, we assume that T encodes inputs uniquely;
i.e., T (M, apk , b, ω) 6= T (M ′, apk ′, b′, ω′) unless all these values are equal. Then
we can define our VES as follows:

– KeyGen(1k): Output (pk , sk)
$←− KeyGen′(1k).

– Sign(sk ,M): Output σ
$←− Sign′(sk , T (M,⊥,⊥,⊥)).

– Verify(pk , σ,M): If σ is of the form (apk , ω, ω′) then check that VEVerify(pk ,
apk , ω,M) = 1 and Verify′(apk , ω′, T (M, apk , 1, ω)) = 1; output 1 if and only
if both of these checks pass. Otherwise, if σ is a single element then check
that Verify′(pk , σ, T (M,⊥,⊥,⊥)) = 1 and output 1 if and only if this check
passes; in all other cases, output 0.

– AKeyGen(1k). Compute (apk ′, ask ′)
$←− KeyGen′(1k) and output (apk :=

apk ′, ask := (ask ′, apk)).

– VESign(sk , apk ,M): Output ω
$←− Sign′(sk , T (M, apk , 0,⊥)).

– VEVerify(pk , apk , ω,M): Output Verify′(pk , ω, T (M, apk , 0,⊥)).
– Resolve(ask , pk , ω,M): If VEVerify(pk , apk , ω,M) = 0 output ⊥. Otherwise,

compute ω′
$←− Sign′(ask , T (M, apk , 1, ω)) and output σ := (apk , ω, ω′).

Essentially then, signing the message T (M, apk , 0,⊥) corresponds to signing
the message and then applying the “Do Not Verify” stamp (but indicating that
the arbiter corresponding to apk may resolve if necessary), while signing the
message T (M, apk , 1, ω) corresponds to applying the “Yes Do Verify” stamp. To
show that this is a secure VES, we first prove that it satisfies completeness.

Theorem 3.1. If the signature scheme (KeyGen′,Sign′,Verify′) is complete, then
the VES construction is complete as well.

Proof. By definition, for any (pk , sk)
$←− KeyGen(1k), (apk , ask)

$←− AKeyGen(1k),
and M ∈M, an honestly computed VES ω looks like Sign′(sk , apk , T (M, apk , 0,
⊥)). As VEVerify(pk , apk , ω,M) = Verify′(pk , ω, T (M, apk , 0,⊥)), the complete-
ness of the underlying signature scheme guarantees that this check will pass. As

for resolution, by definition Resolve(ask , pk , ω,M) = (apk , ω, ω′)
$←− Sign′(ask ,



T (M, apk , 1, ω))), and Verify, on input (apk , ω, ω′), checks that VEVerify(pk , apk ,
ω,M) = 1 and Verify′(apk , ω′, T (M, apk , 1, ω)) = 1. As we’ve already argued that
this first of these checks will pass, and the second will pass again by completeness
of the signature scheme, the entire check will pass and Verify(pk , (apk , ω, ω′),M)
= 1. ut

We now prove that our construction also satisfies the three security properties
defined in Section 2, beginning with unforgeability (as defined in Definition 2.2).

Theorem 3.2. If the signature scheme (KeyGen′,Sign′,Verify′) is EUF-CMA
secure, then the VES construction is unforgeable.

Proof. To prove this, we show that if there exists an adversary A that breaks the
unforgeability of the VES scheme with some non-negligible probability ε, then
there exists an adversary B that breaks the unforgeability of the underlying
signature scheme with the same probability. To start, B will take as input a
public key pk . It then proceeds as follows:

1. B generates (apk , ask)
$←− AKeyGen(1k) and gives pk and apk as inputs to A.

Because apk was generated honestly and pk is assumed to be the output of
KeyGen′ and thus KeyGen, both of these keys will be distributed identically
to what A expects.

2. When A queries its Sign oracle on a message M , B creates a new message
M ′ := T (M,⊥,⊥,⊥) and queries its own Sign′ oracle on M ′ to get back a

signature σ that it then returns toA. By definition, σ
$←− Sign′(sk , T (M,⊥,⊥,

⊥)) = Sign(sk ,M), so the σ returned to A will be distributed identically to
what it expects.

3. When A queries its VESign oracle on a message M , B creates a new message
M ′ := T (M, apk , 0,⊥) and queries its own Sign′ oracle on M ′ to get back

a signature σ that it then returns to A. By definition, we have that σ
$←−

Sign′(sk , T (M, apk , 0,⊥)) = VESign(sk , apk ,M), so the σ returned to A will
be distributed identically to the one that it expects.

4. When A queries its Resolve oracle on a message M and a verifiably encrypted
signature ω, B will use its knowledge of ask to execute the code of Resolve
honestly to obtain a tuple of the form σ := (apk , ω, ω′) that it returns
to A. As B is behaving completely honestly, this will again be distributed
identically to what A expects.

5. At some point A will output a message-signature pair (M,ω) such that M
was not queried to any of the oracles but VEVerify(pk , apk , ω,M) = 1; B will
then output (T (M, apk , 0,⊥), ω). By definition of VEVerify, if VEVerify(pk ,
apk , ω,M) = 1 then Verify′(pk , T (M, apk , 0,⊥), ω) = 1 and thus B’s output
will pass verification; similarly, if A did not query its VESign oracle on M
then, by definition of B, we know that B did not query T (M, apk , 0,⊥) to
its Sign′ oracle, and its output will therefore be a valid forgery.

As B therefore succeeds whenever A does, and the interaction with B is further-
more identical to the interaction that A expects, B will succeed with the same
non-negligible probability ε as A. ut



Next, we prove that our construction is opaque, as defined in Definition 2.3.

Theorem 3.3. If the signature scheme (KeyGen′,Sign′,Verify′) is EUF-CMA
secure, then the VES construction is opaque.

Proof. To prove this, we show that if there exists an adversary A that breaks the
opacity of the VES scheme with some non-negligible probability ε, then there
exists an adversary B that breaks the unforgeability of the signature scheme with
probability ε/2. To start, B will take as input a public key pk ′. It then picks a

random bit b
$←− {0, 1} to decide which path it thinks A will pursue: if b = 0

then it assumes A will produce a forgery of the form (apk , ω, ω′), and if b = 1
then it assumes A will produce a forgery of the form σ. We discuss both of these
paths as follows:

1. If b = 0 then B will generate (pk , sk)
$←− KeyGen(1k). It will then set apk :=

pk ′ and give pk and apk to A. As AKeyGen calls KeyGen′ and pk ′ is assumed
to be output by KeyGen′, this will be distributed identically to what A
expects.

If instead b = 1 then B will generate (apk , ask)
$←− AKeyGen(1k). It will then

set pk := pk ′ and give pk and apk to A. Again, as KeyGen calls KeyGen′ and
pk ′ is assumed to be output by KeyGen′, this will be distributed identically
to what A expects.

2. When A queries its VESign oracle on a message M , B again has two choices.
If b = 0 then B can use its knowledge of the signing key sk to honestly
execute the code of VESign and return the resulting ω; the distribution here
is by definition identical to the one that A expects.
If instead b = 1 then B sets M ′ := T (M, apk , 0,⊥) and queries its own
Sign′ oracle on M ′ to get back a signature σ that it then returns to A. By

definition, σ
$←− Sign′(sk , T (M, apk , 0,⊥)) = VESign(sk , apk ,M), so the σ

returned to A will be distributed identically to what it expects.
3. When A queries its Resolve oracle on a message M and a verifiably encrypted

signature ω, B can first check that VEVerify(pk , apk , ω,M) = 1 and abort if
not; then, it again has two choices. If b = 0 then it sets M ′ := T (M, apk , 1, ω)
and queries its own Sign′ oracle on M ′ to get back a signature σ; it will then

return (apk , ω, σ) to A. By definition, σ
$←− Sign′(sk , T (M, apk , 1, ω)) and

so the resulting (apk , ω, σ) will again be distributed identically to what A
expects.
If instead b = 1 then B will use its knowledge of the secret key ask to
execute the code of Resolve honestly and return the resulting (apk , ω, ω′); the
distribution here is then by definition identical to the one that A expects.

4. At some point, A will output a message-signature pair (M,σ) such that
Verify(pk , σ,M) = 1 but (M, ·) was not queried to the Resolve oracle. If b = 0
then B will check that σ is of the form (apk , ω, ω′); it it is not, then B must
abort. If it is then, looking at the definition of Verify, we see it must be the
case that Verify′(pk , ω, T (M, apk , 0,⊥)) = 1 and Verify′(apk , ω′, T (M, apk , 1,



ω)) = 1. As we know that A never queried its Resolve oracle on ω we also
know that B never queried its Sign′ oracle on T (M, apk , 1, ω) and therefore
B can output (T (M, apk , 1, ω), ω′) to win its game.
Otherwise, if b = 1 then B will once again check if σ is of the form (apk , ω, ω′).
If it is, then it is once again the case that Verify′(pk , ω, T (M, apk , 0,⊥)) = 1;
if A never queried its VESign oracle on M , then B never queried its Sign′

oracle on T (M, apk , 0,⊥) and it can output (T (M, apk , 0,⊥), ω) to win its
game. Otherwise, it can check if σ is a single element. If it is, then B can
output (T (M,⊥,⊥,⊥), σ) to once again win its game.

As B succeeds whenever A does and it correctly guesses which key A will use
(which it will with probability 1/2, as it guesses randomly), and interactions with
B (in either execution) are furthermore identical to those that A expects, B will
succeed with probability ε/2 in providing a forgery for the signature scheme. ut

Finally, we prove that our construction is extractable, as defined in Defini-
tion 2.4. In fact, it is not just the case that it should be hard to produce a VES
that verifies but cannot be resolved to a valid signature; by how Resolve and
Verify are defined, this is actually impossible.

Theorem 3.4. The VES construction is unconditionally extractable.

Proof. To prove this, we show that for all (apk , ask)
$←− KeyGen(1k), M ∈ M,

ω, and pk , every time VEVerify(pk , apk , ω,M) = 1 it must be the case that
Verify(pk , apk ,Resolve(ask , pk , ω,M),M) = 1 as well; this implies that the prob-
ability that any (even unbounded) adversary A can output (pk , ω,M) such that
VEVerify(pk , apk , ω,M) = 1 but Verify(pk , apk ,Resolve(ask , pk , ω,M),M) = 0 is
equal to 0 and thus the scheme is unconditionally extractable.

To therefore show that VEVerify(pk , apk , ω,M) = 1 implies Verify(pk ,

Resolve(ask , pk , ω,M)) = 1, define (apk , ω, ω′)
$←− Resolve(ask , pk , ω,M). Then

we observe that, by the definition of the scheme, Verify(pk , apk , (apk , ω, ω′),M) =
VEVerify(pk , apk , ω,M)∧Verify′(apk , ω′, T (M, apk , 1, ω)). As Resolve guarantees
that the second condition is satisfied (i.e., Verify′(apk , ω′, T (M, apk , 1, ω)) = 1),
this reduces to Verify(pk , apk , (apk , ω, ω′),M) = VEVerify(pk , apk , ω,M) and
thus the two values must always agree. ut

4 Resolution Independence

As we’ve demonstrated in the previous section, the existing definitions for verifi-
ably encrypted signatures do not seem to fully capture their desired functionality,
as in particular we constructed a secure VES using only signatures. Furthermore,
in our scheme the signatures returned by the arbiter look completely different
from the regular signatures produced by Sign. In this section, we attempt to
close this functional gap by proposing a new notion, resolution independence,
that requires that the signatures returned by the arbiter and by the signer look
the same. We then prove that our signature-based construction does not satisfy
resolution independence whereas, to the best of our knowledge, all previous VES
constructions do.



4.1 Resolution independence

Informally, we want that the values output by the Resolve algorithm look like
regular signatures. More formally, we have the following definition:

Definition 4.1. A VES (KeyGen,Sign,Verify,AKeyGen,VESign,VEVerify,

Resolve) is resolution independent if for all (pk , sk)
$←− KeyGen(1k), (apk , ask)

$←−
AKeyGen(1k), and m ∈M, the distributions {Sign(sk ,m)} and {Resolve(ask , pk ,
VESign(sk , apk ,m),m)} are identical.

To begin motivating why resolution independence is the “right” definition
to capture the desired VES functionality, we first observe that our signature-
based construction from Section 3 cannot be resolution independent, as regular
signatures and signatures output by the arbiter have completely different forms.

Theorem 4.1. The VES construction in Section 3 is not resolution indepen-
dent.

Proof. Recall that signatures output by the signer are in Σ; i.e., the space of all
possible signatures. Signatures output by the arbiter, however, consist of a public
key and two signatures, meaning that if the space of all possible apk values is
A, then they are in the space (A,Σ,Σ); the distributions over the two types of
signatures are therefore not identical. ut

4.2 Existing schemes satisfy resolution independence

In order to further separate our signature-based construction from existing VES
schemes, we also demonstrate that, to the best of our knowledge, all existing VES
schemes are in fact resolution independent. As there are too many VES construc-
tions in the literature to enumerate here, we focus on three (which we picked
to demonstrate different types of schemes): the original BGLS construction [5],
which is based on pairings and the BLS signature scheme [6], a construction
due to Lu et al. [12] that is also based on pairings but uses the Waters sig-
nature [17], and a construction due to Rückert [14] that is based on the RSA
signature scheme.

BGLS [5]. The BGLS scheme works over a prime-order bilinear group G with
a generator g and a hash function H : {0, 1}∗ → G. The arbiter’s keys are

ask = x′
$←− Fp and apk = v′ = gx

′ ∈ G, and the user’s keys are sk = x
$←− Fp

and pk = v = gx ∈ G. As we can see in the algorithm descriptions below, Sign
forms a BLS signature, while VESign runs Sign and then encrypts the signature
using ElGamal encryption. The Resolve algorithm then decrypts and pulls out
the original signature.

– Sign(sk ,M): Parse sk = x and return σ := H(M)x.
– VESign(sk , apk ,M): Parse sk = x and apk = v′ and compute σ := H(M)x.

Pick r
$←− Fp and set µ := gr and σ′ := (v′)r. Finally, compute ω′ := σσ′ and

output (ω′, µ).



– Resolve(ask , pk , ω,M): Parse ask = x′ and ω = (ω′, µ) and output σ :=
ω/µx

′
.

To see that the signatures output by Sign and Resolve are in fact identical, we
observe that

Resolve(ask , pk ,VESign(sk , apk ,M ; r),M) =
ω

µx′

=
σσ′

µx′

=
H(M)x(v′)r

(gr)x′

=
H(M)x((gx

′
)r)

(grx′)

= H(M)x

= Sign(sk ,M),

and thus the scheme satisfies resolution independence.

Lu et al. [12]. The Lu et al. scheme also works in a prime-order bilinear group G
with generator g. It builds off of the Waters signature [17], which we briefly recall

uses a secret key sk = α
$←− Fp (corresponding to a public key pk = A = e(g, g)α,

where e is the bilinear map) to create signatures of the form (S1, S2), where

S1 := gα(u′
∏
i u

bi
i )r, S2 := gr for u′, u1, . . . , uk

$←− G, r
$←− Fp, and where bi is

the i-th bit of the message M ; i.e., M = b1 . . . bk. We denote the Waters signing
algorithm as WSign(sk ,M).

As we see in the algorithm descriptions below, Sign is equivalent to WSign.
VESign will first run Sign and then blind the resulting signature; this means
users’ keys will just be keys for the Waters signature, and the arbiter’s keys will

be sk = β
$←− Fp and pk = v = gβ . The Resolve algorithm first pulls out the

underlying signature, and then re-randomizes it.

– Sign(sk ,M): Output (S1, S2)
$←−WSign(sk ,M).

– VESign(sk , apk ,M): Parse apk = v. Compute (S1, S2)
$←−WSign(sk ,M), pick

a random s
$←− Fp, and compute K1 := S1 · vs, K2 := S2, and K3 := gs.

Output (K1,K2,K3).

– Resolve(ask , pk , ω,M): Parse ask = β, ω = (K1,K2,K3), and M = b1 . . . bk.
Check first that ω is a valid VES on M , and then unblind the signature by
computing S1 := K1K

−β
3 and S2 := K2. Now, re-randomize the signature

by picking s
$←− Fp and computing S′1 := S1(u′

∏
i u

bi
i )s and S′2 := S2 · gs.

Output (S′1, S
′
2).



To see that the outputs of Sign and Resolve are distributed identically, we observe
that

Resolve(ask , pk ,VESign(sk , apk ,M),M) = (K1 ·K−β3 · (u′
∏
i

ubii )r
′
, K2 · gr

′
)

= (S1 · vs · g−βs · (u′
∏
i

ubii )r
′
, S2 · gr

′
)

= (S1 · (gβsg−βs) · (u′
∏
i

ubii )r
′
, gr+r

′
)

= (gα · (u′
∏
i

ubii )r · (u′
∏
i

ubii )r
′
, gr+r

′
)

= (gα · (u′
∏
i

ubii )r+r
′
, gr+r

′
)

= WSign(sk ,M ; r + r′)

for random r, r′
$←− Fp. The signature is therefore a random signature on M and

thus has the same distribution as the signature output by Sign(sk ,M) and the
scheme is resolution independent.

Rückert [14]. Rückert’s construction is a stateful VES based on the RSA sig-
nature scheme, which we recall works as follows: keys are of the form pk :=
(N, e) and sk := (pk , d), where N = pq and e and d are values such that
ed ≡ 1 mod φ(N). To form a signature, RSASign computes σ := H(M)d mod N ,
which can be verified by checking that H(M) ≡ σe mod N . Briefly, in Rückert’s
construction, when forming the i-th VES, the RSA signature is blinded using a
secret value xi, which is then encrypted under the arbiter’s public key. To ensure
that this ciphertext contains the appropriate blinding factor, the signer will form
an authentication path in a particular Merkle tree. This means that the keys for
the arbiter will look like apk = (Ne, e, authpk) and ask = (apk , d, authsk), where
(Ne, e, d) are RSA keys and authpk and authsk are used for the Merkle authenti-
cation. The user’s keys, on the other hand, will look like pk = (Nu, u, ρ, σρ) and
sk = (pk , v, T ), where (Nu, u, v) are RSA keys, T is the Merkle tree (and also
contains information about the blinding factors {xi} by providing the seed used
to generate them), ρ is the root of the tree, and σρ is a RSA signature on ρ.

– Sign(sk ,M): Output σ := RSASign(sk ,M).
– VESign(sk , apk ,M): Parse sk = (pk = (Nu, u, ρ, σρ), v, T ) and apk = (Ne, e,

authpk). First form the signature σ := RSASign(sk ,M). Now, increment the
counter i, blind the signature by forming α := σxi mod Ns, and encrypt
xi by forming β := xei mod Ne, and γ := xui mod Nu. Finally, generate
the authentication path π for xi in the Merkle tree T , and output ω :=
(α, β, γ, π).

– Resolve(ask , pk , ω,M): Parse ask = (apk = (Ne, e, authpk), d, authsk), pk =
(Nu, u, ρ, σρ), and ω = (α, β, γ, π). First check that ω is a valid VES on M ,
and then compute x′ := βd mod Ne and output σ := α/x′ mod Nu.



To see this that the signatures output by Resolve and Sign are identical, we
observe that

Resolve(ask , pk ,VESign(sk , apk ,M),M) = α/x′ mod Nu

= α/βd mod Nu

= (σxi)/(x
e
i )
d mod Nu

= (σxi)/xi mod Nu

= σ mod Nu,

which is the same as the signature output by Sign(sk ,M) and the scheme is
therefore resolution independent.

5 Resolution Duplication and Public-Key Encryption

While resolution independence, as we saw in the previous section, can be used
to separate our particular signature-based VES construction from existing con-
structions, it still does not require that more than just signatures are required
to construct a verifiably encrypted signature scheme, although the name would
suggest otherwise. We therefore propose in this section a stronger notion of res-
olution independence, resolution duplication, in which the signer must be able
to output a signature that is identical to that of the arbiter. This definition is
less general than resolution independence (yet still met by some existing VES
constructions), but we show that it implies the existence of public key encryp-
tion.

5.1 Resolution duplication

In spirit, resolution independence requires a functionality similar to that of en-
cryption: the VES ω contains a signature σ, yet should not reveal this σ to
anyone in possession of just ω (by opacity). The exception to this rule is the
arbiter who, according to completeness, should be able to pull out from ω a sig-
nature σ′ that, according to resolution independence, has the same distribution
as σ. While this comes close to encryption, the fact that σ′ and σ might be
identically distributed but not identical means the functionality is not exactly
the same.

In Section 4.2, however, we saw that in fact two out of the three schemes
presented did in fact meet this exact requirement (and this was not an accident;
indeed most VES schemes meet this requirement); in particular, because both
the BGLS and Rückert schemes were based on unique signatures [10,13], any two
signatures on the same message with the same distribution must be identical.
To formally capture this stronger property, we have the following definition:

Definition 5.1. A VES (KeyGen,Sign,Verify,AKeyGen,VESign,VEVerify,
Resolve) is resolution duplicate if (1) it is resolution independent, (2) Resolve



is deterministic, and (3) there exists an additional PPT algorithm Extract(·, ·, ·)
such that for all (pk , sk)

$←− KeyGen(1k), (apk , ask)
$←− AKeyGen(1k), m ∈ M,

and random tapes r ∈ {0, 1}∗, it is the case that Extract(sk ,m, r) = Resolve(ask ,
pk ,VESign(sk , apk ,m; r),m).

While this strengthened definition can no longer be met by all existing VES
constructions (e.g., any that use a randomized resolution algorithm, such as the
Lu et al. one above), we will see below that any secure VES satisfying resolution
duplication can be used to construct public key encryption. In this respect then,
VES constructions meeting resolution duplication guarantee that some kind of
encryption really is taking place, whereas we cannot make the same guarantees
about ones that meet only resolution independence.

Finally, we note that the existence of Extract is not a particularly strong
requirement; for a unique signature, for example, Extract can simply run Sign.
Furthermore, in our usage in the next section, VESign and Extract will be run by
the same party, so the randomness used in VESign can simply be remembered
and given to Extract.

5.2 Constructing public key encryption

Using resolution duplication, our construction of public key encryption is fairly
straightforward. Recall first our intuitive outline above: the signature σ can be
thought of as the plaintext and the VES ω as the ciphertext encrypted under
the public key of the arbiter; running Resolve and pulling out the underlying σ
is therefore how the arbiter decrypts. Because we want to encrypt arbitrary bits
rather than signatures, however, we instead use the Goldreich-Levin trick [9]
and the fact that ω should not reveal σ to treat 〈σ, r〉 as a hard-core predicate
for VESign; i.e., given ω and r, it should be hard to predict the value of 〈σ, r〉
(where r

$←− {0, 1}|σ| and 〈σ, r〉 denotes the inner product of σ and r modulo 2).3

To construct our encryption scheme, we therefore prove first that this property
holds:

Theorem 5.1. Let (KeyGen,Sign,Verify,AKeyGen,VESign,VEVerify,Resolve) be
a verifiably encrypted signature scheme, and let b(x, r) := 〈x, r〉 mod 2 for any x
and r such that |x| = |r|. Then, if the VES is opaque for all messages m ∈ M,

(pk , sk)
$←− KeyGen(1k), and (apk , ask)

$←− AKeyGen(1k), it is hard to compute

b(σ, r) given m, apk, pk, ω
$←− VESign(sk , apk ,m), and r

$←− {0, 1}|σ|, where
σ := Resolve(ask , pk , ω,M).

Our proof strategy for this theorem closely follows that of Goldreich [8].
First, we describe how an adversary B attempting to break opacity can, by
using specific values of r, meaningfully use an adversary A that can predict the
value of b(σ, r) to recover the value of σ from the verifiably encrypted signature.

3 This isn’t a hard-core bit in the usual sense, since VESign is randomized and therefore
not a function, but we can nevertheless argue that it should be hard to predict.



Then, following Goldreich’s exact argument, we argue how these specific values
of r can be chosen to ensure that B’s success probability will be appropriately
correlated with that of A.

At a high level, to use A to recover σ, B will first receive as input public keys
pk and apk . To now prepare an input for A, B can first pick a random message

m
$←− M and query its VESign oracle on m to get back a value ω. It now picks

a random value r
$←− {0, 1}|σ| (note that, while B does not know σ, it might still

know its length, for example if σ is encrypted) and gives (ω, r) to A; this causes
A to return its guess b′ for the bit b(σ, r). We could then also have B give to A
(ω, r ⊕ ei) for all i, where ei has a 1 in the i-th place and a 0 everywhere else,
and get back in return guess bits bi. If A guesses b′ and bi correctly for each i,
then B can recover σ as follows: first, observe that b(x, r)⊕ b(x, s) = b(x, r⊕ s).
Then, if b′ = b(σ, r) and bi = b(σ, r ⊕ ei), it must be the case that

b′ ⊕ bi = b(σ, r)⊕ b(σ, r ⊕ ei) = b(σ, r ⊕ (r ⊕ ei)) = b(σ, ei) = σi;

that is, that b′ ⊕ bi is the i-th bit of σ. Repeating this process for each i, B can
therefore recover σi := b′ ⊕ bi and σ := σ1 . . . σn.

As observed by Goldreich, however, this process of using r⊕ ei might signifi-
cantly blow up B’s error probability, to the point where we cannot argue that if
A has some non-negligible success probability then so does B. We therefore fol-
low Goldreich’s exact argument to pick more clever choices for the randomness
r and thus guarantee a non-negligible success probability for B.

Proof. To show this, we assume that there exists an adversary A that, given

(pk , apk ,m, ω, r) such that ω
$←− VESign(sk , apk ,m), σ := Resolve(ask , pk , ω,m),

and |r| = |σ| = n, can predict the value of b(σ, r) with some non-negligible
advantage ε and use it to construct an adversary B that can recover the signature
σ from ω (i.e., break opacity), with related non-negligible probability ε′. First,
we observe that if ε is non-negligible then by definition, A’s advantage must
be ε(n) > 1/p(n) for some polynomial p(·), and that furthermore this must
hold for infinitely many n (i.e., there must exist an infinite set N such that
ε(n) > 1/p(n) for n ∈ N). We furthermore establish the following two claims,
both due to Goldreich [8]:

Claim. [8] There exists a set Sn ⊆ {0, 1}n of cardinality at least 2n · (ε(n)/2)
such that for every σ ∈ Sn, it holds that

s(x) := Pr[A(pk , apk ,m, ω,Rn) = b(σ,Rn)] ≥ 1

2
+
ε(n)

2
,

where the probability is taken over all possible values of Rn and internal coin
tosses of A.

Claim. [8] For every σ ∈ Sn and i ∈ {1, . . . , n}, it holds that

Pr

[
|{J : b(x, rJ)⊕A(pk , apk ,m, ω, rJ ⊕ ei) = σi}| >

1

2
· (2` − 1)

]
> 1− 1

2n
(1)



where rJ := ⊕j∈Jsj and the sj values are chosen independently and uniformly
from {0, 1}n.

To prepare inputs for A given pk and apk , B first picks a random message

m
$←−M and queries its VESign oracle on m to get back a value ω. It now sets ` :=

dlog2(2n·p(n)2+1)e, where we recall n := |σ| and p(·) is such that ε(n) > 1/p(n).

It now samples s1, . . . , s`
$←− {0, 1}n and t1, . . . , t`

$←− {0, 1}, where ti acts as B’s
guess for the value b(σ, si). Next, for every non-empty set J ⊆ {1, 2, . . . , `}, B
computes rJ := ⊕j∈Jsj and ρJ := ⊕j∈J tj . B now gives toA, for all i ∈ {1, . . . , n}
and non-empty J ⊆ {1, . . . , `}, the tuple (apk , pk ,m, ω, rJ ⊕ei), for which it will
get back a guess bit biJ . B then sets ziJ := ρJ ⊕ biJ ; now, for every i, it sets zi
to be the majority of the ziJ values, and outputs z := z1 . . . zn.

We first observe that the rJ ⊕ ei values given to A will be uniformly random
and pairwise independent and thus distributed identically to the input that A
expects (and, as all the other values are chosen honestly, its entire input will
be identical to what it expects). To see this, we observe that the si values are
chosen uniformly at random, and each rJ value is set as ⊕sj , which will itself be
uniformly random, and thus so will rJ ⊕ ei. Furthermore, because each subset J
is distinct, the values will be pairwise independent as well.

To determine the success probability of B, our proof now follows exactly the
proof of Goldreich. In particular, we first observe that, by Claim 5.2,

s(x) ≥ 1

2
+
ε(n)

2
>

1

2
+

1

2p(n)
.

Furthermore, as the values si were chosen uniformly at random, the probability
that our guesses were correct and ti = b(σ, si) for all i is

2−` =
1

2n · p(n)2 + 1
=

1

poly(n)
,

which is non-negligible. Furthermore, if our guesses are indeed correct then

ρJ = ⊕j∈J tj = ⊕j∈Jb(σ, sj) = b(σ,⊕j∈Jsj) = b(σ, rJ)

for all non-empty sets J . In this case, we have

ziJ = ρJ ⊕ biJ = b(σ, rJ)⊕ biJ ,

which we know is equal to σi with probability greater than 1−1/2n by Claim 5.2,
meaning the overall probability that z = σ is at least 1/2. Putting everything
together, we therefore know that B will succeed with probability at least 1/4p(n)
for σ ∈ Sn; recalling further by Claim 5.2 that |Sn| > 2n/2p(n), we conclude
that for random σ, B succeeds with probability at least 1/8p(n)2, or ε(n)2/8. ut

Now, armed with this theorem, we can construct public key encryption. To
start, assume we have a VES (KeyGen,Sign,Verify,AKeyGen,VESign,VEVerify,
Resolve) with the extra algorithm Extract required by Definition 5.1. Then we can
construct an IND-CPA secure public key encryption scheme (EKeyGen,Enc,Dec)
as follows:



– EKeyGen(1k): Output (pk , sk)
$←− AKeyGen(1k).

– Enc(pk ,m): Generate signing keys (spk , ssk)
$←− KeyGen(1k) and set c1 :=

spk . Now pick a random tape r, compute ω := VESign(ssk , pk , 0; r) and set

c2 := ω. Next, compute σ
$←− Extract(sk ,m, r); finally, pick rσ

$←− {0, 1}|σ|,
set c3 := rσ, and set c4 := m⊕ 〈σ, rσ〉. Output c := (c1, c2, c3, c4).

– Dec(sk , c): Parse c = (c1, c2, c3, c4). Check first that VEVerify(c1, pk , c2, 0) =
1; if this check fails then output ⊥. Otherwise, if it passes, compute σ :=
Resolve(sk , c1, c2, 0), and output m := c4 ⊕ 〈σ, c3〉.

Theorem 5.2. If the verifiably encrypted signature is resolution duplicate (ac-
cording to Definition 5.1), the above encryption scheme is correct.

Proof. If the ciphertext c is formed as c
$←− Enc(pk ,m), then c1 = spk and c2 = ω,

which allows decryption to compute σ := Resolve(sk , spk , ω, 0). Additionally, we
have c3 = rσ and c4 = m ⊕ 〈σ, rσ〉, where by resolution duplication the σ used
to form c4 is the same as the one produced by Resolve. We therefore have that
c4 ⊕ 〈σ, c3〉 = (m⊕ 〈σ, rσ〉)⊕ 〈σ, rσ〉 = m, so decryption really will produce the
message. ut

Theorem 5.3. If the verifiably encrypted signature is opaque, then the above
encryption scheme is IND-CPA secure.

Proof. By Theorem 5.1, we know that if the VES is opaque then 〈σ, r〉 will be
hard to predict given only ω; furthermore, if it is opaque for all messages then
in particular this must hold for the message m = 0. Thus, to prove the theorem,
we can show that if there exists an adversary A that breaks IND-CPA security
with some non-negligible advantage ε then there exists an adversary B that can
predict the value of 〈σ, r〉 for the message m = 0 with the same advantage.

To start, B will receive as input (pk , apk , 0, ω, r), where ω
$←− VESign(sk , apk ,

0) and r
$←− {0, 1}|σ| for σ := Resolve(ask , pk , ω, 0). B will now give A the public

key apk and at some point will receive back a challenge query (m0,m1). To
compute c∗, B will set c∗1 := pk , c∗2 := ω, and c∗3 := r. It then picks random

bits b, b∗
$←− {0, 1} and sets c∗4 := mb ⊕ b∗, and returns c∗ := (c∗1, c

∗
2, c
∗
3, c
∗
4) to A.

When A outputs its guess bit b′, B guesses b∗ if b = b′ and 1− b∗ otherwise.
To see that interactions with B are indistinguishable from those that A ex-

pects, we observe that the apk given to A is distributed identically to what A
expects from EKeyGen. As for c∗, all the values except c∗4 are again distributed
identically to what A expects: c∗1 is a random user public key, c∗2 is a valid VES,
and c∗3 is a random string of the same length as σ. As for c∗4, if B has correctly
guessed the value of b∗ (i.e., b∗ = 〈σ, r〉), then c∗4 = mb ⊕ 〈σ, r〉, c∗ is a valid
encryption of mb, and thus A should behave just as it does in the honest inter-
action (i.e., it should guess b with its usual non-negligible advantage ε). In this
case, if A guesses b correctly, then B will assume that it guessed b∗ correctly
and thus output b∗. In the other case, if B did not guess b∗ correctly, then c∗4
is just a random bit, meaning all information about m will be obscured and A



will have no advantage. As B therefore succeeds at least whenever A succeeds
and it correctly guesses b∗, which it will with probability 1/2, B will succeed in
predicting the value of 〈σ, r〉 with overall advantage at least ε/2. ut
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