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Abstract—This paper proposes the plateau structure imposed
by the Pareto dominance relation as a useful determinant of
multiobjective metaheuristic performance. In essence, the domi-
nance relation partitions the search space into a set of equivalence
classes, and the probabilities, given a specified neighborhood
structure, of moving from one class to another are estimated
empirically and used to help assess the likely performance of
different flavors of multiobjective search algorithms. The utility
of this approach is demonstrated on a number of benchmark
multiobjective combinatorial optimization problems. In addition,
a number of techniques are proposed to allow this method to be
used with larger, real-world problems.

I. INTRODUCTION

The use of metaheuristics for multiobjective optimization
problems has gained tremendous popularity over the past sev-
eral years. In particular, multiobjective evolutionary algorithms
have become exceptionally popular in this area, largely due
to the natural fit of a population-based search to problems
involving finding a representative set of Pareto optimal solu-
tions. However, in many combinatorial optimization problems,
the performance of evolutionary algorithms can be improved
through the inclusion local search methods, and in some
cases, the local search based metaheuristics outperform the
evolutionary techniques in their own right.

It is thus important that we begin to develop insights into
how each new metaheuristic searches the space, and how
these traits map onto performance across different types of
search spaces and their implicit structures. While there has
been some work in the past on this question, we are still
far from definitive answers. Toward that end, this paper will
discuss the measurement and estimation of a particular type
of structure imposed by a given multiobjective optimization
problem, the Pareto plateau structure, and examine its impact
on different classes of multiobjective metaheuristics. Section
II will describe the concept of Pareto plateaus and discuss
how the plateau structure of a given problem is obtained.
Interpretation of the resulting data is discussed in Section III.
Section IV describes the empirical support for the hypothesis
put forth in this work, and the conclusions are presented
Section V along with several directions for continued research.

II. PARETO PLATEAUS AND PROBLEM DIFFICULTY

One of the most important tasks remaining for researchers
working with metaheuristics for multiobjective optimization

is to begin to formalize the notions that not all algorithms
perform equally on a given problem and to better understand
the source of these differences in efficacy. As in any search
algorithm, the performance of these methods depends on
the interaction between the guiding features of the search
algorithm and the particular structures inherent in a given
optimization problem.

There have been a few attempts to characterize landscape
features in multiobjective problems. Knowles and Corne [11]
proposed a multiobjective variant of the quadratic assignment
problem and examined some static features of the landscapes.
In addition, they conjectured that certain features of the
landscapes might cause the problem to lend itself to certain
types of optimization algorithms.

Subsequently, the present author considered the dynamics
of typical search algorithms and their effect on performance
on problems with particular landscape features [8], [9], [7].
This line of research was focused on modeling not only the
properties of the landscapes themselves, but also on the inter-
action between search algorithms and the various landscape
characteristics.

In this work, we examine another such property – the
plateau structure imposed by the Pareto dominance relation
on the particular problem. Plateau Connection Graphs (PCGs)
are not unknown in the literature. Hoos [10] described their use
in modeling MAX-SAT problems, for example. The basic idea
is to simply aggregate all solutions with equal fitness into a
single state, and then consider the probabilities of moving from
one state to another. The result can be viewed as a weighted
directed graph where each node represents a single equivalence
class and the weights are given by the probabilities of moving
between two classes.

In the case of single objective optimization problems, the
presence or absence of plateau structure is intimately bound to
the properties of the particular problem. For example, MAX-
SAT problems exhibit very large scale plateau structure due
to the limited number of unique fitness values available and
the inherent effects of flipping the value of a term. However,
when the notion is generalized to the multiobjective realm,
we see that essentially every problem exhibits this sort of
plateau structure, as fitness is no longer assigned purely as
a function of the objective functions, but instead as a func-
tion of the dominance relation between individual solutions.



Indeed, multiobjective evolutionary algorithms such as NSGA-
II [5] explicitly incorporate this property into the core of the
algorithm.

Thus, more so than in conventional optimization, plateau
structure would seem to play a major role in a wide variety
of multiobjective optimization problems. The performance
of many metaheuristics depends crucially on the ability of
the search to navigate the search space efficiently. The first
requirement is that the algorithms be able to locate points
on or very near the Pareto front itself. Because most such
methods rely on random or heuristically generated starting
locations likely to be far from the front, the degree to which the
algorithm can move from high rank nodes to low ranked nodes
is very important. Stated in terms of the PCG, algorithms such
as these rely for their efficacy on the presence of available exits
from each plateau to successively better ones.

In addition, the algorithms must arrange to find a reasonably
uniform covering of the potentially wide range of Pareto
optimal solutions. Here, there exist multiple strategies. First,
an algorithm may simply run repeated searches from different
starting locations in an attempt to build up the diverse Pareto
set approximation one solution at a time. Another option,
typically taken by evolutionary algorithms, is to attempt to
cover the front in one single run. Yet a third option is to
attempt to build a diverse Pareto set approximation by finding
a single Pareto optimal point, then trying to gradually sweep
that point along the Pareto front until a suitably diverse set of
solutions has been found.

Each of these techniques imposes a different trajectory
through the search space. Through careful examination of the
properties of the space, it may be possible to determine a
priori which type of approach would be the most fruitful.
The plateau structure imposed by the dominance relation can
tell us much about the relative difficulty of a local search
algorithm to reach the desired set of solutions through each
type of trajectory. This paper is focused on the question of how
best to obtain the information about the plateau structure and
the proper framework for analysis of the resulting information.

III. INTERPRETATION OF PLATEAU STRUCTURE

Perhaps the simplest method of obtaining useful information
from the plateau connection structure is simply to visually
inspect the resulting graphs. Each ”level” of nondominance is
represented by a node in the graph, and the edges between
nodes in the directed graph are weighted to indicate the prob-
ability of moving from the source node to the destination node
via purely random moves under the proposed neighborhood.
Fig.1 shows a simple example of such a graph.

Note that in Fig.1, as well as throughout the remainder
of this paper, the following nomenclature shall be adopted.
Each node in the graph will be labeled as Rx, where x is a
nonnegative integer denoting the rank of the equivalence class
represented by that node. By convention, R0 will denote the
true Pareto front, with R1...Rn representing dominance ranks
moving steadily away from the front. Where applicable, the
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Fig. 1. Sample of a Pareto Plateau Connection Graph. The node label Rx
indicates nondomination level x, where x = 0 indicates the true Pareto Front.

last rank Rn will denote infeasible solutions to constrained
problems.

A. Coarse Graining

One very real problem in analyzing the resulting data is the
very large scale of the resulting graphs and Markov models.
In these cases, it may prove useful to provide more focused
windows onto the data. One method by which this may be
performed is by coarse graining the nodes of the graph.
By coarse graining, here it is meant that some number of
adjoining fronts are coalesced into a state in the Markov
chain. For instance, we may consider R0 to be not only the
set of nondominated solutions, but also the set of solutions
dominated by only the Pareto optimal solutions. By continuing
this process for every unique front, the number of nodes in the
graph will be halved with a corresponding nonlinear decrease
in the number of edges.

This smaller graph provides strictly less information than
the original. It is no longer possible to determine exactly the
probability of moving from any front to an adjacent front.
However, the reduction in the overwhelming detail of the
original can help in obtaining the ”big picture” overview.

B. Targeted Subgraphs

Another possibility for handling the explosion of states is
to focus on a single specific region in the search space. For
example, by considering only R0 and the nodes directly con-
nected, we may obtain a complete picture of the neighborhood
structure at the Pareto front. For even quite large problems, the
number of states in this reduced form of the model is likely
to remain small enough for reasonably simple analysis. By
chaining together a number of this restricted models, we may
begin to understand the structure of the search space as the
search moves from initial regions of low fitness toward the
true Pareto front.

IV. EXPERIMENTS AND RESULTS

To demonstrate the utility of the proposed method of
examining the plateau structure, a set of benchmark multiob-



jective combinatorial optimization problems were considered,
including the Quadratic Assignment Problem, the Generalized
Assignment Problem, and a multiobjective 0-1 Knapsack prob-
lem. For each problem, two approaches were considered. First,
very small instances of the problems were exhaustively enu-
merated yielding an exact PCG. In addition, larger instances
were considered in which the search space was estimated by
taking a sample of points encountered by a stochastic local
search algorithm. Together, these two approaches help to build
a more complete picture of the structure of the search space,
without the requirement of complete knowledge of the search
space for realistic problems.

A. Multiobjective 0-1 Knapsack Problem

For one benchmark problem, we considered a multiobjective
variant of the 0-1 knapsack problem. Like a conventional
knapsack problem, we are given a list of items, each with
an associated weight and value. The goal is to maximize the
total value obtained without exceeding the weight capacity of
the knapsack. To transform the problem into the multiobjective
realm, each item was assigned multiple distinct values.

Formally, the problem is defined as follows. Given a set of
n items with wi denoting the weight of item i and vmi the
value of item i with respect to the mth objective function,
find a binary string b of length n that minimizes the vector F
given by

Fm(b) =
n∑
i=1

biv
m
i ∀m : 1 ≤ m ≤ k, (1)

subject to
n∑
i=1

biwi ≤ C, (2)

where C is the capacity of the knapsack.
In the 0-1 versions of the knapsack problem, only one of

each item is assumed to exist. Thus, a candidate solution
takes the form of a simple binary string in which bi = 0
implies that item i was not selected, and a value of 1 means
that item i was selected. This naturally suggests the use of
a binary string for encoding of candidate solutions within
the search algorithm, as well as the use of standard search
operators such as Hamming neighborhoods in local searchers,
and multipoint or uniform crossover and bitwise mutation in
evolutionary algorithms. This is unlike the mQAP and mGAP
problems which require permutation-based and constrained
integer encodings to most naturally represent solutions to the
problems. Thus, this choice of three benchmark problems
provides a wide range of encoding types, as well as a fairly
diverse set of landscape features.

Fig.2 shows the plateau connection graph for a small
instance of the knapsack problem. This instance contains 20
items, five objectives, and features very tight constraints so
that most possible solutions are infeasible. We see from Fig.2
that there are nine distinct levels of dominance in the pool
of candidate solutions, assuming that all infeasible solutions
are considered to be dominated by all other solutions. Due

to the tightness of the constraints, the weights on the edges
terminating in R8, the infeasible region, are quite large.
We can also begin to get an idea of the relative difficulty
of approaching the Pareto front from an arbitrary starting
location. For example, assuming we choose a random starting
point that falls into the equivalence class R3, we see that with a
probability of 9.7%, we will take a move into R1. From there,
we have a 3.7% chance of reaching R0, the Pareto front, in
one additional move.

Of course, most practical algorithms do not take a random
move. However, these probabilities have direct bearing on
the performance of algorithms such as simulated annealing,
tabu search, next descent local search, and other techniques
which do not necessarily exhaustively search the neighborhood
before choosing their next move.

Another feature of Fig.2 illustrates a potential problem for
certain types of multiobjective optimizers. So called two-phase
local search algorithms which operate by attempting to move
parallel to the front rely on ready pathways from one Pareto
optimal solution to another. A cursory glance at the PCG
reveals that there are no self loops at any node. Recall that
the constraints for this problem were set quite tightly. With
a Hamming neighborhood, any attempt to flip one bit of a
solution already near the Pareto front is almost certain to either
cause the solution to violate the weight constraint or reduce
the value contained in the knapsack unnecessarily. What is
needed in that case is not a single bit flip, but a swap of one
selected item for another.

Fig.3 shows the PCG of the same problem using a swap
neighborhood. Note that almost every node exhibits a self loop
with a reasonably large weight. Also note that the probabilities
of reaching R8 from near the Pareto front are significantly
smaller. Again, given our knowledge of the knapsack problem,
these results are in perfect alignment with our expectations.

Finally, the absence of R7 from the graph at all is an artifact
of the way the graphs were generated. Only nodes which were
connected to at least one other node were shown, and only
moves that result in an actual change to the candidate solution
were considered. As R7 consists of the single solution in
which no items were selected, no swap operation can change
the solution, and thus the node is unconnected to the rest of
the graph.

However, also expected is the decrease in the probability of
moving to a ”good” front from a higher ranked front. Consider
a candidate solution that has only one selected item in the
knapsack. This solution may be far away from the Pareto front,
yet the only option available is to swap the selected item for
another. What is needed in this case is the ability to flip a single
bit from a zero to a one when one is far from the front, and
have the ability to swap two items when one is near the front.
This is precisely the reason why algorithms such as Variable
Depth Search (VDS) have been quite successful on knapsack
problems. These algorithms allow the search to augment its
strategy as the circumstances of the search require.

Fig.4 shows a final PCG for the example knapsack problem,
this time utilizing a neighborhood which includes all possible
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Fig. 2. Plateau connection graph for a 0-1 Knapsack problem with 20 items, five objectives, and very tight constraints using a simple Hamming neighborhood.
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Fig. 3. Plateau connection graph for a 0-1 Knapsack problem with 20 items, five objectives, and very tight constraints using a swap neighborhood.

Hamming neighbors as well as all possible swap neighbors.
As we can see, the graph does exhibit much of the structure
that we expect from our a priori knowledge. It includes the self
loops allowing the search to move along a single front, yet also
shows significantly higher weights on the edges leading from
poor solutions into ranks nearer the Pareto front. Note that this
is a much larger neighborhood, so even if there are more exits
from one rank to another, the weight along that edge may be
smaller due to the larger number of total neighbors of that
rank.

B. Multiobjective Quadratic Assignment Problem

The quadratic assignment problem (QAP) is one of the
oldest and most widely studied combinatorial optimization
problems. First formulated by Koopmans and Beckmann in
1957 [13], the QAP can be described as follows: Given two
n×n matrices A and B, find a permutation π that minimizes

min
π
F(π) =

n∑
i=1

n∑
j=1

Ai,jBπi,πj . (3)

Conventionally, the matrices A and B are called the dis-
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Fig. 4. Plateau connection graph for a 0-1 Knapsack problem with 20 items, five objectives, and very tight constraints using a neighborhood which allows
either single bit flips or two bit swaps.

tance and flow matrices, the terminology arising from the
original formulation of QAP as a facilities layout problem.
Despite the terminology, QAP is useful in model several dis-
parate application areas, including backboard wiring, hospital
layout, and keyboard design. Not only NP-hard [18], QAP
is generally considered to be among the hardest optimization
problems, with even relatively small instances posing a signifi-
cant challenge to state-of-the-art branch and bound solvers. As
shown by Sahni [18], there also exists no polynomial algorithm
with a guaranteed error lower than some constant for every
instance of QAP unless P=NP . As a result, stochastic local
search (SLS) algorithms are the methods of choice for solving
most large scale QAP instances.

In a pair of papers, Knowles and Corne proposed and
provided detailed static analysis of the multiobjective QAP
(mQAP) [11], [12]. The mQAP consists of a single n × n
distance matrix, and k distinct n×n flow matrices. There exist
then k different pairings of the distance matrix with one flow
matrix, yielding k independent single objective QAP problems.
The objective function value of a permutation π is thus a k-
dimensional vector with

Fm(π) =
n∑
i=1

n∑
j=1

Ai,jB
m
πi,πj

∀m : 1 ≤ m ≤ k. (4)

The mQAP models any sort of facilities layout problem in
which the minimization of multiple simultaneous flows is
required.

The mQAP has been studied by a number of researchers
since its introduction. However, little has been done to examine
the properties of the landscape and their effect on algorithm
performance. Knowles and Corne provide a wealth of knowl-
edge concerning a set of benchmark instances. However, their

approach considers only static properties of the landscape,
omitting the effects caused by the detailed behavior of the
search algorithm.

In a rather comprehensive experimental study, Lopez et. al.
[15] concluded that a memetic algorithm combining SPEA2
[24] and Robust Tabu Search [19] outperformed a wide variety
of other metaheuristic approaches on a set of two-objective
mQAP instances. In this paper, we examine the plateau struc-
ture of mQAP instances to better understand and support the
experimental results reported in the literature.

Fig.5 shows the PCG for a very small instance of the mQAP.
It shows that from the Pareto front, we have a 45% chance
of remaining either in the front or in the next nearest rank.
Another important feature is that very few of the weights in
the PCG for the mQAP are as small as the smallest weights
in either the knapsack or mGAP instances. In other words,
there is a greater likelihood of making large jumps in the
mQAP than in the other problems. This is in agreement
with experimental results in [8] and elsewhere that state that
the mQAP exhibits much less structure than many other
combinatorial optimization problems.

Even with the small problem size, at only 12 nodes and
165 edges, we are rapidly approaching the point at which
the graph no longer provides any usable information. In the
mGAP example, we illustrated a simple way to reduce the
complexity of the information provided by choosing to focus
on a single restricted region of the search space. Here we will
illustrate another technique which can help distill the complex
information provided by the plateau structure into something
more easily digested.

To illustrate, we generated another mQAP instance, identical
to the first but with only two objectives instead of four.
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Fig. 5. PCG for a seven facility, four objective QAP instance.

As noted earlier, the decrease in the dimensionality of the
objective space causes an explosion in the size of the PCGs.
In this case, we obtain a PCG with 117 nodes and 11,469
edges. Coarse graining this graph by a factor of ten yields a
new PCG, shown in Fig.6, with 11 nodes and 144 edges. While
still relatively large, this graph is not so overwhelmingly large
that no useful information can be obtained.

Examination of Fig.6 reveals that it is very similar to Fig.5.
By combining this type of coarse grained picture with the
targeted subgraphs described in the next section, it is possible
to begin to gain a better understanding of even large and
complex problems.

C. Multiobjective Generalized Assignment Problem

In contrast to the QAP, many classical combinatorial op-
timization problems possess what is sometimes called the
Big Valley structure in which good local optima tend to be
found near other good local optima [3]. This is in one sense
the polar opposite of the QAP, and thus the QAP may not
be an accurate representative of this sort of problem. Thus,
we also chose to examine a problem exhibiting this type of
structure, the multiobjective generalized assignment problem
(mGAP), and to examine the impact of its more typical
structure on the performance of multiobjective metaheuristic
search algorithms.

The generalized assignment problem (GAP) deals with a
set of m agents and a set of n tasks. Each task must be
completed by exactly one agent. Each agent is allocated a
specific number of resource units, and each agent requires a
particular number of units to complete each task. Additionally,
each agent incurs a specified cost for each task. The resource
requirements and costs for a given task may differ between
agents. The overall goal is to assign all tasks such that no agent

violates the capacity constraints and the total costs incurred are
minimized.

Formally, we may introduce an m-dimensional vector B,
with bj denoting the total capacity alloted to agent j. We
further introduce m × n matrices A and C, denoting the
resource matrix and the cost matrix respectively. Finally, we
introduce an m × n binary matrix X, with xij = 1 only if
task i assigned to agent j by a particular candidate solution.
The goal is thus to find such a solution so that

min
X

m∑
i=1

n∑
j=1

xijcij , (5)

subject to
m∑
i=1

xijaij ≤ bj ∀ j : 1 ≤ j ≤ n (6)

and
n∑
j=1

xij = 1 ∀ i : 1 ≤ i ≤ m, (7)

where Equation (6) are known as the capacity constraints, and
Equation (7) are called the semi-assignment constraints.

The GAP is known to be NP-hard [18], and exact algo-
rithms have proven tractable only for problems in the range
of hundreds of tasks or less [22]. Thus, for large instances,
heuristic and metaheuristic methods have received a great
deal of attention, including tabu search approaches [6], [14],
variable depth search [23], [17], ant colony optimization [16],
evolutionary algorithms [4], and more recently, path relinking
algorithms [1], [2], [20], [21].

Also in contrast to the mQAP, the mGAP is a constrained
optimization problem. Constraints may be treated in a number
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Fig. 6. PCG for a seven facility, two objective QAP instance coarse grained by a factor of ten. Thus, R0 in the graph represents all points in the ten
equivalence classes nearest the Pareto front.

of ways when generating the PCGs. In this work, we treat
infeasible solutions as completely tabu, and generate the
graphs as though infeasible regions of the space are sinks
from which a search algorithm cannot escape. This is not a
terribly realistic assumption, but it suffices to point out that one
could easily apply a penalty function, repair operator, or other
custom behavior to infeasible solutions before determining
their relative fitness, and thus constraints are quite independent
of the analysis provided here.

Although we need not treat constraints specially, we can
still learn useful information about the problem by handling
violations in various ways. If, as in this work, all infeasible
solutions are assigned to a single equivalence class, we may
obtain an estimate of the tightness of the constraints. This
information can help inform the design of algorithms which
attempt to skirt the boundaries of the feasible regions where
high quality solutions often lie.

To examine the structure of the mGAP, a number of small
instances were generated. As one example, a 3× 17 instance
(three agents and 17 tasks) with two objectives was generated
and exhaustively enumerated. For the generation of the PCG,
a neighborhood function was used which allowed the search
to try all possible shifts, i.e., a move of a single task from
one agent to another, as well as all swaps involving the agents
assigned to two tasks. As the number of objectives decreases,
the number of distinct dominance ranks tends to grow much
larger. Compared to the knapsack problem described previ-
ously which, with five objectives, exhibited fewer than ten
nodes, the mGAP instance resulted in a PCG with 244 nodes
and over 32,000 edges.

Clearly, we cannot draw a graph with this many edges in
any meaningful way. One option, as described earlier, is to

visualize meaningful subsets of the graph. Fig.7 shows the
subset of the graph containing only R0 and all adjacent nodes.
This indicates the structure of the search space at and around
the Pareto front.

Much like the knapsack problem considered earlier, the
presence of tight constraints strongly impacts the structure of
the search space around the Pareto front. As shown in Fig.7,
95% of the neighbors reachable in one step from a point on
the Pareto front are infeasible. Interestingly, none of the three
nearest ranks to the true Pareto front appear at all in the graph,
meaning that there is no move from any of the three next best
domination levels to the Pareto front under the Shift/Swap
neighborhood considered here.

V. CONCLUSIONS

This work has proposed the Pareto Plateau Connection
Graph (PCG) as a metric to help assess problem difficulty from
the perspective of a given search algorithm. It was shown that
the analysis of small instances of three common combinatorial
optimization problems provides insights in close agreement
with much of what is known concerning the performance of
certain classes of search algorithms on those problems.

Another possible line of research is to treat the data directly
as a Markov chain and perform the analysis at that level
rather than trying to visually analyze the graph structure. With
complete information, this would allow us to derive expected
bounds on the running time of certain types of algorithms.
However, the estimation necessary to build the model of
realistically sized problems raises serious questions for this
sort of analysis. Nonetheless, it may be a fruitful direction of
future research.

There remains a substantial amount of work to do. While
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Fig. 7. Section of the PCG for a 3 × 17 biobjective mGAP instance at or
near the Pareto front.

this work presented multiple mechanisms by which the type
of large graphs which would result from realistic problems,
it is still uncertain how much the information lost in these
transformations will affect the ability to draw meaningful
conclusions.
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