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Abstract. Intelligent software agents aiming for general intelligence are likely 
to be exceedingly complex systems and, as such, will be difficult to implement 
and to customize. Frameworks have been applied successfully in large-scale 
software engineering applications. A framework constitutes the skeleton of the 
application, capturing its generic functionality. Frameworks are powerful as 
they promote code reusability and significantly reduce the amount of effort 
necessary to develop customized applications. They are well suited for the 
implementation of AGI software agents. Here we describe the LIDA 
framework, a customizable implementation of the LIDA model of cognition.  
We argue that its characteristics make it suitable for wider use in developing 
AGI cognitive architectures.   
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1   Introduction 

Artificial General Intelligence (AGI) aims at producing agents exhibiting human-level 
intelligence and beyond. Any successful AGI agent must surely be implemented using 
a sophisticated cognitive architecture — but which one to choose? A comparative 
table of cognitive architectures currently lists twenty-nine candidates [1]. If every 
AGI research group is focused on their own control architecture, how can the field of 
AGI progress? 

Superficially, these architectures seem quite different from one another in their 
structure, and they use vastly different terminology. However, closer inspection 
reveals much similarity between the function of the modules of one architecture and 
those of another once the common meanings of different vocabulary are mapped onto 
an accepted ontology. The beginnings of such an ontology have been proposed [2]. 
Once the similarity of function among modules becomes apparent, the architectures 
themselves seem less different in structure, and perhaps, more amenable to 
implementation using a common software framework. Such a common underlying 
framework might likely result in a “tree” of cognitive and/or AGI architectures with 
branches at every point of difference. Architectures would be quicker to implement 
due to code reuse, and easier to analyze and compare. 

Here we propose such an underlying computational software framework for AGI 
and offer, as an example, one based on the LIDA cognitive architecture. The 
advantages of using such a framework were stated just above. A possible 



 

 

disadvantage is that to use any such framework the developers must commit to the 
underlying assumptions of the LIDA architecture upon which this framework is 
based. We will argue that this software framework requires commitment to only a 
minimal set of assumptions, one that is not too onerous for other AGI research 
projects. 

In recent years, an enormous number of computational frameworks have appeared 
in the software engineering world. See for example [3, 4]. This is not by chance but is 
due to the advantages of using frameworks. They promote code reuse and 
significantly reduce the amount of effort necessary to develop customized 
applications. Intelligent software agents aiming for general intelligence are complex 
systems and as such are difficult to implement and to customize. We will argue that 
ideas from frameworks are well-suited for the implementation of such generally-
intelligent software agents. Here we describe the LIDA framework, a customizable 
implementation of the LIDA model of cognition.  While the LIDA model provides a 
conceptual ontology for general models of cognition [2], we hope that the LIDA 
software framework might provide a customizable computational framework with 
which to more economically develop AGI architectures, as well as to more easily 
analyze and compare them.   

We begin this paper by describing the general characteristics of frameworks and 
the advantages of using them to implement generally intelligent agents. Then we 
sketch the LIDA model and outline the LIDA framework. Next we describe the main 
components of the framework in some detail, and, finally, we summarize the minimal 
assumptions required for an AGI using this framework and draw some conclusions. 

2   Frameworks 

A framework is a reusable implementation of all or part of a software system. In 
many cases, a framework constitutes the skeleton of the application, capturing its 
generic functionality.  The framework specifies a well-defined application 
programming interface (API) that is implemented generically using abstract classes, 
interfaces, and generic, customizable module design.  This hides the complexity of its 
code from the user.  Most frameworks are based on object-oriented languages because 
the major properties of OO, data abstraction, inheritance, information hiding and 
polymorphism, complement the goals of frameworks. 

The core idea of a framework is to have a generic design as well as a base 
implementation of a complex software system.  The user of the framework then only 
needs to “fill in the blanks” with problem or domain-specific elements. This is, 
perhaps, the major advantage of using frameworks: users can concentrate their efforts 
on the specifics of the problems, and reuse the generic mechanisms implemented in 
the framework. This also speeds up the development of the new application and 
makes it less error-prone because part of the system has already been produced and 
tested.  

Frameworks, in general, promote the use of proven design patterns and good 
practices in software development [5, 6].  This leads to better application designs, 
more manageable maintainability and easier extension of the application.  The 



 

 

framework’s API also provides a higher level of abstraction at which to define the 
application. This API is composed of elements with names, characteristics and 
behaviors. They form a specific language among users of the framework, which 
facilitates a concise and clear description of the application. 

2.1   Frameworks and Cognitive Architectures 

Ideas from frameworks can be applied outside the domain of enterprise applications.  
In particular, cognitive systems aiming for general intelligence tend to be complex 
and sophisticated. This creates a barrier that makes them difficult to learn, implement, 
and customize. The use of frameworks can mitigate these issues.  

Cognitive architectures are complex from two points of view: the theory behind it 
tends to be inherently complicated and, consequently, any software implementation is 
also very complex. Cognitive architectures are typically composed of several modules 
with different functionalities and, in many cases, with different algorithmic 
implementations. This makes implementing software agents based on them a very 
hard task. Developers have to spend a lot of time and energy re-implementing 
common functionality for each new agent implementation. Code reuse between 
architectures has been difficult in general because of lack of standardization and ill-
defined modules. 

Frameworks are ideal tools with which to solve many of the problems that 
implementations of generally intelligent systems entail. A framework for AGI 
systems allows developers to focus on their particular algorithms instead of 
implementation details common to many agents. The architecture can be understood 
more quickly because the framework’s API itself provides a higher level of 
abstraction than unitary code. The API supplies a set of high-level concepts for 
elements of the architecture. These concepts abstract the complexity of the 
implementation and allow more effective and accurate communication between 
researchers. 

3   The LIDA Model and its Architecture 

The LIDA model [7-9] is a comprehensive, conceptual and computational model 
covering a large portion of human cognition1. Based primarily on Global Workspace 
theory [10, 11] the model implements and fleshes out a number of psychological and 
neuropsychological theories. The LIDA computational architecture is derived from 
the LIDA cognitive model. The LIDA model and its ensuing architecture are 
grounded in the LIDA cognitive cycle. Every autonomous agent [12], be it human, 
animal, or artificial, must frequently sample (sense) its environment and select an 
appropriate response (action). More sophisticated agents, such as humans, process 
(make sense of) the input from such sampling in order to facilitate their decision 

                                                            
1 “Cognition” is used here in a particularly broad sense, so as to include perception, feelings 
and emotions.  



 

 

making. The agent’s “life” can be viewed as consisting of a continual sequence of 
these cognitive cycles. Each cycle constitutes a unit of sensing, attending and acting. 
A cognitive cycle can be thought of as a moment of cognition, a cognitive “moment.” 

We will now briefly describe what the LIDA model hypothesizes as the rich inner 
structure of the LIDA cognitive cycle. More detailed descriptions are available 
elsewhere [13, 14]. During each cognitive cycle the LIDA agent first makes sense of 
its current situation as best as it can by updating its representation of its current 
situation, both external and internal. By a competitive process, as specified by Global 
Workspace Theory [10], it then decides what portion of the represented situation is 
most in need of attention. Broadcasting this portion, the current contents of 
consciousness2, enables the agent to chose an appropriate action and execute it, 
completing the cycle.  
 

 

Figure 1. The LIDA Cognitive Cycle Diagram 

Thus, the LIDA cognitive cycle can be subdivided into three phases, the 
understanding phase, the attention (consciousness) phase, and the action selection 
phase. Figure 1 should help the reader follow the description. It starts in the upper left 
corner and proceeds roughly clockwise. Beginning the understanding phase, incoming 
stimuli activate low-level feature detectors in Sensory Memory. The output is sent to 
Perceptual Associative Memory where higher-level feature detectors feed in to more 
abstract entities such as objects, categories, actions, events, etc. The resulting percept 
moves to the Workspace where it cues both Transient Episodic Memory and 
Declarative Memory producing local associations. These local associations are 

                                                            
2 Here “consciousness” refers to functional consciousness [15]. We take no 

position on the need for, or possibility of, phenomenal consciousness. 



 

 

combined with the percept to generate a Current Situational Model, which represents 
the agent’s understanding of what is going on right now. 

Attention Codelets
3
 begin the attention phase by forming coalitions of selected 

portions of the Current Situational Model and moving them to the Global Workspace. 
A competition in the Global Workspace then selects the most salient, the most 

relevant, the most important, and the most urgent coalition whose contents become 
the content of consciousness. These conscious contents are then broadcast globally, 
initiating the action selection phase. The action selection phase of LIDA’s cognitive 
cycle is also a learning phase in which several processes operate in parallel (see 
Figure 1). New entities and associations, and the reinforcement of old ones, occur as 
the conscious broadcast reaches Perceptual Associative Memory. Events from the 
conscious broadcast are encoded as new memories in Transient Episodic Memory. 
Possible action schemes, together with their contexts and expected results, are learned 
into Procedural Memory from the conscious broadcast. Older schemes are reinforced. 
In parallel with all this learning, and using the conscious contents, possible action 
schemes are recruited from Procedural Memory. A copy of each such is instantiated 
with its variables bound and sent to Action Selection, where it competes to be the 
behavior selected for this cognitive cycle. The selected behavior triggers Sensory-
Motor Memory to produce a suitable algorithm for the execution of the behavior. Its 
execution completes the cognitive cycle. 

The Workspace requires further explanation. Its internal structure is composed of 
various input buffers and three main modules: the Current Situational Model, the 
Scratchpad and the Conscious Contents Queue [16]. The Current Situational Model is 
where the structures representing the actual current internal and external events are 
stored. Structure-building codelets are responsible for the creation of these structures 
using elements from the various submodules of the Workspace. The Scratchpad is an 
auxiliary space in the Workspace where structure-building codelets can construct 
possible structures prior to moving them to the Current Situational Model. The 
Conscious Contents Queue holds the contents of the last several broadcasts and 
permits LIDA to understand and manipulate time-related concepts [16]. 

4   The LIDA Framework 

Based on all these ideas, we have been developing the LIDA software framework, a 
generic and customizable computational implementation of the LIDA model. It is 
implemented in Java, a strong and proven object oriented language. 

The main goal of this framework is to provide a generic implementation of the 
LIDA model, easily customizable for specific problems or domains. As mentioned 
before, this has several advantages: it speeds up the implementation of new agents 
based on the LIDA model and shortens the learning curve to produce such 
implementations. 

                                                            
3 A codelet is a small piece of code that performs a specific task in an independent way. It 
could be interpreted as a small part of a bigger process, similar to an ant in an ant colony.   



 

 

The framework permits a declarative description of the specific implementation. 
The full architecture of the software agent is specified using an XML formatted file; 
this is similar to other frameworks where the use of declarative description files are 
common [4, 17]. In this way, the developer does not need to define the entire agent in 
Java; he can just define it using this XML specification file. 

Another important goal of the framework is its ready customization. The 
customization can be done at several levels accordingly with the required 
functionality. At the most basic level, developers can use the LIDA configuration file 
to customize their applications.  Several small pieces in the framework can also be 
customized implementing particular versions of them. For example, new strategies for 
decaying or codelets can be implemented. Finally, more advanced users can also 
customize and change internal implementation of whole modules. In each case, the 
framework provides default implementations that greatly simplify the customization 
process.  

The framework was conceived with multithreading support in mind.  Biological 
minds operate in parallel and so should artificial ones. LIDA-tasks, encapsulations of 
small processes together with a dedicated task manager, implement multithreading 
support that allows for a high level of parallelization. Finally, the LIDA framework 
implementation adheres to the most important design principles [5] and best 
programming practices. 

4.1   Framework Outline 

The LIDA framework defines several data structures and procedures (algorithms) and 
is composed of several pieces. Its main components are modules, interconnected 
elements that represent modules in the LIDA model. Another main component is the 
task manager that controls the execution of all processes in the framework. These 
processes are implemented by small, demon-like processors called LIDA-tasks.  
LIDA-tasks can be executed on separate threads by the LIDA task manager in a way 
that is almost transparent for the user. NodeStructures are core elements that 
constitute a main data structure in the framework. Finally, several supporting tools 
were implemented such as a customizable GUI, logging, and an architecture loader 
that parses an XML file with the definition and parameterization of the application. 

Modules. For each main component of the LIDA cognitive model we define a 
module in the framework.  In particular, each box in Figure 1 is implemented as a 
module in the framework.  For example, the Sensory Memory, Workspace and Action 
Selection are all modules in the framework. All modules have a common interface 
(API) but also each one has its own API that defines its particular functionality. 
Modules can have submodules which are modules nested inside another module. For 
example, the Workspace in LIDA has several submodules such as the Current 
Situational Model.  

Most modules in the LIDA framework are domain independent. For each of these, 
the framework provides a default implementation. For example, the Episodic Memory 
is implemented using a sparse distributed memory [18] and the Action Selection 
module by a heavily-modified behavior network [19]. Developers can use these 



 

 

implementations and customize some of their parameters. Some modules however, 
are domain specific. In particular, Sensory Memory and Sensory-Motor Memory must 
be specified by the user. Nevertheless, the framework supplies default 
implementations for these modules from which users can extend their own domain-
specific implementation. 

For a more advanced customization of the framework, users can also implement 
their own version of any of the modules. Implementing a module’s corresponding 
interface ensures its compatibility with the rest of the framework. For example, 
Episodic Memory could be implemented using a database. The default classes 
provided in the framework simplify the creation of alternate implementations of 
modules. 

Modules need to communicate with other modules. To implement this, we use the 
observer design pattern [5]. In short, a module, called the “listener,” which receives 
information from another “producer” module, can register itself to the producer as a 
listener.  Each time the producer has something to send, it transmits the information to 
all of its registered listeners. There are numerous instances of listeners being used in 
the framework.  Each listener type is implemented with its own interface. One module 
can be registered as a listener of several other modules. Also a module can be 
producer and listener of other modules at the same time. This pattern has several 
advantages; mainly, the listener and the producer do not need to know each other’s 
internal structure and implementation, they only need to satisfy the particular listener 
interface. The arrows in Figure 1 are implemented as listeners in the framework. 

Fundamental Data Structures. Another important piece of the framework is a data 
structure called the NodeStructure. A NodeStructure is a graph structure, containing 
nodes and the links between them. It constitutes the main representation of data in 
many framework modules. Several use NodeStructures to represent their internal data 
and, while other forms of representation are used in the framework; the 
NodeStructure functions as a representational “common currency” between many 
modules.  

NodeStructures greatly assist in creating graph structures as they manage the low-
level operations needed to add, remove, or retrieve particular Nodes and Links.  Links 
are defined to connect a source Node with either another Node or a Link. These 
graphs are used for conceptual representation of object, actions, and events, the basic 
data representation in the LIDA model [20]. 

Nodes, Links and other LIDA elements such as coalitions, codelets, and behaviors, 
have activation. The activation can represent different things, but generally it 
represents the importance of the element. Elements can also have an additional “base-
level” activation for learning. All activations are excited or decayed using 
“strategies”.  These are implementations of the strategy design pattern which allows  
for customizable behavior; in this case they specify the way activation of each 
element is excited or decayed. 

Other basic data structures in the LIDA framework include bit vectors for the two 
episodic memory modules, schemes in Procedural Memory, coalitions for the Global 
Workspace, and behaviors in Action Selection.  Each has an interface and a base 
implementation. Some are tied to specific module implementations; nonetheless, they 
are general enough that they could be used in other implementations as well. 



 

 

LIDA-tasks. Modules need to perform several tasks in order to achieve their specific 
functionalities. The framework provides LIDA-tasks, encapsulations of small 
processes. A LIDA-task has an algorithm, a time of execution and a status. A module 
can create several LIDA-tasks to help it perform its function. A LIDA-task can run 
one time or repeatedly. A task that passes activation is an example of the former, 
while a structure-building codelet is an example of the latter. Some LIDA-tasks are 
likely to be fundamental for many AGI agent implementations, such as a task to pass 
activation. Others are implementation dependent and can be specified by the user.  An 
example of this is a feature detector for a unique feature of a specific domain. 

The execution of LIDA-tasks is delegated to the LIDA task manager. This 
important piece of the framework has the responsibility of scheduling and executing 
all the tasks of the application. It maintains a pool of threads, so several tasks can be 
executed at the same time. The task manager maintains a task queue which it uses to 
schedule LIDA-tasks for execution. Each position in the task queue represents a 
discrete instant in simulation time, which we call a tick. Ticks are numbered along the 
simulation, for example tick 1, tick 2, and so on. All tasks are scheduled to be 
executed at a specific tick.  So if a single LIDA-task scheduled for tick t is enqueued 
in position t. All tasks scheduled for a particular tick are executed before the task 
manager advances to the next tick.  Additionally, a parameter representing 
milliseconds called tick duration, can be set to ensure that tick duration milliseconds 
passes before the task manager moves onto the next position in the queue.  With this 
mechanism, the whole simulation can run at different speeds, in slow motion, or even 
step by step. 

4.2   Framework Tools 

The current version of the LIDA framework features several useful tools.  The first is 
a customizable GUI consisting of a main GUI application and a series of GUI panels 
which display such things as the content of modules, running tasks, parameter values, 
etc.  A properties file allows users to add their own GUI panels as well as configure 
which panels are used and where they appear in the GUI window. 

The Java logging API is used throughout the framework, recording important 
activities as they occur.  Every log is made with one of several levels of severity.  A 
dedicated GUI panel for Logging is part of the standard framework GUI.  It allows 
the user to view logs of particular levels for specific modules or all modules. 

An architecture loader allows agents to be specified via XML file.  The loader 
reads this file and constructs an agent with modules, parameters, and initial tasks 
based on the file’s specification.  This utility obviates the need to specify agents by 
hand and allows for quick interchange of modules, connections between modules, 
change of parameters, etc. 

Finally an element factory, implementing the factory design pattern [5], provides a 
centralized, configurable way to obtain new Nodes, Links, and Codelets.  The excite 
and decay strategies used by objects created by the factory can be configured and 
changed dynamically.  Factory support for additional object is planned in future 
versions. 



 

 

4.3   Underlying Assumptions of the LIDA Framework 

Even though originally intended for the LIDA model, the framework’s general 
structure and functionality could be used to implement other general architectures as 
well. The scaffolding provided by the framework can benefit such implementations. 
This is an interesting but unexplored side of this framework. 

There are a few requirements that any cognitive architecture using the framework 
should adhere to. Broadly, the architecture must be composed of interconnected 
modules, be able to divide their functionality into small tasks, and use a graph-like 
data structure as the main conceptual representation. 

The first assumption is not a problem for most AGI cognitive architectures because 
in general they are structured in this way already. The second assumption is also 
common among cognitive architectures but the inherent asynchronous nature of this 
framework’s task model may require a refactoring for some architectures. 
Nonetheless, a task can perform the whole operation of a module instead of a small 
part of it. This fact further relaxes this constraint.  

Finally, the chosen common currency for communication between modules in the 
framework is the NodeStructure. This graph data structure can be used to represent a 
wide range of data types. It is inherently appropriate to represent connectionist data 
but symbolic constructs can also be represented. Other representation data types, such 
as images or sensors raw data, can be internally referenced by a Node in this 
structure.  This is not directly supported by the current version of the framework 
however future versions of the framework will address this limitation. 

In summary, there are few basic assumptions that architectures need to address in 
order to use this framework as a foundation for its implementation. Nonetheless, we 
believe these constraints are not prohibitively tight, making this framework a viable 
and general tool for AGI. 

5   Conclusions 

The LIDA software framework allows the creation of new intelligent software agents 
and experiments based in the LIDA model. Its design and implementation aim to 
simplify this process and to permit the user to concentrate in the specifics of the 
application, hiding the complexities of the generic parts of the model. It also enforces 
good software practices that simplify the creation of complex architectures. It 
achieves a high level of abstraction permitting several ways and levels of 
customization with a low level of coupling among modules. Supplemental tools such 
as a customizable GUI and logging support are also provided. The result is a powerful 
and customizable tool with which to develop LIDA based applications and, perhaps, 
many others as well. Much work is still needed to improve the performance of the 
framework and to add functionality. Learning mechanisms should be implemented in 
several modules and improved versions of Procedural Memory and Action Selection 
modules are in development. 
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