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Abstract. This paper presents an integrated modeling framework where the 
learning and knowledge retrieval mechanisms of the ACT-R cognitive 
architecture are combined with a semantic resource. We aim to extend ACT-R 
with a scalable knowledge model, in order to support sub-symbolic processes 
with consistent, general high-level declarative representations. Design 
principles, methodology and implementation examples are provided. 
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1   Introduction 

In attempting to design systems capable of Artificial General Intelligence, two 
substantially different approaches have been attempted. The first, historically, has 
focused on the mechanisms of intelligence, taking the form of general problem-
solving programs [1] or architectures (i.e., [2], [3]). The second, partly arising from 
the limitations of the first, emphasized the knowledge of the system, especially 
common-sense knowledge, as the source of intelligence (e.g., [4]).  Those approaches 
have encountered substantial successes in their own rights, but have up to now not 
achieved the ultimate goal of AGI. Moreover, both approaches have largely 
downplayed the other: systems that focus on mechanisms tend to treat knowledge as 
something to be engineered in ad hoc, task-specific ways, while those that focus on 
knowledge rely on narrowly tailored mechanisms to access and leverage their content, 
often raising unsustainable computational requirements in the process.  

In this paper, we argue that those approaches are complementary, and that both of 
their central aspects, mechanisms and knowledge, need to be addressed systematically 
in a comprehensive approach to AGI. Moreover, those two components strongly 
constrain each other, with learning mechanisms determining which knowledge can be 
acquired and in which form, and specific knowledge content providing stringent 
requirements for mechanisms to be able to access them effectively [5]. In the rest of 
this paper, we introduce each approach, sketch out a general framework for 
combining them, and then discuss an application of that framework to the problem of 
recognizing visual actions. 



2   Cognitive architectures as knowledge systems 

Cognitive architectures are examples of the first class of intelligent system: they 
attempt to capture computationally the invariant mechanisms of human cognition, 
including those underlying the functions of control, learning, memory, adaptivity, and 
perception and action. In this paper we will focus on one particular cognitive 
architecture: ACT-R [6]. ACT-R is a modular system:  its components include 
perceptual, motor and declarative memory modules, synchronized by a procedural 
module through limited capacity buffers. ACT-R has accounted for a broad range of 
cognitive activities at a high level of fidelity, reproducing aspects of human data such 
as learning, errors, latencies, eye movements and patterns of brain activity. 
Declarative memory (DM) plays an important role in the ACT-R cognitive 
architecture. At the symbolic level, ACT-R models perform two major operations on 
DM: 1) accumulating knowledge chunks learned from internal operations or from 
interaction with the environment and 2) retrieving chunks that provide needed 
information1. The ACT-R theory distinguishes ‘declarative knowledge’ from 
‘procedural knowledge’, the latter being conceived as a set of procedures (production 
rules) which coordinate information processing between its various modules2: 
according to this framework, agents accomplish their goals on the basis of declarative 
representations elaborated through procedural steps (in the form of if-then clauses). 
This distinction between declarative and procedural knowledge is grounded in several 
experimental results in cognitive psychology regarding knowledge dissociation; major 
studies in cognitive neuroscience implicate a specific role of the hippocampus in 
“forming permanent declarative memories” and the basal ganglia in production 
processes (see [6], pp. 96-99, for a general mapping of ACT-R modules and buffers to 
brain areas and [7] for a detailed neural model of the basal ganglia’s role in 
controlling information flow between cortical regions).  

3   Hybrid semantics for declarative memory 

Although discontinuously popular among AI scholars, this separation between 
declarative and procedural knowledge has also been an important issue for AI over 
the years. In 1980 John McCarthy first realized that, in order to enable full-fledged 
reasoning capabilities, logic-based intelligent systems need to incorporate “re-usable 
declarative representations that correspond to objects and processes of the world” [9]. 
Along these lines, Pat Hayes developed an axiomatic theory for naïve physics [10] 
and John Sowa acknowledged the relevant role played by philosophy in defining a 
structured representation of world entities [11], i.e. an ‘ontology’3. There have been 

                                                
1 Both chunk learning and retrieval are performed through limited capacity buffers that 

constrain the size and capacity of the chunks in DM. 
2 In the ACT-R theory, these procedures based on condition-action structures are considered as 

units for skill acquisition ([6], p. 26). 
3 This was the genesis of using the word ‘ontology’ in AI. Ontology, ‘the study of being as 

such’ – as Aristotle named it –, in fact originated as a philosophical discipline.   



numerous (and often alternative) attempts to define ‘ontology’ in Computer Science4. 
According to Guarino, “an ontology” is a language-dependent cognitive artifact, 
committed to a certain conceptualization of the world by means of a given language5 
(see [14] for formal details). Besides the protocol layer, where the syntax of the 
communication language is specified, the ontological layer contains the semantics of 
that language: if concepts are described in terms of lexical semantics, ontologies take 
the simple form of dictionaries or thesauri; when ontological categories and relations 
are expressed in terms of axioms in a logical language, we talk about formal 
ontologies; if logical constraints are then encoded in a computational language, formal 
ontologies turn to computational ontologies6. This research area finds application in a 
growing variety of cases: from database integration to security analysis, from 
enterprise modeling to the expansive vision of the Semantic Web [15]. In particular, 
the Semantic Web community is making massive efforts towards the development of 
scalable ontology-driven technologies as, for example, the “Linked Open Data”7 best 
practice suggests.  

In this paper we focus on a rather new field of application, namely integration 
between computational ontologies and cognitive architectures. In our context 
computational ontologies should be appropriately re-defined here as “computational 
specifications of declarative conceptual structures”. In particular we aim at extending 
ACT-R with a scalable, reusable knowledge model that can be applied across a wide 
range of tasks. Considering the state of the art8, most research efforts have focused on 
designing methods for mapping large knowledge bases to the ACT-R declarative 
module. Here we commit on taking an integrated approach: instead of tying to a 
single ontology, we propose to build a hybrid computational ontology9 that combines 
different semantic dimensions of declarative representations. Our project consists in 
linking partitions of distinctive lexical databases like WordNet [21] and FrameNet 
[22] with a suitable computational ontology of actions and events.  

Four general issues justify our methodological approach:  
1. Meaning is multi-dimensional, i.e. it depends on natural language, cognitive 

phenomena, contextual information (human-understandability specifications);  
2. Meaning is computable insofar as semantics is expressed in terms of 

knowledge representation languages (machine-understandability);  
3. Event-types correspond to verbs in the lexicon, and WordNet is the broadest 

source of lexical information available in an electronic format;  
4. FrameNet schematically represents the conceptual patterns underlying event 
                                                

4 See [12] for a detailed reconstruction. The original definition is considered Gruber’s: “formal 
specification of a shared conceptualization” [13]. 

5 Guarino distinguishes between ‘Ontology’ as a discipline (with the capital ‘o’) from 
‘ontologies’ as engineering cognitive artifacts. 

6 E.g., Ontology Web Language (OWL).  OWL is based on description logics; description 
logics are decidable fragment of First-Order Logic (http://www.w3.org/TR/owl-features/). 
7 http://linkeddata.org/  
8 For ACT-R see [16], [17], [18], for SOAR see [19]. 
9 The adjective “hybrid” is used to emphasize the heterogeneity of theories and resources we 
are adopting for the purposes of the project. For a general survey on hybrid semantic 
approaches see [20]. For the sake of readability we will henceforth omit the mid-adjective 
“computational”. 



verbs, providing detailed information of roles and fillers for basic action types. 
The following sections describe the fundamental features of an integrated cognitive 

model for high-level visual recognition of motor actions to support visual machine 
learning with solid symbolic representations in the domain of basic human actions.  

4   HOMinE & ACT-R: an integrated cognitive model  

We address the perspective of an integrated cognitive model oriented to visual 
intelligence (HOMinE - Hybrid Ontology for ‘Mind’s Eye’ project10), outlining 
methodological aspects and backbone structure of required components. Some 
distinctive mappings to the ACT-R cognitive architecture are also considered: we 
show how the modular dynamic structures of ACT-R can benefit from augmenting 
declarative memory with a multi-layered semantic resource, where lexical and 
ontological knowledge are properly encoded. 

4.1   Design and implementation of HOMinE 

WordNet (WN) is a semantic network of synsets (“sets of synonym terms”)11, whose 
arcs are fundamental semantic relations12. Over the years, there has been an 
incremental growth of the lexicon (the latest version, WordNet 3.0, contains about 
117K synsets), and substantial enhancements of the entire architecture, aimed at 
facilitating computational tractability (accordingly, some OWL conversions have 
been implemented13). HOMinE’s core layer is based on a partition of WN related to 
verbs of motion, such as “walk”, “touch”, “haul”, “kick”, “chase”, etc. In order to find 
the targeted group of relevant synsets, we basically started from two pertinent top 
nodes14 of the semantic network of verbs:  

1. {01835496} move#1, travel#1, go#1, locomote#1 (change location; move, 
travel, or proceed) "How fast does your new car go?"; "The soldiers moved 
towards the city in an attempt to take it before night fell";  - <verbs.motion> 

2. {01850315} move#2, displace#4 (cause to move or shift into a new position or 
place, both in a concrete and in an abstract sense) "Move those boxes into the 
corner, please"; "The director moved more responsibilities onto his new 
assistant" -  <verbs.motion> 

As one can easily notice, the synset move#1 denotes a change of position 
accomplished by an agent or by an object (with a sufficient level of autonomy), while 
move#2 is about causing someone or something to move (both literally and 

                                                
10 http://www.darpa.mil/i2o/programs/me/me.asp  
11 Life_form#1 stands for synset {life_form, organism, being, living_thing}, which is identified 

in the database with a specific code (in this example, {05217061}). Every synset (node of the 
network) is associated to a gloss (e.g., “the characteristic bodily form of a mature organism”). 

12 The most important is synonymy; WN also uses hyponymy (sub-class-of), meronymy (part-
of), antonymy (opposite-of), troponymy (like hyponymy, but only for verbs), causation, etc. 

13 E.g., http://www.w3.org/TR/wordnet-rdf/ 
14 Aka Unique Beginners (see [21], Chapter 1]. 



figuratively). After extracting the sub-hierarchy of synsets related to these generic 
verbs of motor action, we have introduced a top-most category “movement-generic”, 
abstracting from the two senses of “move” (see Figure 1). These operations have 
been performed on Protégé-OWL (release 3.4.4), the most widely used platform for 
creating computational ontologies in the context of semantic technologies15. More 
precisely, in order to extract and modify the designated WN partition we used the 
OntoLing16 plug-in, a tool that supports semi-automatic population of ontologies. 
OntoLing allows importing lexical knowledge structures in the form of RDF(S)17 
properties, de facto enabling semantic compatibility with ontological knowledge 
patterns18. As far as lexical databases are augmented with axioms and property 
restrictions based on OWL primitives, the resulting hybrid ontologies can support 
logical inferences: this feature is central for our project, since we plan to further 
develop HOMinE to enable automatic reasoning capabilities19.  

 FrameNet (FN) is the additional semantic layer of HOMinE’s integrated cognitive 
model. Besides wordnet-like frameworks, a computational lexicon can be designed 
from a different perspective, for example focusing on frames (to be conceived as 
orthogonal to domains). Based on Fillmore’s frame semantics (see i.e. [23]), FN aims 
at documenting “the range of semantic and syntactic combinatory possibilities 
(valences) of each word in each of its senses” through corpus-based annotation. 
Different frames are evoked by the same word depending on different contexts of use: 
the notion of “evocation” helps in capturing the multi-dimensional character of 
knowledge structures underlying verbal forms. For instance, if you point to the 
bringing frame, namely an abstraction of a state of affairs where sentient agents (e.g., 
persons) or generic carriers (e.g. ships) bring something somewhere along a given 
path, you will find several “lexical units”20 evoking different roles (or frame elements 
- FEs): i.e., the noun ‘truck’ instantiates the “carrier” role in the frame bringing21. In 
principle, the same Lexical Unit (LU) may “evoke” distinct frames, thus dealing with 
different roles: ‘truck’, for example, can be also associated to the vehicle frame (“the 
vehicles that human beings use for the purpose of transportation”). FN contains about 
12K LUs for 1K frames annotated in 150000 sentences.  

Computational lexicons largely differentiate upon the explicit linguistic features 
they expose, which may vary in format, content granularity and grounding [24]. WN 
and FN are based on distinct models, but one can benefit from the other in terms of 
coverage and type of information conveyed. Accordingly, we have analyzed the 
“evocation” links between the motion verbs we have extracted from WN and the 
related FN frames: those links can be generated through “FN Data search”, an on-line 

navigation tool used to access and query FN22. Our study led to a conceptual 

                                                
15 http://protege.stanford.edu/  
16 For more information see http://ai-nlp.info.uniroma2.it/software/OntoLing/  
17 RDF(S) stands for Resource Description Framework Schema. 
18 OWL syntax builds on top of RDF(S) and extends its expressivity. 
19 Protégé has a default inference engine, so-called “Pellet”: http://clarkparsia.com/pellet/. We 

are also exploiting SWRL (Semantic Web Rule Language) to express IF-THEN rules.  
20 Generically abbreviated with LUs - they correspond to terms in WN synsets. 
21 The sentence is “The truck bringing coal to crushing facility at western surface coal mine”. 
22 See http://framenet.icsi.berkeley.edu/index.php  



enrichment of lexical declarative structures for basic motor action types: starting from 
WN synset information, and using FN data, we could identify typical roles (and 
fillers) of those verbs. This process of extension becomes crucial if one considers the 
evident isomorphism holding between the elements of ACT-R chunks, namely slots 
and associated values and elements of frames, i.e. frame elements (roles) and fillers 
(LUs). The FN semantic layer of HOMinE is still under development: a complete 
implementation in Protégé will be extremely important for enabling logical reasoning 
(along the lines of [25]). In parallel, we have started to build an ACT-R model for 
action recognition, suitably expanding its declarative memory by means of HOMinE’s 
semantic layers: in regards to this integration, section 4.2 shows a functional example. 

 

 
 
Fig. 1. HoMinE’s backbone taxonomy of fundamental motor actions 

4.2   Mapping HoMinE to ACT-R 

Hybrid ontologies are “computational specifications of declarative conceptual 
structures”: this definition highlights the role of semantic resources in cognitive 
architectures. From a methodological viewpoint, it is important to understand how 
this role is actually played in concrete use cases.  

Mapping HOMinE to ACT-R requires some preliminary analysis of the basic 
structures involved. Chunks are the building blocks of ACT-R declarative memory, 
while ontologies are based on so-called “categories” (“object”, “event”, “attribute”, 
“value”, etc.) and “relations” (“participation”, “part-of”, “dependence”, etc.) [26]. 
Let’s consider the following chunk types and chunk instances:  

 
(chunk-type car color) (c1 ISA car color red23) 
(chunk-type race duration) (r1 ISA race duration 1hour) 
 
One can think of ontological categories as mapping to different elements of 

chunks: objects/events mapping to chunk types (e.g., car/race), attributes to slots of 
chunks (e.g., color/duration), and values to fillers of slots (e.g., red/1hour). Relations 
(e.g., has_color/has_duration) remain implicit, although they essentially “glue” 
together those pieces of declarative knowledge (e.g., car – has_color – red; race – 

                                                
23 A specific red nuance (individual), not to be confused with the abstract property “redness”, 

which is a sub-type of “color”. 



has_duration – 1hour). Alternatively, we can observe that ontological relations can be 
represented as chunk types as well: e.g., we could have defined has_duration as a 
chunk type with slots event and duration, with race and time as filler: 

 
(chunk-type has_duration event duration) 
(r1 ISA has_duration event race duration 1hour) 
 
The category race would then become filler of the slot event. This potentially 

variable matching between ontological knowledge and declarative representations 
reflect the fact that chunks are originally seen as units of memories, without any 
strong ontological constraint: in fact, anything that is introduced in declarative 
memory is a chunk, no matter whether an object, an event, an attribute, a value or a 
relation. The shift from chunk type to filler addresses the potential of alternative 
representations of categories in ACT-R. Conversely, from the viewpoint of hybrid 
ontologies, representing relations as chunk types becomes an important requirement: 
relations enable OWL-based inference engines24 and definitely demand for an explicit 
counterpart in the declarative memory of the cognitive agent to make the integration 
effective. The ACT-R architecture also supports “inheritance”25 from a single chunk 
type (“single inheritance”), so that different levels of specialization for slot and values 
are supplied. “Single inheritance” is a central feature for automatic reasoning over 
ontologies, since it helps prevent logical inconsistencies and internal incoherence of 
models (which are typically correlated to “multiple inheritance”). HOMinE discards 
“multiple inheritance” too, maintaining full compatibility with the ACT-R 
architectural choice. 

Chunks are goal-driven, namely they represent the knowledge a person is expected 
to manipulate to solve a problem. We consider here an experimental setting where the 
task is to identify motor actions occurring in a simple scenario (“visualized” on a 
screen window, in natural language). The goal is accomplished when the cognitive 
model outputs the conceptual structure of the detected action: in terms of the current 
version of HOMinE, we assume that 1) the output coincides with correct recognition 
of the evoked frame 2) input sentences are fed by machine learning visual classifiers 
that parse the scene and return basic linguistic descriptions26. Let’s consider three 
sample sentences presented to the ACT-R cognitive model augmented with HOMinE: 
(a) John opens the door; (b) John opens the bag; (c) John opens the sack. 

Following the typical schema for sentence processing and representation in ACT-R 
(starting with [27]), our model parses the screen, reads sentences and encodes related 
chunks accordingly27. Afterwards, the actual retrieval of HOMinE declarative 
representations starts: the model first attempts a straightforward retrieval of frames 
evoked by the verb “open”. In this version we purposely customized the model to 
always fail this operation. The main reason behind this choice is that an adequate 

                                                
24 Ontological relations correspond to OWL object-properties and data-type properties.  
25 The notion of inheritance corresponds to “IS-A” in Computer Science and “hyponymy” in 

(computational) lexical semantics.  
26 For the sake of simplicity, visual pattern recognition algorithms and tools are considered as a 

black box in this paper: we are just focusing on the output labels they provide to ACT-R.  
27 For reasons of space, we just present an overview of the model here. 



cognitive model should not contain all the information about verb-frame association, 
as much as we commonly agree that persons can’t perfectly memorize 1K frames 
evoked by 12K LUs28. In order to overcome the failure of direct evocation, we 
implemented two competing productions, namely “retrieve-frame-from-hypernym” 
and “retrieve-frame-from-object”. The first production searches for the superordinate 
verb of the one visualized on the screen, navigating upwards the taxonomy of WN: if 
the superordinate synset is associated to a frame, then the production retrieves that 
frame, otherwise “retrieve-frame-from-object” is fired. Note that the heuristics of 
“retrieve-frame-from-hypernym” is inspired by the algorithm implemented in [28], 
according to which WN synsets can be associated to FN frames by assigning suitable 
weights to WN relations. In particular, digging out frames through hyperonymy chain 
implies a penalization, since the evoked frame is associated to the input verb only 
because of the inheritance from the super-ordinate29. The production “retrieve-frame-
from-object” fires as a further method to foster frame evocation. The rationale is to 
search for distinctive instances of frame elements in sentences; then, it is quite trivial 
for FEs to propagate evocation up to frame(s) they are member of. In our example, 
declarative memory contains information about the evocation between “door” and 
“bag” as filler of object slot in the following evocation chunk types: 

 
(e7  ISA evocation object bag  frame-element entity) 
(e8  ISA evocation object bag  frame-element container) 
(e9  ISA evocation object bag  frame-element goal) 
(e10 ISA evocation object door frame-element barrier) 
 
Moreover, since container, goal and barrier appear in the structure of the following 
chunks, related frames for (a) and (b) are retrieved.  
 
(f3 ISA frame name manipulation fe1 agent fe2 entity) 
(f4 ISA frame name closure fe1 agent fe2 container) 
(f5 ISA frame name bringing fe1 carrier fe2 goal)  
(f7 ISA frame name openness fe1 theme fe2 barrier) 
 
When the production “retrieve-frame-from-object” fires, we discover that (a) evokes 
the frame “openness” and that (b) may evoke, in principle, three different frames, 
respectively “manipulation”, “closure” and “bringing”. In order to prompt a choice 
within these frames, spreading activation can be exploited through the ACT-R sub-
symbolic computations [6]. Spreading of activation from the contents of slots in the 
imaginal buffer triggers the evocation of frame-related chunks to the context of the 
perceived scene. Finally, by setting a high similarity parameter between bag and sack, 
whenever the model perceives sack, it will make reference to the frame(s) evoked by 
bag through the ACT-R mechanism of “partial matching”, which allows the semantics 

                                                
28 Future versions of the model will provide a more accurate account, allowing for successful 

retrievals of the most frequent frames (with frequency measured on annotated corpus 
sentences), as well as failure to access information symbolically present in memory because 
of sub-symbolic (statistical) factors. 

29 In the current version of the model, the penalization is reflected a priori, setting up a low 
activation threshold of the chunk for the input verb. 



of similarity between chunks to be reflected in the retrieval process [29]. 

5   Conclusions 

This paper presented the general framework of integration between the ACT-R 
cognitive architecture and semantic resources. In particular, we considered the task of 
high-level visual recognition of motor actions, outlining how HOMinE ontological 
features can augment ACT-R declarative representations. Future work will be devoted 
to enhance both the semantic layer and the cognitive model: the former will be 
improved by adding grounding axioms to WN and FN structures; the latter will be 
extended in terms of experimental settings, task complexity and sub-symbolic 
parameterization. Finally, we also aim at importing WN and FN data-structure into 
symbolic ACT-R declarative memory structures as well as using statistical natural 
language processing techniques to constrain their sub-symbolic parameters.  
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