
Efficient Learning of Continuous-Time Hidden
Markov Models for Disease Progression

Yu-Ying Liu, Shuang Li, Fuxin Li, Le Song, and James M. Rehg
College of Computing

Georgia Institute of Technology
Atlanta, GA

Abstract

The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive ap-
proach to modeling disease progression due to its ability to describe noisy ob-
servations arriving irregularly in time. However, the lack of an efficient parameter
learning algorithm for CT-HMM restricts its use to very small models or requires
unrealistic constraints on the state transitions. In this paper, we present the first
complete characterization of efficient EM-based learning methods for CT-HMM
models. We demonstrate that the learning problem consists of two challenges: the
estimation of posterior state probabilities and the computation of end-state con-
ditioned statistics. We solve the first challenge by reformulating the estimation
problem in terms of an equivalent discrete time-inhomogeneous hidden Markov
model. The second challenge is addressed by adapting three approaches from the
continuous time Markov chain literature to the CT-HMM domain. We demon-
strate the use of CT-HMMs with more than 100 states to visualize and predict
disease progression using a glaucoma dataset and an Alzheimer’s disease dataset.

1 Introduction
The goal of disease progression modeling is to learn a model for the temporal evolution of a disease
from sequences of clinical measurements obtained from a longitudinal sample of patients. By dis-
tilling population data into a compact representation, disease progression models can yield insights
into the disease process through the visualization and analysis of disease trajectories. In addition,
the models can be used to predict the future course of disease in an individual, supporting the de-
velopment of individualized treatment schedules and improved treatment efficiencies. Furthermore,
progression models can support phenotyping by providing a natural similarity measure between
trajectories which can be used to group patients based on their progression.

Hidden variable models are particularly attractive for modeling disease progression for three rea-
sons: 1) they support the abstraction of a disease state via the latent variables; 2) they can deal with
noisy measurements effectively; and 3) they can easily incorporate dynamical priors and constraints.
While conventional hidden Markov models (HMMs) have been used to model disease progression,
they are not suitable in general because they assume that measurement data is sampled regularly
at discrete intervals. However, in reality patient visits are irregular in time, as a consequence of
scheduling issues, missed visits, and changes in symptomatology.

A Continuous-Time HMM (CT-HMM) is an HMM in which both the transitions between hidden
states and the arrival of observations can occur at arbitrary (continuous) times [1, 2]. It is therefore
suitable for irregularly-sampled temporal data such as clinical measurements [3, 4, 5]. Unfortu-
nately, the additional modeling flexibility provided by CT-HMM comes at the cost of a more com-
plex inference procedure. In CT-HMM, not only are the hidden states unobserved, but the transition
times at which the hidden states are changing are also unobserved. Moreover, multiple unobserved
hidden state transitions can occur between two successive observations. A previous method ad-
dressed these challenges by directly maximizing the data likelihood [2], but this approach is limited
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to very small model sizes. A general EM framework for continuous-time dynamic Bayesian net-
works, of which CT-HMM is a special case, was introduced in [6], but that work did not address the
question of efficient learning. Consequently, there is a need for efficient CT-HMM learning methods
that can scale to large state spaces (e.g. hundreds of states or more) [7].

A key aspect of our approach is to leverage the existing literature for continuous time Markov chain
(CTMC) models [8, 9, 10]. These models assume that states are directly observable, but retain
the irregular distribution of state transition times. EM approaches to CTMC learning compute the
expected state durations and transition counts conditioned on each pair of successive observations.
The key computation is the evaluation of integrals of the matrix exponential (Eqs. 12 and 13). Prior
work by Wang et. al. [5] used a closed form estimator due to [8] which assumes that the transition
rate matrix can be diagonalized through an eigendecomposition. Unfortunately, this is frequently not
achievable in practice, limiting the usefulness of the approach. We explore two additional CTMC ap-
proaches [9] which use (1) an alternative matrix exponential on an auxillary matrix (Expm method);
and (2) a direct truncation of the infinite sum expansion of the exponential (Unif method). Neither
of these approaches have been previously exploited for CT-HMM learning.

We present the first comprehensive framework for efficient EM-based parameter learning in CT-
HMM, which both extends and unifies prior work on CTMC models. We show that a CT-HMM can
be conceptualized as a time-inhomogenous HMM which yields posterior state distributions at the
observation times, coupled with CTMCs that govern the distribution of hidden state transitions be-
tween observations (Eqs. 9 and 10). We explore both soft (forward-backward) and hard (Viterbi de-
coding) approaches to estimating the posterior state distributions, in combination with three methods
for calculating the conditional expectations. We validate these methods in simulation and evaluate
our approach on two real-world datasets for glaucoma and Alzheimer’s disease, including visual-
izations of the progression model and predictions of future progression. Our approach outperforms
a state-of-the-art method [11] for glaucoma prediction, which demonstrates the practical utility of
CT-HMM for clinical data modeling.

2 Continuous-Time Markov Chain
A continuous-time Markov chain (CTMC) is defined by a finite and discrete state space S, a state
transition rate matrixQ, and an initial state probability distribution π. The elements qij inQ describe
the rate the process transitions from state i to j for i 6= j, and qii are specified such that each row of
Q sums to zero (qi =

∑
j 6=i qij , qii = −qi) [1]. In a time-homogeneous process, in which the qij

are independent of t, the sojourn time in each state i is exponentially-distributed with parameter qi,
which is f(t) = qie

−qit with mean 1/qi. The probability that the process’s next move from state i is
to state j is qij/qi. When a realization of the CTMC is fully observed, meaning that one can observe
every transition time (t′0, t

′
1, . . . , t

′
V ′), and the corresponding state Y ′ = {y0 = s(t′0), ..., yV ′ =

s(t′V ′)}, where s(t) denotes the state at time t, the complete likelihood (CL) of the data is

CL =

V ′−1∏
v′=0

(qyv′ ,yv′+1
/qyv′ )(qyv′ e

−qy
v′
τv′ ) =

V ′−1∏
v′=0

qyv′ ,yv′+1
e−qyv′ τv′ =

|S|∏
i=1

|S|∏
j=1,j 6=i

q
nij

ij e−qiτi (1)

where τv′ = t′v′+1− t′v′ is the time interval between two transitions, nij is the number of transitions
from state i to j, and τi is the total amount of time the chain remains in state i.

In general, a realization of the CTMC is observed only at discrete and irregular time points
(t0, t1, ..., tV ), corresponding to a state sequence Y , which are distinct from the switching times.
As a result, the Markov process between two consecutive observations is hidden, with potentially
many unobserved state transitions. Thus both nij and τi are unobserved. In order to express the
likelihood of the incomplete observations, we can utilize a discrete time hidden Markov model by
defining a state transition probability matrix for each distinct time interval t, P (t) = eQt, where
Pij(t), the entry (i, j) in P (t), is the probability that the process is in state j after time t given that
it is in state i at time 0. This quantity takes into account all possible intermediate state transitions
and timing between i and j which are not observed. Then the likelihood of the data is

L =

V−1∏
v=0

Pyv,yv+1(τv) =

V−1∏
v=0

|S|∏
i,j=1

Pij(τv)I(yv=i,yv+1=j) =

r∏
∆=1

|S|∏
i,j=1

Pij(τ∆)C(τ=τ∆,yv=i,yv+1=j) (2)

where τv = tv+1 − tv is the time interval between two observations, I(yv = i, yv+1 = j) is an
indicator function that is 1 if the condition is true, otherwise it is 0, τ∆, ∆ = 1, ..., r, represents r
unique values among all time intervals τv , and C(τ = τ∆, yv = i, yv+1 = j) is the total counts
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from all successive visits when the condition is true. Note that there is no analytic maximizer of L,
due to the structure of the matrix exponential, and direct numerical maximization with respect to Q
is computationally challenging. This motivates the use of an EM-based approach.

An EM algorithm for CTMC is described in [8]. Based on Eq. 1, the expected complete log likeli-
hood takes the form

∑|S|
i=1

∑|S|
j=1,j 6=i{log(qij)E[nij |Y, Q̂0]−qiE[τi|Y, Q̂0]}, where Q̂0 is the current

estimate for Q, and E[nij |Y, Q̂0] and E[τi|Y, Q̂0] are the expected state transition count and total
duration given the incomplete observation Y and the current transition rate matrix Q̂0, respectively.
Once these two expectations are computed in the E-step, the updated Q̂ parameters can be obtained
via the M-step as

q̂ij =
E[nij |Y, Q̂0]

E[τi|Y, Q̂0]
, i 6= j and q̂ii = −

∑
j 6=i

q̂ij . (3)

Now the main computational challenge is to evaluate E[nij |Y, Q̂0] and E[τi|Y, Q̂0]. By exploiting
the properties of the Markov process, the two expectations can be decomposed as [12]:

E[nij |Y, Q̂0] =

V−1∑
v=0

E[nij |yv, yv+1, Q̂0] =

V−1∑
v=0

|S|∑
k,l=1

I(yv = k, yv+1 = l)E[nij |yv = k, yv+1 = l, Q̂0]

E[τi|Y, Q̂0] =

V−1∑
v=0

E[τi|yv, yv+1, Q̂0] =

V−1∑
v=0

|S|∑
k,l=1

I(yv = k, yv+1 = l)E[τi|yv = k, yv+1 = l, Q̂0]

where I(yv = k, yv+1 = l) = 1 if the condition is true, otherwise it is 0. Thus, the computation
reduces to computing the end-state conditioned expectations E[nij |yv = k, yv+1 = l, Q̂0] and
E[τi|yv = k, yv+1 = l, Q̂0], for all k, l, i, j ∈ S. These expectations are also a key step in CT-HMM
learning, and Section 4 presents our approach to computing them.

3 Continuous-Time Hidden Markov Model

In this section, we describe the continuous-time hidden Markov model (CT-HMM) for disease pro-
gression and the proposed framework for CT-HMM learning.

3.1 Model Description

In contrast to CTMC, where the states are directly observed, none of the states are directly observed
in CT-HMM. Instead, the available observational data o depends on the hidden states s via the
measurement model p(o|s). In contrast to a conventional HMM, the observations (o0, o1, . . . , oV )
are only available at irregularly-distributed continuous points in time (t0, t1, . . . , tV ). As a conse-
quence, there are two levels of hidden information in a CT-HMM. First, at observation time, the
state of the Markov chain is hidden and can only be inferred from measurements. Second, the state
transitions in the Markov chain between two consecutive observations are also hidden. As a result, a
Markov chain may visit multiple hidden states before reaching a state that emits a noisy observation.
This additional complexity makes CT-HMM a more effective model for event data, in comparison
to HMM and CTMC. But as a consequence the parameter learning problem is more challenging.
We believe we are the first to present a comprehensive and systematic treatment of efficient EM
algorithms to address these challenges.

A fully observed CT-HMM contains four sequences of information: the underlying state transition
time (t′0, t

′
1, . . . , t

′
V ′), the corresponding state Y ′ = {y0 = s(t′0), ..., yV ′ = s(t′V ′)} of the hidden

Markov chain, and the observed data O = (o0, o1, . . . , oV ) at time T = (t0, t1, . . . , tV ). Their joint
complete likelihood can be written as

CL =

V ′−1∏
v′=0

qyv′ ,yv′+1
e−qyv′ τv′

V∏
v=0

p(ov|s(tv)) =

|S|∏
i=1

|S|∏
j=1,j 6=i

q
nij

ij e−qiτi
V∏
v=0

p(ov|s(tv)). (4)

We will focus our development on the estimation of the transition rate matrix Q. Estimates for the
parameters of the emission model p(o|s) and the initial state distribution π can be obtained from the
standard discrete time HMM formulation [13], but with time-inhomogeneous transition probabilities
(described below).
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3.2 Parameter Estimation
Given a current estimate of the parameter Q̂0, the expected complete log-likelihood takes the form

L(Q) =

|S|∑
i=1

|S|∑
j=1,j 6=i

{log(qij)E[nij |O, T, Q̂0]− qiE[τi|O, T, Q̂0]}+

V∑
v=0

E[log p(ov|s(tv))|O, T, Q̂0]. (5)

In the M-step, taking the derivative of L with respect to qij , we have

q̂ij =
E[nij |O, T, Q̂0]

E[τi|O, T, Q̂0]
, i 6= j and q̂ii = −

∑
j 6=i

q̂ij . (6)

The challenge lies in the E-step, where we compute the expectations of nij and τi conditioned on the
observation sequence. The statistic for nij can be expressed in terms of the expectations between
successive pairs of observations as follows:

E[nij |O, T, Q̂0] =
∑

s(t1),...,s(tV )

p(s(t1), ..., s(tV )|O, T, Q̂0)E[nij |s(t1), ..., s(tV ), Q̂0] (7)

=
∑

s(t1),...,s(tV )

p(s(t1), ..., s(tV )|O, T, Q̂0)

V−1∑
v=1

E[nij |s(tv), s(tv+1), Q̂0] (8)

=

V−1∑
v=1

|S|∑
k,l=1

p(s(tv) = k, s(tv+1) = l|O, T, Q̂0)E[nij |s(tv) = k, s(tv+1) = l, Q̂0]. (9)

In a similar way, we can obtain an expression for the expectation of τi:

E[τi|O, T, Q̂0] =

n−1∑
v=1

|S|∑
k,l=1

p(s(tv) = k, s(tv+1) = l|O, T, Q̂0)E[τi|s(tv) = k, s(tv+1) = l, Q̂0]. (10)

In Section 4, we present our approach to computing the end-state conditioned statistics
E[nij |s(tv) = k, s(tv+1) = l, Q̂0] and E[τi|s(tv) = k, s(tv+1) = l, Q̂0]. The remaining step
is to compute the posterior state distribution at two consecutive observation times: p(s(tv) =

k, s(tv+1) = l|O, T, Q̂0).

3.3 Computing the Posterior State Probabilities

The challenge in efficiently computing p(s(tv) = k, s(tv+1) = l|O, T, Q̂0) is to avoid the explicit
enumeration of all possible state transition sequences and the variable time intervals between inter-
mediate state transitions (from k to l). The key is to note that the posterior state probabilities are only
needed at the times where we have observation data. We can exploit this insight to reformulate the
estimation problem in terms of an equivalent discrete time-inhomogeneous hidden Markov model.

Specifically, given the current estimate Q̂0, O and T , we will divide the time into V intervals, each
with duration τv = tv − tv−1. We then make use of the transition property of CTMC, and associate
each interval v with a state transition matrix P v(τv) := eQ̂0τv . Together with the emission model
p(o|s), we then have a discrete time-inhomogeneous hidden Markov model with joint likelihood:

V∏
v=1

[P v(τv)](s(tv−1),s(tv))

V∏
v=0

p(ov|s(tv)). (11)

The formulation in Eq. 11 allows us to reduce the computation of p(s(tv) = k, s(tv+1) =

l|O, T, Q̂0) to familiar operations. The forward-backward algorithm [13] can be used to compute the
posterior distribution of the hidden states, which we refer to as the Soft method. Alternatively, the
MAP assignment of hidden states obtained from the Viterbi algorithm can provide an approximate
distribution, which we refer to as the Hard method.

4 EM Algorithms for CT-HMM
Pseudocode for the EM algorithm for CT-HMM parameter learning is shown in Algorithm 1.
Multiple variants of the basic algorithm are possible, depending on the choice of method for
computing the end-state conditioned expectations along with the choice of Hard or Soft decod-
ing for obtaining the posterior state probabilities in Eq. 11. Note that in line 7 of Algorithm 1,
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Algorithm 1 CT-HMM Parameter learning (Soft/Hard)

1: Input: data O = (o0, ..., oV ) and T = (t0, . . . , tV ), state set S, edge set L, initial guess of Q
2: Output: transition rate matrix Q = (qij)
3: Find all distinct time intervals t∆, ∆ = 1, ..., r, from T
4: Compute P (t∆) = eQt∆ for each t∆
5: repeat
6: Compute p(v, k, l) = p(s(tv) = k, s(tv+1) = l|O, T,Q) for all v, and the complete/state-

optimized data likelihood l by using Forward-Backward (soft) or Viterbi (hard)
7: Create soft count table C(∆, k, l) from p(v, k, l) by summing prob. from visits of same t∆
8: Use Expm, Unif or Eigen method to compute E[nij |O, T,Q] and E[τi|O, T,Q]

9: Update qij =
E[nij |O,T,Q]
E[τi|O,T,Q] , and qii = −

∑
i 6=j qij

10: until likelihood l converges

we group probabilities from successive visits of same time interval and the same specified end-
states in order to save computation time. This is valid because in a time-homogeneous CT-HMM,
E[nij |s(tv) = k, s(tv+1) = l, Q̂0] = E[nij |s(0) = k, s(t∆) = l, Q̂0], where t∆ = tv+1−tv , so that
the expectations only need to be evaluated for each distinct time interval, rather than each different
visiting time (also see the discussion below Eq. 2).

4.1 Computing the End-State Conditioned Expectations
The remaining step in finalizing the EM algorithm is to discuss the computation of the end-state
conditioned expectations for nij and τi from Eqs. 9 and 10, respectively. The first step is to express
the expectations in integral form, following [14]:

E[nij |s(0) = k, s(t) = l, Q] =
qi,j

Pk,l(t)

∫ t

0

Pk,i(x)Pj,l(t− x) dx (12)

E[τi|s(0) = k, s(t) = l, Q] =
1

Pk,l(t)

∫ t

0

Pk,i(x)Pi,l(t− x) dx. (13)

From Eq. 12, we define τ i,jk,l (t) =
∫ t

0
Pk,i(x)Pj,l(t − x)dx =

∫ t
0
(eQx)k,i(e

Q(t−x))j,l dx, while
τ i,ik,l(t) can be similarly defined for Eq. 13 (see [6] for a similar construction). Several methods for
computing τ i,jk,l (t) and τ i,ik,l(t) have been proposed in the CTMC literature. Metzner et. al. observe
that closed-form expressions can be obtained when Q is diagonalizable [8]. Unfortunately, this
property is not guaranteed to exist, and in practice we find that the intermediate Q matrices are
frequently not diagonalizable during EM iterations. We refer to this approach as Eigen.

An alternative is to leverage a classic method of Van Loan [15] for computing integrals of ma-

trix exponentials. In this approach, an auxiliary matrix A is constructed as A =

[
Q B
0 Q

]
, where

B is a matrix with identical dimensions to Q. It is shown in [15] that
∫ t

0
eQxBeQ(t−x)dt =

(eAt)(1:n),(n+1):(2n), where n is the dimension of Q. Following [9], we set B = I(i, j), where
I(i, j) is the matrix with a 1 in the (i, j)th entry and 0 elsewhere. Thus the left hand side reduces to
τ i,jk,l (t) for all k, l in the corresponding matrix entries. Thus we can leverage the substantial literature
on numerical computation of the matrix exponential. We refer to this approach as Expm, after the
popular Matlab function. A third approach for computing the expectations, introduced by Hobolth
and Jensen [9] for CTMCs, is called uniformization (Unif ) and is described in the supplementary
material, along with additional details for Expm.

Expm Based Algorithm Algorithm 2 presents pseudocode for the Expm method for computing
end-state conditioned statistics. The algorithm exploits the fact that the A matrix does not change
with time t∆. Therefore, when using the scaling and squaring method [16] for computing matrix
exponentials, one can easily cache and reuse the intermediate powers of A to efficiently compute
etA for different values of t.

4.2 Analysis of Time Complexity and Run-Time Comparisons
We conducted asymptotic complexity analysis for all six combinations of Hard and Soft EM with
the methods Expm, Unif, and Eigen for computing the conditional expectations. For both hard and
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Algorithm 2 The Expm Algorithm for Computing End-State Conditioned Statistics

1: for each state i in S do
2: for ∆ = 1 to r do
3: Di =

(et∆A)(1:n),(n+1):(2n)

Pkl(t∆)
, where A =

[
Q I(i, i)
0 Q

]
4: E[τi|O, T,Q] + =

∑
(k,l)∈L C(∆, k, l)(Di)k,l

5: end for
6: end for
7: for each edge (i, j) in L do
8: for ∆ = 1 to r do
9: Nij =

qij(et∆A)(1:n),(n+1):(2n)

Pkl(t∆)
, where A =

[
Q I(i, j)
0 Q

]
10: E[nij |O, T,Q] + =

∑
(k,l)∈L C(∆, k, l)(Nij)k,l

11: end for
12: end for

soft variants, the time complexity of Expm isO(rS4 +rLS3), where r is the number of distinct time
intervals between observations, S is the number of states, and L is the number of edges. The soft
version of Eigen has the same time complexity, but since the eigendecomposition of non-symmetric
matrices can be ill-conditioned in any EM iteration [17], this method is not attractive. Unif is
based on truncating an infinite sum and the truncation point M varies with maxi,t∆ qit∆, with the
result that the cost of Unif varies significantly with both the data and the parameters. In comparison,
Expm is much less sensitive to these values (log versus quadratic dependency). See the supplemental
material for the details. We conclude that Expm is the most robust method available for the soft EM
case. When the state space is large, hard EM can be used to tradeoff accuracy with time. In the hard
EM case, Unif can be more efficient than Expm, because Unif can evaluate only the expectations
specified by the required end-states from the best decoded paths, whereas Expm must always produce
results from all end-states.

These asymptotic results are consistent with our experimental findings. On the glaucoma dataset
from Section 5.2, using a model with 105 states, Soft Expm requires 18 minutes per iteration on a
2.67 GHz machine with unoptimized MATLAB code, while Soft Unif spends more than 105 minutes
per iteration, Hard Unif spends 2 minutes per iteration, and Eigen fails.

5 Experimental results
We evaluated our EM algorithms in simulation (Sec. 5.1) and on two real-world datasets: a glaucoma
dataset (Sec. 5.2) in which we compare our prediction performance to a state-of-the-art method, and
a dataset for Alzheimer’s disease (AD, Sec. 5.3) where we compare visualized progression trends to
recent findings in the literature. Our disease progression models employ 105 (Glaucoma) and 277
(AD) states, representing a significant advance in the ability to work with large models (previous
CT-HMM works [2, 7, 5] employed fewer than 100 states).

5.1 Simulation on a 5-state Complete Digraph

We test the accuracy of all methods on a 5-state complete digraph with synthetic data generated
under different noise levels. Each qi is randomly drawn from [1, 5] and then qij is drawn from
[0, 1] and renormalized such that

∑
j 6=i qij = qi. The state chains are generated from Q, such that

each chain has a total duration around T = 100
mini qi

, where 1
mini qi

is the largest mean holding time.
The data emission model for state i is set as N(i, σ2), where σ varies under different noise level
settings. The observations are then sampled from the state chains with rate 0.5

maxi qi
, where 1

maxi qi
is the smallest mean holding time, which should be dense enough to make the chain identifiable.
A total of 105 observations are sampled. The average 2-norm relative error ||q̂−q||||q|| is used as the
performance metric, where q̂ is a vector contains all learned qij parameters, and q is the ground
truth.

The simulation results from 5 random runs are listed in Table 1. Expm and Unif produce nearly
identical results so they are combined in the table. Eigen fails at least once for each setting, but
when it works it produces similar results. All Soft methods achieve significantly better accuracy
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Table 1: The average 2-norm relative error from 5 random runs on a 5-state complete digraph under varying
noise levels. The convergence threshold is ≤ 10−8 on relative data likelihood change.

Error σ = 1/4 σ = 3/8 σ = 1/2 σ = 1 σ = 2

S(Expm,Unif) 0.026±0.008 0.032±0.008 0.042±0.012 0.199±0.084 0.510±0.104
H(Expm,Unif) 0.031±0.009 0.197±0.062 0.476±0.100 0.857±0.080 0.925±0.030
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Figure 1: (a) The 2D-grid state structure for glaucoma progression modeling. (b) Illustration of the prediction
of future states from s(0) = i. (c) One fold of convergence behavior of Soft(Expm) on the glaucoma dataset.

than Hard methods, especially when the noise level becomes higher. This can be attributed to the
maintenance of the full hidden state distribution which makes it more robust to noise.

5.2 Application of CT-HMM to Predicting Glaucoma Progression
In this experiment we used CT-HMM to visualize a real-world glaucoma dataset and predict glau-
coma progression. Glaucoma is a leading cause of blindness and visual morbidity worldwide [18].
This disease is characterized by a slowly progressing optic neuropathy with associated irreversible
structural and functional damage. There are conflicting findings in the temporal ordering of de-
tectable structural and functional changes, which confound glaucoma clinical assessment and treat-
ment plans [19]. Here, we use a 2D-grid state space model with 105 states, defined by successive
value bands of the two main glaucoma markers, Visual Field Index (VFI) (functional marker) and
average RNFL (Retinal Nerve Fiber Layer) thickness (structural marker) with forwarding edges (see
Fig. 1(a)). More details of the dataset and model can be found in the supplementary material. We
utilize Soft Expm for the following experiments, since it converges quickly (see Fig. 1(c)), has an
acceptable computational cost, and exhibits the best performance.

To predict future continuous measurements, we follow a simple procedure illustrated in Fig. 1(b).
Given a testing patient, Viterbi decoding is used to decode the best hidden state path for the past
visits. Then, given a future time t, the most probable future state is predicted by j = maxj Pij(t)
(blue node), where i is the current state (black node). To predict the continuous measurements, we
search for the future time t1 and t2 in a desired resolution when the patient enters and leaves a state
having same value range as state j for each disease marker separately. The measurement at time t
can then be computed by linear interpolation between t1 and t2 and the two data bounds of state j for
the specified marker ([b1, b2] in Fig. 1(b)). The mean absolute error (MAE) between the predicted
values and the actual measurements was used for performance assessment. The performance of CT-
HMM was compared to both conventional linear regression and Bayesian joint linear regression [11].
For the Bayesian method, the joint prior distribution of the four parameters (two intercepts and two
slopes) computed from the training set [11] is used alongside the data likelihood. The results in
Table 2 demonstrate the significantly improved performance of CT-HMM.

In Fig. 2(a), we visualize the model trained using the entire dataset. Several dominant paths can be
identified: there is an early stage containing RNFL thinning with intact vision (blue vertical path in
the first column), and at around RNFL range [80, 85] the transition trend reverses and VFI changes
become more evident (blue horizontal paths). This L shape in the disease progression supports the
finding in [20] that RNFL thickness of around 77 microns is a tipping point at which functional
deterioration becomes clinically observable with structural deterioration. Our 2D CT-HMM model
can be used to visualize the non-linear relationship between structural and functional degeneration,
yielding insights into the progression process.
5.3 Application of CT-HMM to Exploratory Analysis of Alzheimer’s Disease
We now demonstrate the use of CT-HMM as an exploratory tool to visualize the temporal interaction
of disease markers of Alzheimer’s Disease (AD). AD is an irreversible neuro-degenerative disease
that results in a loss of mental function due to the degeneration of brain tissues. An estimated 5.3

7



Table 2: The mean absolute error (MAE) of predicting the two glaucoma measures. (∗ represents that CT-
HMM performs significantly better than the competing method under student t-test).

MAE CT-HMM Bayesian Joint Linear Regression Linear Regression
VFI 4.64 ± 10.06 5.57 ± 11.11 * (p = 0.005) 7.00 ± 12.22 *(p ≈ 0.000)

RNFL 7.05 ± 6.57 9.65 ± 8.42 * (p ≈ 0.000) 18.13 ± 20.70 * (p ≈ 0.000)

million Americans have AD, yet no prevention or cures have been found [21]. It could be beneficial
to visualize the relationship between clinical, imaging, and biochemical markers as the pathology
evolves, in order to better understand AD progression and develop treatments.

A 277 state CT-HMM model was constructed from a cohort of AD patients (see the supplementary
material for additional details). The 3D visualization result is shown in Fig. 2(b). The state transition
trends show that the abnormality of Aβ level emerges first (blue lines) when cognition scores are
still normal. Hippocampus atrophy happens more often (green lines) when Aβ levels are already
low and cognition has started to show abnormality. Most cognition degeneration happens (red lines)
when both Aβ levels and Hippocampus volume are already in abnormal stages. Our quantitative
visualization results supports recent findings that the decreasing of Aβ level in CSF is an early
marker before detectable hippocampus atrophy in cognition-normal elderly [22]. The CT-HMM
disease model with interactive visualization can be utilized as an exploratory tool to gain insights of
the disease progression and generate hypotheses to be further investigated by medical researchers.
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Figure 2: Visualization scheme: (a) The strongest transition among the three instantaneous links from each
state are shown in blue while other transitions are drawn in dotted black. The line width and the node size
reflect the expected count. The node color represents the average sojourn time (red to green: 0 to 5 years and
above). (b) similar to (a) but the strongest transition from each state is color coded as follows: Aβ direction
(blue), hippo (green), cog (red),Aβ+hippo (cyan),Aβ+cog (magenta), hippo+cog (yellow),Aβ+hippo+
cog(black). The node color represents the average sojourn time (red to green: 0 to 3 years and above).

6 Conclusion
In this paper, we present novel EM algorithms for CT-HMM learning which leverage recent ap-
proaches [9] for evaluating the end-state conditioned expectations in CTMC models. To our knowl-
edge, we are the first to develop and test the Expm and Unif methods for CT-HMM learning. We also
analyze their time complexity and provide experimental comparisons among the methods under soft
and hard EM frameworks. We find that soft EM is more accurate than hard EM, and Expm works
the best under soft EM. We evaluated our EM algorithsm on two disease progression datasets for
glaucoma and AD. We show that CT-HMM outperforms the state-of-the-art Bayesian joint linear
regression method [11] for glaucoma progression prediction. This demonstrates the practical value
of CT-HMM for longitudinal disease modeling and prediction.
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