
 169

Anthropomorphic Artificial Intelligence 
Claes Strannegård* 

 
Abstract. 

Human cognitive resources, such as  the working memory, are sub-
ject  to  limitations.  In  the present note, a method  is described  for ex-
ploiting such  limitations  in  the context of artificial  intelligence.  In or-
der  to  obtain a  notion of psychological difficulty  for some sampled 
problems of a given problem class, psychological experiments are 
performed. A model  is  then constructed  that divides  the set of solu-
tions  associated  with  the  problem  class  into  layers  that  reflect  the 
degrees of psychological difficulty. Any search algorithm can  then 
be  confined  to  these  layers  in  an  iterative  deepening  fashion.  The 
purpose is to speed up algorithms locally on the set of problems that 
human beings tend to solve efficiently.  

 —
Introduction 

everal definitions of the term artificial intelligence (AI) have been
suggested since the term was coined in 1955 [MMRS55]. Some
definitions make explicit reference to human beings and use e.g.

the terms human intelligence, human thinking, or human rationality.
Others refer to natural intelligence in a sense that includes a wide range
of natural organisms and systems. Still other definitions are purely
mathematical in nature and consider rational behavior in a formalized set-

* I would like to thank the following persons for valuable input: Thierry Coquand,
Niklas Engsner, John Hughes, Per Lindström, Lance Rips, Kristofer Sundén Ringnér,
and Johan Tavelin.

S

 170

ting, where there are agents, environments, actions, goals and utility func-
tions.

One tradition in AI uses methods that are inspired by biology. Exam-
ples include methods like artificial neural networks, genetic programs, cel-
lular automata, and ant algorithms [CDM92]. Another tradition uses
methods that are inspired by human problem solving. Examples of algo-
rithms in this tradition are the general problem solver [NS61] and the
logic theorist [NSH56]. In contrast to some the biologically inspired
methods, these methods tend to be transparent in the sense that people
can understand how the final programs work.

To obtain knowledge about human problem solving on a given prob-
lem class, two classical methods of psychology are available: introspection
and experimentation. By doing introspection one may hope to identify
some useful concepts, operators, methods, and heuristics. These compo-
nents can then be put together into a computer model. By doing experi-
mentation, the psychological realism of the computer model can then be
evaluated. After a number of improvements of the model, one may even-
tually be able to validate it statistically.

When looking for inspiration in human raw-models, it seems reason-
able to focus on the strengths of human problem solving. For instance,
this was the idea underlying the development of expert systems in the
1970s [FBL71]. Thus one would exploit some powerful knowledge opera-
tors and clever heuristics that the human raw-models would use. After
some years, it became increasingly clear that the time and space complexi-
ties of many expert systems imposed severe limitations on their usefulness
in practice. Part of the blame for that could be put on the heuristic func-
tions, which failed to confine the search to a sufficiently small portion of
the search space.

In this perspective one may look for ways of confining the search
space further. We are going to introduce psychologically relevant com-
plexity measures on solutions and use those complexity measures to ap-
proximate the comprehensible part of the search space.

 171

A vast amount of complexity measures exists in the literature of
mathematics, computer science, logic, and linguistics. Examples include
versions of Kolmogorov complexity, circuit complexity, proof complex-
ity, and formula complexity.

To approximate the comprehensible part of the search space, we are
first going to make experiments and measure comprehensibility by means
of certain performance measures that are used in experimental psychol-
ogy. Examples of such performance measures are the average time it takes
to answer a problem correctly, the proportion of the subjects who answer
the problem correctly, or the average level of difficulty of the problem, as
estimated by the subjects of the experiment.

In cognitive psychology, a great number of models have been pro-
posed for various aspects of human cognition. For instance, there are spe-
cialized models for human reasoning in the mental models tradition
[Joh83] and the mental logic tradition [BO98]. There are also several
models of human cognition that are presented in the form of computer
programs. Examples of this include general cognitive models like act–r
[AL98] and specialized models like the system psycop [Rip96] for first-
order reasoning.

In the following it is suggested that computer models of human cog-
nition may be used, not only to shed light on human thinking, but also to
develop algorithms with anthropomorphic behavior. A number of poten-
tial software applications based on these algorithms are then discussed.

Idea 
In view of the limited practical usefulness of certain AI-algorithms, one
may look for ways of confining the search space. To do this, one may
again turn to human problem solving for inspiration, but this time con-
sidering not only the strengths, but also the weaknesses of human prob-
lem solving. After all, in many problem classes, people outperform the
state-of-the-art programs, so by mimicking human raw-models even more
closely, one may hope to push the limits further. Aiming to mimic also
the weaknesses of human problem solvers a priori means aiming to match

 172

the performance of the human problem solvers, but not exceed it. For
problem classes where human beings tend to perform better than com-
puters, however, that level of ambition is certainly high enough.

From cognitive psychology we know that people generally have severe
limitations in their cognitive capacity. In particular, the working memory
is typically only big enough to fit a 7-digit telephone number [Mil56].
These limitations contribute to the difficulty of understanding large
numbers, complicated proofs, irregular patterns, etc. Therefore, in the
context of problem solving, such limitations typically imply that a large
portion of the search space will consist of solution-candidates that are
incomprehensible to most people. This suggests that search should be
specifically directed towards the comprehensible part of the search space.
Thus one may aim for algorithms that perform well on the same prob-
lems as the human raw-models. In the following, this approach, which
will be referred to as anthropomorphic AI, will be outlined and some of
its potential applications discussed.

Method 
Production systems
Production systems have several advantages in the present context. First,
they are conceptually simple. Second, they are general in that they are
Turing complete and subsume formalisms like proof systems, grammars,
and term rewriting systems. Third, they have been used in AI to describe
algorithms [McD82]. Fourth, they have been used in cognitive modeling
[LNR87].

Production systems occur in many variations, for instance:

• the rules of the systems may operate on sets, multi-sets, or se-
quences,

• the right-hand sides of the rules may be restricted or not re-
stricted to one element,

• when several elements are allowed on the right-hand sides of
the rules, the reading may be either conjunctive or disjunctive,

 173

• the left-hand side of the rules may be consumed or not con-
sumed when the rules are used.

In the following a production system will denote a countable set of objects O
together with a countable set of production rules R. The rules operate on
multisets of objects, the reading of the right-hand sides of the rules is
conjunctive and the left-hand sides are consumed when the rules are ap-
plied.

Example 1. The following is a production system:

Objects: {a,b,c,d,e},

Rules: {a}  {b,b}; {c,d}  {a}; {c}  {e}.

A problem class is given by a production system (O,R) and all pairs (A,B),
where A and B are finite multisets of elements of O. Such a pair (A,B) is
called a problem. A solution to a problem (A,B) is a finite sequence of sub-
sets of O that begins with A, ends with B and takes steps according to the
rules of R. Problems with solutions are called solvable.

Example 2. Consider the problem class defined by the production
system of Example 1 and the problem ({c,c,d}, {e,b,b}).

Here is one solution to this problem:

{c,c,d}  {c,a}  {e,a}  {e,b,b}.

Now it is time to introduce our human raw-model h, who is a real person
or a group of people with or without equipment like pencil and paper.
We assume that h is better at solving problems in (O,R) than the state-
of-the-art computer programs. For instance, we could imagine that (O,R)
is an encoding of the game of go and that h is a go master. We shall try
to use the cognitive limitations of h to our advantage.

 174

We have assumed that h is good at solving problems in (O,R). For all
we know, h may solve these problems working in a different production
system, e.g. a version of (O,R) augmented with some derived rules, or
some completely different system in which (O,R) can somehow be inter-
preted.

Following an old idea in cognitive science, we are going to use a pro-
duction system (O’,R’) for modeling h. (O’,R’) should be as psychologi-
cally realistic as possible with respect to h working on (O,R). More pre-
cisely, as many as possible of the concepts, derived rules and tricks that h
actually uses in the problem solving processes should have formal coun-
terparts in (O’,R’). Since h is good at solving problems in (O,R), there
must be some connection between (O,R) and (O’,R’). More precisely, the
former must be “embeddable” in the latter. Therefore we may often think
of the former as a subsystem of the latter or even go further and identify
the two systems.

Experiments
Now that the problem class (O,R) and the human raw-model h have
been fixed, experiments can be made in order to approximate the set of
solutions of (O,R) that are comprehensible to h. Below we exemplify
how such experiments can be performed.

Start by selecting a test, i.e. a finite set of problems {p0, p1,…,pn} from
(O,R). The test should be a mix containing easy and hard, solvable as
well as unsolvable problems. Then the set-up of the experiment must be
determined. For instance, for the problem class in the above examples, the
set-up can be as follows. Use a computer and a graphical user interface
that is specially developed for the purpose. Represent the production sys-
tems graphically as rules for trading e.g. jewels of different sorts and then
ask whether or not a given trade is possible according to the rules. The
only answer alternatives given are yes and no.

This is illustrated in the figure.
A timeout is used and if no answer is registered before timeout, the

answer will be set to no.

 175

Then the test is given to h and the answers and the response times are
recorded on the computer.

Stratification
Next the outcome of the experiment will be used to approximate the
comprehensible part of the search space. This part will in turn be divided
into levels of comprehensibility. To define these levels, we shall be using
complexity measures.

A complexity measure is a function from solutions to natural numbers.

 176

Example 3. Here are some examples of complexity measures, with
values computed for the solution
{c,c,d}{c,a}{e,a}{e,b,b} of Example 2:

• Length: 4

• Maximum working memory: max(3,2,2,3) = 3

• Accumulated working memory: 3+2+2+3 = 10

• Accumulated working memory additions: 1+1+2 = 4

• Total number of applications of a rule with two premises:
1+0+0 = 1.

Complexity measures of interest in the present connection should reflect
critical and scarce psychological resources. Before we go on with some
more definitions, let us fix a set of complexity measures {c0,c1,…,cm}.

A block is a finite set of solutions B such that for all b∈B and s∈S,
if ci(s) ≤ ci(b) for each i≤m, then s∈B.

Let B be a set of solutions. Then prob(B) denotes the set of prob-
lems that have solutions in B.

Let P(t) be those problems of the experiment for which h cor-
rectly answered YES within t seconds.

Let q(t,B) = |P(t)�prob(B)| / |P(t)|. Here |X| denotes the
cardinality of X.

The function q(t,B) can be regarded as a quality measure that indicates
how well B performs with respect to h. Note that by increasing the size
of B, one can make q(t,B) grow and eventually reach 1.

Now we are in a position to define the layers of comprehensible solu-
tions. First fix a sequence of time-points of interest, e.g. 10, 20 and 30 sec-
onds. Then define a corresponding sequence of blocks B10, B20, B30, so that
e.g. q(t,Bt) ≥ .95 for t = 10, 20, and 30. This should be done in such a way
that the sizes of the blocks are minimized. These sets constitute the layers
of the comprehensible part of the search space.

 177

Note that the predictive power of these blocks with respect to the
performance of h can be evaluated statistically, e.g. by conducting more
experiments. The exact shape of the blocks can also be adjusted until they
reach a satisfactory level of predictive power. Also, to reduce the size of
the layers, one may want to resort to other shapes than blocks.

Search
Now let A be any search algorithm for the problem class (O,R). Let B10,
B20, B30 be the sequence of blocks mentioned above. Then we can direct
the search of A to the comprehensible part of the search space in an itera-
tive deepening fashion as follows: first run A restricted to B10, then A re-
stricted to B20, and finally A restricted to B30. When running A restricted
to some Bt, the search tree will be pruned as soon as an object outside of
Bt is generated. The purpose of modifying A in this way is to make the
algorithm fast on problems of (O,R) where h is fast. Note that we are
not trying to obtain a global speed-up for all problems of (O,R), but
only a local speed-up on those problems where the human raw-model
tends to be fast.

Potential applications
Below are some examples of potential software applications of models of
human cognition.

Applications where output should be comprehensible
Analyzing software. Programs and program specifications should be as com-
prehensible as possible. This reduces the risk of introducing bugs, facili-
tates communication and keeps maintenance costs down. Already with
rather rough mathematical models, one may be able to scan programs and
specifications automatically and find parts that are hard to understand
and would benefit from being rewritten. Program comprehensibility is
discussed in [Wie91].

Generating code. With a model for comprehensible program code, one
may cause automatic code generators to output more comprehensible

 178

code. Also one may steer the evolutionary processes in genetic program-
ming towards more comprehensible and thus more trustworthy code.

Generating explanations. An engineer may want to understand why a cer-
tain property holds for a system and may use an automatic theorem
prover to generate a proof to this effect. That proof clearly has to be
comprehensible to the engineer to serve its purpose.

Synthesizing natural language. Natural language systems that communicate
with people, e.g. dialogue systems, clearly should produce comprehensible
language. To ensure this one may incorporate precisely defined models of
the comprehensible sentences. Natural language comprehensibility is dis-
cussed in [TB01].

Analyzing natural language. When analyzing natural language texts, there
is often a large number of possible analyses, arising e.g. from ambiguities
and underspecified references. With a computer model of the compre-
hensible sentences, and the assumption that the text is actually compre-
hensible, one may cut down on the number of possibilities and thus fa-
cilitate the linguistic analysis.

Applications where output should be incomprehensible
Generating passwords. In general, passwords should not be too short or too
regular. A model for comprehensible sequences may be helpful to ensure
this or to help crack passwords that have perhaps been chosen for the
ease of remembering them.

Playing games. Programs that are intended for play against humans in
certain strategic or probabilistic games may potentially exploit systematic
errors in the human probabilistic judgment or the incapability of the hu-
man player to make certain calculations.

Applications where comprehensible solutions should exist
Verifying engineering constructions. An engineer who makes some construction
according to a given requirement specification should be able to produce
two things in the end for the job to be deemed successful: (i) the con-
struction and (ii) arguments that are comprehensible to his or her col-

 179

leagues to the effect that the construction meets each one of the require-
ments. In certain situations this means that comprehensible proofs will
exist in the corresponding formalized setting. In that case the construc-
tion can be verified by a theorem prover that searches among comprehen-
sible proofs only.

Checking mathematical proofs. It is far from uncommon that theorems pub-
lished in mathematical journals are false as they stand [Lam95]. This jus-
tifies the existence of the movement that seeks to prove mathematical
theorems rigorously using interactive proof-systems like automath
[deB80]. Potentially, those parts of the original proofs that translate into
comprehensible formal proofs can be handled by automatic theorem
provers that search among comprehensible proofs only.

Discussion 
The usefulness in practice of the anthropomorphic AI approach is yet to
be shown. From the viewpoint of potential applications, it would be in-
teresting if it could be applied to first-order theorem proving. For in-
stance, it could be that an efficient decision algorithm for the “compre-
hensible” fragment of first-order logic is within reach, even though full
first-order logic is not decidable. In general, by restricting attention to the
comprehensible solutions, one may hope to develop efficient local algo-
rithms in situations where no (efficient) global algorithms are known.
Thus, in practical applications one may hope to circumvent certain theo-
retical obstacles by focusing on suitable subclasses of problems. Such
theoretical obstacles include the NP-completeness of the SAT-problem
and the incompleteness of elementary arithmetic.

Claes Strannegård 
Intelligent Systems Design 

IT-university of Gothenburg 
claes.strannegard@ituniv.se 

 180

References
[AL98] J. Anderson, C. Lebiere. The atomic components of thought, Mahwah,

NJ: Erlbaum, 1998.
[BO98] M. Braine, D. O'Brien. Mental logic, L. Erlbaum Associates, 1998.
[CDM92] A. Colorni, M. Dorigo, V. Maniezzo. Distributed Optimization by

Ant Colonies. Proceedings of the First European Conference on
Artificial Life, Paris, F.Varela and P.Bourgine (editors), El-
sevier, pp. 134-142, 1992.

[deB80] N. de Bruijn. A survey of the project AUTOMATH. To H. B.
Curry: essays on combinatory logic, lambda calculus and for-
malism, pp. 579-606, Academic Press, London-New York,
1980.

[FBL71] E. Feigenbaum, B. Buchanan, J. Lederberg. On generality and prob-
lem solving: A case study using the DENDRAL program. In B. Melzer
and D. Michie (editors), Machine intelligence 4, pp. 165-190,
1971.

[Joh83] P. Johnson-Laird. Mental models, Harvard University Press, 1983.
[LNR87] J. Laird, A. Newell, P. Rosenbloom. Soar: An architecture for gen-

eral intelligence, Artifcial Intelligence, 33(3), pp. 1-64, 1987.
[Lam95] L. Lamport. How to write a proof, American Mathematical

Monthly, Volume 102, Number 7, pp. 600-608, 1995.
[MMRS55] J. McCarthy, M. Minsky, N. Rochester, C. Shannon. Pro-

posal for the Dartmouth summer research project on artificial intelligence,
Technical Report, Dartmouth College, 1955.

 [McD82] J. McDermott. R1: A Rule-based Configurer of Computer Systems, Ar-
tificial Intelligence, Vol. 19, North-Holland, pp. 39-88, 1982.

[Mil56] G. Miller. The magical number seven, plus or minus two: Some limits on
our capacity for processing information, Psychological Review 63, pp.
81-97, 1956.

[NS61] A. Newell, H. Simon. GPS, a program that simulates human thought.
In H. Billing (editor), Lernende Automaten, pp. 109-124. R.
Oldenbourg, München, 1961.

[NSH56] A. Newell, J. Shaw, H. Simon, The logic theory machine, IRE
Trans. Information Theory, IT-2, No, 3, pp61-79, 1956.

[Rip96] L. Rips. The Psychology of Proof, Bradford, 1996.
[TB01] D. Townsend, T. Bever. Sentence Comprehension: The Integration of

Habits and Rules, Bradford Books, 2001.

 181

[Wie91] S. Wiedenbeck. The initial stages of program comprehension, Interna-
tional Journal of Man-Machine Studies, Vol. 35, No. 4, pp.
517-540, 1991.

