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Abstract. 

Human cognitive resources, such as  the working memory, are sub-
ject  to  limitations.  In  the present note, a method  is described  for ex-
ploiting such  limitations  in  the context of artificial  intelligence.  In or-
der  to  obtain a  notion of psychological difficulty  for some sampled 
problems of a given problem class, psychological experiments are 
performed. A model  is  then constructed  that divides  the set of solu-
tions  associated  with  the  problem  class  into  layers  that  reflect  the 
degrees of psychological difficulty. Any search algorithm can  then 
be  confined  to  these  layers  in  an  iterative  deepening  fashion.  The 
purpose is to speed up algorithms locally on the set of problems that 
human beings tend to solve efficiently.  

 — 
Introduction 

everal definitions of the term artificial intelligence (AI) have been 
suggested since the term was coined in 1955 [MMRS55]. Some 
definitions make explicit reference to human beings and use e.g. 

the terms human intelligence, human thinking, or human rationality. 
Others refer to natural intelligence in a sense that includes a wide range 
of natural organisms and systems. Still other definitions are purely 
mathematical in nature and consider rational behavior in a formalized set-
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ting, where there are agents, environments, actions, goals and utility func-
tions.  

One tradition in AI uses methods that are inspired by biology. Exam-
ples include methods like artificial neural networks, genetic programs, cel-
lular automata, and ant algorithms [CDM92]. Another tradition uses 
methods that are inspired by human problem solving. Examples of algo-
rithms in this tradition are the general problem solver [NS61] and the 
logic theorist [NSH56]. In contrast to some the biologically inspired 
methods, these methods tend to be transparent in the sense that people 
can understand how the final programs work.  

To obtain knowledge about human problem solving on a given prob-
lem class, two classical methods of psychology are available: introspection 
and experimentation. By doing introspection one may hope to identify 
some useful concepts, operators, methods, and heuristics. These compo-
nents can then be put together into a computer model. By doing experi-
mentation, the psychological realism of the computer model can then be 
evaluated. After a number of improvements of the model, one may even-
tually be able to validate it statistically.   

When looking for inspiration in human raw-models, it seems reason-
able to focus on the strengths of human problem solving. For instance, 
this was the idea underlying the development of expert systems in the 
1970s [FBL71]. Thus one would exploit some powerful knowledge opera-
tors and clever heuristics that the human raw-models would use. After 
some years, it became increasingly clear that the time and space complexi-
ties of many expert systems imposed severe limitations on their usefulness 
in practice. Part of the blame for that could be put on the heuristic func-
tions, which failed to confine the search to a sufficiently small portion of 
the search space.  

In this perspective one may look for ways of confining the search 
space further. We are going to introduce psychologically relevant com-
plexity measures on solutions and use those complexity measures to ap-
proximate the comprehensible part of the search space. 
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A vast amount of complexity measures exists in the literature of 
mathematics, computer science, logic, and linguistics. Examples include 
versions of Kolmogorov complexity, circuit complexity, proof complex-
ity, and formula complexity.  

To approximate the comprehensible part of the search space, we are 
first going to make experiments and measure comprehensibility by means 
of certain performance measures that are used in experimental psychol-
ogy. Examples of such performance measures are the average time it takes 
to answer a problem correctly, the proportion of the subjects who answer 
the problem correctly, or the average level of difficulty of the problem, as 
estimated by the subjects of the experiment.  

In cognitive psychology, a great number of models have been pro-
posed for various aspects of human cognition. For instance, there are spe-
cialized models for human reasoning in the mental models tradition 
[Joh83] and the mental logic tradition [BO98]. There are also several 
models of human cognition that are presented in the form of computer 
programs. Examples of this include general cognitive models like act–r 
[AL98] and specialized models like the system psycop [Rip96] for first-
order reasoning. 

In the following it is suggested that computer models of human cog-
nition may be used, not only to shed light on human thinking, but also to 
develop algorithms with anthropomorphic behavior. A number of poten-
tial software applications based on these algorithms are then discussed.  

Idea 
In view of the limited practical usefulness of certain AI-algorithms, one 
may look for ways of confining the search space. To do this, one may 
again turn to human problem solving for inspiration, but this time con-
sidering not only the strengths, but also the weaknesses of human prob-
lem solving. After all, in many problem classes, people outperform the 
state-of-the-art programs, so by mimicking human raw-models even more 
closely, one may hope to push the limits further. Aiming to mimic also 
the weaknesses of human problem solvers a priori means aiming to match 



 172 

the performance of the human problem solvers, but not exceed it. For 
problem classes where human beings tend to perform better than com-
puters, however, that level of ambition is certainly high enough.  

From cognitive psychology we know that people generally have severe 
limitations in their cognitive capacity. In particular, the working memory 
is typically only big enough to fit a 7-digit telephone number [Mil56]. 
These limitations contribute to the difficulty of understanding large 
numbers, complicated proofs, irregular patterns, etc. Therefore, in the 
context of problem solving, such limitations typically imply that a large 
portion of the search space will consist of solution-candidates that are 
incomprehensible to most people. This suggests that search should be 
specifically directed towards the comprehensible part of the search space. 
Thus one may aim for algorithms that perform well on the same prob-
lems as the human raw-models. In the following, this approach, which 
will be referred to as anthropomorphic AI, will be outlined and some of 
its potential applications discussed.  

Method 
Production systems 
Production systems have several advantages in the present context. First, 
they are conceptually simple. Second, they are general in that they are 
Turing complete and subsume formalisms like proof systems, grammars, 
and term rewriting systems. Third, they have been used in AI to describe 
algorithms [McD82]. Fourth, they have been used in cognitive modeling 
[LNR87].  

Production systems occur in many variations, for instance: 

• the rules of the systems may operate on sets, multi-sets, or se-
quences, 

• the right-hand sides of the rules may be restricted or not re-
stricted to one element, 

• when several elements are allowed on the right-hand sides of 
the rules, the reading may be either conjunctive or disjunctive, 
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• the left-hand side of the rules may be consumed or not con-
sumed when the rules are used.  

In the following a production system will denote a countable set of objects O 
together with a countable set of production rules R. The rules operate on 
multisets of objects, the reading of the right-hand sides of the rules is 
conjunctive and the left-hand sides are consumed when the rules are ap-
plied.  

Example 1. The following is a production system: 

Objects: {a,b,c,d,e}, 

Rules: {a}  {b,b}; {c,d}  {a}; {c}  {e}. 

A problem class is given by a production system (O,R) and all pairs (A,B), 
where A and B are finite multisets of elements of O. Such a pair (A,B) is 
called a problem. A solution to a problem (A,B) is a finite sequence of sub-
sets of O that begins with A, ends with B and takes steps according to the 
rules of R. Problems with solutions are called solvable. 

Example 2. Consider the problem class defined by the production 
system of Example 1 and the problem ({c,c,d}, {e,b,b}). 

Here is one solution to this problem:  

{c,c,d}  {c,a}  {e,a}  {e,b,b}. 

Now it is time to introduce our human raw-model h, who is a real person 
or a group of people with or without equipment like pencil and paper. 
We assume that h is better at solving problems in (O,R) than the state-
of-the-art computer programs. For instance, we could imagine that (O,R) 
is an encoding of the game of go and that h is a go master. We shall try 
to use the cognitive limitations of h to our advantage.  
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We have assumed that h is good at solving problems in (O,R). For all 
we know, h may solve these problems working in a different production 
system, e.g. a version of (O,R) augmented with some derived rules, or 
some completely different system in which (O,R) can somehow be inter-
preted.  

Following an old idea in cognitive science, we are going to use a pro-
duction system (O’,R’) for modeling h. (O’,R’) should be as psychologi-
cally realistic as possible with respect to h working on (O,R). More pre-
cisely, as many as possible of the concepts, derived rules and tricks that h 
actually uses in the problem solving processes should have formal coun-
terparts in (O’,R’). Since h is good at solving problems in (O,R), there 
must be some connection between (O,R) and (O’,R’). More precisely, the 
former must be “embeddable” in the latter. Therefore we may often think 
of the former as a subsystem of the latter or even go further and identify 
the two systems. 

Experiments 
Now that the problem class (O,R) and the human raw-model h have 
been fixed, experiments can be made in order to approximate the set of 
solutions of (O,R) that are comprehensible to h. Below we exemplify 
how such experiments can be performed. 

Start by selecting a test, i.e. a finite set of problems {p0, p1,…,pn} from 
(O,R). The test should be a mix containing easy and hard, solvable as 
well as unsolvable problems. Then the set-up of the experiment must be 
determined. For instance, for the problem class in the above examples, the 
set-up can be as follows. Use a computer and a graphical user interface 
that is specially developed for the purpose. Represent the production sys-
tems graphically as rules for trading e.g. jewels of different sorts and then 
ask whether or not a given trade is possible according to the rules. The 
only answer alternatives given are yes and no. 

This is illustrated in the figure. 
A timeout is used and if no answer is registered before timeout, the 

answer will be set to no.  
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Then the test is given to h and the answers and the response times are 
recorded on the computer.  

Stratification 
Next the outcome of the experiment will be used to approximate the 
comprehensible part of the search space. This part will in turn be divided 
into levels of comprehensibility. To define these levels, we shall be using 
complexity measures.  

A complexity measure is a function from solutions to natural numbers.  
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Example 3. Here are some examples of complexity measures, with 
values computed for the solution 
{c,c,d}{c,a}{e,a}{e,b,b} of Example 2: 

• Length: 4 

• Maximum working memory: max(3,2,2,3) = 3 

• Accumulated working memory: 3+2+2+3 = 10 

• Accumulated working memory additions: 1+1+2 = 4 

• Total number of applications of a rule with two premises: 
1+0+0 = 1. 

Complexity measures of interest in the present connection should reflect 
critical and scarce psychological resources. Before we go on with some 
more definitions, let us fix a set of complexity measures {c0,c1,…,cm}. 

A block is a finite set of solutions B such that for all b∈B and s∈S, 
if ci(s) ≤ ci(b) for each i≤m, then s∈B.  

Let B be a set of solutions. Then prob(B) denotes the set of prob-
lems that have solutions in B. 

Let P(t) be those problems of the experiment for which h cor-
rectly answered YES within t seconds.  

Let q(t,B) = |P(t)�prob(B)| / |P(t)|. Here |X| denotes the 
cardinality of X. 

The function q(t,B) can be regarded as a quality measure that indicates 
how well B performs with respect to h. Note that by increasing the size 
of B, one can make q(t,B) grow and eventually reach 1.  

Now we are in a position to define the layers of comprehensible solu-
tions. First fix a sequence of time-points of interest, e.g. 10, 20 and 30 sec-
onds. Then define a corresponding sequence of blocks B10, B20, B30, so that 
e.g. q(t,Bt) ≥ .95 for t = 10, 20, and 30. This should be done in such a way 
that the sizes of the blocks are minimized. These sets constitute the layers 
of the comprehensible part of the search space. 
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Note that the predictive power of these blocks with respect to the 
performance of h can be evaluated statistically, e.g. by conducting more 
experiments. The exact shape of the blocks can also be adjusted until they 
reach a satisfactory level of predictive power. Also, to reduce the size of 
the layers, one may want to resort to other shapes than blocks.  

Search 
Now let A be any search algorithm for the problem class (O,R). Let B10, 
B20, B30 be the sequence of blocks mentioned above. Then we can direct 
the search of A to the comprehensible part of the search space in an itera-
tive deepening fashion as follows: first run A restricted to B10, then A re-
stricted to B20, and finally A restricted to B30. When running A restricted 
to some Bt, the search tree will be pruned as soon as an object outside of 
Bt is generated. The purpose of modifying A in this way is to make the 
algorithm fast on problems of (O,R) where h is fast. Note that we are 
not trying to obtain a global speed-up for all problems of (O,R), but 
only a local speed-up on those problems where the human raw-model 
tends to be fast.  

Potential applications 
Below are some examples of potential software applications of models of 
human cognition.    

Applications where output should be comprehensible 
Analyzing software. Programs and program specifications should be as com-
prehensible as possible. This reduces the risk of introducing bugs, facili-
tates communication and keeps maintenance costs down. Already with 
rather rough mathematical models, one may be able to scan programs and 
specifications automatically and find parts that are hard to understand 
and would benefit from being rewritten. Program comprehensibility is 
discussed in [Wie91]. 

Generating code. With a model for comprehensible program code, one 
may cause automatic code generators to output more comprehensible 
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code. Also one may steer the evolutionary processes in genetic program-
ming towards more comprehensible and thus more trustworthy code.  

Generating explanations. An engineer may want to understand why a cer-
tain property holds for a system and may use an automatic theorem 
prover to generate a proof to this effect. That proof clearly has to be 
comprehensible to the engineer to serve its purpose.  

Synthesizing natural language. Natural language systems that communicate 
with people, e.g. dialogue systems, clearly should produce comprehensible 
language. To ensure this one may incorporate precisely defined models of 
the comprehensible sentences. Natural language comprehensibility is dis-
cussed in [TB01]. 

Analyzing natural language. When analyzing natural language texts, there 
is often a large number of possible analyses, arising e.g. from ambiguities 
and underspecified references. With a computer model of the compre-
hensible sentences, and the assumption that the text is actually compre-
hensible, one may cut down on the number of possibilities and thus fa-
cilitate the linguistic analysis. 

Applications where output should be incomprehensible 
Generating passwords. In general, passwords should not be too short or too 
regular. A model for comprehensible sequences may be helpful to ensure 
this or to help crack passwords that have perhaps been chosen for the 
ease of remembering them. 

Playing games. Programs that are intended for play against humans in 
certain strategic or probabilistic games may potentially exploit systematic 
errors in the human probabilistic judgment or the incapability of the hu-
man player to make certain calculations. 

Applications where comprehensible solutions should exist 
Verifying engineering constructions. An engineer who makes some construction 
according to a given requirement specification should be able to produce 
two things in the end for the job to be deemed successful: (i) the con-
struction and (ii) arguments that are comprehensible to his or her col-
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leagues to the effect that the construction meets each one of the require-
ments. In certain situations this means that comprehensible proofs will 
exist in the corresponding formalized setting. In that case the construc-
tion can be verified by a theorem prover that searches among comprehen-
sible proofs only.  

Checking mathematical proofs. It is far from uncommon that theorems pub-
lished in mathematical journals are false as they stand [Lam95]. This jus-
tifies the existence of the movement that seeks to prove mathematical 
theorems rigorously using interactive proof-systems like automath 
[deB80]. Potentially, those parts of the original proofs that translate into 
comprehensible formal proofs can be handled by automatic theorem 
provers that search among comprehensible proofs only. 

Discussion 
The usefulness in practice of the anthropomorphic AI approach is yet to 
be shown. From the viewpoint of potential applications, it would be in-
teresting if it could be applied to first-order theorem proving. For in-
stance, it could be that an efficient decision algorithm for the “compre-
hensible” fragment of first-order logic is within reach, even though full 
first-order logic is not decidable. In general, by restricting attention to the 
comprehensible solutions, one may hope to develop efficient local algo-
rithms in situations where no (efficient) global algorithms are known. 
Thus, in practical applications one may hope to circumvent certain theo-
retical obstacles by focusing on suitable subclasses of problems. Such 
theoretical obstacles include the NP-completeness of the SAT-problem 
and the incompleteness of elementary arithmetic.  
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