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Abstract

In this paper, we will present a theory of representing sym-
bolic inferences of first-order logic with neural networks. The
approach transfers first-order logical formulas into a variable-
free representation (in a topos) that can be used to generate
homogeneous equations functioning as input data for a neural
network. An evaluation of the results will be presented and
some cognitive implications will be discussed.
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Introduction
The syntactic structure of formulas of classical first-order
logic (FOL) is recursively defined. Therefore it is possible
to construct new formulas using given ones by applying a
recursion principle. Similarly semantic values of (complex)
formulas can be computed by the interpretation of the corre-
sponding parts (Hodges, 1997). Consider, for example, the
following formula:

∀x : human(x) → mortal(x)

The semantics of the complex formula is based on the seman-
tics of the subexpressions human(x), mortal(x), and the impli-
cation → connecting these subexpressions. Clearly a problem
arises because of the presence of the quantifier ∀ and the vari-
able x. Nevertheless it is assumed that a compositionality
principle allows to compute the meaning of the complex for-
mula using the meaning of the corresponding subformulas. 1

On the other side, it is assumed that neural networks are
non-compositional on a principal basis making it difficult to
represent complex data structures like lists, trees, tables, for-
mulas etc. Two aspects can be distinguished: The represen-
tation problem (Barnden, 1989) and the inference problem
(Shastri & Ajjanagadde, 1990). The first problem states that,
if at all, complex data structures can only implicitly be used
and the representation of structured objects is a non-trivial
challenge for connectionist networks. The second problem
tries to model inferences of logical systems with neural ac-
counts. In this paper, our primary aim is the second problem.

A certain endeavor has been invested to solve the repre-
sentation problem as well as the inference problem. It is

1In classical logic, variables are not only used to express quantifi-
cation but also to syntactically mark multiple occurrences of terms.
Variable management is usually considered as a problematic issue in
logic. In particular, the problem arises that algorithms have certain
difficulties with quantified variables: The non-decidability of FOL
is a direct consequence of this fact.

well-known that classical logical connectives like conjunc-
tion, disjunction, or negation can be represented by neural
networks (Rojas, 1996). Furthermore it is known that every
Boolean function can be learned by a neural network (Stein-
bach & Kohut, 2002). Although it is therefore straightfor-
ward to represent propositional logic with neural networks,
this is not true for FOL. The corresponding problem, usually
called the variable-binding problem, is caused by the usage
of quantifiers ∀ and ∃, which are binding variables that occur
at different positions in one and the same formula. It is there-
fore no surprise that there are a number of attempts to solve
this problem of neural networks: Examples for such attempts
are sign propagation (Lange & Dyer, 1989), dynamic localist
representations (Barnden, 1989), tensor product representa-
tions (Smolensky, 1990), or holographic reduced representa-
tions (Plate, 1994). Unfortunately these accounts have certain
non-trivial side-effects. Whereas sign propagation as well as
dynamic localist representations lack the ability of learning,
the tensor product representation results in an exponentially
increasing number of elements to represent variable bindings,
only to mention some of the problems.

With respect to the inference problem of connectionist net-
works the number of proposed solutions is rather small and
relatively new. An attempt is Hitzler, Hölldobler & Seda
(2004) in which a logical deduction operator is approximated
by a neural network and the fixpoint of such an operator pro-
vides the semantics of a logical theory. Another approach
is Healy & Caudell (2004) where category theoretic meth-
ods are assigned to neural constructions. In D’Avila Garcez,
Broda & Gabbay (2002), tractable fragments of predicate
logic are learned by connectionist networks. Finally in Gust
& Kühnberger (2004), a procedure is given how to trans-
late predicate logic into variable-free logic that can be used
as input for a neural network. To the knowledge of the au-
thors, the latter account is the only one that does not require
hard-wired networks designed for modeling a particular the-
ory. Rather one network topology can be used for arbitrary
first-order theories. We will apply the account presented in
Gust & Kühnberger (2004) to model first-order inferences of
neural networks and to discuss issues relevant for cognitive
science.

The paper has the following structure: First, we will sketch
the basic ideas of variable-free first-order logic using a rep-
resentation of FOL induced by category-theoretic means in a
topos. Second, we will present the general architecture of the
system, the structure of the neural network to code variable-
free logic, and the neural modeling of inferences processes.



Fourth, we will discuss and evaluate in-depth an example of
how logical inferences can be learned by a neural network.
Last but not least, we will relate this to general issues in cog-
nitive science and we will add some concluding remarks.

Logic Without Variables
In order to circumvent problems having to do with the un-
decidability of FOL a certain endeavor was invested to de-
velop a theory of variable-free logic. 2 A prominent approach
to achieve this is the usage of a topos (Goldblatt, 1984). In-
tuitively a topos is a category that has all limits (for exam-
ple products), that allows exponents, and that has a subobject
classifier. The properties of a topos induce a semantics on
the logical constructions. This semantics is equivalent to the
standard semantics of FOL (Goldblatt, 1984; Gust, 2000), i.e.
the full expressive power of FOL is available in a topos. It is
straightforward to translate FOL formulas into objects and ar-
rows in a topos.

We give a prototypical example of a category that satisfies
the properties of a topos, namely the category SET. The
objects of SET are sets, connected by set theoretic functions
(called arrows). A product a × b can simply be identified
with the Cartesian products of sets a and b, and an exponent
ab with the set of functions f : b → a.

In category theory, constructions like products allow the
construction of new arrows. For example, in the case of a
Cartesian product a × b the following condition holds: if ar-
rows f : c → a and g : c → b are given, then there exists a
unique arrow h : c → a × b such that the corresponding di-
agram commutes. We will use the possibility of constructing
new arrows – provided some other arrows are given – in the
account presented in this paper. The object ! in SET (called
the terminal object) is the one-element set {0} with the prop-
erty that for all sets a there is exactly one arrow from a into
{0}. The truth value object Ω = {0, 1} and the subobject
classifier true: ! → Ω mapping 0 to 1 generalizes characteris-
tic functions and therefore interpretations of predicates. Log-
ical terms can be interpreted as mappings from the terminal
object into the universe U , and logical 2-ary connectives as
mappings Ω×Ω → Ω. Quantified formulas correspond to an
operation mapping (complex) predicates to (complex) predi-
cates. The topos account allows the reduction of all logical
connectives to one uniform operation, namely concatenation
of arrows.

Neural Learning of Formulas
The Architecture of the System
Figure 1 depicts the general architecture of the presented ac-
count in four steps: First, input data is given by a set of logi-
cal formulas (determining a partial theory) relative to a given
logical language L. The language L is considered to be a
classical first-order language. Second, this set of formulas is
translated into objects and arrows of a topos based on the fact
that FOL can be represented by a topos. Third, a PROLOG
program is generating equations in normal form f ◦ g = h
identifying new arrows in the topos. It order to make this

2In this section, we only sketch the idea of representing FOL in
a variable-free logic. A detailed development can be found in Gust
& Kühnberger, 2004.
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Figure 1: The general architecture of the account.

work, we developed a simple topos language LT to code the
definitions of objects and arrows in a way such that they can
be processed by the program components. The idea is that
a given arrow f can be used to generate new equations like
id ◦ f = f , f ◦ id = f and so on. Last but not least, these
equations are used to train a neural network. The structure of
the used neural network will be described below.

The motivation of the proposed solution is based on the
idea that we need to transform an interpretation function I
of classical logic into a function I ′ : R

m → R
n in order to

make it appropriate as input for a neural network. The first
step to achieve this can loosely be associated with reification
and elimination of variables, both standard techniques com-
monly used in AI: Formulas of first-order predicate logic are
interpreted as objects and arrows in a topos. The second step
is motivated by the challenge to represent logical formulas as
equations and finally to represent formulas as equations in a
real-valued vector space. In the last step, a necessary issue is
to hard-wire certain principles like the one that true and false
is maximally distinct.

Figure 2 depicts the structure of a neural network that is
used in order to model the composition process of evaluating
terms and formulas. Each object of the topos is represented
as a point in an n-dimensional real-valued unit cube. In the
example used in this paper3, we chose n = 5. Each arrow in
the topos is again represented as a point in the n-dimensional
real-valued unit cube together with pointers to the respective
domain and codomain. The input of the network is repre-
sented by weights from the initial node with activation 1. This
allows the backpropagation of the errors into the representa-
tion of the inputs of the network. The input of the network
represents the two arrows to be composed by the following
parts:

• The domain of the first arrow

• The representation of the first arrow

• The codomain of the first arrow which must be equal to the
domain of the second arrow

• The representation of the second arrow

• The codomain of the second arrow

3The choice of n depends on the number of objects and arrows
which need to be represented. If n is too large, then overfitting of the
network can occur. If n is too small, the network may not converge.
Currently we do not know the precise correlation between the choice
of n and the relative size of the logical theory.
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Figure 2: The structure of the neural network that learns com-
position of first-order formulas.

These requirements lead to a net with 5 · n many input
values (first layer in Figure 2). The output of the network is
the representation of the composed arrow. In the example, we
use 2 · n many nodes for the hidden layer.

In order to enable the system to learn logical inferences,
some basic arrows have static (fixed) representations. These
representations correspond directly to truth values.

• The truth value true : (1.0, 1.0, 1.0, 1.0, 1.0)
• The truth value false : (0.0, 0.0, 0.0, 0.0, 0.0)

Notice that the truth value true and the truth value false are
maximally distinct. All other objects and arrows are initial-
ized with random values. The defining equations of the theory
and the equations generated by categorical constructions (like
products) are used to train the neural network.

The following table is an example how certain logical prop-
erties of objects and arrows of the topos can be coded in LT .

Table 1: Example code of the objects and arrows

!. # the terminal object
@. # the truthvalue object
! x ! = !.
u. # the universe
static t: ! --> @, # true
static f: ! --> @. # false
not: @ --> @, # negation
->: @ x @ --> @. # implication
not o t = f,
not o f = t,
-> o t x t = t,
-> o t x f = f,
-> o f x t = t,
-> o f x f = t.

In Table 1, elementary logical operators and equations are
defined specifying the behavior of classical connectives. The
coding of topos entities in LT is straightforward: In the first
part we define objects and arrows and in the second part
we specify the defining equations. Table 2 summarizes the
important constructions. Furthermore LT provides a macro
mechanism to allow a compact coding for complex equations
(cf. the definition of ==> in Table 3). All derived objects and
arrows, e.g. identities and products, are recognized by the
PROLOG program and the corresponding defining equations
are automatically generated.

Example
In Table 3, an extension of the premises of the classical
Socrates syllogism is modeled. The represented information
is not only that all humans are mortal but also that all mor-
tals ascend to heaven and everyone in heaven is an angel. As

Table 2: The specification of LT

LT Intended Interpretation

! Terminal object !
@ Truth value objects Ω
u The universe U

t Truth value true

f Truth value false

Y x Z Product object of Y and Z

y x z Product arrow of y and z

! X Terminal arrow of X

x: Y --> Z Definition of an arrow
y o z Composition of arrows x and y

constants not only Socrates but also robot and something are
introduced with the additional information that robot is not
human. There is no knowledge about something available.
These types of information are represented by equations. For
example, the composition of the arrow human and socrates
is resulting in true representing that ”Socrates is human”.
Slightly more difficult is the representation of universally
quantified expressions like ∀x : human(x) → mortal(x).
The equation is constructed as follows:4

∀(⇒ ◦ human × mortal ◦ d) = true

This is equivalent to

⇒ ◦ human× mortal ◦ d = true ◦ !

The diagonal arrow d : U → U × U is composed with
the arrows for predicates human : Ω → Ω and mortal :
Ω → Ω and the arrow for the implication ⇒: Ω × Ω → Ω.
Notice further that the construction is only possible because a
topos guarantees the existence of the relevant arrows. Finally,
test equations are represented in Table 3. They correspond to
the logically possible combinations of mortal, human, and
angel on the one hand and Socrates, robot, and something
on the other. All combinations can be either true or false.

The Results
The input generated by the Prolog program is feeded into the
neural network. The result of an example run is then given
by the errors of the test equations. These test equations query
whether the composition of angel and robot is false, whether
the composition of angel and robot is true, whether the com-
position of angel and socrates is false etc. The results of test
run of our example is depicted below:

Tests:
angel o robot = f 0.636045
angel o robot = t 0.886353
angel o socrates = f 2.197811
angel o socrates = t 0.011343
angel o something = f 0.053576
angel o something = t 2.017303
heaven o robot = f 0.454501
heaven o robot = t 1.080864
heaven o socrates = f 2.153396
heaven o socrates = t 0.013502
heaven o something = f 0.034890
heaven o something = t 2.111497
mortal o socrates = f 1.985289
mortal o socrates = t 0.030935
mortal o robot = f 0.195687

4Notice that the following expressions are expressions in the
topos and not logical expressions.



Table 3: Example code of an extension of the famous
”Socrates inference”

# predicates of the theory
human, mortal, heaven, angel: u ---> @ .
X ==> Y: -> o X x Y o d u = t o ! u .
human ==> mortal.
mortal ==> heaven.
heaven ==> angel.

#individuals
distinctive

socrates, robot, something: ! ---> u.
human o socrates = t.
human o robot = f.

# test the learned inferences
tests

mortal o something = t,
mortal o something = f,
mortal o robot = t,
mortal o robot = f,
mortal o socrates = t,
mortal o socrates = f,
heaven o something = t,
heaven o something = f,
heaven o socrates = t,
heaven o socrates = f,
heaven o robot = t,
heaven o robot = f,
angel o something = t,
angel o something = f,
angel o socrates = t,
angel o socrates = f,
angel o robot = t,
angel o robot = f.

mortal o robot = t 1.488895
mortal o something = f 0.025812
mortal o something = t 2.159551

The system convincingly learned that Socrates is mortal,
ascended to heaven, and is an angel. Furthermore it learned
that the negations of these consequences are false. In other
words, the system learned the transitivity of the implication
in universally quantified formulas. With respect to robot the
system evaluates with a high certainty that robot is not mor-
tal. The other two properties are undecided. In the case of
something relatively certain knowledge for the system is that
something is neither in heaven nor mortal nor an angel.

We will have a closer look on how the neural network in-
terprets queries. In the left diagram of Figure 3, the max-
imal error of the neural network of 10 runs with 1.6 · 10 6

many iterations is depicted. The curves show four character-
istic phases: in the first phase (up to 50,000 iterations), the
randomly chosen representations for the input arrows and ob-
jects remains relatively stable. During the second phase (be-
tween 50,000 and approx. 200,000 iterations) the maximal
error dramatically increases due to the rearrangement of the
input representations. In the third phase (between 200,000
and 600,000 iterations) the maximal error rapidly decreases
which is again connected with the reorganization of the input
representation. In most cases, the maximal error decreases in
the fourth phase (between 600,000 and above iterations), but
the input representations stay relatively stable.

The right diagram of Figure 3 shows the stability behav-
ior of the neural network (again 10 runs with 1.6 · 10 6 many
iterations). In a first phase (up to 100,000 iterations), the in-
stability of the weights increases dramatically. In a band be-
tween approx. 100,000 and approx. 250,000 iterations the
stability of the network increases and the network remains
(relatively) stable in the third phase between approx. 400,000
iterations and above. Interesting are certain fluctuations (of
certain runs) of the stability behavior between, for example,
around 800,000 iterations or for other runs between 1, 2 · 10 6

and 1, 6 · 106 many iterations.
The two diagrams in Figure 4 show the behavior of

Socrates is an angel (left diagram) and The robot is an angel
(right diagram). The classification is as expected. Whereas

Socrates is classified as an angel using the transitivity of the
implication, the robot is classified as a non-angel. Clearly the
input only specifies that the robot is not human. It does not
follow logically that the robot cannot be an angel. The result
of the weight distribution of the neural network with respect
to the robot can be interpreted as a support of something sim-
ilar to a closed-world assumption. It is interesting that the
interpretation of something (cf. Figure 5) differs from the in-
terpretation of robot, because with respect to something there
is no clear tendency how to classify this object.

The models approximated by the network behave as ex-
pected: Test equations which are logically derivable true or
false will be mapped in all models to t or f respectively. Those
equations for which no logical deduction of the truth value is
possible, are more or less arbitrarily distributed between f
and t in the set of models. Nevertheless, the models seem
to tend to realize a closed world interpretation, i.e. the truth
value of mortal(robot), heaven(robot), and angel(robot)
tend to be false.

Consequences for Cognitive Science
The translation of first-order formulas into training data of a
neural network allows, in principal, to represent models of
symbolic theories in artificial intelligence and cognitive sci-
ence (that are based on FOL) with neural networks. 5 In other
words the account provides a recipe – and not just a general
statement of the possibility – of how to learn models of the-
ories based on FOL with neural networks. Notice that the
presented approach tries to combine the advantages of con-
nectionist networks and logical systems: Instead of represent-
ing symbols like constants or predicates using single neurons,
the representation is rather distributed realizing the very idea
of distributed computation in neural networks. Furthermore
the neural network can be trained quite efficiently to learn a
model without any hardcoded devices. The result is a distrib-
uted representation of a symbolic system.

From a dual perspective, it would be desirable to find a
possibility to translate the distribution of weights in a trained
neural network back to the symbolic level. The symbol
grounding problem could then be analyzed in detail by trans-
lating the representation levels into each other. Although we
cannot give a detailed account for such a translation from the
neural level to the symbolic one in this paper, we think that
certain invariants on the neural correlate could be used for
such a translation to the symbolic level. The development of
such a theory will be dedicated to another paper.

A logical theory consists of axioms specifying facts and
rules about a certain domain together with a calculus deter-
mining the “correct” inferences that can be drawn from these
axioms. From a computational point of view this generates
quite often problems, because inferences can be rather re-
source consuming. Modeling logical inferences with neural
networks as presented in this paper allows a very efficient way
of drawing inferences, simply because the interpretation of
possible expressions is “just there”, namely implicitly coded
by the distribution of the weights of the network. Notice that
the neural network does not only learn the input, but a model

5Notice that a large part of theories in artificial intelligence are
formulated with tools taken from logic and are mostly based on FOL
or subsystems of FOL.
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making the input true. In a certain sense these models are
overdetermined, i.e. they assign truth values even in those
cases which are not determined by the theory. Nevertheless
they are consistent with the theory. There is evidence from
the famous Wason selection-task that human behavior is (in
our terminology) rather model-based than theory-based, i.e.
human behavior can be deductive without having an infer-
ence mechanism (cf. Gardner, 1989; Johnson-Laird, 1983).
We can give an explanation of this phenomenon: Humans act
mostly according to a model they have (about, for example,
a situation) and not according to a theory plus an inference
mechanism. The tendency of our models towards a closed-
world assumption provide hints for an explanation of the em-
pirical observations, because – as can be seen in the robot
case – the property of the robot to be non-human propagates
to the property to be a non-angel. This provides evidence for
an equivalence between The robot is human and The robot is
an angel in certain types of underdetermined situations.

Taking into account time limitations, for example, in real-
world applications, the usage of a trained neural network in a
complex system would significantly facilitate the application,
because there are no inference steps that need to be computed.
Furthermore the module can deal with noisy and uncertain
input data which are standardly considered as a problem for
applications in a rapidly changing environment. Clearly un-
certain data cannot be assigned a definite truth value, but in
all cases the network will generate a certain value that can be
used by the system. A possibility to make the correspondence
between the neural correlate on the one side and symbolic ap-
proaches under uncertainty on the other more obvious is the
introduction of a truth value n (neither true nor false) and a
truth value b (both true and false). Such an introduction is
straightforward on the neural network side and corresponds
nicely to well-known accounts of many-valued logic in sym-
bolic systems (Urquhart, 2001).

Concluding Remarks
In this paper, we presented a framework for modeling FOL,
in particular, its inference mechanisms with neural networks.
We sketched a theory of uniformly translating axiomatic sys-
tems into a certain type of variable-free logic, which can be
used for generating equations in normal form. These equa-
tions are further transformed into an input for a neural net
that learns the axioms together with logical consequences. A
detailed evaluation of the results were given and a discus-
sion of consequences of this framework for cognitive science
was presented. Besides the well-known advantages of stabil-
ity and robustness concerning noisy data, the present account
allows to learn non-trivial inferences without deduction steps.

Future work will be concerned with the modeling of a
three- and four-valued logic on the network. Because the net
topology is independent of the type of the underlying logic,
this step is straightforward. The resulting models need to
be carefully evaluated. Moreover the integration of trained
neural nets into real-world robotic devices will be developed.
In the case of robotics, it would be necessary to extend the
framework to allow online learning. But this fits seamlessly
into our approach since adding new axioms again does not
change the network topology, contrary to most alternative ac-
counts.
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