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ABSTRACT

Part I

There is some observational evidence of the presence of a pulsating light source
in the remnant of the supernova (SN) 1987A [1]. This source is considered to be a
rotating neutron star. Fourier analysis of the light intensity of this source reveals a
main narrow frequency peak and sidebands that are understood as a modulation of
the main sinusoidal signal. A particular model of the neutron star invokes a precessing
object to explain the modulation. From the Fourier spectrum of the source and changes
in the frequency value, we can determine important parameters of the spinning neutron
star as rotation frequency, precession frequency and spin down rate. The neutron star
is believed to spin down due to the emission of gravitational waves. We give a precise
calculation of the strain value of the gravitational waves reaching earth and discuss the
possibility of detection of this radiation by existing and soon on line gravitational waves
detectors. Our conclusion is that just a few days of integration time will be sufficient
to detect the signal using the next generation detectors as LIGO II.

Part I1

Historically, in the search for burst signals, the ALLEGRO Gravitational Group
used a matched filter constructed in the time domain, and with the particular char-
acteristic of separating the information from the two resonant modes of the bar. The
information from the two resonant modes is treated separately until the end when the
total energy of the response of the bar is estimated, summing each mode output (we

call this filter partially matched). We developed a filter (called fully matched) that

xXvil



doesn’t separate the two resonant modes and treats the two modes system as a whole.
This filter is constructed in the Fourier domain. We compared the performance of
partially matched filter with the fully matched filter applying both filters to simulated
and real data. The main conclusion is that even in the one mode case, but particularly
in the two modes case, the fast filter is more efficient than the slow filter. In addition,
we attempt also to explain why the fully matched is a better filter than the partially

matched filter.
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PART I
GRAVITATIONAL RADIATION DETECTABILITY OF SUPERNOVA 1987A’S
REMNANT



CHAPTER 1
GENERAL INTRODUCTION TO GRAVITATIONAL WAVES AND
NEUTRON STAR ASTRONOMY

1.1 General Relativity and Gravity Waves

Gravitational waves are perturbations in the structure of the space-time that are
a consequence of the geometrical formulation of gravity by A. Einstein called General
Relativity.

The fundamental idea that is at the core of General Relativity is the equiva-
lence principle.

This very general principle of physical law is based on the common observation
that inertial mass is identical in all the possible experiments to the gravitational mass.
Since the time of Galileo and Newton this was considered an experimental fact that is
the starting point of the most basic discussion of the physical reality. Einstein in search
for a most basic point of view to describe the laws of physics used the identification of
inertial mass with gravitational mass to formulate the equivalence principle. It comes
in two forms [2]:

The weak equivalence principle:

In a gravitational field a free falling observer will not be able to experience
gravitational effects locally. The space time of the observer will be a special relativistic
frame, or an inertial one.

The strong equivalence principle

The laws of physics are the same in a free falling frame as if in the absence of

gravity.



This form of the equivalence principle is very powerful because it allows us to
deduce the correct laws of physics once they are expressed in the special relativistic
form. The generalization of the laws can be achieved by describing what an observer
in free fall will observe.

The equivalence principle can be used in this way to derive the main laws of
General Relativity.

Let’s start with a free falling observer that chooses a special relativistic frame

¢*, locally we have that:

d2<u

this is the application of the equivalence principle, that says that a free falling frame

doesn’t experience the acceleration due to gravity. The relevant space-time is that

described by Minkowsky:

Fdr? = 1,5 dC¥d(”, (1.2)

where 7,,; =diag(1,-1,-1,-1). Any transformation to another frame will obey the trans-

formation:

G

~ Oxv

act dx” (1.3)

Substituting this last expression in the previous equations gives us the main
equations of motion in General Relativity:

A2zt u dz® dxP
+ -
dr? B dr dr

Adr? = gus dx®daxP



where:

oat D2
M _
Voo = 367 9aeoaP (1.5)
_ oo
R e

We need to find a set of equations that describe the field laws of gravity and
will respect such transformations. We are looking for some similarity with electromag-

netism. Consider the Maxwell equation:

In this case the 4-current acts as a source for the electromagnetic potential. A
parallel can be searched for the case of gravity fields if we recognize matter as a source.
Then we can suppose that (at least as a limit for the weak-field case) there is a potential
that obeys a law of the type:

O = kT™, (1.7)

where k is some constant and 7" is the energy-momentum tensor. The energy-
momentum tensor is the tensorial equivalent of the 4-current in electromagnetism. In

fact we can draw a parallel between conservation of charge:

0T =p +V - (1.8)

and conservation of mass:

0,T" =0 (1.9)

Intuition suggests that the potential ¢ should be associated with the metric

tensor defined g,, above. In fact in the case of a stationary particle in a stationary



field we should have that:
i'= T, = (1.10)

where T'f, = ¢"*(0 + 0 — Ogoo/0z") /2. Therefore in this limit the equation of state is:

2

c
X= —Evgoo (111)

This means that, considering the analogy with the Maxwell equations in electro-
magnetism, we are looking for a tensor that contains second derivatives of the metric

and that will reduce to equation 11.1 in the weak field limit. Differential geometry tells

us that such quantity exists and it is unique, it is called the Riemann tensor RZ/BV :
dr* art

woo_ oy T af K o _TH TC

R5, = e s + Losl 50 — T5, 5 (1.12)

It can be contracted to give the Ricci tensor R,z and the curvature scalar R :
Rog = Rgﬂw R=R,=g"R, (1.13)
The Einstein tensor G :

1
G = R" — -g"R (1.14)

has the important property that is covariant divergence is zero:

DGH B dGH
der  daV

+TE G +T7,Gr =0 (1.15)

From the mass conservation equation we know that the energy-momentum tensor

has zero covariant divergence so this leads us to the General Relativity field equations:

_ —8nG

c

G

T, (1.16)

The constant is chosen to give the correct answer for the Newtonian, weak field

limit case.



1.2 Weak Fields

In the majority of the astrophysical applications, General Relativity can be
approximated to almost its Newtonian limit. In particular this approach allows us to
predict the existence of gravitational radiation in the case of a slowly moving source.
Let’s assume that the metric is almost the Minkosky metric and let’s add a quantity

h*" to it as a small perturbation:
g ="+, W <1 (1.17)

When we are calculating first order effects in A*” we can use the Minkosky metric

instead of the full metric tensor. For example the scalar perturbation A is:
h = guh" =h" — (h'' 4+ h* + h*). (1.18)

Then the Ricci tensor Ry, and connection I'§, are:

B
or’, ore,

R/U/ = OV - 9258 (119)
w1 (Oh  Ohy, Ol
Mo (&U)‘ * ozt * &E”)

If we define a new field:

— 1
Y = nr — S1h- (1.20)

we can obtain the field equations in linearized form:

w16,
Or™ = i (1.21)

This is obtained using the gauge condition:

iﬁ”” =0.

OxH



In the absence of matter we can have plane waves Y x exp(tk - x — ket); this
is equivalent to the electromagnetic case, and the source of gravity is matter, and if we
indicate the retarded source with brackets we have:

4G [ 1)

@ ) r—1]

O =

(1.22)

The wave equations should be solved independently for each component of the

energy-stress tensor.
1.3 Gravitational Waves

1.3.1 The Strain h We have seen in the previous section that the field equations of

General Relativity predict the existence of waves solutions. These waves are called
Gravitational Waves. Gravitational Waves are perturbations in space-time that travel
at the speed of light. These perturbations will manifest themself as tidal forces that
are the true signature of gravity. In Newtonian physics tidal effects can be measured

as the relative acceleration of two test particles separated by a distance X :

0%

Xi= - X,
Gmiaxj I

(1.23)

In the relativistic situation we calculate the equivalent of the previous equation
that results to be the geodesic deviation:

D? dx® dx”®
d—TQXH — RZBVd—Td—TXV (124)

This means that observers will experience the passage of a gravitational wave as

the effect of a tidal tensor A, of the form:

Auu = Rpa,@uUaUﬂ; (125)



where the U# are the 4-velocity of the test particles.

The Riemann tensor can be expressed to first order as:

(—0uBahvs — 0y05h e + 0u0shye + 0,0uhys) (1.26)

N | —

Ruaﬂu =

In the rest frame U* = (1,0,0,0) the tidal tensor reduces to:

1 9?

B = 5o

(1.27)

Then we can obtain many simplifications using the gauge properties and symme-
tries of the tensors. The quantity A,, has to be symmetric because of the symmetries
of the Riemann tensor. Because the Ricci tensor vanishes outside matter A has to be

traceless. Using the Transverse Traceless (TT) gauge:
huo = 0,hj, =0 (1.28)
implies A,y = 0 and the radiation Lorentz gauge:
g =T, (1.29)

it is equivalent in this case to A,k = 0 meaning that the waves are spatially transverse.
So there are just two independent parameters; if we choose a frame of reference where

the wave travels in Z direction we have:

00 0 0
0 A, A, 0|

A, = T ot (1.30)
0 Ay —A, 0
00 0 0

The A, refers to the plus polarization of the wave and A, refer to the cross

polarization, they are displacement patterns related by a rotation of 45°.



1.3.2 The Energy of Gravity Waves To calculate the energy emitted by a source we

have to look to a second order expansion of the field equation. In fact, the field
equation solution in vacuum gives us G, = 0. We can split the Einstein tensor in
two contributions one of the background ny and GZV that is the contribution of the
wave. The Ricci tensor vanishes in the absence of matter so the contribution of the
wave have to be second order:

The effective source term for the wave is then:

4
TG = =_G® (1.31)

w G M’
2) . 1. s
where wa) indicates second-order contributions.

It turns out that the equivalent for the pointing-vector in General Relativity is:

row — e L (1.32)
y224 327TG BT 2 MY
Using the result:
/Tijd3x = ld—Q /Tooxixjcpx (1.33)
2 dt? '

and after some algebra this leads us to the result called the quadrupole formula, for
the luminosity or energy emitted through gravity waves by a mass source moving non

relativistically:

dE 1G / - -
Lew = E = 3; < ljkljk> (1-34)

where the 3-tensor ;,is the reduced quadrupole moment of the source:

L, = /p {xjxk - %@-k (xA)Q] (1.35)



A useful formula to calculate the strain at certain distance r far away from the

source in terms of the luminosity Lay is:

G \Y? L2 1kHz\ (10Mpc L \Y?
he | — ~ 1. 10722 . 1.
(za) G e (50) () () - 0

where f, is the frequency of vibration of the source.

1.4 Neutron Stars

1.4.1 Degenerate Stars and Chandresakar Limit The existence of a star is determined

by the balance of two main forces. The gravity of the matter that makes up the star
tends to attract the stellar material in a concentrated region. Some form of pressure
inside the star tends to balance the attractive force of gravity with a repulsive action.
During star formation the heat produced through the collision of the infalling matter
tends to counteract the crushing of the star by gravity. This frictional heat does not
achieve balance in gas clouds which are bigger than a few tenths of a solar mass. Nuclear
fusion reactions get triggered by the high temperature achieved at a certain point in the
dense, infalling matter and the heat produced by these reactions stops the inward force
of gravity. A star is formed at this point; and this equilibrium situation is maintained for
millions to billions of years according to how massive the star is. The star goes through
many different cycles of nuclear reactions, burning heavier and heavier elements. The
last element that is possible to burn efficiently in the core of the star depends on the
mass of the core. For stars that have central masses of around one solar mass the last
elements that can be fused are carbon and oxygen. The observed masses and radii of a

certain classes of stars demonstrate the existence of other processes that can sustain the
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gravity’s inward push. White dwarves, for example, are stars that have solar masses and
radii of the same order of the radius of the Earth. In this case the observed luminosity
and the inferred pressure and temperature of these objects cannot be explained by the
presence of nuclear reactions inside the star. The particular quantum properties of the
exclusion principle are invoked to explain the relatively low luminosity of white dwarves
and their enormous pressure and temperatures. The matter in a white dwarf occupies
different quantum states. The electron in the stars’s plasma can occupy at most one
quantum state because electrons are fermions. In a normal gas there are many possible
states so the exclusion principle does play an essential role. In a very cold gas or an
almost relativistic gas at high pressure, like in the case of the white dwarf, the exclusion
principle becomes dominant. The matter in this particular state is called degenerate.
It obeys the laws of Fermi statistics. The physics of a degenerate electron gas shows us
that the limiting self-gravitating mass supported by a degenerate electron gas pressure

1S:

3vV2r (B2 T2\ 177
Mey, ~ — Z)— | =8.7x10%g=0.44 M, 1.37
onm 2% (G) {(A) mJ < 10% . (137

A more detailed and precise calculation gives us a mass of 1.4 M. This is called

the Chandresakar limit.

1.4.2  General Properties of Neutron Stars Many stars die inconspicuous deaths. Very

massive ones die with an enormous explosion that teleases an extraordinary quantity of
energy. The stars that die in this dramatic way are called supernovae. Supergiant stars
at the end of their nuclear reaction burning cycle are the progenitor of the supernovae. If

their inner core has more that a certain mass (the Chandrasekar limit, that is about 1.4
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solar masses) it will collapse under the force of gravity once the nuclear fuel is exhausted.
In the explosion most of the star is dispersed in the interstellar space. The inner core of
the star will go through a transformation and become one of two possible astronomical
monsters. One of these objects is known as black hole, the other is a neutron star.
Shortly after the discovery of the neutron by J. Chadwick in 1932, astrophysicists W.
Baade and F. Zwichy claimed that ”supernovae represent the transition from ordinary
stars to neutron stars, which in the final stages consist of closely packed neutrons”.
Neutron stars are very dense and compact astronomical objects. Nuclear reactions are
not possible anymore in the core of the supernova and so the entire star is under the
crush of gravity. The pressure inside the core of the star pushes the electrons to fall
on the protons in the nucleus and form neutrons. The inner part of the supernova
becomes in effect an 10 Km wide "neutron”. In fact, a 1.4 solar mass neutron star
(the Chandrasekar limit can be considered as a good estimate for neutron star masses)
will consist of 1.4 Mg /m,, ~ 1057 neutrons or equivalently a giant nucleus with mass
number A =~ 10°". The binding force in this nucleus is gravity and the supporting force
is neutron degeneracy pressure. In fact, neutrons are fermions and obey the exclusion
principle and the Fermi statistics. Applying the laws of Fermi statistics to the neutron

star then it is possible to estimate that the radius of a neutron star should be:

(187)** 1\*?
Rns = 10 1/3 (138)
GMns mp
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Neutron stars are almost relativistic objects. In fact, the ratio of the Newtonian po-

tential energy to the relativistic rest energy is:

GMpsm/ Ry

2

=0.207 (1.39)

mc

The black body luminosity of the 1.4 Mg neutron star is derived from the Stefan-

Boltzmann law:

L=41R*T} =713 x 10%erg s ! (1.40)

Even if this is similar to the luminosity of the sun the main emission wavelength of the

thermal radiation is in the x-rays part of the spectrum in this case:

(5000 A) (5800 K) .

_ —2 1.41
Mo - 94 (1.41)

1.4.3 The Structure of a Neutron Star The structure of the neutron star will be made

of several differentiated levels. It is possible that a neutron star has an atmosphere of
ionized particles and electrons. The surface of the star is composed by nuclei of iron.
Iron is the last element produced by nucleosynthesis in a star. In fact, any heavier
element requires energy to participate in the process of fusion rather than of liberating
energy. In old stars iron is left as the final ash of the process of nucleosynthesis and it
is found in their core. Because neutron stars are formed by the inner part of a star that
exhausted its nuclear fuel, iron and in particular 5 Fe is the most abundant element in
the outer layers of the neutron star.

One of the most interesting characteristics of neutron stars is that they have a

solid crust. The nuclear material in the outer layer of the star is highly ionized and the
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lowest energy configuration for electrical charges is a reticular, crystalline lattice. In
between the spacing of this reticular structure there is a sea of electrons in a degenerate
state. The thickness of the crust could vary from hundreds of meters, in high density
neutron stars, to a few kilometers, in stars that have lower density than average. Typical
density of the crust is p ~ 10® g/cm3. Beyond the crust, the density is so high that it
becomes possible to trigger the process of neutronization, or inverse (3 process.

A free neutron is unstable and decays trough the reaction called (3 decay:
n—p +e +7 (1.42)

The density of the inner layers of the neutron star is so high that nearly free

electrons are ”squeezed on” the protons through the reaction of electron capture:
pr+e —n+vr, (1.43)

This process is a stable one; in fact the neutron doesn’t decay because the
electrons occupy all the lowest energy states as a consequence of their degeneracy.
This creates greater and greater abundance of neutrons (neutronization) in the star
material ’s nuclei as the density increases with depth. At even higher depths inside the
neutron star the nuclei are compressed by gravity to be closer and closer until there
is a spontaneous release of neutrons by the nuclei. This phenomenon is called neutron
drip. Finally, the free neutrons start to be so close to each other that they loose their
individual identity and they become an undifferentiated highly relativistic gas. The
thickness of this last layer should not be more than a few kilometers and its density

should be around p =~ 10 g/cm?. The innermost part should constitute a superfluid
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of neutrons (in a space of about 10 kilometers) that, speculatively, becomes a solid
sphere of a few kilometers diameter with a density of p &~ 10'® g/cm? at the very core

of the neutron star.
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CHAPTER 2
FREE PRECESSION IN NEUTRON STARS

2.1 Free Precession in Rigid Bodies

When a rigid body undergoes rotation its spin axis will not stay fixed in space
if the total angular momentum is not parallel to the spin axis. This motion is called

free precession.

The term free refers to the fact that all the forces and torques on the rotating
body are internal, there are, in other words, not external influences. In the case where

external forces are present the precession is called forced.

Free precession is a classical phenomenon discussed in all introductory mechanics
textbooks, describing the property and dynamics of rotating bodies as spinning tops
and gyroscopes. Gyroscopes are man-made objects that are very useful for missile and
satellite navigation. The study of their behavior is an application of the physics of

rotating rigid bodies.

Free or forced precession is known to occur also in natural events. For exam-
ple the interesting phenomenon of Nuclear Magnetic Resonance (that has important,
medical applications) is due to the precession of the spin of the nuclei interacting with
external magnetic fields. Because spin precession is influenced by the characteristics
of the surrounding material, nuclear magnetic resonance is a very good tool to create

tridimensional images of living tissues in the human body in a non-invasive way.
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2.2 Free Precession in Astronomy

Other examples of free precession occurring in Nature happen in astronomical
events. Celestial objects that possess a certain rigidity as planets can undergo free
precession. The Earth itself undergoes different types of precession. Probably other
solid planets precess yet we don’t have enough accurate information on their rotation
motion. The majority of stars are fluid systems so they can rotate but they do not
precess. In fact you need a rigid body (or at least a body with some level of elasticity)
to sustain deformation that are not symmetric with the angular momentum vector.

Neutron stars are quite unique among stars in that they have a possible solid
crust. This creates the condition for them to precess. The possibility of free precessing
neutron stars was contemplated, as soon as the first models of neutron stars with a solid
crust were formulated. Indeed, this possibility has been discussed by various authors
[3-4].

The existence of precessing neutron stars has important implications for grav-
itational wave astronomy. In fact, a precessing neutron star requires a certain ellip-
ticity that is not symmetric with the axis of rotation. This implies a changing mass
quadrupole that is the requirement for production of gravitational waves.

Relevant to the purpose of this dissertation is in particular the early work of M.
Zimmerman [5-6] on the emission of gravitational waves by a free precessing neutron
star. In a series of papers Zimmerman derives, using the quadrupole formalism, for-
mulas describing the emission of gravitational radiation by a precessing neutron star.

The papers’discussion starts with the simple case of an axisymmetric rigid body and
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it gets broadened to the more general case of a triaxial body. Zimmerman also shows
that, with due modifications, the radiation formulas derived apply to a non rigid body.
Previously to Zimmerman’s work (see for example [7] ), rotating neutron stars were con-
sidered possible continuous sources of gravitational radiation. Mainly discussed was the
case of a triaxial object with its rotation and symmetry axis aligned. If the rotation
axis is also a symmetry axis the star needs to be triaxial to emit gravitational waves.
The centrifugal forces will increase the moment of inertia along the axis of rotation.
This deformation will not cause any gravitational wave emission because it doesn’t cre-
ate a changing mass quadrupole. It is necessary to have a further deformation of the
star that gives a difference between the moments of inertia along axes perpendicular
to the rotation axis. So the object has three different moments of inertia. This makes
it a triaxial object. In that case the gravitational radiation is at twice the frequency
of rotation. An important quantity in this context is the ellipticity, i.e. the fractional
difference between the moments of inertia, associated with the axis in the plane perpen-
dicular to the axis of rotation. Looking at the spin down of known pulsars it is possible
to determine an upper limit for the ellipticity if one assumes that the spin down is
due mainly to loss of rotational energy through gravitational wave emission. We know
though, that in most of the cases of known pulsars, the spin down is due mainly to
electromagnetic emission. Therefore it is difficult to estimate the level of triaxiality of
neutron stars, that are supposed to be quite undeformable objects because of the great
strength of their gravitational fields. It is also difficult to envision physical mechanisms

that will give triaxiality to these objects even if there is some literature on the subject
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[8]. Therefore we are not certain of the possible intensity of the gravitational waves’

radiation of rotating neutron stars in general.

The situation is quite different with free precessing neutron stars. Free precessing
neutron stars require, in fact, just a deformation along one axis for gravitational wave
emission. For example, electromagnetic forces can give enough of a deformation to
the star’s crust to make a free-precessing neutron star into a good gravitational wave
emitter if the rotation axis is not aligned with the symmetry axis of the star. In fact,
for free-precession to happen is necessary a misalignment between the rotation and the
symmetry axis. It is easy to show (see Chapter 3) that a biaxial object that precesses
has a changing quadrupole. For this reason, the evidence for a precessing neutron star
’s existence is very interesting for the detection of gravitational waves. The information
on the precession, the rotation period and the rate of spin-down will allow a precise
determination of the level of deformation of the star’s shape. Furthermore, the fact
that the rotation axis and the symmetry axis are not aligned guarantees a changing
quadrupole. Knowing the level of deformation will allow, consequently, to estimate the
intensity of the gravitational radiation on earth. In other words, observation of free-
precession in a neutron star guarantees some amount of gravitational wave emission.
The negative side of all this is that even if some theorists envisioned [8-8a-9] processes
that can cause this misalignment, it is still difficult to believe that free-precession in
neutron stars is a common occurrence. Until very recently, we didn’t have any sure
example of this phenomenon among the known neutron stars. Nature, like always,

presents her surprises. In the recent past different articles report and discuss the
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discovery of at least three pulsars that have characteristics that can be interpreted
as that of a rotating neutron star undergoing free-precession.

The first article [10] on these free-precessing neutron stars (the radio pulsar PSR
B1828-11) appeared in the journal Nature in the beginning of August 2000. The main
signal has pulsation with a period of 405 milliseconds, and it is modulated with a pe-
riod of one thousand days. It is also possible to observe harmonics of this modulation
period at 500 and at 250 days. The authors try to explain these observational facts
with different mechanisms, but free-precession seems the simplest and more likely ex-
planation that can fit all the data. The quality and duration of the observation makes
the radio pulsar PSR B1828-11 a very solid example of a free-precessing neutron star.
Unfortunately, its rotation is too slow for this star to be interesting as a gravitational
wave source. Its frequency, and even more, its gravitational output are outside the

sensitivity of available and next-generation detectors.
2.3 The Remnant of SN 1987A: A Precessing Neutron Star?

In a recent article Middleditch et al. [1] discusses fast photometry observations
of the remnant of the supernova 1987A. These observations have being carried out at
different times over a period of several years. It is reported that the authors have found
"no clear evidence of any pulsar of constant intensity and stable timing,” but they claim
that : 7 we have found emission with a complex period modulation near the frequency
of 467.5 Hz - a 2.14 ms pulsar candidate”. Also, it is pointed out that: ”In addition, the
frequency of the signals followed a consistent and predictable spin-down ( "2-3 x 1010

Hz/s) over the several year time-span (‘92-‘96). We also find evidence in data, again
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taken by more than one telescope and recording system, for modulation of the 2.14
ms period with a ~1,000 s period which complicates its detection.” This observational
information about the modulation of the 2.14 ms period can be interpreted as the effect
of precession due to the non-alignment of the symmetry axis of the object (that needs to
be at least deformed along one axis, or a spheroid) and the axis of rotation. Classical
Mechanics tells us that the ratio between the precession frequency and the rotation
frequency is proportional to the size of the deformation [12-16]. The deformation and
the frequency of rotation then determine the rate of spin-down if the neutron star is
assumed to lose energy due, mainly, to gravitational radiation emission. The authors in
fact comment: ” The characteristics of the 2.14 ms signature and it “1,000 s modulation
are consistent with precession and spin-down via gravitational radiation of a neutron

star with effective non-axisymmetric oblateness of “107”.

There are many problems with the Middleditch et al. observations, due probably
to the very complex nature of SN 1987A environment, that makes the reality of a
pulsar with the described characteristics, at best, very suggestive. We will discuss
in Appendix C, in more detail the strength of the observational data and method of
analysis. The main approach of this work is to assume for the moment that the data
are valid and real within the estimated errors and analyze different consequences from

the gravitational wave detection point of view.

In Chapter 3 we show that, if we model the neutron star as a rigid body, we
can calculate precisely the wobble angle as a function of a single free parameter: the

moment, of inertia involved in the precession, given the observational information on
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the rotation, precession frequency and the spin-down. Knowledge of the wobble angle is
important to calculate the strength of a typical pulsar’s gravitational wave radiation at
earth. The wobble angle also determines the possible strain on the crust due to the re-
arrangement of the centrifugal bulge through the precessional motion. This information
on the crust strain can give us important clues on the equation of state of the neutron
star material. A more detailed analysis of the implication of the calculation of the
wobble angle is given in following chapters. It is also possible to show that the data
on the supposed SN 1987A optical pulsar obeys a power 2 law between spin down and
precession frequency. That is exactly what theory predicts when it is assumed that the
main braking mechanism is gravitational radiation back-reaction. This is considered
one of the strongest pieces of evidence in the favor of a precessing neutron star driven
by gravitational spin-down interpretation of the observed data. In Chapter 4, we review
the observational data on the remnant of SN 1987A and the methods used to process
the data. Chapter 5 introduces the simple model of a precessing rigid neutron star
and the fundamental equations that describe the motion and the gravitational wave
emission of this object. In Chapter 6 we examine the possibility of other mechanisms
of decay in comparison to the GW hypothesis and put some limits on the strength
of the electromagnetic radiation from the pulsar. In Chapter 7, we will look at more
realistic neutron star models, that allow for the presence of an elastic crust and the
existence of a fluid interior in the star. We show that the data on the characteristics of
the precession and the gravitational wave observation will allows us to gather a wealth

of information of the structure and the equation of state of the star. In Chapter
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8, we talk about the important problem of the strain on the crust caused by the
precessional motion of the centrifugal bulge. This strain is a limit factor for the possible
values of the wobble angle that are physically allowed. In Chapter 9, we generalize
the problem of a precessing neutron star to the case of a pulsar with three different
axes. We show that, given the particular parameters of the SN 1987A remnant, the
generalization to the three axes case does not change significantly its gravitational
wave output. Our conclusion is that the two axes model is sufficient to reproduce the
fundamental behavior of the pulsar in terms of its characteristics as a gravitational
wave source. Chapter 10 is a review of the literature on precessing neutron stars. Time
scales relevant to the study of precessing neutron stars are calculated in Chapter 11.
In Chapter 12 we determine the observability of the gravitational wave signal from SN
1987A remnant with present and soon available technology. Our conclusion is that
detectors as LIGO II will be able to see the signal from SN 1987A within a few days
up to a few months of integration time according to how much of the star’s moment
of inertia is involved in the precession motion. This makes SN 1987A a very reliable
source of continuous gravitational radiation. According Middleditch et al. observations
the star is undergoing continuous changes that affect its characteristics as a pulsar.
For example characteristics as the frequency, spin down and precession periods are not
stable within many decimal places, but rather change. Furthermore the orientation of
the source with respect the Earth is unknown. All this represents a moderately difficult
problem in data analysis. Fortunately, the location and distance of the source is known;

therefore the amount of templates used to look for this source is still quite contained.
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We discuss in details the problem of the data analysis for this source in section 12.2.
Appendix D will show results of a simulation that tries to reproduce the search of a
waveform similar to that of SN 1987A remnant (just more intense in amplitude). We
then simulate the response to this signal of a computer generated bar detector similar
to ALLEGRO (with similar resonant modes quality factors and noise characteristics)

but a resonant frequency exactly at twice the rotational frequency of the star.
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CHAPTER 3
GRAVITATIONAL RADIATION FROM A PRECESSING NEUTRON
STAR
3.1 Relevant Equations for Energy Loss by Gravitational Radiation

We have seen (Chapter 1) that in a system the energy loss due to gravitational

wave emission 1s:

dE  1G / - -
Lew = E = 35 < ljkljk> (3’1)

where I, is the mass quadrupole moment

1
Lk :Z ma {xfxﬁ - géjk: (xA)Q} (3.2)
2

An axisymmetric object that rotates around its symmetric axis will not emit
gravity waves because it has no time varying quadrupole moment. If we indicate the
different principal moments of inertia as I, [ and I3 then the object can emit gravity
waves if two of the moments of inertia are dissimilar, for example, I, # I, and the
object rotates around the axis as. It is also possible to have gravitational radiation if the
two moments of inertia are equal, let’s say I; = I, but the object rotates around another
axis than az. In this case the object will also precess if the spin axis is not a principal
axis. In most of the cases when continuous sources of gravity waves are considered,
the case of the non-axisymmetric body is what is contemplated [11-13]. The particular
case we are interested in, instead, is the axisymmetric or the more general one of a
rotating non-axisymmetric body which is rotating along any axis. This is the situation
when precession is present. We are going to consider both cases to show differences

and similarities.
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We follow closely the derivation in the book Black Holes, White Dwarf and
Neutron Stars [14)].
Let’s set up a reference frame x; that is fixed with the rotating body. The

quantity x; is related to an inertial frame z; by a rotation transformation R,

!

r = Rx (3.3)
where

cos¢ sing 0
Rij = | —sin ¢ cosgp 0 (3.4)

0 0 1

and ¢ = Qt. The quantity €2 is the angular rotational frequency. When there are not
applied torques, we have {2 =constant.

We can express the inertial coordinates as:
I=R'TR, (3.5)

where I is a diagonal matrix with diagonal elements I I and I5. The indexes 1, 2 ,3
indicate components in the body frame and x,y, z are the components in the inertial
frame.

Developing the equations we have:
1
Iz = cos® I, + sin’® ¢, = 5 cos 2¢ (I; — I1) 4 constant (3.6)
In the same way it is obtained,
I .
]acy = ]yac = 5 S 2¢ (]1 - IQ) 3 (37)
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1
I, = 5 cos 2¢ (I; — I5) + constant,

I., = constant, [, =1I,, =0.
Because of the fact that:
Tr I =Tr I=1I + I, = constant, (3.8)

it is possible to use I;; instead of I;; = —1;; + 6;;7r I in the energy loss formula. Thus

dE 1G 1G1

B - = 5 )
2 .2 2 326G 2 6
(cos® ¢ + 2sin” 2¢ + cos® 2¢) = —gg(h — )" Q. (3.9)

If we approximate the object by an ellipsoid with semiaxis a,b and ¢, then
1 2, 2 1 2, 2 1 2, 32
Ilng(b +c),[2:g]\/[(a +c),1'3:3M(a +b) (3.10)
When we have small asymmetry, a ~ b,we get
— = - —1}*0° (3.11)
c

where the ellipticity ¢ is defined as:

a—2>b

= arb)/2

(3.12)

The above formulae implies that the radiation is emitted at twice the frequency
of rotation ¢/t = Q) and that the intensity of the radiation is proportional to the square
of the non-axisymmetric deformation e.

Let’s analyze the case of a non-rigid body rotating around a non-principal axis.
We consider the case of an axisymmetric object for which I; = I,. The angular mo-

mentum vector J of this system will be an invariant both in size and direction, so we

27



choose to align the e, axis of the inertial frame with the angular momentum. The

transformation from the inertial frame to body frame are given in terms of the Euler

angles:
— cos 1 cos ¢ — cos  sin ¢ sin Y cos Y sin ¢ + cosf cospsiny  sinfsiny _
Rij = —siny cos ¢ — cosfsinpcosyy —sinysing + cosfcos@cosyy sin b cosy
sin 6 sin ¢ —sin 6 cos ¢ cos
) (3.13)

Solving Euler equations for this system (see Appendix A) shows that the symme-
try axis ez, and the angular velocity vector will rotate about the axis e, with constant
angular velocity ¢: J/I3. The angle 6 between the axis of symmetry esand the angular
momentum is called the wobble angle; this is a constant of the motion.

In addition to this motion we have precession. Precession refers to the ro-
tation of the angular velocity vector about es with angular velocity ibz (I, — I3)
(b cos 0/ I3 =constant as observed in the body frame.

We solve equation (3.5) for the moments of inertia and obtain:

I, = I, (cos2 ¢ + cos?  sin? qﬁ) + I3sin® @ sin? ¢ (3.14)
1
=3 (I — I3) sin? f cos® 2¢ + constant

In a similar way we obtain:

1
Qy:]w:§M—QMﬁ%m% (3.15)

I, = IL,=—([1—I3)sinfcosfsin ¢,

1
L, = 5 (Iy — I3) sin” § cos 2¢ + constant,
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I,, = I,,= (I, —I3)sinfcosfcos ¢,

I.. = I3+ (I} — I3)sin® = constant.

Using ¢ = 2t and éz (2 =constant, we calculate the energy loss equation:

g _3g<1§x+ L,+20,+ 2L +21%) =
1G 2 1. 4 6 2 )
_3_5(]1—]3) <Z sin® 0 (2Q)" (2 cos® 2¢ + 2sin” 2¢)
C

+2sin’ 0 cos® § Q° (sin® ¢ + cos® ¢)) = —% (I, — I3)? % sin® 0 Q° (16sin” 6 + cos®6) .
c

(3.16)

These equations show that the radiation emitted by a precessing body is both

at the frequency of rotation 2 and at twice the rotation frequency, at 2 €. Also we

notice that the intensity of the radiation depends on the wobble angle 6. The polar

angle indicates the line of sight angle. The energy tensor for gravitational waves can

be used to calculate the energy flux for the neutron star gravitational radiation [23].

Starting with the moment of inertia in the traceless gauge I77 we have that the strain
h is:

BT _ 2 dQIg;T
a2

(t—r/c) (3.17)

where 7 is the distance of the source from the observer and ¢ is time. The energy-

momentum tensor is:

1
GW __ T ;T
T 8 32_ﬂ. <hw7ah;w,ﬂ> (3‘18)

In the particular case of the precessing neutron star we have:

r2

. : 29
Tor (m) — k2= (sin® 2i + 4sin? i) (3.19)
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2 Omega radiation

180 Omega radiation

Figure 3.1: The radiation pattern for a precessing neutron star. The angle i is the angle
between the source angular momentum and the oberver plane.

for the ng radiation and

: .4
Tor (z’, (b) = G4k 0 {(1+cos®i+4cos®i)} (3.20)

r2
for the 2 ¢ radiation. The quantity k is defined as:

1 .6 9
k=— I,— 1, 21
S & (L~ L) (3:21)

The following Figure is a diagram of the radiation pattern for a source with

angular momentum on the y axis, and angle 6 ~ 30°.
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CHAPTER 4
OBSERVATIONAL DATA ON SN 1987A REMNANT

4.1 The Data

In this section we will summarize Middleditch et al.” observations [1]. Since the
appearance of the Supernova 1987A there have been attempts to see the signature of a
compact remnant in the region near the explosion. The existence of a compact remnant
will be revealed by the presence of a pulsating signal somewhere in the electromagnetic
spectrum. Middleditch and his collaborators observed the region the sky where the
Supernova appeared for many years. They used fast photometry to take measurements
of the intensity of light (in the optical and the infrared) coming from that region .
That part of the sky is very populated and it was not possible to isolate a star as a
candidate pulsar. The light from the region near the explosion was Fourier analyzed and
manipulated to bring out eventual signals from the noise (manipulations such as folding
certain stretches of Fourier coefficients and adding together harmonics of a particular
candidate signal were used). This procedure shows that the frequency around 467.5
Hertz grows over the background noise.

What is even more interesting is the presence of sidebands around the main
frequency. These sidebands are equally spaced at 103 Hertz from the 467.5 Hertz
frequency. These sidebands are due to an amplitude and a phase modulation of the
main signal. Middleditch and collaborators tried to give possible physical explanation
for such modulation. The simplest scenario able to account for the presence of both

amplitude and phase modulation is that the neutron star is precessing. A neutron star
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Table 4.1: Observational parameters (averages) of the SN 1987A’s according Middleditch and
alt.

angular frequency w 27 467.5 radians / sec
spin down w 21 2x 10710 radians/sec?
precession frequency €2, 27103 radians / sec
distance r 50 Kparsec

can precess because of the presence of a solid crust. The sidebands separation from the
main rotation frequency is the precession frequency. Figure 4.1 shows a time series of

the rotation frequency, derivative of this quantity and the precession frequency.

The change in rotation frequency is due to loss of energy through gravitational
wave emission. In fact, a precessing neutron star will emit gravitational waves. Demon-
stration of this was given in the work of Zimmerman, see for example [5-6]. Using
the General Relativity energy loss equation and the Classical Mechanics relationship
between ellipticity, rotation and precession frequency we have that the spin-down is
proportional to the square of the precession frequency, under the assumption that all
the energy is lost due to gravitational back reaction. This will be proved in the follow-
ing Chapter 5. The Middleditch ’s data seems to suggest that there is such relationship
between these parameters in the SN 1987A remnant. In fact during the period of obser-
vation substantial changes in the precession and spin-down were observed. The values
of the spindown and the inverse of the corresponding square of the precession perionds
are displayed in Figure 4.2. It can be seen that there is a good linear correlation be-

tween these parameters and the linear fit goes through zero. This is what is expected
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Figure 4.1: Observational data for SN 1987A. The data points are taken from Middleditch
et. al paper [1].
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Figure 4.2: The relationship between spin down and precession frequency in the SN 1987A
observational data.

if the SN 1987A remnant would loose energy through gravitational waves’ radiation
exclusively. If an electromagnetic contribution to the spin-down rate is also present,
this term will be independent of ellipticity and will be approximately constant during
the time span of the observation. This will make the straight line in Figure 4.2 to have
a positive constant vertical axis crossing, that is not what is observed. This implies

that all the energy loss has to be attributed to gravitational spin-down.
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CHAPTER 5
A MODEL FOR THE PRECESSING NEUTRON STAR

5.1 The System Geometry

Neutron stars are supposed to be very smooth objects because of the incredible
strength of their surface gravity. Though, because of the great density of the nuclear
material even small bumps and irregularities could contribute significantly to the value
of the angular momentum along the different axes. The neutron star could be smooth
but deformed along different axes, in this case looking like a football or ellipsoid. It is
even possible that its shape will be more complicated as in the case of the Earth that
has the shape of a pear. In addition a realistic neutron star will have a fluid interior
and the crust will not be perfectly rigid. This means, among other things, that the star
will have some deformation along the rotation axis and that we will have to consider
the effect of the elasticity properties of the crust in our discussion.

Rotating neutron stars are often mentioned as a possible continuous source of
gravitational radiation. Usually what is envisioned is that the star has an axissym-
metric deformation perpendicular to the axis of rotation to allow for a changing mass
quadrupole that will generate gravity waves. This star will emit gravity waves at twice
the rotation frequency.

If the star is deformed on an axis that is at any other angle with the rotation
axis then it will process as a spinning top. This star will emit at twice the rotation
frequency and also at the rotation frequency. The simplest situation is that the star

is a rigid body and has just two non-equal principal moments of inertia. Let’s assume
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Figure 5.1: The relevant vector quantities in the precessing neutron star in the inertial refer-
ence frame. The total angular momentum J is fixed in space. The other vectors rotate aroun

J with constant angles 8 and 0.

for simplicity that we are dealing with a smooth object squeezed symmetrically along
one axis, this object is called a spheroid. We define the symmetry axis as ag. The
axis a; and ay are perpendicular to ag. If the object has uniform density we then have
L =1,=1—Al;/3, Is = Iy +2/3Al,, so that we have I3 — I} = Al,. Ij is the average
value of the moment of inertia and Al; is a small quantity.

A more complete and realistic model is considered further; but the simplest case
remains the basis for the discussion of precessing neutron stars. The main equations are
the same even in the more realistic case, with minor modifications. Figure 5.1 shows
our convention in the orientation of the important vectorial quantities involved in the
problem.

The spheroid rotates with angular frequency w and the total angular momen-
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tum J has fixed orientation in space. The object looses angular momentum which is
carried away by gravitational waves but on a longer time scale than the one set by the
rotation or precession. So, for all purposes, we can consider the angular momentum as
conserved. A discussion of the damping time scales due to gravitational radiation and
other mechanisms is given in later Chapters. An important parameter for the geometry
of the system is the angle 6 between the angular momentum vector J and the axis as.
The angle ~ is the one between the axis ag and the rotation axis w. See Figure 5.3.
It is possible to show [15] that § = v — 0 = ¢ = % The ellipticity € is a measure
of the deformation from perfect spherical symmetry. In neutron stars e is supposed
to be a small quantity (in general ¢ < 1072 otherwise the crust will crack due to the
deformation stresses). So we will assume often v =~ 6.

We can define the total moment of inertia as:
I= 106+Ald (ndnd — 6/3) y (51)

where ng is a unit vector pointing along the body symmetry axis as and 6 is the unit
tensor. Now, let’s define the quantity e = Al;/I,. It is a well known result of Classical
Mechanics (see Appendix A) that:

N U

w3 wcosy wcosf

€= (5.2)

where (), is precession frequency and ws is the projection of w on the symmetry axis
a3. We will proceed from the assumption that we know the parameters €2, and w from
the observations of SN 1987A by Middleditch et al. (2000) [1].

The observed modulation or precession period varied during the span of the
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observations in the range from approximately 935 s and 1430 s while, w or the spin
period varied measurably but relatively little. Consequently the observed variations in
2, must be attributed to variations in € or 6 or both. Note that the correlation between
w and (2, claimed by Middleditch et al. requires that 6 remain constant. Jones and
Andersson (2001) [15] and Jones (2001) [17] have claimed that it is not easy to imagine
how significant variations in ellipticity can occur without affecting the wobble angle.
We shall return to this question in Section 5.3 and argue that it is, in fact, unlikely

that variation in epsilon can significantly change the wobble angle.

5.2 Gravitational Radiation Caused by Misalignment

To determine the size of the deformation and consequently the strain carried by

the gravitational radiation on earth we need to evaluate the wobble angle 6.

It turns out that it is possible to determine the angle § when the frequency w,
its derivative w and the precession frequency €2, are known and it is assumed that the
neutron star energy loss is due mainly to gravitational radiation. We already explained
that this is the case for SN 1987A. In the following we will demonstrate this in more
detail. We can calculate precisely the wobble angle 8 when the three parameter w, w
and 2, are known (as in the case of SN 1987A) and a particular value for the angular
momentum is chosen. We start with the relationship between ellipticity, precession

frequency and rotation frequency:

Q Q  1/P g  000214s  21x10°°
w3 wcosf 1/Pcosf cosf® 1000scos®  cosh

. (5.3)
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We know also that the power radiated by a precessing spheroid is:

. 2G
F= 3—562]§w6 sin” 0 (16 sin® 6 + cos® §) (5.4)
C

this is the General Relativistic formula derived in the previous Chapter 3. It is impor-
tant to point out that the two terms in parenthesis represent respectively the contribu-
tion of the w and 2 w components of the radiation.

The main source of energy for the neutron star is its rotational energy reservoir
E =1/2 Iyw?, we have then that

E=ww I (5.5)

(more exactly calculating the energy using the full inertia tensor it is obtained E =
1/2 Igw?(1 — ecos ) ~ 1/2 Iyw?).
Equating this and the previous expression, we have:

w= ggg—glow‘r’ sin” 6 (16sin” 6 + cos® ) . (5.6)
5 ¢? cos?

Let’ s define the quantity:
2¢
A1=3?£hwﬁ=1wx1¢ﬁ (5.7)
c

The numerical estimate of A; is calculated using the observed value for SN 1987A and
the theoretical canonical value of Iy = 10% g cm? (this is valid only if the star precess
as a solid body; see further for a more general result).

Now it is possible to solve for sin? 0,

— (A4 &) + \/(A+ @) + 604
30A ’

sin? @ =
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2 ellipticity and angle relationship given precession rate, frequency and frequency derivative
10

T T T T T T T T
I=1e45 g cm?

frequency dot=1e-10 Hz/sec

frequency rot.=467.5 Hz

frequecy precession=1e-3 Hz

Classical mechanics precession formula

General Relativity Energy loss equation

ellipticity epsilon

. . . . . . . .
0 10 20 30 40 50 60 70 80 90
wobble angle degrees

Figure 5.2: The relationship between ellipticity and wobble angle for the Classical Mechanics
and General Relativity equations for Precession and Energy Loss. A moment of inertia I
of 1e45 is choosen. The meeting point between the two curves determines the only possible
physical solution.

and substituting the right values for SN 1987A, we get:

0 ~ 0.53 radians=30.6 degrees. (5.9)

Figure 5.3 shows the dependence of the angle # on parameters as the frequency
and the spin-down. In this Figure are shown the extreme values observed for the
different parameters w and €2,. We can see that even uncertainties in the values of
these parameters of order 1.5 and 2.25 respectively (similar to that reported in the
Middleditch et al. study) do not much change the conclusion that the angle 6 is
in general large. This is a quite interesting and unexpected result. It could be an
interesting problem to model a process that can create a precession with such large

angle.
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Figure 5.3: Dependence of wobble angle on variation of observed data.

The relativistic equation 5.4 depends on the value of I . This value is the average
moment, of inertia of star’s section that actually participates in the precession. If the
star has a solid crust and a liquid interior the Ij is the crust’s moment of inertia and that
of any liquid coupled to the crust. In fact, part of the liquid should be stress free and not
influenced by the precession. So we can take Iy to be an arbitrary quantity equal or less
than the entire moment of inertia of the star I, = %]\/[R2 = 1.12 x 10%gem? My 4 R2,
where M; 4 is the mass of the star in units of 1.4 solar masses and Rg is the radius
in units of 10° ecm. If just the crust participates in the precession then according to
standard neutron theory the value of I, should be 100 times smaller. The Classical

Mechanics and the General Relativistic equations have to be satisfied at the same time.

This means that for given observed €2,,w and w and choice of I, the functions have
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to meet at a point in the parameter space £ — 6. If we consider the moment of inertia
the unknown parameter of our problem, we can determine which wobble angle the star

should have given the value of Iy. This is illustrated in Figure 5.4.

It seems that SN 1987A remnant had some relatively big and rapid changes
in the precession frequency during the first years of observation. The astrophysical
explanation for this can be found in the young neutron star ’s very active, dynamic
environment which could cause abrupt changes in the density of the crust, fractures
and re-arrangement of the surrounding material. Rearrangements in the material in
the crust cause changes in the ellipticity. The ellipticity in a precessing body is the
ratio between the rotational frequency and the precession frequency. The rotational
frequency can be assumed to be constant other than the small and slow changes due
to the gravitational wave induced spin-down. Therefore changes in the precession are
directly proportional to changes in the ellipticity. Possibly tectonic movements of the
crust could raise or lower "mountains” on the neutron star. These mountains need to be
just a centimeter high to produce ellipticity values similar to that deduced for SN 1987A.
Changes in the height of these mountains by 30 % will cause the observed changes
in €, (of order 1.5 the average value). We already mentioned there is an empirical
relationship between the observed change in w and €2,. This observed relationship is
what theory actually predicts in the case of a precessing neutron star loosing energy

through gravitational radiation. If we substitute equation 5.3 in 5.6, we have:

2G
w=:5 5910w3 sin” 6 (16sin” 6 + cos® ) . (5.10)
c® cos
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Figure 5.4: The dependence of the wobble angle on the moment of inertia involved in the
precession. The range of values for the moment of inertia spans from 10e43 g cm? (just the
crust precesses) to 1.2e45 g cm? (all the star precesses).

Plotting the spin w versus €2, data in a log-log plot we get a good linear fit with less than
10 % error. The measured slope of the fitting line is 2.01. According to equation 5.10,

a linear fitting between the logarithms of w and €2, requires that 6 remains constant

while € and hence (2, vary.

5.3 The Constancy of the Wobble Angle

Middleditch et al. (2000) [1] display graphically the correlation between w and
Qf) By reading off the values of these variables and applying the method and equations
of Section 5.2 it is possible to determine the values of the wobble angle 6 required for
each individual pair of values w and (2, for any assumed moment of inertia involved
in the precession. This exercise reveals that despite variations of € and €2, exceeding a

factor of 1.5, the wobble angle does not change by more than a couple of degrees and

43



appears consistent with remaining constant within experimental errors.

In the case of a freely precessing solid body, the wobble angle is largely de-
termined by initial conditions: taking the principal axes introduced in Section 5.1, if
the associated moments of inertia remain constant, then w3 = wcos~y, also remains
constant (see Fig. 5.1). It is easy to generalize Euler’s equations to the case in which
the principal moments of inertia change due to unspecified internal forces while the

external torques vanish and the total angular momentum is conserved:

d]1w1

di = CUQ(,Ug(]Q - 13) (511)
dl.
dZWI = W3wl(13—11) (512)
t
dIsw
d3t ! = w1WQ(Il - IQ) . (513)

When the principal moments of inertia are all of the form I; = Iy + ¢;, then clearly all
the time derivatives are of order ~ ¢; and even if the given ¢; were to change by factors
of a few, the result would be a small wobble of the tip of w in the body frame. Therefore
we conclude that while the variations probably detected by Middleditch et al. (2000)
in both e and €}, were significant, they do not imply any measurable change in 6.
Referring back to Fig. 5.1 we see that 0 may indeed change by amounts comparable
to itself, but the wobble angle # would change very little. This conclusion is contrary
to what Jones & Andersson (2001) [15] and Jones (2001) [17] have claimed regarding
the wobble angle, and thus it makes more plausible that the remnant of SN 1987A is

indeed freely precessing while undergoing changes in € and (2.
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CHAPTER 6
TESTING THE GW EMISSION HYPOTHESIS

One of the main assumptions used to derive the results of the previous section
is that the compact remnant of SN 1987A is spinning down mostly due to gravitational
wave emission. We relax, for the moment, this hypothesis and try to understand
what the consequences will be if the spin down was due to other mechanisms beside
gravitational waves. The precession guarantees a certain time-varying quadrupole to
the star. Figure 5.2 shows that the dependency of the ellipticity on the wobble angle is
not very strong over a big range of angles. The energy loss due to gravitational wave
emission (and consequently the strength of the gravitational wave strain on Earth) is
strongly dependent on the wobble angle mainly when the angle is less than 5 degrees.
As shown previously we need a relatively large wobble angle to explain the observed
spin-down even when the star precesses as a solid body. Larger wobble angles are
required when less than the entire angular of the star is involved in the precession as
in the case of only the crust precessing. Figure 6.1 shows the dependency of the strain
of the w and 2 w signal on the wobble angle.

The environment of SN 1987A is very complex and, almost certainly, is interact-
ing with the star, causing some additional forms of braking other than the gravitational
braking. We do not have enough information on the spin-down over a long time to mea-
sure w that could determine with precision if gravitational waves are the cause of the
spin-down or other forces are involved. Consequentely we cannot rule out completely

the presence of other mechanisms for energy loss in the star. If SN 1987A has a strong
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dependence of strain h on wobble angle for 2 ®» and w radiation

strain h

wobble angle/degrees

Figure 6.1: Strain h for om. (top curve) and 2 om. (bottom curve) radiation as function of
angle.

magnetic field it will spin-down mainly because of emission of electromagnetic radia-
tion. We can show, in fact, that electromagnetism is much more efficient in slowing

down the spin of the star.
Lt’s start with the usual equation for the energy loss of a rotating magnetic
dipole:

1672 B2 R sin® o
6¢3 P4 ’

(6.1)

where B is the magnetic field strength at the pole of the star, « is the angle between
the rotation axis and the magnetic pole, R is the neutron star radius, ¢ the speed of

light and P is the rotational period.

Using the previous formula for the energy loss due to gravitational waves we can

calculate the ratio between the period derivative due to gravitational waves Pow and
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Figure 6.2: Ratio of spin-down due to GW and EM radiation.

the one due to electromagnetism Pru:

3G Qf, I? sin?6 (16 sin? 6 4 cos? 0)

10 m3¢2 cos2 B2 RS sin®
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It is interesting to note that this ratio is independent of the rotational frequency.
The main variables are the wobble angle # and the magnetic field intensity B. We have
chosen a moment of inertia corresponding to the entire star precessing. If I was smaller,
then the spin-down due to gravity will be even less. We show in Figure 6.2 the ratio
between P due to gravitational waves and that due to electromagnetism as a function
of wobble angle and given magnetic field B. For strong magnetic fields, similar to that
of the majority of pulsars, the electromagnetic braking is much more efficient than the
gravitational radiation braking, above all at small wobble angles.

If we assume that the spin-down is due to a combination of magnetic and gravita-
tional braking, then we can calculate what strength of the magnetic field B is necessary

to account for the observed spin-down. Figure 6.3 shows the relationship between angle
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and magnetic field strength necessary to explain the observed spin-down. Two choices
of the angle a are given. Looking at the graph it seems that there are two possible
regimes. If the wobble angle is close to 30 degrees the magnetic field is very small.
This means that mainly the star is loosing energy through gravitational wave emis-
sion. Just a few degrees away from 30 degrees we will need the presence of a value
of B similar to that of other pulsars in order to achieve the level of spin down of SN
1987A. The other regime is at small values of wobble angle. In this regime the Energy
Loss due gravitational radiation is small, therefore most of the spin down is due to

electromagnetism.

Of course, the rate of electromagnetic spin-down depends on the angle o between
the rotation axis and the magnetic dipole axis. The angle o dependency of the spin-
down does not change the main conclusion. A strong magnetic field will require a
small angle « if the wobble angle is near 30 degrees. Even small magnetic fields will be

enough for electromagnetic braking to dominate if the angle « is large.

Equation 5.10 tells us that if the star’s spins-down is mostly due to gravitational
radiation, there is a power law between the precession period and the spin-down w.
Figure 4.2 illustrates Middleditch’s observational relationship between these quantities
as the star evolves in time. The data points suggest that indeed, within the estimated
uncertainties, there is a power law relationship between precession and spin-down in
SN 1987A as if there was not any contribution from the electromagnetic braking. In
fact, the straight line will cross the y axis at a value zero for the wobble angle, as the

electromagnetic braking should not depend on the wobble angle. The data suggests
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Figure 6.3: Necessary B to account for observed spin-down.

that the straight line goes, within small measurement errors, through the origin.

Another interesting fact about the SN 1987A remnant pulsar that could be
suggestive of the emission properties of this star is its location in the P P diagram.

It can be seen from Figure 6.4 that the SN 1987A remnant occupies a very
particular place in the diagram. Most of the known pulsars are loosely clumped on
the center-right side of the P P diagram. This group has spin-down comparable to
that of SN 1987A, in general close to 1071% s/s, but it has a much bigger P. There is
a minor group of pulsars with very small P, on the order of milliseconds, and quite
small P. This places the millisecond pulsars’s group at the left-bottom of the diagram.
The pulsar SN 1987A then is quite unique in having a small P and a relatively big P,
locating the pulsar on the center-left of the diagram. What does this mean?

If the spin-down was to be attributed to electromagnetism then the magnetic

field of the star will be quite small in comparison with normal pulsars and very high in
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comparison with millisecond pulsars. It is reasonable to assume that SN 1987A has a
low magnetic field. The usual explanation of the high magnetic fields in neutron stars
is the increment of the field line density after collapse of the progenitor star magnetic
iron core. In the case of SN 1987A the generally accepted scenario for the supernova
explosion is that was initiated by collision of two stars in a close binary system. In
this case we will not expect the stars > magnetic fields to be conserved in a orderly way
but quite disrupted by the process of collision. We predict a very low magnetic field
for SN 1987A, comparable to that of other millisecond pulsars. All things considered
strongly suggest that the high spin-down is due to gravitational wave emission. For
other arguments in favor of the gravitational radiation energy loss see the article by S.

Nagataki and K. Sato discussed in Chapter 10.
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P-Pdot Diagram for known Pulsars
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Figure 6.4: The P-Pdot diagram for known Pulsars. The isolated position of SN 1987A
compact remnant is maybe an indication that the spin-down mechanism is different from
other pulsars: gravitational instead of electromagnetic radiation.
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CHAPTER 7
A MORE REALISTIC MODEL: ALLOWING FOR AN ELASTIC
CRUST AND PRESENCE OF A FLUID INTERIOR

The textbook discussion of a precessing body implies that the object is rigid. A
more realistic neutron star will have a more or less elastic shell, and a fluid interior. The
fluid is supposed to be composed of a electron-proton plasma and a neutron superfluid.
The plasma fluid interior can couple to the crust because of friction. Under these
conditions the system is not simply described by the rigid body model.

Usually the approach taken to explore the properties of a more complicated
system such as this is to understand the effect of one additional complication at a
time. The paper of Jones and Anderson Freely precessing neutron stars: model and
observations, address these complications and shows how the more realistic model needs
to be modified to account for these complications. In this section we are going to
summarize the results of Jones et al. paper [15] and apply them to the particular
problem of the detection of the SN 1987A remnant.

7.1 The Elastic Crust

In the case of an elastic crust’s shell we have to write the moment of inertia as:

I=10+Al;(ng—96/3) +Al, (n,n, —§/3). (7.1)

This is the sum of a spherical part and two quadrupole small contributions. The
first term is the moment of the inertia of the undeformed shell, in the absence of
rotation. The second term is a deformation due to Coulomb forces and the third is the

deformation due to centrifugal forces. The vector n; determines the axis of symmetry
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of the deformation Al;. The vector n, lies along the axis of rotation and determines
the direction of the centrifugal deformation Al,’s axis of symmetry.
The quantity Al, is caused by the deformation due to the centrifugal force, its

value is determined by:
AL, I§w?
I 4(A+B)

(7.2)

where the constants A and B depend on the particular stellar equation of state. The
constant A is of the order of the gravitational binding energy and the constant B is
of the order of the total electrostatic binding energy of the ionic crustal lattice. The

quantity B is much smaller than A so we can make the approximation:

/
100H =z

2, 2 2 3
AL, ~ fow ~ Y R ~21x1073
I 4A GM

)2 R} /M, 4, (7.3)

where f is simply w/27.

In the general situation of non parallel ng; and n, we have that the body will
precess. As a consequence of n,, being in the direction of the rotation axis (at any given
instant) the body will behave as a axisymmetric top even if the body has a triaxial
shape. An outline of the proof of this is given in Cutler and Jones [18].

In this case the three moments of inertia are:
L = Iy—Al;/3+2Al,/3 (7.4)
I, = I
Iy = Iy+2AI;/3+2A1,/3

The main conclusion is that even in the case of a elastic crust the star will

still behave, for what concerns precession, as a biaxial rigid object. The fundamental
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equation (5.2) holds for this situation (with the appropriate inertia moments given
above) and this means that the only piece of the moment of inertia that contributes
to precession is Al; = I3 — 1.

7.2 The Presence of a Fluid Interior

To further improve our model we have to consider the presence of a fluid interior.
There are different aspects of this problem.

1) The shape of the cavity for the fluid could be spherical or maybe not be; in the
case of a spherical cavity the presence of the fluid, in absence of viscosity, is uninfluenced
for what concerns precession. If the cavity is non-spherical then there will be a reaction
force that is generated by the tendency of the fluid to assume spherical symmetry around
the axis of rotation. The shell will be pushed by the fluid. This problem is solved in the
literature [Lamb, 1950] and under the simplification of uniform vorticity of the shell and
small cavity ellipticity and wobble angle we have that the usual precession equations
described above are still in place. Lamb, for mathematical convenience, assumes a
small wobble to obtain simplified equations but even in the most general case of large
wobble angle the above described conclusion doesn’t change. The only modification to
take into account is that Al refers to the difference in moment of inertia along the
axis 1 and 3 of the whole star, and I, refers to the average moment of the inertia of the
shell only.

2) In the presence of friction between the crust and a part of the interior fluid
in contact with the crust we could have some coupling between the motion of the crust

and the core. It can be shown that in the case of neutron stars the coupling is very weak
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and the core doesn’t participate to the precession [19]. If there are frictional forces at
work in the interior of the star these will serve just to damp the free precession on time
scales between 400 and 10* precession periods.

3) The problem of pinning. Jones et al. [15] following work of Shaham (see ref-
erences in [15]) concludes that the presence of pinning of the superfluid to the crusts,
at least in the simplest possible configuration doesn’t change the form of the equations
that describe the precession. The main modification required is that the relevant effec-
tive ellipticity is generated by combination of the lattice deformation and the moment

of the inertia Isr of the pinned fluid , as in the following:

Aly  Igp
Ecff = To + ]0.

(7.5)

The most common theories on pulsar glitches give a precise prediction on the
precession behavior in the presence of pinning in a neutron star. The theories require
at least a few percent of the total moment of inertia of the star to be in the pinned
superfluid. From current understanding of neutron star properties we know that the
crust moment of inertia is a few percent of the total moment of inertia of the star. All

of this then implies that

Q, Al N Isp
weos® I Iy

Eeff = ~ 1, (7.6)

in the case of small deformations Aly. The precession and rotation frequency should be
close in value if there is a sizable quantity of superfluid that is pinned to the crust. These
predictions are not confirmed by observations of the three strongest cases of precession

in neutron stars: PSR B1642-03, PSR B1828-11 and SN 1987A remnant, where the
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precession is on a time scale much longer than the rotation. The conclusion is that
if the free precession interpretation of the modulation of the signal of these pulsars
is correct then there is not basically any pinned superfluid in these stars. Recently
this apparent conflict between the pulsar glitches theories and the observational data
on precessing neutron stars was resolved in Cutler and Link [?7]. In this article the
authors explain that once the precession is set in motion the inner torques generated
by the precession will unpinn very efficiently the superfluid allowing the star to precess
undisturbed. This shows that neutron stars with long lasting precession motion are a

real physical possibilty.
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CHAPTER 8
THE WOBBLE ANGLE AND THE CRUST FRACTURE

8.1 The Centrifugal Deformation

A star that rotates and has a certain level of elasticity will deform under the
action of the centrifugal force. Gravity will work as a restoring force so the final shape
of the object will be determined by the balance between these forces. Furthermore if
the star has a solid crust it will be able to sustain deformations in the Coulomb lattice
that form the crust. We can determine the amount of ellipticity g, a measure of the
deviation from perfect spherical symmetry, by a variational analysis of the energy. In

fact, the total energy of a rotating system with a solid crust is:

2

L
E’:E’O+§ (1 —eq) + Al + B (g0 — €q), (8.1)

where Fj is the energy of the spherical fluid, L is the angular momentum and [ is the
moment, of inertia, A is the gravitational energy and B is the elastic energy stored in
the star as a result of the rotation. The ellipticity ey is the ellipticity that the star
would have if the crust will be strain free. Now we can calculate the change in energy

as a function of ellipticity. This quantity is:

OFE L?

Then the bulge due to rotation is:

A
T YALB)
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Figure 8.1: The value of the centrifugal deformation using different equations of state.

The values of B and A depend on the properties of the equation of state of the

star and the elastic properties of the crust. In general B ~ 10~*A or less so:

I
RV

(8.4)

Figure 8.1 shows possible values for eq using estimates of I and A and a value of
(2 similar to that of SN 1987A. The estimates of I and A are based on different models
for the equation of state as catalogued in the article of V.R. Pandharipande et al. [20].
We report the values of I and A used in Table 8.1 .

We do not know which of these models represents the real properties of the
neutron star so we are going to calculate the centrifugal ellipticity for a general uniform

density self-gravitating star. The energy of a spherical self-gravitating object is:




Table 8.1: Equation of state parameters for different models. The models are discussed in
Pandharipande et al. [20]

Model (Istar + Lerust) /10" gem? | A/10%%ergs | eq

Reid 2,0 0.89+0.04 9.4 0.0213
Reid 2,4 0.874-0.06 9.4 0.0213
Bethe, Johnson 2,0 | 1.03+0.3 7.2 0.0398
Bertsch, Johnson 2,4 | 0.944-0.38 7.2 0.0395
Mean Field 2,0 1.314-0.66 5.4 0.0787

and the angular momentum of a spheroid is:

2
I= gMR2 (8.6)
and:
Q*R?
EQ = 3 GM (87)

For a canonical neutron star with SN 1987A rotation frequency we have that eq =~
0.0153.

Precession will cause the rotation axis of the star to change its position relative
to the body frame. This means that the centrifugal force in place will be a function
of position and time. The change in the centrifugal force will be on the order of the
precession time scale. If the star has an elastic crust, then it will change its shape
accordingly to the change in the centrifugal force. The change in shape then causes
time dependent stresses in the crust. In the next section we show a relatively accurate

estimate of the size of the stress o on the crust due to precession. The result is that the
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strain o is proportional to the wobble angle and the size of the centrifugal deformation

as in the following:

f
100H =

2
0~ eq sinfd. &~ 7.01 x 1074 ( ) sinf R /M 4. (8.8)

From experiment with crystals we have an upper limit for the maximum possible
stress sustainable by the crust before breaking, i.e. 0.« ~ 1072, This implies that the

possible maximum wobble angle for our pulsar is:

100H z

0 ax A sin" (00 1.4 X 103 [ ———
sin™ (o % (467.5Hz

2
) ) =~ 0.69 radians =39.79°. (8.9)

This is a result which differs by a factor of 3 from that obtained using rougher
estimates by Jones and Andersonn. We have to point out that these arguments are
just order of magnitude estimates and better understanding of the neutron star physical
properties is needed. Viceversa, if we do observe gravitational waves from a precessing
neutron star we could use the observations to put limits on the equation of state and
elastic properties of the crust.

Notwithstanding this precaution statement we can calculate the strain as a func-
tion of wobble angle and this is illustrated in Figure 8.2. It is possible to see that there
is a range of values, in this particular estimate, that are allowed before the strain
reaches values greater than that of the strongest known material on earth. The crust
should break at larger angles than 40 degrees and precession should not be possible
after the breaking of the crust. This means that if the star precesses then just angles

smaller than 40 degrees are those that are realistic.
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Figure 8.2: The dependency of the elastic strain on the crust as a function of wobble angle.
The red line indicates typical maximum strain for known terrestrial materials.

8.2 A More Precise Calculations of the Strain

We saw already that there is a correspondence between how much of the star
moment of inertia is involved in the precession and the allowed wobble angles. If we
accept the argument of the maximum crustal strain, then we have to conclude that
at least half of the moment of inertia of the entire star contributes to the precession.
This means that almost all the star mass undergoes precession not withstanding the
Chapter 7 arguments that lead us to believe that it is just the crust’s moment that

precesses.

If the crustal breaking argument is right, and our understanding of the coupling

between crust and core is wrong, it means that the existence of an upper limit for
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the wobble angle has important implications for gravitational wave detection from the
remnant of Supernova 1987A as explained in the previous Chapters. It is important to
have the best possible estimate for the strain on the crust.

In this section we will try to use geometric arguments to calculate the strain
due to the centrifugal bulge as it displaces because of the precession.. Our strategy will
be to calculate the strain as the star shape changes and then take differences between
our initial strain and the final point of each transformation. The final difference of this
process should be the strain as a function of time due to the precessional motion.

First we calculate the strain that will be caused on the crust by a change in
shape from a sphere to a spheroid with semi-axis b<a.

STEP1:

We are going to work in the body reference frame.

Let’s call the coordinates on the sphere zy yo and zy. The coordinates on the

spheroid are z; y; and 2.

We have
+ye+2g = 1 (8.10)
72 2 L2

We use the transformation:

r = %o a, (8.11)
y1 = Yo a,
z1 = 2z b
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Figure 8.3: The transformation of the sphere of radius 1 to a spheroid with semi-axis b and
a.

It is simple to verify that this 1-1 transformation changes the sphere to a

spheroid:
2 2 2 2,.2 2,2 2.2
©i oy 2 atwg  atys bz o 2 2 _
2tetp=g Tt tp —wtuts=1 (8.12)

The transformation is illustrated in Figure 8.3.
If a point is located in the plane y = 0 then a point that goes from the sphere
to the compressed ellipsoid (according to the previously explained transformation) will

have the following position, given by the direction vector ry.

ry =b(n;-r)n; +alr—(n;-r) n;) (8.13)

where r = (z,y, z) is the position of the point on the sphere, n; = (sin#,0, cosf) is

the unit vector in the y = 0 plane. The angle 6 is the wobble angle. The ellipsoid is
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tilted by the wobble angle around the y axis. The z axis represents the direction of the
electrostatic deformation. The angular velocity, and therefore the centrifugal bulge is
tilted by angle 6 relative to the z axis.

STEP2:

Now we want to rotate the ellipsoid by angle 1 around the z axis. This is
the motion of the centrifugal bulge in the reference frame. The quantity @/J is the

precessional angular frequency. Now at any time the position of the deformation is at:
ry =b(ny-r) ny +a(r — (ny-r) ny (8.14)

where:

n; = (cosysinf, sin sin b, cos ) (8.15)

The displacement of any particle on the ellipsoid due to the readjustment of the
deformation will be:

u=ry—1 (8.16)

This displacement of the material point on the spheroid will create a certain

strain. The strain S is defined as:

10w oul
5(27;2 au.), where z'%?

% o

= 20,y0 and zp. (8.17)

This is equivalent to calculating the change in strain S" due to the initial defor-
mation from the sphere to the ellipsoid and a transformation from the reference frame
with €2 as z axis to the body frame of the precessing body. There is an angle ¢ +0~0
between () and the axis I35. So the transformation is equivalent to a rotation by an

angle 6.
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The tensor transforms in the following way:

S' = RTS"R, (8.18)
where: ) )
1 0 0
R=10 cosf§ —sinb (8.19)
0 sinf@ cos@

Then the final transformation is a rotation about the ag axis by an angle ¥ so

that:
S=0"5"w (8.20)
where: ) )
cosy —siny 0
V= siny cosyp 0 (8:21)
0 0 1

The strain on the deformed object is now the difference between the strain
tensor S "in the Q frame and the tensor S' calculated in the body frame. This step is
justified because we want to subtract the strain due to the stretching from the sphere
to the spheroid. What we obtain is the maximum strain possible on the spheroid. The
difference between the strain tensors S’ and S gives us the final strain tensor.

STEP 3:

Let’s now define the quantity:

a—2>b

e = (8.22)
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We have a further condition that to conserve volume in the transformation be-

tween the sphere and the ellipsoid we have to require
Volume spheroid=ba* = 1 = Volume sphere (8.23)

This implies:

1

mz1+1/35,b%1—2/35 (8.24)

a =

When all this is used in the equation for the components of the strain we get

that to first order in ¢ :

S = esin®f —ecos®1Psin®f, Sy = —esin®fsin® (8.25)
533 = O, 512 = 521 = —€ Sin2 0(tos¢sin¢

Si3 = S3 =ecosfsinf (1 —costp), Seg = S39 = —ccosfsinfsin.

Therefore the transformed strain tensor is:

- esin®@ — ecos?sin?  —esin?Hcossiny ecosfsind (1 — cos)) -
S = —esin? 0 cos 1 sin —esin? @ sin? 1) —ecosfsinfsiny (8.26)
ecosfsinf (1 —cosyp) —ecosfsinbsiny 0
éTEP 4. —

The maximum strains can be found calculating the eigenvalues of the strain

matrix S. These eigenvalues are:

Seim1 = —esin (9\/3 + c0s 20 + 2 cos ¢ sin?  sin % (8.27)
SeinQ = _Seinl
Sein3 = 0.
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Figure 8.4: The second transformation in the calculation of the strain.

The average of the quantity Se;,; over a precession cycle is:

<Sein1> ~ —esinf (828)

The following figures show the dependency of the eigenvalue strain on the angle

1 for a given angle 6 and the dependency of the strain on the angle 6 for fixed .
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dependency of strain on theta, the ellipticity omega is fixed at 0.012, time is 1/10 of precession period
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Figure 8.5: The strain depends on the angle theta almost in a sinusoidal fashion. The
figure shows a particular moment in time. In average, over a precession period, the strain is
proportional to the sine of theta.

dependency of strain on time (and so phi), the ellipticity omega is fixed at 0.012
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Figure 8.6: The strain is also a function of time. The strain depends on time as the sine of
phi dot times the time.
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CHAPTER 9
THE CASE OF TRIAXTIALITY OF THE NEUTRON STAR

Our model for the precessing neutron star has been, up to this point, based on
a star with an effective axissymmetric shape. We showed that, even in the presence of
an additional deformation along the axis of rotation due to the centrifugal forces, the
neutron star will have a precessional motion identical to that of a biaxial object. It is
possible though that there are more than one Coulumb deformation in the crust and this
will result in an effective triaxilaity of the body. The triaxial body precession motion
is discussed in details in Classical Mechanics textbooks such as the L. D. Landau and
E. M. Lifshits, Mechanics [16]. The gravitational emission of this object is described
in the second of the Zimmerman papers [6].

The precession motion of a triaxial object is more complex than that of a bi-
axial one and its gravitational wave radiation spectrum has more than two emission
frequencies. We are going to show though that when the ellipcity is small and the
rotational frequency relatively high (in the hundred of Hz) the triaxial object motion
is almost indistinguishable from that of the biaxial case. If we model SN 1987A rem-
nant as a triaxial star, the power of the gravitational wave radiation is mainly at the
rotational frequency and twice that, as in the biaxial case. The power in the sidebands
is just 10~%less than the power in the principal emission frequencies. This is an inter-
esting result because it shows that, when studying the SN 1987A gravitational wave
observability, we can model safely our neutron star as a biaxial object without loosing

generality. This is going to be very important in the search for the gravitational wave
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signal of the star, using a filter bank similar to that discussed in section 12.2.

9.1 The Most General Case of Precession

It is a very well known result of Classical Mechanics that the inertial properties
of a rotating body of any shape can be reduced to that of an equivalent body with
just three principal moments of inertia. For this reason the motion of a triaxial object
is the most general case of precession. A discussion of the motion of a triaxial rigid
body is given in Landau and Lifshits [16]. For reference we are going to write down
the main equations that describe the motion of the triaxial object. The moments of
inertia are all different and we have two quantities that define how much different is the
object from being a perfect sphere. This object with three different moment of inertia
is called an ellipsoid. Let’s assume that I, < I, < I3. The total angular momentum of
the ellipsoid is L.

The ellipticity ¢ is:

_Isi—1h
I

and the oblateness n is:

L1

T (9.2)

n

The motion of the triaxial object is more complicated than that of a biaxial

object. Here the relevant equations for the Euler angles as a function of time ¢:

() = arctan ( 2 EZ : ﬁi ZZE:;) (9.3)

and

8(t) = ar cos (cos by dn(T)) (9.4)
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also we have that:

oo

2q" dnm t
p(t) = — Z e ) ( n; ) sinh (2nma) (9.5)

n (1 —q¢*)

n=1

1 2COS 90 (Is — L) (I — 1) — "
_ h(2 t
I, \/ L1, z_; =g (2nma)

where 7 = ,/ (Us— 12312 L)t sn(r), en(7), dn(r) are the Jacobi functions, K is the

complete elliptic integral of the first kind, 7" is the period of the Jacobi functions and
the quantity a = G (g,1,60), ¢ = H (g,7,60p) are functions of the ellipticity, oblateness
and initial wobble angle 6.

It is possible to show [6] that in the astrophysically, relevant cases where the
ellipticity and the oblateness are small quantities, the motion of the triaxial object
approximates that of the biaxial one. For example we have that <,0>>>7,[1,9 and we have
that sn(r) — sin (1), en (1) — cos (1), dn(1) — 1.

9.2 Sidebands in the GW Signal

S. Frasca and C. Palomba, presented at the Gravitational Wave Data Analyis
Workshop in Trento, Italy (2001) the paper entitled Gravitational radiation from triaz-
ial neutron stars: Implication for data analysis [21]. In this paper the authors studied
the gravitational wave emission characteristics of a triaxial neutron star. Zimmerman
second paper gives the complete form of gravitational wave strain h as a function of
time. It is difficult to interpretate the equations because they are very complicated
involving elliptical integrals and Jacobi functions. The work of Frasca and Palomba
points out that the main frequencies of emission are at ¢ /7 and ¢ /27 with ¢ /7

being close to the rotational frequency plus the small precessional frequency. The tri-
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axial motion contribution is to modulate the main sinusoidal signal. The modulation

frequency and its amplitude are:
A¢ = 27Tf0€g (90) (96)

and
fn =27 fong’ (6o) . (9.7)

where g (6y) and g’ () are functions of the initial wobble angle #y. The modulation
splits the spectrum lines. The number of side lines and their power can be parametrized
by the modulation index 3:

_ A _ %g” (60) (9.8)

Frasca and Palomba have determined that for § < 0.2 there are two side bands
at frequencies fo & f,,. For 0.2 < g < 0.5 four sides appear at frequencies fy + fi,.,
fo£2 fi. The power at these frequencies is g and %2 of the power at the main emission
frequency. In the case of SN 1987A we have that the oblateness should be on the
order of the ellipticity or less because otherwise the spin-down will be greater than
what is observed. In fact, in Zimmerman is shown that the power is equal (in order
of magnitude) in the ellipticity and oblateness contributions, in a triaxial precessing
neutron star. Frasca and Palomba plotted graphs of f,, and § as a function of the
ratio 7 and initial frequency fo. Using the observed parameters of SN 1987A we get
a value of 3 < 10=%. We wrote a numerical code to simulate the rigid motion of a
triaxial precessing neutron star and we used the quadrupole formalism to calculate the

gravitational strain of this source. We also calculated the spectrum of the signal and
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Table 9.1: The parameters used in the simulation for the 3 axis neutron star.

Angular momentum 400
angular frequency €23 27 1000
precessional frequency Qp 27 200

wobble angle 6 35°

verified the Frasca and Palomba results in order of magnitude. The following Figures
show the Euler angles as a function of time and the spectrum of the strain h for a similar
source with initial rotational frequency and precessional period as in Table 9.1. These
values were chosen to evidentiate more clearly the results in their qualitative aspect.
Finally we used the general solutions from Zimmerman second paper and solved them
numerically. We compare the case of a biaxial star with total gravitational power equal
to that of a triaxial star with same order of magnitude ellipticity. The ellipticity is
of order 1073, The wobble angle is 30°. The large ellipticity is used for computational
convenience. For smaller ellipticities we get even less power in the sidebands. Figure 9.2
shows the spectrum of these two cases and Figure 9.3 compares the cumulative power as
a function of the frequency. We can see that even at a rotational frequency of 80 Hz the
power in the sidebands is much less than the power in the main emission frequency. The
ratio between the power in the main frequency and the one in the sidebands depends on
the rotational frequency. As the star rotates faster and faster the power in the sidebands
is less and less. We calculated this ratio for different rotational frequencies and kept the

total power the same. We found a power law that describes the dependency on velocity
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Figure 9.1: The power spectrum for a triaxial neutron star. This is the result of a computer
simulation that solves the differential equation of motion of a precessing object.

of the ratio of the spectral power in the main emission frequency and the spectral power

in the sidebands:

Pmain/Psidebands = 629513)10_41 f_3‘3219/10_45 (99)

When we extrapolate this law to the rotational frequency of SN 1987A compact

remnant we get Prain/ Psidevanas ~ 1072
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Figure 9.2: The comparison of the gravitational wave spectrum of a biaxial star compared
with that of a triaxial star with same total power output. The frequency of rotation is at
80 Hz. The graph was derived using the Zimmerman expressions for the gravitational wave
strain h.
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Figure 9.3: Cumulative power between frequency close to one of the main emission frequency.
It is possible to notice that the energy in the sidebands is much less than in the the main
emission frequency.
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Figure 9.4: The energy in the sidebads it is dependent on the velocity of rotation. For a
triaxial star rotating at 500 Hz the energy in the sidebands is le4 less than in the main

emission frequency.
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CHAPTER 10
LITERATURE ON PRECESSING NEUTRON STARS

In this Chapter is given a summary of some of the most relevant papers on
the subject of precessing neutron stars and gravitational wave emission from these
objects. Many authors speculated about the possibility of neutron star precession but
just recently strong evidence of the existence of this phenomenon has emerged. We
report here the findings of these observational evidence. A quite complete work that
studied the many aspects of precessing neutron stars is the Ph. D. dissertation of I.
Jones from University of Whales, Cardiff. Jones ’s dissertation work resulted in the
publication of a series of papers to which we referred extensively in this dissertation Two
main papers are historically important in the discussion of the relevance of precession
for gravitational wave detection. These are the paper of Zimmerman (actually the work
it is a set of two papers) and the paper by M. A. Alpar and D.Pines. We review these
papers in the following sections.

10.1 Zimmerman

Gravitational waves from rotating and precessing rigid bodies. Physical Review
D, vol. 20, (1979).

This is the first set of papers that considers the emission of gravitational radia-
tion from a precessing neutron star [5-6]. Prior to the year 1979, rotating neutron stars
were considered as possible sources of gravitational radiation. Though it was assumed
that the radiation was at twice the frequency of rotation. The model imagined was

a star with a deformation on the plane perpendicular to the rotation frequency. This
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object, of course, would not have any precessional motion. Zimmerman points out the
more general case of a precessing rigid neutron star. In first paper Zimmerman con-
sider the biaxial case, and the case of a triaxial object with a small wobble angle. In
the second the author studies the most general case of a triaxial object for any possible
wobble angle. The author uses the quadrupole formalism to calculate the waveforms
of the strain h and the gravitational wave power. In particular he uses the equations

(using the convention ¢ = G = 1):
hy = BT — I = (Z1 /) (1 - }ww) (10.1)

and

hy = h2T = (=2/1) T, (10.2)

The vectors v and w are mutually perpendicular and perpendicular to the direc-
tion of the observer. The vectors are transverse to the direction of wave propagation.
The gauge used to calculate the above equations is called Transverse-Traceless, (the
symbol TT refers to this gauge). Zimmerman shows in his paper graphs of the wave-
forms. It also shows how it is possible to obtain important information as the wobble
angle, the level of ellipticity and the inclination of the angular momentum relative to
the direction of the observer when we can obtain precise measurament of the plus and
cross polarization of the gravitational wave signal of the precessing neutron star. Fi-
nally, Zimmerman makes the conjecture that the equations for the rigid body will also

apply to the case of a star with elastic crust.
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10.2 Alpar and Pines

Gravitational radiation from a solid crust neutron star. Nature vol. 314, 334-
336, (1985). [15].

The main goal of this paper is to show the importance of gravitational radiation
in understanding the properties of the crust of millisecond pulsars. The main finding is
that if the effective triaxiality ;7 of the star is bigger than 107 then the gravitational
radiation emitted by the star will be enough to spin down the millisecond pulsars at
a faster rate than the one observed. Different astrophysical phenomena are discussed:
pinning of the crust by superfluid, the influence of the equation of state on the crust

properties and different decay mechanisms.
10.3 Jones and Andersonn

Jones dissertation [23] is a very complete work on gravitational waves from
precessing neutron stars. The rigid body case is studied and it is discussed the different
modifications to the equations of motion needed when the elastic crust and a fluid
interior is allowed. Jones consider the possibility of astrophysical mechanisms that can
generate and can sustain the precessional motion. In fact, Jones also points out that
the precessional motion will be damped by internal friction. The thesis of Jones is
the source of a series of papers (with N. Anderson or Cutler as co-authors) to which
we referred extensively in this work [15-17-18]. Jones and Anderson arrive to the
pessimistic conclusion that there is not a large population of precessing neutron stars
that can be detected by current or soon available gravitational observatories. We want

to point out that the presence of one precessing neutron star, with a rotational frequency
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in the hundred of Hz, will be a very important gravitational source and all what it is
needed to establish the field of Gravitational Wave Astronomy. Jones and Anderson
discuss SN 1987A remnant as a possible precessing neutron star but they show strong
criticism towards the reality of this source. We already offered a rebuttal of some of

their arguments in Section 5.3.

There are been different articles on the evidence of other precessing pulsars

beside SN 1987 A in the recent past. Here a review of some of these papers.

10.4 I. H. Stairs, A. G. Lyne and S. L. Shemar

Evidence of free precession in a pulsar. Nature Vol. 406 August 2000 [10].

This article appeared in August 2000 in the journal Nature and can be considered
the best evidence of free precession in a neutron star. It is reported that the pulsar PSR
B1828-11 presents long-term periodical variations both in the shape of the pulse and the
rate of slow down. This two parameters follow similar periodical patterns. The main
periods are of order 250, 500 and 1000 days, clearly harmonically related. The pulsar
time behavior has been followed in the last 13 years and the data is of very good quality.
The authors suggest different kind of possible explanations for such time variations.
They suggest the presence of planets that can interact with the magnetosphere of the
star and cause in this way changes in the pulse profile. This is considered, though,
unlikely because to reproduce the observed changes it will be required at least two
planets with orbits at a very short distance from the pulsar. Another mechanism

considered is timing noise due to random movement of the fluid inside the neutron
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star but this will not be able to reproduce the sustained and periodical variations in
the pulse shape. The simplest explanation for the observed data and the correlation
between changes in the pulse shape and spin-down is that the star precesses. In fact,
this will cause changes in the geometry of the beam as it is pointed towards the Earth
reproducing the observed changes in the pulse. Moreover the precession will cause
changes in the electromagnetic torque that will follow precisely the changes in the pulse
profile. The authors also point out that the other two pulsars that present long term
profile shape changes are PSR B1913+416 and B1534+4-12. These pulsars are undergoing
precession due to general relativistic effects that it is a very different physical situation
from the one of PSR B1828-11 but the final result is similar in the sense of long term
changes in the shape of the pulse. Also in the case of the pulsar in question there are
not other bodies to influence the motion implying that the precession is free. Finally
it is pointed out that PSR B1828-11 is the only isolated pulsar (at the time of the
discussion) that has such strong periodical variations in both the pulse shape and the
spin down. The authors comment on the fact that the strong evidence of the existence
of the precession phenomenon in a neutron star brings some theoretical problems to the
model of pinned superfluid in neutron star. Table 10.1 shows the important parameters
of the pulsar. The wobble angle is deduced by the changes in the width of the pulse.
The ellipticity can be calculated by the usual ratio between the precession and rotation

frequency..

ro 500 d o 2/180 3
e = ot ( ays)(wt)(/ 7T):1.06><108 (10.3)

Qprec cos - Qprec 405ms cos f
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Table 10.1: Table of parameters from Stairs. et.al.

Period, P 405.03 ms

Period derivative, P 60.03x10~1°

Period second derivative, P | -1.7x1072%5~1

Magnetic field, B 5.0x1012G

Characteristic age, 7 0.11 Myr

Precession Period, P, 500, (250,1000 harmonics) days
Ellipticity, 10-8

Dispersion Measure, DM 159.7 cm ™3 pe

Wobble angle, 0 2-3 degrees

The result indicates that the ellipticity is very small, 100 times smaller than the
one for SN 1987 A. This combined with the slow rotational speed makes this object
not interesting for gravitational wave detection even if PSR B1828-11 stengthen the

argument for the existence of precessing neutron stars.

10.5 B. Link and R.J. Epstein

Precession Interpretation of the Isolated pulsar PSR B1828-11 [25].

This article improves on the interpretation of pulsar PSR B1828-11 as a pre-
cessing pulsar. The authors main contribution is considering the effect of the coupling
between the electromagnetic torque and the precession. They indicate that the pre-
cession induced geometrical effects on the beam pulse as seen by an observer are not

sufficient to explain the observed data. They point out that it is necessary to consider
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real physical coupling between magnetic torque and precession to more precisely fit the
data with a model. They obtain parameters for this pulsar as the wobble angle, the
angle between the magnetic field poles and the symmetry axis and the ellipticity. We
have already seen that this pulsar is not useful for gravitational waves but represents
the best evidence to date of the existence of long duration precessing neutron stars.
This is a challenge to the idea of pinned to the crust superfluids inside the neutron star

as also indicated by the authors.

10.6 T.V. Shabanova, A.G. Lyne, J. O. Urama

Evidence of Free Precession in the Pulsar B1642-03 [26].

This pulsar was discovered more that 30 years ago and it has interesting timing
behavior. The main parameters of the pulsar are a period of 0.387 s, spin down rate
of 1.78x10 ®s/s. This shows that the pulsar is relatively young with P /2P ~ 3.4
Myr. The changes in the timing behavior that are attributed to precession are in the
timing residuals and not in the pulse shape. The authors says that this could be due
to the small magnitude and cyclical variation of the changes. They observe spectral
features in the residuals that have frequencies of 2x10 — 4, 4x10 — 4 and 8x10 — 4
day ! corresponding to periodicity of the order of 5000, 2500 and 1250 days. Their
analysis suggests that this behavior can be explained with a free precession model of
the star with a wobble angle of 0.8 degrees. Also this precessing neutron star is a not
a good source for gravitational radiation but it is a further evidence that precessing
neutron star indeed exist.
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10.7 S. Nagataki and K. Sato.

In their article Implications of the Discovery of Millisecond Pulsar in SN 1987
A arXiv:asto-ph/0011363, 20 November 2000 [27] the authors address some of the as-
trophysical consequences of the discovery of a fast rotating neutron star in the remnant
of SN 1987A. Most of their analysis is based on the fact that if we take seriously the
information on the angular momentum and spin down of the pulsar, as given by the
Middleditch observation, we should get some upper limits on energy loss mechanism
and the radiation spectrum of SN 1987A. They try to extend these results to young
pulsar in general. Using the known spin-down and rotational frequency we have already

seen that we can calculate the energy loss F= IQ )

E=—(4—6) x 10¥ (Li\]@@) (mim)Q lerg 571 (10.4)

this is much larger than the observed combined ultra violet, optical, infrared bolometric
luminosity that is of order (1-2)x10% erg s~!. Nagataki and Sato argue that this sup-
ports the idea that the observed spin-down should be attributed to the loss of energy
due to only gravitational radiation. The situation is not very different when we are
looking at other electromagnetic frequencies. The radio spectrum of SN 1987 A follows

the following distribution:

-1
S ~1071 ( ) [erg s~'em™GHz 1], (10.5)

1GHz

To create this fit, data was taken at the radio frequencies of 1.4, 2.4, 4.8 and

8.6 GHz. It is possible to extrapolate this power law to all the radio frequencies and
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integrate such function to obtain the total luminosity:

D 2 v
Lyradio = 10% 1 mex 10.
d 3x10 (50kpc> og, (Vmin> (10.6)

where D is the distance from the Earth and v is the radio frequency. Also in the radio

spectrum as in the optical and infrared it is possible to see that the loss in energy is
much less than the rotational energy loss. The authors also make the argument that
actually the energy in the radio spectrum comes from relativistic electrons generated in
the supernova shock encountering the circumstellar matter, so not directly related to
the rotating neutron star. The discussion moves further to the soft X-ray spectrum. It
is known by Chandra telescope observations that there is an upper limit of 2.3x10%* erg
s~lin this part of the spectrum Theoretical calculations show that the debris around
the pulsar should be opaque to soft X-rays. In the case of hard X-rays there is not

much information available. We can estimate the gamma ray luminosity to be:

D \’([ E
Lgamma ~ 8 x 10%7 o 10.7
g 8 (50kpc) <1OOK6V) (10.7)

where F,., si the maximum energy of the gamma-ray photons. This radiated energy

is comparable with the loss of rotational energy observed in SN 1987 A. The current
understanding though is that the energy in this frequency comes from the radioactive
decay of elements as °Co and "Co. The authors make the remark that it will be also
very difficult to imagine a radiation mechanism that will emit so much energy in the
gamma ray frequency but many order of magnitude less energy in the other part of the
electromagnetic spectrum. Next the authors try to use some reasoning similar to that

of Chapter 6 to put some upper limits on the magnetic field of the pulsar assuming
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that all the observed spin down is due to dipole radiation. Against the energy loss due

to the dipole radiation can be written as:

BRSO

B=——to—, (10.8)

where B, is the intensity of the magnetic field and (2 is the rotation frequency in the

authors notation. Using the known data they conclude that:

M 10km\*
&SM—meNQM%)(}f) (10.9)

This result is similar to the one derived in Chapter 6 that shows that the mag-

netic field of SN 1987 A remnant has to be small.

The discussion that follows in the Nagataki and Sato article is about gravita-
tional radiation from the pulsar. This discussion is quite imprecise for different reasons.

First the authors use the equation

: 332G
Eg'rcw: _35125296 (1010)

to characterize the loss of energy due to gravitational wave emission. This
equation is the one valid in the case of absence of precession and the presence of a
deformation in the crust perpendicular to the axis of rotation. We already seen that
actually in the case of precession the energy loss is ”split” between the two ”"modes” of
radiation at €2 and 2€2. The exact ratio of energy loss in the split is determined by the
wobble angle. The authors take this formula as a kind of upper limit for the energy loss

due to gravitational radiation. The problem with this is when they use this formula to
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calculate the strain h of the radiation on Earth. They use the expression:

G
(h) ~ 5.164—DL€Q2 (10.11)

to arrive to the result that:

I e 0 50kpc
A —— 10.12
(h) ~ 7.8 x 10 (1.1 x 10% cm2> (10—6) (29368‘1> ( D ) —

This result again doesn’t specify if we are talking about the radiation at €2 or

2€). Also there is not consideration of the fact that the moment of inertia involved in
the precession could be less than the total moment of inertia of the entire star.

Their value of h is not also so good as an upper limit because we get that the
radiation at €2 is about 30 % higher than what they calculate when an angle of 40
degrees is used (equivalent to all the star involved in precession). Finally it seemed
that there is a mistake in the calculation of the integration time because they use a
formula that has a linear dependence in time for the minimum noise required in the
instrument that is not the case. In fact, improvements in Siganl to Noise Ratio of the
detector grows with the square root of time. The authors conclusion that it will be
possible to observe the SN 1987A remnant gravitaional wave output using detectors

with noise level around h ~ 107%2/v/Hz is quite unlikely.
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CHAPTER 11
RELEVANT TIME SCALES
In this chapter we discuss some of the relevant time scales and other important
parameters for the understanding of precessing neutron star as sources of Gravitational
Waves.

11.1 Dynamical Time Scales

Neutron stars can be, at a first approximation, treated as a thermal system in
equilibrium. Perturbations from this equilibrium can be studied in terms of statistical
mechanical laws. According to the virial theorem in average the absolute value of the
potential energy is equal to twice the kinetic energy per unit mass.

In a star the kinetic energy is due to the thermal motions of the atomic particles

whose speeds are of the order of the speed of sound v, :

M
% KR (11.1)

where G is the gravitational constant, M is the mass and R the radius of the star. We
can do an order of magnitude estimation of the stellar vibration frequency by noting
that the period P,; should be of the same scale of the time that it takes to transmit
information about pressure changes across the entire star. This time, of course, is equal

to 2R /v,, so we have [22]:

_ Vg GM
Pt = v~ 55~ ,/4—R3 ~ /7Gp (11.2)

where p is the density of the stellar material.
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Table 11.1: Dynamical time scales for neutron stars.

density p 3x10% g/cm?

Period vibration | P, 10~4 seconds

Period rotation | Protmin | 3% 107* seconds

The maximum rotational frequency is given by the equilibrium between centrifu-
gal and gravitational forces. At a higher frequency the star will be broken apart. So

we have that:

GM
Rl/fot—ma.x = 2 (113)
(27 R)

and the minimum rotational frequency:

1
Vpot—min = P,;g,min = ; V G,O (114)

We can summarize the important dynamical scales and parameters of the neu-
tron star, as in Table 11.1.

These are upper limits but the presence of magnetic fields can reduce the mimi-
mum rotational period. We also know that neutron star densities can vary considerably
and the vibrational period can be different by a factor of 10 from the one reported in
the Table 11.1. The crust of the neutron star is in general less dense than the the
average density value of the star, therefore a typical value for its resonant frequency is

around few thousand Hz.
11.2 Decay Time and Mechanisms

In the paper Gravitational Wave Damping of Neutron Star Wobble [18] by Cutler

and Jones there is a discussion on the time scale in which the precession of the neutron
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star can exist. The main question that is explored is how the loss of energy due to
the gravitational wave emission effects of the precession motion. We already seen
that because of the loss of energy the spin of the star decreases. There is also another
mechanism that affect the precession motion. The torque due to the gravitational wave
back reaction causes the wobble angle to decrease over time. Their conclusion is that
the wobble angle will decrease exponential with a characteristic damping time 7.

From Cutler and Jones paper the gravitational damping time is:

0 wQQIoeeff
T — —— = ———————

; = (11.5)

This can be parametrized as:

107 \? /kHz\" [ 10%gem?
=18 x10° 11.
neisadw () () () wo

When the following equation is applied to SN 1987A compat remnant we get a

value for the gravitational damping time equal to 9.42 10* years. This shows that the
wobble angle has not changed very much since the birth of the neutron star if gravita-
tional radiation is the main dissipation mechanism in SN 1987A. A much more efficient
mechanism for damping the precession motion is any strong dissipation processes inside
the star. In particular crust-core interaction and the pinning to the crust of vortices
in the superfluid are very efficient in damping the wobble angle.

The damping time 7,, due to crust-core coupling [16-17] is:

w 3 !
Tw=q 7= (Ebeo) T (11.7)

P

where 7 is the crust-core coupling time. The value of 7 is about 20 P, where P is the

precession period, for the case of a superfluid with electrons and protons. The value of
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7 becomes 400 P for the case of neutron superfluid [19]. The value is beg ~ 107 for
SN 1987A. This gives a maximum crust-core coupling decay time about 0.2 years. This
implies that there is no much coupling between the crust and the superfluid material
in SN 1987A. The presence of the precession in SN 1987A tells in general that there

are not very efficient dissipation mechanisms inside the neutron star.
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CHAPTER 12
OBSERVABILITY OF SN 1987A WITH PRESENT AND FUTURE
DETECTORS

12.1 The Gravitational Strain h on Earth

Zimmerman in his papers [6-7] treats the case of a spheroid first (I = I, < I3
and any angle 6) and obtains the following expressions for the strain parameter h of

gravity waves from a neutron star at a distance r from Earth and moment of inertia [;.

G 21 w?esin
hy = Zﬂ [(1 + cos? i) sin 0 cos 2wt + cosi, sini, cos&coswt] ,
c r
G 2Lw%esin 6
hy = Zﬂ [2cos igsin @ sin2wt + sini, cos f sinwt], (12.1)
c r

where i, is the angle between the angular momentum vector J and the plane of the
observer sky. This quantity is unknown. It is important to notice that the time
dependence of the wave forms is sinusoidal with two main frequencies at w and 2w.
If the object was rotating along its symmetry axis it will emit just at a frequency 2w
(it will have also to be deformed along the axis perpendicular to the rotation axis).
Knowing the angle 6 restricts the possible waveforms of the signal to a simply related
family parametrized by the unknown angle i,. This should simplify greatly the search
for the SN 1987A signal by gravitational wave detectors.

From the previous sections we can summarize that the relevant parameters are:

the rotation frequency f, the of pulsar:

fr=4675 Hz. (12.2)

In the case of a precessing neutron star the gravity wave emission will occur at the
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frequencies f, and f , where:
f=2f,=9345 Hz,
the distance r of the object, located in the Large Magellanic Cloud:
r = 50Kpc = 1.5 x 10*'m, (12.3)

Another important parameter is the ellipticity e:

(o b) Vap= e 2100 (12.4)

w3 cos 6

where a and b are the major and minor axis of the spheroid. In the section 5.2 the mini-
mum wobble angle 6 was calculated to be around 30 degrees.

Then we can apply the usual formula for the average size of the strain
parameter h, due to the emission of gravity waves from a rotating neutron star with

axisymmetric deformation €, as given by Zimmerman [6-7]:

G 21 w?esinf cos @

h(W) = g r )
G 2L w?e sin® 0
h(2w) = g%, (12.5)

where the value of the moment of inertia I; for a neutron star (depending on equation
of state), should be 3x10*g em? g I $3x10%g em?, we choose an average value for
L.
When the above listed values are substituted in equations 12.5, we get a value
for our SN 1987A gravitational wave signal h:
hs(w) = 1.026 x 102, (12.6)

hy(2w) = 6.002 x 107%". (12.7)
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This very small value for A can appear to require an impossible level of sensi-
tivity from the bar detectors or interferometers existing today or soon available. It is
important to notice that the source is a continuous source of radiation, of which all the
fundamental parameters (besides the phase of the signal) are known. So it possible, in
principle, to integrate the detector data over a long period (even years) to extract the
signal from noise. A detailed calculation of the necessary integration time 7 is required.

To do so we use the following equation:

he = /Su(fo)VBW, (12.8)

This equation expresses the level of the stain h,, of the noise in the data from a
detector with characteristic noise spectrum S;,. The equation evaluates the value S, ( fo)
of the spectrum at the precise frequency fy of the looked for gravitational wave signal.
The quantity BW is the bandwidth of the periodic signal. From Fourier Analysis theory

in the case of a sinusoidal signal, the value of BW is:

BT/V:1

T

(12.9)

Y

where 7 is the observation or ”integration” time.

So we can rewrite equation as:

1 1
h, =107% \ﬁ 12.10
VHzV T ( )

The value for /Sy (fo) it is extracted from the observed spectrum of the ALLE-

GRO detector, see Figure 12.1.
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Measured Strain Noise Spectrum
ALLEGRO - 1994
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Figure 12.1: Spectrum of stain noise in ALLEGRO in 1994. The spectrum is represented as
if all the noise was due to gravitational waves.
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Solving for 7 we have:

—19\ 2
T:(lc;L > seconds. (12.11)

n
Now we require that the noise level in the data from the detector be at least of
the same size of the signal (it should less, 4 times less for a 4 o confidence level in the

statistics, for example). So if h,, is chosen to be ~ h, = 10726 then we get that:

1071\
T = (m) seconds ~ 2 x 10 seconds ~ 6 x 10°years. (12.12)

This is of course too long a time to conduct an experiment.

We could also ask what is the required level of sensitivity A 5. = \/Sh(fo) of our
detector at that particular frequency of observation to require a more acceptable time
of integration, let’s say 3 years, to have a positive detection of a gravity wave signal

from our source SN 1987A. In this case we solve for /S, (fo) to get:

hy, = /Su(fo) = ( h@)>, (12.13)

and substituting the above mentioned values for h,, and 7, we have:

hy, = (107%/4 /7) = (107/4 V3 X 3.1 x 107 seconds)

= 31x107%/VHz. (12.14)

This value for & 1, could be reached by the next generations of gravity wave de-
tectors. In fact preliminary estimates of the noise spectrum of the second generation
Laser Interferometer, LIGO II are very promising. LIGO II will be built on the ex-

perience of the first LIGO and will be much better gravitational wave observatory. It
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Figure 12.2: Projected LIGOII total strain noise and different sources of noise.

will be on line in 4 or 5 years from now. According Figure 12.2 there is a lowest point
in the total strain-noise (the sum of different kind of expected noises). This point is
about h(f,) =1.3x10=2* /v/Hz at a frequency of 350 Hz. But the LIGO II detector
will be able to use narrow banding to shift this lowest point in noise level to higher
frequencies. So we could take this as the level of noise at the frequency of emission of
SN 1987A. This means that, if the totality of the spin-down is due to gravity emission,
it will be needed just 5 days of integration time of Ligo II data to see the signal from

the pulsar SN 1987A (at the w frequency).

Figure 12.3 shows the general dependency of the integration time on the possibles

moments of inertia of the star’s mass involved in the precession. It is clear that LIGO
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Figure 12.3: The value of the starain h for the w (blue) and 2 w (red) radiation at Earth as
a function of the moment of inertia involved in the precession. Higher values of the moment
of inertia are the more likely because of the limits on the crust strain.

IT could detect a signal coming from SN 1987A even for very small moments of inertia

if the integration time is on the order of few years.

It is possible that other sources will be detected before but it will be still a very
important scientific discovery to detect gravitational waves from the famous Supernova

remnant 1987A.

The ALLEGRO detector is supposed to be soon updated with a new transducer
and a new SQUID. The detector, due to the new transducer design will behave as a
3 modes oscillator. Together with improvement in the SQUID this will increase the

sensitivity and frequency range of the detector. It is possible that at the frequency

98



time of integration for LIGO II

—— omega radiation

1/ gcm?

Figure 12.4: The required time of integration for a 4 sigma detection of the w (blue) and 2 w
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range of the SN 1987A gravity wave emission at 2 w (the bar will not be able to see

the signal at frequency w) the noise level h 1, Will be as low as
hy, = 1072V Hz, (12.15)

for the updated detector.

So we could ask : with this new sensitivity if we conduct a search for gravity
waves from SN 1987 A which kind of limit we could put on the ellipticity of the neutron
star, if we do the analysis over 3 years worth of data?

If we write the h, of the signal as
hs(2w) = 2.4 x 107 ¢, (12.16)

to isolate the ellipticity contribution to the value of h,, the we get:

hy, B 102 /VHz
24 x1072 /T 2.4 % 102! /3 x 3.1 x 107 seconds

= 4.3x10°, (12.17)

where this equation is derived from formula (12.12).

Determining the level of non-axisymmetry of a neutron star with such precision
could be a very interesting astrophysical result even if gravity waves will not be detected
in this particular search.

The calculated waveforms for the entire signal (h; and hy polarizations) and
its w and 2 w components separately are shown in the following figures. The unknown
angle i, is arbitrarily chosen to be close to 90 degrees (to show better the differences

between the two polarizations).
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Figure 12.5: The emission for the plus (thick line) and cross (ligth line) polarization of the 2
radiation.
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Figure 12.6: Radiation with chosen inclination angle about 90 degrees; wobble angle 30
degrees.
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Figure 12.7: Radiation for the 2 omega frequency. The light line represents the cross polar-
ization and the thick line represents the plus polarization. The parameters used are that of
SN 1987A.

12.2 Data Analysis Issues: the Search of a Template for the Signal

The discussion of the previous section uses the assumption that the signal from
SN 1987A is a sinusoidal function of time with a constant frequency. When this is
assumed the analysis of the integration time required to observe the source is exactly
valid. To apply the integration algorithm and obtain an increase of the signal to noise
ratio proportional to the square root of the integration time one has to follow the phase
of the signal quite closely. The model of the previous section is very simple but for what
concern establishing the possibility of detection of SN 1987A gravitational wave signal
one has to be careful in modelling the characteristic of the source in a more realistic way.
We already pointed out that from Middleditch et al. data is possible to observe changes

in the precession period, the spin down rate and frequency. This changes suggest that
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the motion of the presumptive SN 1987A compact remnant is quite complicated and it
cannot be modeled in the filtering process as a simple precessing object. Any attempt to
detect the signal from such source will have to construct a template that reproduces the
behavior of the source. The changes in the precessing period and spin-down introduce
a phase change in the target signal. If this phase changes are not properly taken in
consideration the integration procedure will not be effective and actually over time a
signal loss will occur instead of a Signal to Noise Ratio increase. An illustration of this
is given in Figure 12.8. In this Figure we show the increase of the Signal to Noise Ratio
as a function of time for a search of a signal of which parameters are perfectly known
(we used the exact of behavior of SN 1987A as in the first few days of observation). We
compare this calculation with the result for the Signal to Noise Ratio of a signal search
that uses a template that is a simple monocromatic source with parameters similar to
that of SN 1987A but without changes in the phase induced by the changes in spin-
down and precession period. The filter used in this case is often called non-perfectly
matched filter. We notice that after a few days there is not a further increase in the
SNR for the case of the non-perfectly matched filter. During the period Middleditch
et al. conducted their observations we had some information on the changes in the
parameters of the pulsar as the precession period, spin-down and frequency and we
could have used this information to construct an adequate template if we could have
conduct the search at the time. We cannot rely on such detailed information in future
searches (when LIGO II will be on line for example) because as we explained before the

optical source has faded away. What has to be done then is a blind search of parameters
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that characterize the source. There is an extensive literature on this subject [28-29] and
one of the main techniques to deal with this problem is to model the phase changes with
a Taylor expansion of the phase. Then the detection problem consists in searching for
the appropriate spin down derivatives that determine the shape of the phase function
of time. A template bank is constructed made of a multidimensional grid of parameters
that need to be tried in modelling our source. The dimension of the grid is determined
by how many derivatives of the spin we need to explore and how fine the grid needs to be
is determined by how much close our model needs to be to the real signal. The number
of dimensions and how fine the grid is determines subsequentely the size of the grid.
In the end the search for the signal using filtering techniques becomes a computational
problem because the size of the grid determines the computer time required to extract
the signal from the noise. One can think that the apparent complicated motion of
SN 1987A will require a very intensive search over the parameter space making the
computational task of such search completely impossible. But this turns out not to be
the case. The first thing to point out is that even if there are changes in the precession
period, spin-down and frequency we have already shown that other parameters as the
wobble angle don’t change. This is consistent with our model of a precessing neutron
star with an effective biaxiality that endures changes in the ellipticity by a factor of
1.5. The precession period and spin down are not independent parameters but they
seem to be related with the relationship General Relativity suggests is appropriate for
a precessing object. The precession changes introduce a change in phase indirectly

through the related changes in spin down. The next thing to point out is that looking
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at the data it seems that the changes in the spin down are quite smooth and they
happen over a relatively extend period of time. The biggest changes seem to have
happened in the first 400 days of observation while in the other 1200 days the changes
seem to subside and become much smaller. This can be interpreted as a stabilization
of the source as the crust solidification process becomes more advanced and the crust
tends to be more uniform. So it likely that in the future the source is going to be
even more stable. But even if we consider the biggest changes observed we can see
that they are actually quite small when compared in a frame time of few days that is
what is required for detection of most of the model sequence considered in the previous
section. This indicates that maybe the problem of detection is not so impossible after
all. We can make this more precise. We are going to estimate how big the parameter
space needs to be. We show here that simple templates that describe the observed
behavior can be constructed, and that the required number of such templates and the
total computational effort needed to adequately keep track of the phase and to detect
a signal with the presumed properties is within current computational capabilities as
long as there is phase stability over a time series of length comparable or longer than
the integration time. Since the required integration times are on the order of 10-30
days, and the phase stability in the Middleditch data was comparable or better than
that, this requirement is likely to be satisfied. Following standard treatments we write

the time-dependent frequency as a Taylor series

o(t) =) % (12.18)



where w,,(0) indicates the n-th derivative at some arbitrary reference time taken to be
zero without loss of generality. A given choice of the parameters w,,(0) constitutes a
particular choice of template. Then the phase difference between two different templates

1S:

oo

A t" 1 .
Ao(t) :Z wnT('O) = Aw,(0)t + §A wt+ .., (12.19)

where Aw and A w refer to the separation in our parameter grid in the frequency and
spin down dimensions. To determine then how fine the grid needs to be we impose the

1/4 of a cycle criterion [29] or:

<

t? s
2 — 4

Adp=Aw (12.20)

Now for most of the range in the moment of inertia considered in the previous
section a typical detection time is of order of 10 days ~ 10°. The spacing in frequency

dot then is of order

A 1
Af= 2—‘” = omt ? 25X 10 Hz/s (12.21)
T

Finally the number of nodes N; needed is:

N, _ fange of spin down change 1x1071°Hz/s
4= =

= ~ 400 (7/10 d 12.22
spin down spacing 25 x 10713Hz/s (7/10 days),  ( )

where 7 is the integration time.
We could make our model even more precise including higher derivative of the
spin down but again the relative small changes in the spin down don’t really require

including higher derivatives. In any case the number of nodes in the grid for higher
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derivatives should not be so high. We need to perform also a search around the fre-
quency itself. We can predict the future frequency using the average spin-down observed
but because the spin-down is not constant we need to look for values of the frequency
around the estimated frequency. During the observations a typical value for the spin-
down was f ~ 10719572 Since the earliest opportunity for LIGO to observe this source
is T ~10 years away, we take the uncertainty in the frequency to be on the order of
f T ~ 3 x 107%2s7tor a BW = 3 x 1072Hz. This is an estimate for the total range
of frequencies to be explored. The standard phase stability requirement (Jaranowsky
& Krolak 2000 [29] ) Awr < /4 over the integration time, yields an estimate of how
closely spaced the frequency templates have to be. For 7 ~10 days~106 s, this argu-
ment yields Af ~ Aw/2m ~ 107" Hz. Consequently the total number of frequencies to
be sampled is of the order of BW/Af ~ 3 x 10° (7/10 days).

Finally, the total number of two-parameter templates Ny we require is given by
the simple product of the number of frequency values times the number of frequency
derivative values: N; ~ 1.2 x 10® (/10 days)’ .

The computational time g in floating operations per second required to analyze

this data is then given by the expression:

©=06f Ny [logy(2 f 7)+1/2] (12.23)

where f is the maximum frequency of our search (say 500 Hz) and 7 is the integration

time.

A plot of the quantity p is given in Figure 12.9 in terms of integration time. It
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is possible to see that even after a few days of integration time the computational task
of this search is realistically manageable.

With the values derived above, this yields a total computational load of approx-
imately 1.1 x 10'%(7/10d)* floating-point operations, which would require 3 months of
calculations for a Teraflop machine. While this load is not trivial, it can be achieved
by either processing the data offline or using a machine clocking at least 11(7/10d)3
Teraflops for online processing. However, the above estimate is an upper limit that
makes little use of our prior knowledge of the expected frequency and frequency range
of the signal. We need only to search over the BW of 3 x 1072 Hz, whereas the standard
argument above assumes we are searching for signals over the entire band from 0 to
500 Hz. The computational task can be significantly reduced by first ‘demodulating’
or filtering the signal to the bandwith BW estimated above and then ‘decimating’ or
reducing the signal sampling rate to the bandwith. This technique cuts the processing
rate essentially by a factor BW/f ~ 6 x 107° to approximately 0.7(7/10d)* Gigaflops,
well within the capabilities of current computers (see blue line in Figure 12.9). Finally
we notice that the above discussion refers to one of the two frequencies of emission
of the precessing neutron star. The presence of a second emission frequencies can be
treated similarly and it is a important element in the statistical considerations on the
reality of an eventual detection. In fact it will be a very convincing evidence if a detec-
tion of both frequencies is achieved and the respective stain h are as predicted by the

previous calculations.
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Figure 12.8: The comparison of the SNR (as a function of time) between a perfectly matched
filter and a filter that is matched to a signal template that is close but not exactly the real
signal.
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Figure 12.9: The computational requirement in Gigaflops as a function of the integration
time.
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CHAPTER 13
SUMMARY AND CONCLUSION

In this dissertation we discussed the implications for gravitational wave detec-
tion of the optical-infrared observation of a precessing neutron star in the remnant of
supernova 1987A . We used the observed data on rotational velocity, spin-down and
precession rate to determine the value of the possible asymmetric deformation that
causes the precession.

To estimate the size of deformation it is important also to determine the wobble
angle between the axis perpendicular to the deformation and the rotation axis. General
Relativity gives us an equation for the loss of energy, through gravitational waves.
Knowledge the rate of spin-down, the rotation frequency and the precession frequency
allows us to find the wobble angle. This is possible under the assumption that the main
mechanism for the loss of rotational energy is due to emission of gravitational radiation.
Once we know the wobble angle, we can calculate the strength of the radiation on earth.
In fact the value of the dimensionless strain parameter h depends on the value of the
wobble angle quite strongly.

Our discussion shows that even with a more a realistic model of a precessing
neutron star that takes in consideration the presence of a crust, with a certain elasticity
and the eventual presence of a fluid interior the precessional behavior is similar to that
of the simple biaxial model. The ratio of precession frequency and spin frequency
determines the order of magnitude of the ellipticity, but a complete solution requires

an estimate of the wobble angle. The preceding discussion shows that it is possible
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to obtain such self-consistent models as a function of essentially one parameter: the
moment, of inertia I, that is involved in the precession. Given this parameter, the
observational data allow to determine the wobble angle, the size of deformation and
consequently the strength of the radiation on Earth.

We saw in previous Chapters that to avoid crust breaking the wobble angle has to
be relatively small. In fact, formally, even the smallest wobble angle among the possible
range of solutions violates the maximum crustal strain. Given the uncertainties in the
model and in the interpretation of the data, we conclude that even if the limits on the
maximum strain o, are relaxed, any viable solution is likely to have a wobble angle
near the small end of the range and consequently the moment of inertia must be near
the high end of its range. At least half of moment of inertia of the star has to participate
in the precession to avoid crust fracture. In turn this means that a short integration
time on the order of days is enough to observe with confidence the gravitational wave
signal from SN 1987A using advanced detectors as LIGO II. Unfortunately the present
generation of detectors such as the resonant bars and LIGO I would require observation
times of the order of a million years to extract the signal from the noise. Thus if the
precession interpretation is correct, the SN 1987A remnant would be the best candidate
for continuous source of gravitational waves. In any case, it is clear that a targeted
search for gravitational waves from this source is worthwhile since both detection and
absence of detection over a relatively short time will yield interesting constraints on

models for precessing neutron stars.
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PART II
FULLY MATCHED FILTER FOR DOUBLE RESONANT GRAVITATIONAL
DETECTOR
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CHAPTER 14
INTRODUCTION

The existence of gravitational waves was predicted theoretically by A. Einstein
in 1915. Einstein understood gravitational waves as a fundamental consequence of
General Relativity, a theory that revealed a deep parallelism between the field prop-
erties of Electromagnetism and Gravity. Einstein, considering the enormous quantity
of energy necessary to generate detectable waves, stated that it would be impossible
to ever observe directly this phenomenon. In the early sixties J. Weber designed and
built the first devices to attempt to observe gravitational waves generated by possible
astrophysical sources. The effort by Weber attracted an extraordinary interest, because
detection of gravitational waves would be a strong test for gravitational therories and
it would open a new window to study and understand the universe.

Notwithstanding the early claims of detection by Weber, subsequent experiment
by various groups around the world were not to able to verify any detection of gravi-
tational waves. Weber’s contribution was to show that the detection of gravitational
waves was within our technological capabilities. Consequently, there has been an in-
tense effort in improving the detectors over the last 30 years.

In experimental physics, the development of the instrumentation equipment is
of major importance. Fundamental advances in exploring and understanding new phe-
nomena is often determined by even small improvements in the capability and sensitiv-
ity of detectors and other hardware. Of equal, or sometimes even more importance, are

the mathematical methods that are used to analyze and interpret the data so painstak-
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ingly obtained by the instruments. In the field of gravitational wave detection this
fact is particularly true. At this point in time, the working equipment (now resonant
bar detectors, and soon, light interferometers) is subject to the limitation, that in the
best of scenarios, the signal is unlikely to be far above the noise. Under these circum-
stances data analysis becomes of extreme importance and the mathematical tools used
to accomplish this task are valuable as the instrumentation itself. The major tool used
in Gravitational Wave data analysis is optmal filtering, a mathematical process that
allows us to most effeiciently extract a signal from noise given some characteristic of
the signal and noise.
14.1 Filters for Gravitational Wave Bursts’ Search

In this particular work, we are going to investigate the performance of two spe-
cific filters, called the slow and the fast filters, or partially-matched and fully-matched
filters. The LSU’s ALLEGRO detector group uses a form of the slow filter. We want

to explore if we can improve the performance of our data analysis using the fast filter.

14.1.1 Previous Results: The slow-fast terminology is borrowed from that used in a

certain paper by the research group of Professor Coccia and Pizzella located in Rome
at the University of the Sapienza and Tor Vergata [30]. It is claimed by the Italian
groups that the fast filter gives an improvement by a factor of 2 in the Signal to Noise
Ratio in comparison with the slow. This result was obtained applying the fast and
slow filter algorithms to the EXPLORER'’s gravitational wave detector’s data. It was
also established that the fast filter is better in estimating the arrival time of a signal

in the presence of noise. The paper by Astone et al. [30] describes the mathematical
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properties of the output time sequence of the fast and slow filter. Comparing these
mathematical properties, and in particular the form of the distribution functions of the
two filtered outputs, the authors arrive at a conclusion as to why the fast filter is better

than the slow.

14.1.2 Our investigation: The main purpose of this research is to confirm or deny (and

eventually explain and justify) the claim of the Roman group that the fast filter has
a better performance in the search for burst gravitational wave signals in the resonant
bar detectors’data. One particular advantage of our approach to studying the slow
and fast filter properties is that, at first, we didn’t need to use real data from the
detector. Instead, we created an effective simulation for a mechanical one mode and
two modes oscillator, with physical parameters that are matching the real detector. We
then applied the filtering procedures to the output of the simulated bar detector

The actual filters are found to be nearly equivalent when there is just one mode,
but they significantly differ when there are two modes.

The two filters are based on similar basic principles, however the steps to prepare
the data for the final filtering procedure differ considerably. In this study we will

sometime loosely refer to a filter as the entire filtering sequence.

14.1.3 Fast and Slow Filters: We are going to explain in detail in the following Chap-

ters, about the slow and fast filters and show their similarities and differences. The
following Figures are an introduction to the filtering procedure steps in the two cases.
Figure 14.1 shows the ALLEGRO detector ’s data taking procedure and the first

data analysis steps, done at the hardware level by the data acquisition system.
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Figure 14.1: The Acquisition and Data Analyisis procedure implemented in the ALLEGRO
detector. The antenna output is the relative motion of the bar and the transducer. The lock-
in demodulator shifts the zero frequency to the reference frequency €2, (a frequency between
the two resonant modes 21 and Q_). The data is low-pass filtered, to avoid aliasing, and
sampled at a relative slow pace (at 125 Hz). The demodulation separates the data in two
channels: the in-phase x and in-quadrature y components of the data sequence. The data is
stored on disk, with information on the antenna’s environment and on the time. The data is
consequentely processed through software to produce a final time series called the ”Energy
Innovation”.
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Figure 14.2: The block-diagram for the fast filter. This is a relative straigthforward proce-
dure. The input data is sampled at a fast rate (4096 Hz) and not demodulated. The fast
filter is implemented in the Fourier domain. The input data g(t) is the difference xs — x;in
the displacement of the bar and the transducer. The Fourier transform of the input data
(noiset-eventual signal) gguq(w) is multiplied by the conjugate of the Fourier transform of
the template signal §5igml(w). This product is divided by the total noise spectrum Sjeise
to obtain the filter data griyerea(w). To go back to the time domain we perform an inverse
Fourier transform. The energy Ef,q is determined by the square of the time domain filtered

data G filtered (t) .

The fast filter is a direct application of the matched filter, in the frequency
domain, applied directly to the data recorded directly without the demodulation and
decimation shown in Figure 14.1. We also show that if in addition, we pre-filter the
data with a whitening filter (that is going to be described later) the results obtained are
similar to the case of a direct application of the fast filter. The advantage of using the
pre-filter is to recover the initial impulse force and be able to characterize the signal as a
short duration impulse. This allows to apply the Fourier transform to a shorter stretch
of data with the consequent saving of computational time in the analysis. Figure 14.2

is an illustration of the filtering procedure for the fast filter.
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Figure 14.3: The block diagram for the slow filter. The first gray block is the equivalent in
our simulation of the lock-in demodulator in the real antenna. We use the phasor function
exp(iwt) to demodulate the data. This is equivalent to separate the data in the in-phase and
in-quadrature components. The outputs of the demodulation are then complex variables. We
use in our diagram thick lines to indicate the flow of these complex variables (as if composed
of two channels x and y). After the first demodulation we shift the zero frequency to the plus
and minus mode. Then we low pass filter and decimate the data to keep just a narrow window
of frequencies around the two resonant modes. We apply the matched filtered to the plus and
minus part of the data. The absolute square of the plus and minus filtered data is summed
together (with appropriate weights to take in consideration differences in the temperature of
the two modes). This final operation gives the energy innovation of the slow filtered data.

The slow filter implemented in the simulations is supposed to closely follow the
actual filtering procedure used by the LSU gravitational wave group to analyze the data

from its ALLEGRO detector. Figure 14.3 shows the steps followed in the simulation.

In chapter 15 we describe the theoretical basis for gravitational wave detectors
and describe their interaction with gravitational waves and discuss the noise sources
that characterize the physical detector. In chapter 16 we give some details about the

methods of our simulation and we demonstrate that it reproduces the main expected
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behavior of the bar. Real life bar detectors are sophisticated and complex machines
that contain many different mechanical and electronic parts, all possible sources of
noise. In fact, it is very common to find unexplained modes in the spectrum, sudden
changes in the average temperature and similar. Our simulation is a complete controlled
environment that allows better understanding of the proper characteristic of the filters
independent of the ideal behavior of a particular bar. We describe how we modeled
the one mode oscillator and how we extended our simulation to the two mode case.
In Chapter 17 we write down the analytical form and mathematical properties of the

unfiltered and filtered data.

Chapter 18 describes the pre-filtering done before the actuation of the fast filter.
This is done to recover the impulsive forces that act on the bar or the transducer. The
main purpose of the pre-filter is to allow us to characterize the target signal directly
without the response of the bar. This is done because the high Q of the bar requires
a very long fast Fourier transform in the matched filter to contain all the Fourier com-
ponents of the signal after the response of the detector. We show that pre-filtering
doesn’t alter the result of the fast filtering operation. Chapter 19 gives a short intro-
duction to fast matched filters. In chapter 20 we describe the slow filtering sequence
and the motivation behind the idea to separate the data information from the two
modes. In Chapter 21 we show the performance characteristics of the two filters over
identical simulated stretches of data, reproducing the bar behavior when excited by
thermal noise and transducer (electrical) noise. We found that in the case of the one

mode oscillator the slow and fast filter are apparently equivalent. When a more precise
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analysis of the performance of the two filters is implemented it can be shown that the
fast filter is consistently a more efficient filter. Essentially this means that both in
estimating the energy of an impulse and its arrival time, the fast filter is more accurate
than the slow. This accuracy is a consequence of the fact that after normalization (that
assigns to both sets of filtered data the same energy for very large impulses) the Signal
to Noise Ratio is higher for the fast. In the two mode case, similarly, different tests
were used to demonstrate the superiority of the fast filter versus the slow, in terms
of enhancing the detection of a signal buried in noise. It seems that in the two mode
case the improvement obtained using the fast filter is more evident. Sections 21.2 and
21.3 describe these results and the different tests used. Different methods give different
quantitative estimates on how better one filter is with respect to the other according
to the task assigned to the data analysis. In general, however, a value close to the
Italian groups’ claimed improvement by a factor of 2 in ” Signal to Noise Ratio” was
found. Chapter 22 explains that is not necessary to sample at a very fast rate and the
performance of the ”fast” filter is maintained when a much slower rate is used. This
indicates that ”fast’ filter is a misnomer, and a better terminology could be partially

and fully-matched filter.

ALLEGRO demodulates and decimates the data in hardware before recording.
Therefore an important question is what happens when we apply the fast filter to
demodulated data without having complete knowledge of the phase of the demodulation
clock. We arrive at the conclusion that not much information is lost when the phase

is unknown. The problem and results of applying the filters to the output of the real
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detector is described in Chapter 23. Finally Chapter 24 suggests some reasons why
the fully matched (fast) filter works better in picking up signals from noise than the

partially matched (slow) filter.
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CHAPTER 15
GRAVITATIONAL WAVES BAR DETECTORS

15.1 Interaction of Gravitational Waves with an One Mode Resonator

In this section we will show the effect of a gravitational wave on an idealized
detector with one natural mode of resonance. In other words we will derive an equation
of motion for a simple bar detector. The equation will display the coupling between
the gravitational field and the detector.

We closely follow the treatment of the classical textbook of Schutz [31]. The
detector consists of two point particles of mass m in a free falling reference system and
Traceless and Transverse coordinates. The particles are connected with a spring with
spring constant k. We suppose that there is some damping process proportional to
the velocity of the mass (internal friction, for example) with damping constant v. The
unstretched spring has a length [y. The system then can be described by the following

system of equations:
mx100 = —k(z2 — 21+ lo) — v(21 — 22) 0 (15.1)

and:

m$2700 = —k}(ﬂfg — X1 — lo) — l/(.%‘g — .T1)70 (152)
Let’s define the quantities:
r=1xy— 1z —ly, wo=2k/m, y=v/m (15.3)

the quantity wg is called the resonance frequency of the system. We can combine the
above equations to get:

T o0 + 277, + wiz = 0, (15.4)
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The free particle will be at rest in the T'T coordinate frame. The action of the
gravitational wave will keep the particle at rest. We suppose that the only relevant
motions are the ones created by the gravitational waves and so z = O(|h|*) < lo.
In the local frame the velocities will also be small and then we can use Newtonian

!
equations in the inertial frame of reference {z“ } :

’

mal, = F (15.5)

J
0
The difference of this coordinate system with the T'T coordinate system is in

second order terms in h then:
ma'y, = FI + O(|hu ), (15.6)

The spring restoring and damping forces are the only non-gravitational forces
acting on the system. At any given time the motion of the masses are non-relativistic
and the restoring force will be linearly proportional to the given extension of the proper
distance between the masses at any instant. The metric will determine such distance.
In the TT gauge we have the proper distance is changing with time. In fact, if we
position particle one at the origin and the other at the point x = ¢, y = 0, 2 = 0 then

we have:

Al = /‘d82}1/2:/‘gmdxo‘dx’g‘lm (15.7)

_ / gua V2 it~ |gua (2 = 0)[Y2 &
0

Q

1
[1 + §hfwT(x = 0)} £

We can apply this result to our problem of the effect of a gravitational wave on

a idealized resonant detector. We get that the proper distance | between the masses
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changes with time as:
I(t) = / 1+ RTT(5)] Y2 at
Writing explicitly the forces we get:

mioo = —k(lo - l) - V(lo — l)70

and:

mxloo = —k(l — lo) — V(l — l0)70

Using the result on the value of the proper distance we have:

1
r = l — lo = X2 — L1 — l + 5h£g(£2 — Z’l) + O(‘h/_wﬁ)

or solving for the separation between the masses:

1
To—x1 =lp+x— §hf§lo + O(’h;w‘Z)

(15.8)

(15.9)

(15.10)

(15.11)

(15.12)

The response of the detector can be described by the following equation.

1
T 00+ 27T 0 + wgm = §hfgoo,

(15.13)

The conclusion is that the bar responds to the gravitational field like a damped

harmonic oscillator driven by the gravitational wave as an external force. This result

is illustrated in Figure 15.1.

15.2 The Noise

The final crucial element in a description of a detector is a description of all the

noise sources, meaning random waveforms that appear in the output of the detector,

and are superimposed on any possible signal.
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The interaction of gravitational waves with a bar

F(t)=1/2h," . F(t)y=1/2n"
| |

—_— m m -

Figure 15.1: The gravitational wave interaction with a massive bar in the case of one mode
system. The gravitational wave acts as a external force on the mass of the bar that can be
described as two separate masses m attached by a spring with spring constant k.

The detector is subject to many different types of noise that interfere with the
observation of gravitational waves. We can divide sources of noise into those that are
external and those that are internal to the detector [33].

a) The main source of external noise is the seismic motion of the earth. The
spectrum of the earth motion peaks at low frequencies, with a broad spectrum around
5 Hertz. Beyond this lowest frequency the spectrum of the noise can be modeled by

the following ground motion amplitude function x,:
z,=af *m/VHz, (15.14)

where f and « depends on the particular environment of the geographical location.
The bar detector has an isolation system consisting of springs and rubber rings.

The isolation system has the function to very efficiently stop high frequency motion of

126



the environment to reach the bar. Low frequencies can go through the isolation system
but that is not considered a problem because the range of interest for our detector is
around and in between the resonant peaks that are at about thousands of Hertz. In
our simulation of the detector we assume that the damping is perfect and no seismic
vibration goes through our ideal isolation system.

b) The main source of internal noise is the thermal noise. The bar is kept at a
very low temperature to minimize such noise. Even if the bar is frozen to the temper-
ature of liquid helium the thermal noise of the molecules of the material that makes
the bar is still a dominant source of noise as compared to the possible astrophysical
gravitational wave signals. The noise can be understood as a Brownian motion and

its mean expressed in terms of the strain is:

kBTTmeas 1/2
hp~ | ——m— 15.15
b ( Mw,,I2Q ) (15.15)

where k; is the Boltzmann’s constant, 1" is the temperature, 7,,.qs is the time of the
measurement, M is the mass of the detector, the w,,, [, @ is the resonant frequency
of the detector, the length of the bar and its quality factor respectively. The main
frequency of resonance in the longitudinal direction is related to the speed of sound in

the material:

Wl = 7y, (15.16)
so the strain is expressed as:
kBTTmeas 1/2
hg ~ | 7+ 15.17
b ( T2 MQ ) ( )
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substituting physical units we have:

_ fn 10190\ /10°N / T\ /Tomeas\ 1>
a0 |(Gh0) () (9) () ()] s

When we use the ALLEGRO’s parameters, we have that hg ~ 1072! (speed of

sound in aluminum is 5000 m/s ).
c¢) The SQUID noise is mainly due to the transducer losses. This is a combination
of the series noise that is the equivalent of thermal noise in an electromagnetic system

and back-reaction of the transducer and amplifier on the bar. The combined effect of

the SQUID noise is:

1/2 1/2 1/2 ,
R " 11 x 102 ( Im " (10%kg) " (10tms ! (15.19)
° T2 Muv? ' 1kHz M v? '

15.3 Two Mode Detector with Different Noise Sources

In this section we extend the discussion of the effect of gravitational waves on
a coupled harmonic oscillator, a more realistic model for the bar detector. The real
detector has a second mechanical resonator attached to the end of the bar. The purpose
of adding a second resonator is to ”amplify” the motion of the bar. Using the formalism

from Evan Maucelli’s dissertation [32], we can write the equation of motion as:

my 2 (t) +¢1 Ty (8) + k21 (t) — o To (t) — kowa(t) (15.20)
— Fi(t) — Ba(t) + Frlt) + %mlLl e (1)
meo (33‘2 (t)+ il (t)) + C2 fg (t) + kgl'g(t)

= F(t) - Fr(t)
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my and ms are the effective masses of the bar and the transducer. L; is the
length of the bar. k; and k, represent the spring constant of the two resonators and
c1 and ¢y are the damping coefficients. F; and F, are the random noise forces acting
on the bar and transducer. The thermal noise forces on the bar and the transducers
can be considered as independent random variables with a normal distribution. The

damping coefficients are related to the quality factors ()1 and Qs by the equation:

Q12 =mi kia2/c12. (15.21)

As explained in the previous section the gravitational waves can be considered
as an external force. One of the main characteristics of the gravitational wave is that

it will excite just the bar with nearly no interaction with the transducer.

This is due to the fact that the strength of interaction of the gravitational wave
is proportional to the mass. The mass of the transducer is about a 1000 times smaller
than that of the bar. Therefore the effect of the passage of a gravitational wave through
the detector is to deposit many order of magnitude more energy in the bar than in the
transducer. This explains why the gravitational wave component of the external force
is only present in the first equation of motion, which describes the forces acting on the
bar mass m;. In the simulation of the detector we will use this important aspect of
the gravitational wave force impulse to characterize the gravitational wave signal. The

following Figure 15.2 shows the different forces acting on the bar and transducer.
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Figure 15.2: The two mode oscillator, with all the different sources of force noise and gravi-
tational wave driving force.

15.4 Details of the ALLEGRO Bar Detector

The ALLEGRO bar detector is located at Louisiana State University. Its precise

geographical location is:

latitude=30°25" North ; longitude=91°10" West (15.22)

The detector is constituted by a massive aluminum bar and a mechanical-
electrical transducer, and other electronic devices to amplify and record the data. The
system can be described as a two mode coupled harmonic oscillator. ALLEGRO is
a very typical gravitational wave resonant detector and for later use we list in the
following tables some of its physical characteristics.

The bar is very massive to offer a bigger cross section to the gravitational waves.
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Table 15.1: Physical parameters of the ALLEGRO detector

Mass of bar (Aluminum alloy) 2296 kg (effct. mass=1148 kg)
Mass of transducer ~ 0.64 kg

resonant frequency bar 913.83 Hz

resonant frequency transducer 902.58 Hz

temperature noise in the bar 4.2 K

temperature of noise in the transducer | 4.2 K

spring constants, length 300 cm

On one end of the bar is a transducer that converts the mechanical motion of the
bar in a voltage potential difference. This electrical output is amplified by a SQUID
(superconductive quantum interference device). The mixing angle « is a parameter that
determines the level of ”tuning” between the bar and the transducer. In other words
the mixing angle tells how close the resonant frequencies of the bar and transducer are.
Perfect tuning is equivalent to the mixing angle « equal to 45° (see following section
for a more detailed discussion of the mixing angle formalism). The bar is supposedly
excited by a bath of gravitational waves from continuous and burst sources in the sky.
Unfortunately the gravitational waves’ forces on the bar are much weaker than the
thermal noise impulses. The bar is in contact with a liquid helium reservoir through
the cable from which the bar is suspended. This limits the thermal noise in the bar, but

even when cooled down to a few kelvins, the thermal noise dominates over the majority
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of gravitational wave impulses. Another important source of noise is the electrical
shot noise due to the SQUID. The bar is supposedly isolated from influences of the
external environment, in particular, seismic vibrations of the ground. The isolation
is achieved through a sophisticated suspension system that very efficiently dumps the
high frequency vibration of the ground. The choice of material, in this case a special
alloy of aluminum, and the size of the bar is designed in such a way to have the bar
resonant mode close to that of the resonant frequency of typical compact astrophysical
sources, the best candidate for gravitational wave sources.

This frequency can be derived from basic principles and it is around 1000 Hz.
See Chapter 11 for a discussion of the astrophysical time scales. The suspension system
is designed in such a way to have its main resonant mode at a quite lower frequency
than 1000 Hz, so no ground motion around the astrophysical interesting frequency can
reach the bar. Occasionally very large ground motions do go through the suspension
system. A series of seismometers sits around the detector to register information on the
surrounding environment. A veto procedure is in place in the ALLEGRO data analysis

protocol to discard the data that coincide with large responses from the seismometers.
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Table 15.2: Parameters of the normal modes of the detector.

plus normal mode frequency 896.8 Hz

minus normal mode frequency | 920.3 Hz

Q of plus mode ~1076
Q of minus mode ~1076
Mixing angle o 30.8 ¢
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CHAPTER 16
ANALYTIC FORM OF THE SIGNAL AND NOISE

In this chapter we write the equations for the analytic description of our oscillator
system for the one mode and two mode cases. These equations are continuous and so
able to reproduce the analog response of the real system. The goal of this chapter is
to derive equations that describe the response of the bar to both a gravitational signal
and enviromental noise. We calculate the analytic spectrum for our system and then
use this to show that our simulation is a good representation of a damped harmonic
oscillator with the given characteristics. Our simulation is digital and so discrete in
form, reproducing the process of sampling and collection of the data in a real life
experiment. The continuous and discrete representations should be in general similar
to each other and give comparable answers.

The presence of noise creates a random behavior for the displacement response
of the detector, but the statistical properties of the system can be determined when we
consider averages over a long time. The response of the detector to a large specified
signal can be described deterministically solving the equations of motion. When the
noise mean amplitude is larger than the signal we have to be content to describe the
average behavior of the bar with statistical quantities such as the power spectrum and
auto-correlation functions. In an experiment the spectrum can be measured taking
spectra of relatively short time intervals and then averaging many of these intervals.
This is a good description of the noise if the noise is stationary, i. e., the spectrum

converges when many averages are taken. In many real life detectors the stationarity
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of the noise is some kind of an approximation or simply assumed to be the case. Real
time measurements of the spectrum are done on a regular basis for a realistic, cur-
rent estimate of the noise. In our simulation the noise is perfectly stationary and the
spectrum will certainly converge if we take enough averages.

The optimization of any filter requires knowledge of the noise. The most infor-
mative characterization of the stationary noise is the spectrum. We use explicitly the
analytical form of the spectrum for the construction of the data analysis fast filter (see
following chapters). The spectrum and auto-correlation functions are closely related.
We use in the slow filter the auto-correlation function so we also give an analytical
expression for this quantity.

16.1 Analytical Description of the One Mode System

16.1.1 Equation of Motion The equation of motion of a damped harmonic oscillator

is (see previous chapter):

m x +cCs x +k} == Fd’rifuz'ng- (161)

If the force driving the oscillator is a random sequence of delta impulses then the
solution of the above equation is a random process and x is a random quantity. The
above equation is called a stochastic differential equation. In particular the above
equation can be understood as describing the motion of a particle attached to a spring
and undergoing one-dimensional Brownian motion. In this case equation (16.1) is a
form of Langevin equation [29]. The solution of the stochastic differential equation is
not deterministic and the quantity x behavior can be described in terms of statistical

properties as the mean, standard deviation, Auto-correlation and Power Spectrum (see

135



next section for a definitions of the Auto-correlation and Power Spectrum).

A standard form for the driving force Fyriving (t) is a Gaussian white noise
process with zero mean. We model this process as a sequence of random amplitude
force impulses acting on the bar at fixed time intervals A¢. This choice is determined by
the sampling of the data in real experiments that happens at regular, discrete intervals.

The essemble average Auto-correlation function R(t1,ts) of the force noise process is

defined to be:

R(tlu t2) = <Fdriving(tl)Fdriving(t2)> =4g o (tQ - tl) (162)

this means that the Auto-correlation of the noise is a Dirac-delta function 8§, with
to —t; = n At (n is an positive integer). A standard result of Fourier analysis is that
consequentely the Power Spectrum of the force noise is flat containing all the frequencies
components . The brackets in equation (16.1) indicate average over a large essemble.
We assume ergodicity of the noise, this implies that average over a large essemble is
equivalent to time average of a single system. We model the driving force as due to the
thermal motion of the particle in equilibrium with a heat bath at a temperature Temp.
In this case by the equipartition theorem the average kinetic energy is %kaemp, where

ky is the Bolzman constant.

16.1.2  Power Spectrum and Auto-Correlation Function A very important and useful

quantity to study stochastic processes is the Power Spectrum (PS). When we are dealing
with real experiments we have finite time series of length T for the stochastic variable

F(t).
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Then the Power Spectrum Sr  is defined as:

Spp(w) = lim %ﬁ*(w, tYF(w,t), (16.3)

T—o00

where F indicates the Fourier transform of the variable F and the star signifies complex
conjugation.

We can express analytically the Power Spectrum S, for the amplitude of the
oscillator = as:

Sbar (W) = |G (W)[* Spy (W) (16.4)

where G is the transfer function of the oscillator given by:

1 1
G(w) = - <—w2 —l—@'%w—i—w%) (16.5)

and wy = %, Q = mk/cs.

The MatLab function PSD calculates the Power Spectral Density. To convert
the analytical Power Spectrum in the Power Spectral Density we need to divide the
Power Spectrum by the sampling frequency. In going from the continuous to the
discrete case it is useful to refer to the following equations.

We have that:

Fy = PS(t — to) (16.6)

where P, is the moment transfer due to the noise force acting on the bar.
The initial impulse force on the bar Fj is related to the Spectrum of the thermal
forces Sy by:

Sy = FZdT; (16.7)
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where the term dT is the sampling time. The white noise of the SQUID results in an
uncertainty of the voltage output of the detection apparatus. This in turn is equivalent
in an uncertainty in the displacement of the bar. The distribution of the SQUID
displacement error is Gaussian, with zero mean. If the average displacement error due

to the SQUID is .4, then we can write this white noise spectrum .S, as:

Sy =22, dT. (16.8)

Then the total noise spectrum Sj; is:
Stot (W) = Sf |G (W)|* + S (w) (16.9)
The definition of Auto-correlation Ry of the variable F is:
Rpp (1) =(F(t1 +7) F(t1)). (16.10)

The Auto-correlation function Ry of the noise is the inverse Fourier transform

of the Power Spectrum Sp,:
Rpp(T) = /dw " Spar (w) . (16.11)

The following Figures show the comparison between the analytical and experi-
mental (from the simulation) Auto-correlation and Power Spectral Density. The agree-
ment is quite good and the uncertainty is due just to the finite length of the experimental

data used to calculate the experimental spectrum.
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Figure 16.1: The analytical (red) and experimental spectra (blue) are compared.

16.2 The Two Mode System: The Mixing-Angle Representation

Following A. Morse dissertation [35] this is the mass normalization matrix M (see

previous chapter 5 for notation refering to the model of a coupled harmonic detector):

L
M=|Y™ (16.12)
0 1
Jmz

Then the system of two coupled oscillator can be described using the displace-

ment vector u and its second time derivative:

u=-Ku+MF. (16.13)
where:
I
— 16.14
a=(" (16.14)
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and

K= ( P2 ym (16.15)
V) 2wy —w?

The forces acting on the bar and transducer form the vector F. To solve these

equations we define the mass-normalized coordinates a by:
a=Mu. (16.16)

Then, the equation can be Fourier transformed and solved by usual linear tech-
niques. In the Fourier Domain the solutions for the equations of motion of the detector
(ignoring damping) are:

Zil Gll G12 Fl
= (16.17)

52 G21 G22 FQ

where the aq,as, F 1 and ﬁg are the Fourier transformed displacement functions aq, as
and the impulse delta forces F; and F5. In the case of the noise the force sequences are
random variables with normal distributions. In the case of the signal we have that F is
a delta function with its maximum located at the instant of arrival of the gravitational
wave and F, has a constant zero value.

The elements of the transfer function matrix G are:

cos? 0 sin? 6

G = 16.18

H my (W3 — w? +iwiw/Q4) * my (W2 —w? +iw_w/Q-)’ ( )
—sinf cos 6 sin 6 cos 6
G2 = Go = 3 . + 2 . ;
mimg (Wi — w? + iwyw/Qy) mims (w2 — w? +iw_w/Q_)

sin? 6 cos® §

Gy =

my (W2 —w? +iwsw/Q1)  my(w? —w?+iw_jw/Q-)
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We specify the parameters of the bar and transducer, as the masses mi, mo,
the resonant frequencies w; and ws. Then we proceed to construct the transformation
matrix from the mass coordinates to the normal modes coordinates. —The mixing
angle 0 is a measure of the "tuning” between the bar mass m; and mass msy resonant
frequencies. If the resonant frequencies are the same the mixing angle 6 is equal to 45°.
The matrix of eigenvalues of the matrix K are the normal mode frequencies w, and
w_. The eingenfuntion matrix A is the transformation between the mass coordinates to
the normal mode coordinates. The matrix A can be written in terms of mixing angle

6, assuming the form of a rotation matrix:

cosf) —sind

A= . (16.19)
sinf cos0

16.3 The Spectrum of the Noise for the Observable

In the simulation we can keep track of the values of the displacement variables a;
and as. In a real experiment the transducer is capable to transform the kinetic energy
of the motion of the transducer relative to the bar in a voltage potential difference.
This is the physical quantity that can be measured by the experimental apparatus.
This quantity is proportional to the difference in the displacement variables a; and as.
This means that what we can measure directly is the quantity as — a;. The spectrum

of the noise for the two modes system observable ay — a; is:

Stot = |G12 — G11’2 S+ |Ga2 — 2 G2 + G11’2 S+ Sw;
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where Sy, is the force noise in the bar:

Ak Temp mpq, Kogr

Mpar

S b — )
d Qbar

(16.20)

and Sy, is the force noise on the transducer:

4ka emp Mirans %
Sy = V (16.21)

Qtrans

and Sy, is the white noise of the SQUID that is empirically measured in a real detector.
A crucial parameter for any bar detector is the ratio I' between the narrow band
Sy, and broad band noise Sy, definde as:

Sy G2
Sw

I = . (16.22)

where our convention is that the normalizing factor G* = 1072'm?/N? and N is the
unit Netwon. The quantity G* is an average measure of the absolute value square of
the bar’s transfer function away from the resonant frequency where the SQUID white
noise dominates. For ALLEGRO we that I" ~ 10%.

In our simulation, because of the low Q that we have chosen our detector, we
have to select a smaller value for I' so that the auto-correlation function changes more
gradually over the 31 samples of the filter length. See Table 16.2 for a list of the
parameters in our simulation.

16.4 The FFT of the Signal

For a specific force vector, with the Fourier transforms }Nﬂ and ﬁg, the observable

as — ap will have a specific response given by the Fourier transform a, — @y :
ay = Gulbi Gk,
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62 = Gglﬁl + GQQF\Z and
a; —ay = (G — Ga)Fy 4 (Gia — Gag) Fo.
where (G is the detector transfer function and ﬁa is the Fourier transform of the force
impulse signal.

In the case of a gravitational wave signal we have already mentioned that the

only force present is the force on the bar Fj. In this case the FFT for the signal is:

Gy — Gy = (G11 — Ga) Fy. (16.23)
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CHAPTER 17
THE SIMULATION

17.1 The Realistic Resonant Detector Versus the Simulated One

The typical bar detector is a large aluminum mass (around 1 ton) and a trans-
ducer used to "read” the motion of the main mass. Due to the very small cross section
of gravitational interactions, the large mass is necessary to increase the energy released
in the detector by the incident gravitational waves. The bar resonant frequency is
tuned to particular astrophysical events such as supernova explosions that are sup-
posed to produce gravitational waves with a characteristic frequency of about 1000
Hertz (see the characteristic time scale discussion in the previous part of this disserta-
tion). The transducer, connected to the bar, could be an electric device that transforms
the mechanical motion of the main mass in a readable electrical signal. In actuality
the transducer is a combination of electrical and mechanical parts. For example in the
ALLEGRO detector the mechanical part of the transducer is a ”mushroom” shaped
piece of metal that is joined to the bar. The mass of this mechanical second resonator is
very small. As the bar moves and oscillates the flat part of the 'mushroom’ bends and
accelerates. The electrical part of the transducer is an inductor in which a small current
is constantly going through. The bending metal of the mechanical transducer pushes
back and forth the field lines of the magnetic field of the inductor. The inductance,
in the inductor, is in this way modulated by the change in shape of the mechanical
resonator that reacts to the vibration of the bar. A device called SQUID (Supercon-

ducting Quantum Interference Device) is able to convert (and amplify) the changing
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flux in a changing voltage which is the physical quantity that is finally recorded in the
data acquisition system of the detector. The transducer’s total physical characteristics
can be translated as that of a mechanical oscillator. Properties such as the natural
resonant frequency of this oscillator are chosen to be close to that of the bar. The
equivalent mass of the transducer is very small in comparison with the large one (71
kilos). This is done to amplify the minute displacements expected to be created by
realistic gravitational waves, of the order of 107! or less than the length of the bar (71
meter long). Because of its small mass the transducer is practically not affected by the
presence of gravitational waves. The perfect tuning of the bar (mixing angle o = 45°)
and transducer is an ideal situation almost impossible to achieve in practice. In our
simulation, however, we decided to choose this ideal setting. The perfect tuning should
not affect the performance of the two filters but investigations in this particular issue

are needed.

In this chapter we explain how to make a discrete time simulation of the antenna
dynamics using the mathematical tool called digital filter. This approach achieves the
purpose of simulating the physical behavior of the oscillator without using for example,
ordinary differential equation solvers. Furthermore the digital filter is a representation
of the data acquisition system. The real detector is an analog device, it is continuously
responding to the different forces that excite it. Instead, our measurements are nec-
essarily finite in time. The process of measurement transforms the analog response of
the detector in a digital sequence of information. The digital filter we use creates an

output that is discrete in time, and so it represents the digital process of sampling the
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analog response of the bar. Hereafter, we will call this filter the digital simulator, to

not create confusion with the data analysis filters mention in the following.

17.1.1 Noise Characterization and Simulation The physical behavior of the detector

is due to the reaction to thermal Brownian motion force acting on bar and transducer.
The random force on the bar and the transducer are independent from each other. We
simulate this by a sequence of random force impulses that constitute the input for the
digital simulator. The sequence of impulses has a fixed separation in time, determined
by the sampling frequency, in our case 4096 samples per second. In reality, of course,
the noise impulses arrive at random times. The discreteness of the sampling process in
the real experiment allows us in any case to simulate the noise as a sequence of events
discrete in time. The amplitude of the impulses is normally distributed with zero mean.
In addition to the thermal noise there is another source of noise in the detector; this
is the electrical noise from the SQUID. This type of noise is added in the simulation
to the response of the bar to the thermal noise. The SQUID noise is white, normally
distibuted with mean zero. The ratio of the amplitude of the narrow band noise (the
response of the bar to the thermal force) to the wide band noise of the SQUID is an
important parameter that determines the characteristics of the detector. This point

will be discussed in more details in the following sections.

We are going to consider the simpler case of one mode oscillator. We can build
an n-modes oscillator using the same technique applied to n-independent oscillators.
Then we consider such oscillators as the normal modes of a n-modes oscillator. To

get the output of the oscillator in the mass coordinates we apply the usual linear
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transformations to the independent outputs of the n oscillator. We will explain this in
details in the following.
17.2 Difference Equations and Filters

In this section we are going to show how to use digital filters to solve the discrete
equivalent to differential equations: difference equations. The differential equations
that describe the motion of the masses in a coupled harmonic oscillator can be ”dis-
cretized” writing similar equations that gives the solution y,, at a time ¢,, as a function

the previous status yx of the system, with & > n.
u(n) f(n) — F(n) (17.1)
If we assume that z-tranform of f(n) is F(n) where f (n) =0 for k& < 0.

F(z) =) f(n)z" (17.2)

n=0

See the next section for a definition of the z-transform.

Let’s define
w(n—1)f(n—1) — Fy(n) (17.3)
Then
F, (2) :i fln—1)z (17.4)
Let B

r=n-—1 (17.5)

F,(z)=2"" Z f(r)yz=". (17.6)



Proceding in a similar way, we can generalize to the previous result and obtain:

u(n—K) f(n—K) 2% F(2) (17.7)

We used the built in function FILTER in MatLab software to solve the difference
equation that models the bar dynamics. The function FILTER in the is a ” Direct Form

IT Transposed” implementation of the standard difference equation:

a1Yn = blmn + benfl + ...+ bnbxnfnb — QYp—1 — oo T Apa+1Yn—ng (178)
If a; is not equal to 1, FILTER normalizes the filter coefficients by a;.
In general, the difference equation of the type above can be written as:
R
S (=) =g(n) (17.9)
r=0

where ¢ (n) is the driving force. Taking the z-transform of both sides of the equation,

we have

Solving for F(z), we obtain:

F(2)=G(2) / Z ar 27" (17.10)

This is the general form of the solution of a difference equation in terms of its

z-transform.

In the next sections we are going to show how to use this technique to create a

model for an one mode and two mode oscillator.
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17.3 The One Mode Oscillator

To measure the oscillation of the bar we use a device (called a transducer) that
transforms the bar’s mechanical motion in some measurable physical quantity. Because
the bar needs to be isolated from the environment we want a transducer that forms a
self-contained system with the bar. The most efficient way to create such a system is to
build a two (or more) mode oscillator, where the bar and the transducer are the coupled
oscillators. We want to study the characteristics of the fast and slow filters as explained
in the introduction. The best way to do so is to look at a one mode oscillator. We
can do a computer experiment where we model the behavior of a mechanical resonator
and get directly as an output of such simulation the position and velocities of the
bar displacement without the use of a transducer. The presence of two modes can
complicate our analysis of the characteristics of the two filters. The simulation also has
the advantage of being well controlled. In a simulation we can easily isolate different
parameters of the detector and determine their influence on filtering. Once we have
understood the behavior of the filters for the one mode oscillator we can extend more
confidently our study to the more realistic case of the two modes oscillator. We are
going to model the one mode oscillator with a digital filter of the transfer function of

one mode oscillator. This procedure is explained in the following section.

17.4 From Continuous System to Digital Filters. The Z-Transformation

17.4.1 The One Mode Oscillator We are going to ”digitize” the response of the one

mode oscillator with a filter.
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This filter is described in Papoulis [40], p. 167. In particular the author explains
that the digital simulator of a finite order system Hj(s), obtained by sampling the
analog impulse response h,(t), is a digital filter H(z) of the same order.

In the case of a simple harmonic oscillator we have:

L 128126
(s+a)2+p° s—s s—s

HI(S) = 12 = —a :i:]ﬁ (1711)

To obtain the corresponding digital simulator we apply the following z-matched

transformation
§—8,=1—¢e*Tz7! (17.12)
obtaining:
ATz
H(z) = ——m8— 17.13
(2) 22—bz+c’ ( )

where z = e*1', where T is the inverse of the sampling frequency and where

A= e*O‘TM, b=2e T cos(BT), c=e 2T (17.14)

g

Now we want to compare this formula with the well known form of the transfer
function H,(w) of an harmonic oscillator, described by the typical differential equation

m T +c, x +k = Fdriving7 or:

1 1 1 1 1
Ho(w) = — ' . 2y Cs; E ]~ m \ Zo2 2o 2 1
mw?+caw+k m\ —w + 2w+ - m w* + sz+w0

(17.15)
where wy is the natural frequency of the oscillator and () is the quality factor.
If we give a value of iw to s then we have that H,(s) in (17.1) is:
H(s) ! = ! (17.16)

T 2+ 0%+ 2as —w? 4 2aiw + a2 + B
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Table 17.1: The coefficients for z transform of the one mode oscillator transfer function.

numerator (b coefficients) | denominator (a coefficients)

z71=0 =1
272 = AdT 272 = —2¢7* T cos(B dT)
z3 =0 773 = Qe dT

this leads to the identifications (up to constant m):

i 2 107 1
G20 5= %—k:wog—Q, (17.17)

relevant for relating (17.1) to (17.2).

To implement the digital simulator we used the filter command in the mathemat-
ical software package MatLab. The filter is specified by two vectors b and a respectively.
In our particular case we have that the values for b(1) and b(2) are 0 and A dT' (dT is
equivalent to T in our discrete simulation). The values for a(1), a(2) and a(3) are 1, -b,
and c as defined in (2). See the MatLab manual for details on the syntax of the filter
command.

The input of the filter is a normally distributed random sequence of force im-
pulses. The mean value of the force Fy,, is established by the given temperature 7.,

of the bar (T¢m,, = 4 mKelvin in our experiment):

_ . [Sp
Fbar - dTy (1718)

where Sy, is the white noise spectrum of the random force sequence [27]:

T ———s
Sy = 0 , (17.19)
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and k; is the Boltzman constant.

The output of the filter operation on the force impulses input is the discrete
time domain response of the harmonic oscillator driven by the random force. This is a
satisfactory digital simulation of the sampling (at a chosen ”fast” rate of 4096 samples
per second) of the continuous response of a realistic bar detector. Finally we add
a certain amount of white noise to the output of the digital filter. This is done to
simulate the effect of the noise in the SQUID. The ratio I' between the broad band
noise of the SQUID and the narrow band noise in the bar is chosen to be similar to
that of the real detector. To determine if our simulation is truly a good representation
of the system with the physical characteristics chosen. We tested the response of the
simulated bar to a single impulse and measured the typical exponential decay time 7
and this turned out to be very close to the theoretical decay time. Also we looked
at the spectrum of the simulation data and compared it with a calculated theoretical
spectrum for the oscillator (see next chapter for a discussion of the form of the spectrum
of the oscillator). The agreement is quite satisfactory as Figure 17.1 shows.

The procedure to create a two modes oscillator from a one mode oscillator is

straightforward. It is explained in detail in the following.
17.5 Energy Conservation and Decay Time

17.5.1 Tests for Checking the Simulation Performance As a test, to demonstrate that

our simulation behaves as expected, we can check if the total energy of the system is
conserved within a short time span. The system is not strictly conservative because

of the dissipation due to friction. Nevertheless we expect the energy to decay with a
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Table 17.2: The physical parameters used in the simulation for the one mode oscillator.

Temperature T¢,, 4x1073% K
Mass m; 1000 Kg
Quality factor (), 10%
resonant frequency w 900 Hz
narrow/broad noise ratio T' | 5.1x107°

predictable time constant. Also we can expect the maximum of the potential energy to
be coincident with a null value of the kinetic energy and viceversa. In other words the
potential and kinetic energy should have a phase difference of 90°. In a short time scale
the total energy should be conserved. The maximum value of the potential energy of
the oscillator should equal the initial impulse energy. The amplitude and energy should

decay in an exponential fashion with a typical decay time 7:

T=Q/w (17.20)

17.5.2 Convergence of Solutions and the Sampling time of the Simulation There is

a important issue that needs to be discussed at this point. The digital filter that we
constructed to simulate the behavior of the bar under stochastic forces is a way to
solve the dynamical behavior of this system similar to solving a system of differential
equations. As in the case of differential equations solved in a numerical fashion it is
very important to choose appropriate initial conditions and the size of the time steps
used. In our simulations the initial conditions are not so essential because we discard

usually (through the use of overlapping windows) the first and last few sample points
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in a typical filtered stretch (usually 2!® samples long). Any inital transient is therefore
uninfluential in our simulation.

The sample time instead is a very crucial element in discretization of our system
dynamics. Choosing shorter and shorter sampling time for our filter should bring closer
our digital simulation to the real analog behaviour of the bar. The sample frequency
we choose in our simulation is 4096 samples per second. We had to decrease the
sampling time by a factor of 500 to have a cleaner and smoother result and reproduce
more precisely some of the expected characteristics of the system as described in the
previous subsection (see Figure 17.4). Even at a lower sampling rate our simulation
comes close to the requirement of energy conservation in a short time scale, within
an acceptable error. In this case we verify that the solution (consisting of the sample
points in the time sequence) is a subset of the faster sampled solution. The results
for this test are shown in the following Figure 17.5 and Figure 17.6. This verifies that
our simulation behaves as expected and the sample time of 4096 is adequate for our

purposes.
17.6 Simulation of the Two Mode System

It is possible to extend the method of the previous sections to the case of a two
mode oscillator. The main complication that we have in the two mode situation is
that there are two sources of noise in the bar besides the white noise of the SQUID.
There are random forces acting on the bar and random forces acting on the transducer.
Furthermore the transfer function for such system is a matrix making the problem of

creating a filter more complicated. An important property of a two mode oscillator is
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Figure 17.1: The decay of the simulated oscillator (blue) compared with the theoretical decay
function (in red). The sampling rate here is 4096 per second.
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Figure 17.2: The total energy of the one mode simulated oscillator (green), the potential
energy (red) and kinetic energy (blue). The sampling time is 500 shorter than in the previous
figure. The potention and the kinetic energy are out of phase by 90 degrees as expected.
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Figure 17.3: The red curve shows the simulation output with a sample frequency of 4096
samples per second. The blue curve is sampled 8 time faster. The blue curve reproduces
more precisely the dynamical properties of the bar. The graph shows, anyway, that the
slower sampled data is just a subset of the faster sampled data. This means that the essential
characteristics of the bar dynamics are preserved in the simulation and that sampling at a
lower rate doesn’t effect greatly the performance of the simulation.

©
=]
S

©
3
3

@D 4
L

~
=]
S

@
=]
S

N
Q
S

count of data points

w [9))
o o
o o
@ 00 0 0o
0500 00° © é® CpO
‘

n
=]
S

D

Q
S

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
normalized error (simulation at 4096 sample per second versus 8 times faster simulation)

Figure 17.4: This figure shows the histogram for the ”error” in the potentail energy in a
simulation with 4096 sample per second compared with a simulation sampled 8 times faster.
The error is normalized to the average value of the potential energy of the faster simulation.

The histogram is sharply peaked around the mean value of about -107%.
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Table 17.3: Physical parameters for the transducer and the bar in the two mode oscillator.

Bar parameters Transducer parameters
Temperature T, 421073 K | Temperature Ty, 421073 K
Mass m; 1000 Kg | Mass may 1 Kg
Quality factor (), 5x10% Quality factor @ 5x10%
resonant, frequency w; | 900 Hz resonant frequency wy | 900 Hz

that we can find a transformation that brings the inertial coordinates of the displace-
ment zi;and z2 to normal modes coordinates n; and 7,. The normal coordinates can
be treated as two independent one mode oscillators. This result is exact when there is
not damping in the system. Damping makes the system non-linear, introducing cross
term between the modes. Theoretically that means we cannot consider the two modes
completely independent. In our case we have some damping but because of the high Q
of the bar and transducer we can think about the system under consideration as almost
being without damping. We adopted the following steps in creating the simulation for

the two modes system:
STEP1:

We specify the physical parameters for the bar and transducer. Table 17.3 shows

these parameters that are similar to the real life detector.

Other parameters for the simulation are also set as the sampling rate that is
4096 sample per second and the length of the fast Fourier transform (fft), that is

chosen to be at 2 points. The sampling time is quite faster than the sampling time
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of the ALLEGRO data acquisition system. We want to study the effect of the fast
sampling time and see if we loose information from slowing down the sampling time.
The temperature determines the spectrum Sy, and Sy, of the random noise in the bar
and transducer . The force noise spectrum acting on the bar is independent of frequency

with constant value:

k
4kb,-remp my m_ll

@1 ’

Spp = (17.21)

and for the transducer we have:

Ak Tomp Mo 1/ 22

mg
Q2

Spr = (17.22)

where k; = \/7‘;’1:11 and ky = \/;‘,’1:22 are the spring constants of the oscillators. The spec-

trum then can be used to determine the average size of the force impulses Fj,, = \/%

and Flirgns = %. The parameter sampling time d7T' is the inverse of the sampling

frequency. The built in random generator of the MarLab program is used to create a

force time sequence normally distributed around Fy,,. and Fj.,,s. These two sequences

are the forces that act on the bar and transducer and the input of our simulation.
STEP2:

We now are ready to make a transformation to the normal coordinates. Following

the method of the dissertation of A. Morse [35] we write the matrix K :

- (w? + Z—fuﬂ) \/ 2wy
K = (17.23)
\ /%Wg —w?

This is the mass-normalized elastic matrix. We will explain in the next chapter

in more detail the derivation of this matrix. It is important to point out that this
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matrix doesn’t contain damping terms. To transform to the normal modes coordinates
we need to find the eigenfunctions of the matrix K. Again we used the built in MatLab
function eig to calculate the eigenvalues and eigenfunction matrix A. The eigenvalues
are the normal modes frequencies. These are w; = 914.34 and w_ = 885.88 Hz. We
then use A to calculate the friction coeflicients in the normal modes’ coordinates, that
gives us the quality factors Q. and ()_. Finally we calculate the forces F, and F_ in
the normal modes’ coordinates. These two forces are a linear combination of the force
on the transducer and on the bar for each normal mode.

STEP3:

Now we are able to define two independent oscillators that have their resonant
frequency equal to the frequency of the normal modes. These oscillators are damped
and we use the quality factors in the normal modes coordinates () and ) . With the
oscillators parameters defined we can assign values to the b and a coefficients similarly
as in the previous section. In this case, of course, we have two sets of coefficients b, bo
and ay, as for the two oscillators. The input of the filters are the two random sequences
Fy and F_, the output is the time sequence of the normal modes n, and 7_.

STEPA4:

The next task is to go back to the mass coordinates. To do so we use the inverse
transformations matrix A“'M ! to go from the normal coordinates 7, to the mass

coordinates x;. The mass matrix M was used to normalize the elastic matrix.

M= V™

3

159



2-mode oscillator simulation’s steps |

STEP 1
Set parameter of simulation: Temperature, Quality factor,
Mass of bar & transducer

STEP 4
Go back to the inertial coordinates using A. Calculate the observable:
the difference between the two mass coordinates.

Figure 17.5: The four different steps in the simulation of the two-modes oscillator.

To return to the original mass coordinates we have to multiply by the inverse
of the mass matrix M after multiplying by the rotation matrix A. Finally the mea-
surable variable is the difference between the two mass coordinates, that is the relative
displacement between the bar and transducer.

17.7 Energy Conservation and Decay Time for the Two Mode Case

The energy for the two mode system can be expressed as [12]:

1 1

Epat = 5 (kl + k‘g) x? + Ekgxg — kg T T, (1724)
1 . .

Eyin = §m1 Ty +§m2 T

Again we can verify that the energy decays with the right time constant and
the initial energy response of the bar is equal to the input impulse. Also as, in the

one mode case, we have that the potential energy and kinetic energy have a phase
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Figure 17.6: The kinetic (red), potential (blue) and total energy (green) for the two modes
case. The magenta dot represents the energy of the input impulse. As in the one mode case
the potential energy and kinetic energy are out of phase by 90 degrees.The general behaviour
of the two components of the energy is more complicated than the one mode case but the
total energy (green) is a simple exponential function of time.

difference of 90°. The following Figure 17.3 shows the result of the simulation for the

two modes case.
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CHAPTER 18
PRE-FILTERING. THE WHITENING FILTER

We want to eliminate the effect of the oscillatory and damping behavior of the
antenna. We already have observed that if a large gravitational wave impulse impulse
arrives at the antenna it will interact mainly with the bar and it will almost not excite
the transducer at all. This is equivalent to say that ﬁg in expression 17.22 is equal to
zero. So to recover the signal we will multiply our data in the Fourier domain by the

transfer function:

I

Wiw) =z —a,

(18.1)

The expression GG1; — Go1 is equal to:

cos? 0 n sin? 6
my (w2 —w? +iw,w/Qr)  my (W2 —w?+iv w/Q)

sin  cos 0 B sin 6 cos 6
Vmams (Wi — w? +iww/Q) myims (Wi —w? +iw w/Q )

A N B
(W2 —w?+iwviw/Qy) (W —w?4iw_w/Q-)
—(B+A)w? + (iw_/Q_A+iw, /Q4B)w + (Aw? + Bw?)
(Wi —w? +iw,w/Q4) (Wi —w? +iw_w/Q )

(18.2)

+

where:

4 COS29+Sin(9COS(9 (18.3)

mq mim

[}

sin?6  sinfcos6
B = — .
my mimsa

We can rewrite W (iw) in the Laplace space with the substitution s = iw and
after factorization of the polynomials in s we get:

s—81)(s— s9)(s — s3)(s — 84)
(s —s5)(s — s6)

W(s) = K (18.4)
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Table 18.1: The pre-filter coefficients b and a.

numerator (b coeflicients) denominator (a coeflicients)
77t = e Atax)T z4=0
273 = —2em(at202)T cog( 3, T) 4 2~ te2)T cog(3,T) 273 =0
272 = 4e~(@ta2)T co5(3,T) cos(B,T) + 22T 772 = emoal

27t = 2e7 T cos(B,T) cos(B,T) — 272 cos(3,T) 27t = —2e7*7 cos(3,T)

2 0=1 2 0=1

where K =1/(A+ B) .
Now we can realize a digital filter that reproduces the properties of the transfer

function W (s). In the z space it will have the form:

—k
W(z) = M, k=0,n (18.5)
> g1 z7F

Applying the z-matched transformation [30] we get the expression in Table 17.1.

The zeros and poles in 17.5 can be rewritten as s = oy + ¢ (3. This gives ay, 3, as

follows:
Wik \/4 Qk —1
= = - 18.6
/A W +B w2
where w; = wy, Q1 = Q4 , w2 = w Q2 = @, and w3 = Y—F 55—, Q3 =

ws /A WZ+B wi

(5—:A+%’+’—B)/(A+B) - (5—:A+g+t3) :
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CHAPTER 19
FAST FILTER

19.1 Introduction

The expected gravitational waves’signals are extremely weak in comparison to
the average noise in the existing gravitational wave detectors. The signals coming from
any likely astrophysical sources are many orders of magnitude less, in energy delivered
to the bar, than the average thermal energy of the bar environment. For this reason we
need to use mathematical techniques to extract the signal from the noise. The process

of signal extraction is called filtering.
19.1.1 The Matched Filter One of the most common filters is the matched filter. The

term matched indicates that given the signal s(t) the filter has the same form of the
signal except for a reversal in time [38]. So the matched filter has the form s*(—t). This
means that to implement the matched filter we need to have some initial knowledge or
guess on the form of the searched signal. The matched filter is an example of a linear

system f(t). If the resonse of the filter is

g9(t) = X{f @)} (19.1)

then the system has the following properties:

kg(t) = X {kf (t)}, where k is a constant (19.2)

and

9(t) +g.(t) = X{f () + L (D)} (19.3)
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19.1.2 Known Signal In the case of gravitational wave detection we use our knowledge

of general relativity and make models of the astrophysical processes that can cause
gravitational waves. Using these models we arrive at a particular wave form for the
astrophysical event. Then we use the transfer function of our detector to determine the
output response of the detector to the particular astrophysical source signal. In our
simulation and in the analysis of the ALLEGRO data we assumed a very simple form
for the astrophysical signal. Our analysis is focused on burst signals. A burst signal
is an event that occurs in a very short period of time, usually on the order of a tenth
of a second or less. Possible sources for such events are supernova explosions. Another
possible source of burst signals is the coalescence of neutron stars binary systems. The
neutron stars will approach each other because of the loss in kinetic energy due to the
emission of gravitational waves. The emission of gravitational waves in this system
will span different increasing frequencies but, just before the two stars will touch, the
frequency will be in the range of detectability of the bar detectors, i.e. in the kiloHertz
region. At that point the orbital velocities are so fast that the last orbit before contact
will be swept in a fraction of a second. So also this merging event can be considered,
from a detection point of view, an extremely short lived one. This motivates us to
make the simplification to model the astrophysical signal as a delta function in the
time domain. The delta function represents a sudden increase in the energy of the bar
due to the interaction of the gravitational wave and the mass of the bar. The detector
response will be as if a large impulse hit the bar. After the initial sudden displacement

the amplitude of the motion of the bar will decay exponentially. This response of the
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bar to a large delta impulse as input is the template for our signal.

19.1.3 Known Noise The matched filter has the property of optimally enhancing the

signal to noise ratio. A signal buried in noise and undetectable before filtering can be
made quite visible after filtering. The mathematical theory of matched filters shows that
this filter is optimal in extracting the signal from the noise and maximizing the signal
to noise ratio (SNR). The matched filter, in practical applications, is often implemented
using digital techniques and so it is important to understand the effect of discretization
on the filter. The fast filter terminology comes from the fact that it is suggested (in the
Italian papers we already referred to [30,42,43] ) that sampling at a fast rate improves
the optimization. Our finding in the following is that fast sampling is not the key
element of the fast filter in making it superior to other filtering strategies as the slow

filter or Maucelli filter currently used by the ALLEGRO group.
19.2 Known Signal in Noise

In the following we set the formal tools for a formal discussion of the matched
filter. The definitions and results of the next sections are going to be used in our
simulation. This a very standard treatment that is possible to find in any books on

linear systems and data analysis.

In the theory of stochastic processes the estimation of a signal f(t) in the pres-

ence of noise n(t) is an important problem. The complete data is the sum:

x(t) = f(t) +n(t), (19.4)

the nature of the problem is to express f(¢) in terms of z(t).
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19.3 Linear Estimation
We want to use as input z(t) to a linear system with impulse response h(t). The

output y(t) is the sum:
y(t) =x(t) « h(t) = ys(t) + yau(t), (19.5)
where
ys(t) = f(t) = h(t) and yn(t) = n(t) * h(), (19.6)
are the components due to signal f(¢) and to the noise n(t), respectively. The

symbol x indicates the operation of convolution. We define the signal to noise ratio as:

VE {[yalto) 2}

19.4 Deriving the Matched Filter

=l

Once we have a stream of data that is composed of a signal and noise, we want
to pick up the signal and reduce the noise. This goal is achieved by the process of
filtering. In the fast filtering we choose a high rate of sampling (this is where the term
fast comes from). Then we apply a matched filter to the sampled data. The idea of
matched filter is explained in Papoulis [40], p. 325.

Assuming that the noise is stationary with power spectrum S(w), then we have:

B0} = 5 [ S, (19.8)

2 )
where H(w) is the system function of the unknown system.
At t = ty, the output due to the signal f(t) is equivalent to

y(t) = — / P H (w)e 0 du (19.9)

2 J_
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Applying the Schartz’s inequality to the above integral and using the identity:

Flw)H(w) = %H(w) S(w), (19.10)
we obtain
2 2
' / F(w)H(w)e*dw| < / %dw / S(w) | H(w)| dw. (19.11)
Hence
2 2 t oo 2
(é) __uilh) i/ WL, (19.12)
N E{ly.(to)’} ~ 27 ) S(w)
The equality is satisfied if
H(w)y/S(w) = kme*jtw (19.13)
S(w)
We obtain the optimum filter by
H(w) = klz;*(i’:;)e*jtow A (19.14)
giving
N) 2/ . Sw) “ '

In the particular case of white noise the spectrum is given by a constant Ny

S(w) = N (19.16)
then:
(%) _ 27:% /Z|F(w)|2dw. (19.17)

For the case of narrow band noise we have to use explictly the form of the

spectrum inside the integral.
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Figure 19.1: The analytical (red) and simulated (blue) functions for the spectrum in the two
mode case.

19.5 The Implementation of the Matched Filter

In our simulation the noise is a combination of white and non-white noise. See
previous sections for a discussion of the analytical form of the noise for the one mode
and two mode systems. When dealing with data from the real detector we used (with
due normalization) the MatLab function PSD to extract the spectrum of the noise. We
compare in the following figure the analytical (red) and the simulation (blue) measured

spectra.

In equation (19.11) we have the quantity k. This is a normalization factor that
is arbitrarily chosen in such a way that the filter output maximum value is equal to
the maximum value of the signal before filtering. This normalization reduces the floor
level of the noise because the filtering process is supposed to maximize the SNR. Also

we have to notice, in the filter definition, the presence of the phase shifting function
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eijtow

. This implies that the filtering process introduces an arbitrary delay in the time
domain. In our simulation we applied large calibration pulses at a certain given time.
We make sure that the filtered signal coincides in time with the calibration pulse. This
gives us a characteristic constant time-shift that we use to correct the time labeling of
the filtered output. The function F*(w) represents the conjugate of the target signal.
We have already explained in the previous chapter how we obtain the analytical form
of the signal for the one and two mode case. In the implementation of the matched
filter the function F*(w) is multiplied in the Fourier domain by the Fourier transform
of the data Fj,(w). In real life experiments the function Fyu,(w) is noise in most of
the cases with the possibility of signal more or less buried in it. We show in Figure 19.2
the result of the matched filter applied to a large signal (in the one mode case) in the

absence of noise. Figure 19.3 shows the result of the filtering process in the presence of

noise.

The filtered signal has a ”compact” form. It has relatively short duration in the
time domain. It is symmetric in respect to the maximum. This is a consequence of
the atemporality of the filter; the filter uses information on the time sequence before
and after the signal arrival time. Another important characteristic is the ”beating”

oscillations.

The filter signal oscillates about zero. This is not a physically realistic behavior.
The amplitude of the filtered signal should increase, reaching the maximum and then
decrease in a smooth manner. In the case of the one mode oscillator the filtered

output oscillations are at the resonant frequency of the oscillator. The envelope of the
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Figure 19.2: The amplitude of the filtered signal; no noise is present. Notice the oscillations
through zero amplitude. This is the response when the bar excited by a large delta function.
The response is described by a sine wave at the mode frequency (in the one mode case) and
amplitude modulated as shown.

matched filter contains the information that is physically meaningful. See Chapter 20

for a discussion of this topic.
19.6 The Digital Fast Filter

In our simulation we start with the raw data of the displacement of the detector.
Naturally this quantity is a real valued quantity. In the acquisition system of the
real detector an analog demodulation is performed bringing the zero frequency of the
raw data to the frequency in the middle of the two resonant modes. This operation
is equivalent to multiplying the real valued data by a complex value function; see
Chapter 24 on working with real detector data. This means that the raw data becomes
a complex valued quantity. In the ALLEGRO acquisition system the real and imaginary
components of the complex raw data (called in phase and in quadrature) are treated

separately. In our application of the matched filter using real data we combine the
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two components in one complex variable and work on this variable directly. In the
simulation we don’t have to deal with complex raw data. The following is a summary
of the steps taken to filter the real detector data but these are similar to the simulated
case (beside the difference in real and complex raw data explained above).

I) Pre-treatment of data:

The raw data is in the form of in-phase and quadrature components. A single
complex number is formed by combining the in-phase and quadrature components of
the raw data as real and imaginary parts of a single variable named z.

From z we take out the mean value of z, to eliminate the dc component of the
data.

We apply an antialias filter. This is achieved by a low pass filter. The cutoff
frequency is 0.85/3 times the nyquisit frequency. The data is then decimated by a
factor of 3.

IT) Data Analyis:

1) Make a spectrum of noise using MatLab psd. The variable that represent the
noise spectrum is called Snoise.

2) Make theoretical FET of the signal.

We take the transfer function of the bar in the Fourier domain. We multiply
this by a vector that has a F1 component equal to the FFT of a delta function and F2
equal to zero. The FFT of the signal is called at.

3) Make the filter. Divide the conjugate of the theoretical FFT of the signal at

by the spectrum Snoise. This varaible is called H.
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Figure 19.3: The filter H in the frequency domain for the two mode case.

Filtering the data:

4) Multiply the filter H times the FFT of the data in order to filter.

5) Use the MatLab function IFFT to go back to the time domain and obtain a
time sequence of the filtered output.

Normalization:

6) The result of the IFFT operation gives a complex quantity because of the
presence of a non-zero phase component of the time sequence (the imaginary part of
the inverse transform filtered data). We take the absolute square of this quantity and
call it the "energy” of the filtered data. We normalize this energy in such a way that
a large filtered calibration impulse has the same value as the initial impulse in units of
kelvins. See normalization section in next chapter. The next figure shows the typical

shape of the filter H, in the Fourier domain, for the two mode system.
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CHAPTER 20
SLOW FILTER

20.1 Introduction

Historically the ALLEGRO experimental gravitational group has used a filtering
strategy that is based on separating the information from the two resonant modes of
the antenna, through demodulation. Also the data stream is kept in its in-phase and
in-quadrature parts and these components are filtered separately. To estimate the final
filtered energy output all of these pieces are added together with particular weights
based on the difference in the average temperature of the two modes. For reasons of data
storage economy and to improve the speed of the data analysis, just a small frequency
window around the resonant peaks is saved, using a low pass filter after demodulation.
The data is then reduced through decimation. All the filtering operations are done
in the time domain without using Fourier analysis. The data acquisition system is
relatively slow. The data is sampled every 0.008 seconds or at a frequency of 125 Hz.
Compare this sampling rate to the 4096 Hz of our simulation. This slower sampling rate
is why this filtering procedure is called slow. We are going to show in Chapter 22 that
the sampling rate is not a fundamental element in the optimization of the filter when
dealing with colored noise detectors. The convention of the slow and fast names will
still be used. In the following we are going to summarize, for reference purposes, the
main steps of the slow filtering process. We used mainly material from the E. Maucelli

article on the data acquisition and analysis of the ALLEGRO detector [41].
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20.2 Energy and Noise Temperature

We have already seen that the acquisition system of ALLEGRO separates the
raw data stream in the in phase z and quadrature y components. In our simulation
we combine these components in one complex variable called z, and we have that
z =x 4+ 1 y. In the following we are going to describe the important filtering steps
according to the usual procedure used by the ALLEGRO group. This is similar enough
to our simulation to not justify changing notation.

The first step is to demodulate the data. In the real detector this is done
analogically through a lock-in device. The reference frequency is in the middle of
the two resonant frequencies. In our simulation we do this multiplying the amplitude

output of the detector simulator by a complex function ¢ called phasor:

¢ = exp(27 fres 1), (20.1)

where f,.y is the reference frequency. The slow changing DC offsets are removed from
the data by subtracting the average value of the amplitude from the time sequence. In
the simulation the data is then demodulated by a factor of 32. This brings the initial
sampling frequency of 4096 Hz close (128 Hz) to the ALLEGRO raw data sampling
frequency of 125 Hz. A further demodulation is performed with reference frequencies
equal to the minus and plus modes. A low pass filter is applied with a corner frequency
of a few Hertz. In the case of the real detector this corner frequency is exactly 2.35 Hz.
Both the simulated and real data is decimated again by a factor of 10. This brings the

final sampling frequency at 12.5 Hz for the real detector (12.8 Hz for the simulation).
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We then apply the time domain version of the matched filter using the MatLab function
filter with weights obtained as explained in the following section. The x and y output
of the filters is multiplied by its conjugate and then these quantities added to obtain
the absolute square of each mode. If we represent the output of the separated in-phase
and in-quadrature components for the minus and plus modes as f,+ and f,+, we have

that the burst energy at each sample is:
Ey = fru+ fyu: (20.2)

The next step is to estimate a total burst energy for each sample. The average temper-
ature in the two modes can be different (this depends on how well ”tuned” the natural
modes of the bar and transducer are). The energy of an event then is distributed in
different way in the two modes. To have a statistically correct evaluation of the burst
energy we have to assign a weight to each mode and use this weight to calculate the

total energy of each sample. The weighted burst energy is:
E,=T,(E. /T +E_/T_) (20.3)
where the quantity T,
T, =T 1'+T"! (20.4)

is the weighted noise temperature.
20.3 The Filter Weights

The MatLab filter function uses as input the sequence of coefficients (weights) b

and a of the denominator and numerator of the polynomial representation of the filter
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(see section 16.3). The slow filter weight a is equal to 1. The weights b are constructed

using the auto-correlation function of the noise. We have that:

b=R""s (20.5)

where b is a the vector of the numerator coefficients of the filter, R~ is the inverse of
the auto-correlation matrix of the noise and s is the detector’s response to the signal
being sought. To calculate the auto-correlation function in our simulation we use the
MatLab built in function CORR. The auto-correlation of the two modes is calculated

separately, generating two sets of filter weights.
20.4 The Signal

We need to characterize the nature of the signal that we are hoping to detect.
For this purpose we stimulate the bar with a specific, completely know target signal.
A delta signal of short duration smaller or equal to the sampling time is used as the
input for the digital simulator, without any noise present.

The response of the bar, in the absence of noise, is demodulated, low-pass filtered
and decimated. A sample of length 1/2 the length of the weights around the peak of the
response of the detector forms the signal characterization. We collect the data points
for the in-phase s% and s% in-quadrature part of the signal (separately for the plus
and minus frequency). The in-phase and in-quadrature parts of the signal are squared,
added together and then we take the square root of this quantity that is the final signal

characterization s4.:

s+ =/ (s5)” + (s1)° (20.6)
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Figure 20.1: The signal vector characterization for the one mode case.

The length of the signal is 41 samples. The following figure shows the result of

this process.
20.5 The Noise

Instead of measuring the spectrum of the noise, the slow filter relies on the

auto-correlation function R :

R(j) = %aniﬂ, (20.7)

where N is the number of coefficients in vector R, in this case 41. The noise amplitude n
is the output of the simulated oscillator after demodulation and decimation. The noise
in our simulation doesn’t need to be cleaned of large non-Gaussian events as happens
in the case of filtering the real data from ALLEGRO. We select a few hundred stretches
of data 3.2 seconds long (41 samples each onsisting of 0.078 seconds). The segments
of data are uncorrelated because they are separated by few minutes in the simulated

time sequence. This time is much longer of the relaxation time of the oscillator. For
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each segment of data we calculate the auto-correlation function, and obtain a final
auto-correlation averaged over the few hundred stretches collected. Finally we assign
values to quantities called R* and RY, representing the real and imaginary parts of the
averaged auto-correlation function. In the case of the two mode oscillator we have to
separates sets of auto-correlation for each mode. The next step is to use the MatLab

function toeplitz to generate the auto-correlation matrix R :
Lo
R, = toeplitz (5 (RL + RY)). (20.8)
The matrix R4 has the form:
R, = (R* 1R 20.9
ij—g(i+j+ z‘+j)' ( )

The inverse of auto-correlation matrix R is calculated using the MatLab func-
tion INV. Finally we can calculates the filter weights using equation 20.5. Following

figures show the auto-correlation and the filter weights for the one mode case.
20.6 Normalization

We already seen that the definition of the filter in equation 19.11 contains a
normalization factor k. Also the slow filter needs to be normalized. The motivation of
the normalization should be that we can interpret the effect of the filter as maintaining
the energy of the signal while reducing that of the noise, improving in this way the
signal to noise ratio. So the object of normalization is that to assign the same energy
to the response of the bar after to a large signal as to the filtered output. This means in

practice that we need to find a normalization constant given the detector parameters.
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Figure 20.2: The autoccorelation fucntion for the one mode case, a) in phase, b) in quadrature

components.
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Figure 20.4: The initial demodulated, low-pass filtered and decimated data. No noise present.
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Figure 20.5: The slow filtered output in the presence of a large signal; the one mode case.
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In our simulation, we imagine that the bar is kicked by an sudden force. We
choose arbitrarily the size of this force (in units of Newtons). Then we calculate the
value of the initial energy impulse. The energy impulse is calculated from the impulse

momentum P, by the formula:
Eip = Ph,p/2m, (20.10)

where m is the mass of the detector.
The impulse momentum Py, is in general calculated from the initial kick force

fsig via the following equation:

to+At
Faig dt (20.11)

Pipp = lim
At—>0 tngt

where % is the time when initial impulse takes place. But because we are dealing with
a digital simulation the minimum unit of time available to us is the sampling time or
the inverse of the sampling frequency 1/ f;.

Because of this we use the following formula instead:

Pimp = fsig /fs: (2012)

We already show that the response of the simulated bar in the presence of a
signal gives a maximum change in energy that is equal to the initial input energy. The
digital simulator is set up to give an amplitude response in meters.

Next we apply the slow and the fast to an identical set of data that represent
the response of the bar to a force impulse of given size, in the complete absence of

noise. We measure the maximum amplitude square of the real and imaginary part of
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Table 20.1: The normalization constants for the one mode and two modes case.

constant (for simulation parameter see Tables 16.2-3) value
norm_const(fast) one mode 1.0119%x10~%
norm_const(slow) one mode 9.0194x 10"
norm_const(slow) two modes 2.2388x10%
norm_const( fast) two modes 1.0571

norm. constant to convert output of the simulator in MKS units | 1.0018

the slow and fast filter output. We add the squared real and imaginary components to
form a single variable E}%( fast, slow). The superscript un means unnormalized. This

variable is used to calculate the unnormalized energy value, by the formula:

1
u k E(fast, slow) (20.13)

potential 5

where k = w?m is the spring constant of the oscillator, and w = 2w f,. The ratio
Eimp/ Epotentiar should be 1 if we used the right normalization constant. To find this

constant in our simulation we perform the calculation:

norm_const( fast, slow) = \/Eimp/(1/2 k Ef(fast, slow)). (20.14)

In the case of two modes oscillator we calculate the energy of the slow filter
according formulae 20.2 and 20.3. The values for the constants for the slow and fast

filtering that we found from our simulation are given in the following table:
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Figure 20.6: The normalization result: the energy of the bar response (green), fast filter (blue)
and slow filter (red) output is the same.

The values in the table are set up for the particular choice of noise parameters
reported as in the example of Chapter 16. Nominally the rms of the displacement
amplitude for both white and non white is of the order of 107! meters. The initial im-

pulsive force is of the order of 1.6x10~* Kelvin. The following figures show graphically

the result of normalization.
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CHAPTER 21
COMPARISON OF THE TWO FILTERS

In this chapter we discuss the performance of the fast and slow filters. We want
to establish if there are differences in the ability of the filters to identify the presence
of a signal in the noise dominated detector. First we analyze the case of the one mode
oscillator. We already explained that this case is very useful because we can determine
any fundamental difference between the two filters without the complication of the two
mode system. In the one mode case we want to isolate the intrinsic properties of the
two filters. In the case of one mode oscillator, the two filters’construction seems similar
enough that we expect should not be any difference in their performance to exctract
a signal from noise. The one mode system can be explored just through analytic
calculations or performing a simulation.

We generalize to the case of a two mode system. An experiment using real detec-
tors has to deal with a least two modes because they use a transducer to mechanically
amplify and read the motion of the bar, the main resonator. In the case of two modes is
not necessarily true that the behavior of the two filters has to be the same than in the
one mode case. At first we might think that the two mode system is just an essemble
of independent one mode systems. But the gravitational signal excites the bar alone
and not the transducer. It is possible that one of the two filters is better able to to
distinguish the presence of a signal because it is better in identifing the situation in
which the bar receives a big kick and the transducer is almost not excited. This can

mean that an improvement in identification of the a signal in noise, using one filter
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instead of the other, will be evident just in the two mode system. We will try to test
these possibilities in the following sections.

21.1 The Results for the One Mode Case

21.1.1 The Energy of the Filtered Data We already show in the previous chapter that

the amplitude of the bar response can be transformed in an energy innovation or the
change in energy due to some random impulse on the bar. The output of the filter can

be

21.1.2 The Distribution Functions of the Fiiltered Data For the one-mode case the

distribtution function for the slow and fast outputs is given by Astone et al. [30].
The distribution function of the energy FEy,, = p? of the output for the slow

filter is:

fslow(pQ) = 21 exXp < _Qp ) ) (211)

O stow slow

where p is the random variable the represents the slow output amplitude, and o, is
the standard deviation of the random variable p.

The distribution function of the energy of the output for the fast filter is:

1 —g2
ffast(QQ) = exp ) (212)
O-fast V 7-(-92 O-?ast

where g is the random variable the represents the slow output amplitude, and o4y is
the standard deviation of the random variable g.

The slow filter is the linear sum of two normal variable so it has a exponential
distribution. The fast filter events have a double chi-squared distribution. The following

Figure 21.1 shows the two distributions.
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It might appear that for an equal number of events, there are fewer events for

the slow filter at low energy and more events for the slow filter at high energy. This

can lead to the conclusion that the fast filter is a better filter than the slow. We will
explain in the following that comparing the two distribution functions of the totality

of the events is not very useful in understanding if one filter is better than the other.

Another way to compare the efficiency of the two filters is to measure the relative
temperatures of the noise after filtering. Because the normalization factors where chosen
in such way that the output response to a large signal was the same for both filters,
a lower temperature of the noise for one filter will mean a higher signal to noise ratio.
In their article in the Nuovo Cimento [30] Astone et al. comment ”...if we normalize
the energy scale to the peak value of the signal, the noise of the fast filter is kT.;;/2,
which we assume as the ”apparent” effective temperature of this filter. For the fast
filter in other words, we have an improvement of the signal to noise ratio for pulse
detection of a factor of two in comparison with the slow filter”. This statement has
important implications for data analysis. Because noise is so dominant in comparison
with even the highest possible gravity wave burst we can hope for, every improvement
in the signal to noise ratio in our filtering is very significant. We need to be careful in

assessing the claim that the fast filter is an improvement on the slow filter.

The measurement of the temperature of the noise can be very misleading. In fact
looking at the following Figure 21.2 it seems that the temperature of the fast filter is
quite less that of the slow filter. The ratio between the two temperatures is illustrated

in Figure 21.3 and it seem to confirm that the temperature of the fast filter is half of
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Figure 21.1: The measuread and theoretical (continuos lines) distribution functions for the
slow (red) and fast filter (blue). The green points are the unfiltered data. It seems to be a
very good match between measured and theoretical distribution functions.

that of the slow filter.

But this can be explained through the fact that the fast filter is oscillating
between values that are almost zeros and values that are monotonically increasing or
decreasing. We can see the oscillation clearly when a big signal is applied like in Figure
20.6. The random fluctuations of the noise are "modulated” by a sinusoidal function.
Analytically the form of the output g(¢) of the fast filter after a big input pulse is

expressed by the following formula (see Astone et al.) [30]:

exp(—d t)
g(t) = BT cos(wot) (21.3)
where d %% The exponential decay is also present in the slow filter output but the

oscillatory part of the equation is typical of the fast matched filter.
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In the previous section we explain how the displacement of the bar can be
expressed in terms of an energy change, or evolution. The energy is then express
(through the boltzman constant) in terms of a temperature in units of kelvin. This is
an historical practice based on the idea that the interaction of the gravitational wave

with the bar has parallel with the interaction of a particle with a calorimeter.

When the temperature of the filtered data is measured (the temperature is pro-
portional to the square of the amplitude of the output), taking averages of the values
of all the data points we get a lower value for the fast. The mean value of the square
of a sinusoidal function is in fact 1/2 of its maximum value. A similar reasoning can
be applied to understand why the distribution functions of the two filters give a lower
count, of high energy events for the noise after fast filtering. The big number of the
low energy events in the distribution of the fast is due to the oscillations that bring
periodically the energy function to zero. So for a given number of data points there
will be much more events in the high energy range than in the lower energy one. This
means that the improvement of the fast filter can be a kind of illusion that doesn’t have

a real physical meaning.

A more direct way to compare the two filter is to look at the entire data set
without averaging. Superimposing the two time series with the right time shift allows
to see that the two filters follow quite closely each other and in average the height of

the "events” are very similar. See Figures 21.4 and 21.5. In the one mode case it seems

that one filter is not better that the other . What we have to do to fairly compare the

two filters is to look at the envelope of the data that is the only part of the data that
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Figure 21.2: The temperature sequence for the fast (blue) and slow (red) filters. It appears
that the slow filter output is at higher temperature than the fast.
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Figure 21.3: The ratio between the fast and slow output temperature as a function of time.
In average this ratio is of order 1/2.
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contains the physics, the oscillations under the envolope are a mathematical artifact
that does not give us any interesting information. The envelope should be the part of
the filtered output that contains the physical information of our system and the mean
value of this set of data is a better measure of the temperature of the system. The
”envelope” can be defined as the smooth curve that bounds the totality of the data

points between successive peaks.

. The slow filter output, because of the demodulation and low pass operation
is already a slow changing function and it is constituted of just envelope and not fast
oscillations. In the case of a very large signal the slow filter output is almost the
envelope of the fast filter, as is illustrated in Figure 20.6. Also see similar Figures in

Astone et al. [30]. In the presence of noise, the envelope of the slow filter process is

not exactly the same than the envelope of the fast filter.

We developed an algorithm that trough different passages ”smooths” the fast fil-
ter and gives the slow changing behavior of the output, without taking averages. Figure
21.6 shows the result of the algorithm in choosing the points that are considered part
of the envelope among the totality of the data set. We then calculate the distribution
functions of the envelopes for the fast and slow filter. The result is shown in Figure
21.7. The distribution of the envelope of the fast filter looks almost exponential. This
time it seems that the slow and fast filters distribution are very close. Are there more
subtle differences between the two filters? The main purpose of the of the filter is to
pick up a signal in noise. To answer the question, we have to study the filters behavior

in the presence of signal in noise and use more precise comparison tests. Because the
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Table 21.1: Statistical parameters for the fast and slow filtered data in the one mode oscillator.

statistical parameter fast slow
SNR? 215.18 170.68
stand. dev. (noise) 1.69e-004 | 3.01e-004
stad. dev. (signal)/signal energy | 0.094 0.11

properties of the filter are statistical in nature we have to perform test that probe the
statistical characteristics of the filters. This will be done in the next section.

We just argued that we have to be careful in the interpretation of the mean value
of filtered noise. The usual parameter that is used in characterizing the performance
of a filter is the Signal to Noise Ratio (SNR) as defined in Section 19.3, equation 19.4.
Because the SNR is based on a simple average of the square of the amplitude of the
filtered data we think the SNR is not a fully reliable test of comparing the performance
of filters with outputs that have different types of distributions.

However, it is still useful to show the result of a typical experiment where we
inserted large impulses in the bar in the presence of noise. The signal had a energy of
0.05 kelvin and the noise temperature was 4 milliKelvin. To account for the oscillations
of the fast filter we adjust the SNR of the fast filter by a factor of 2. The improvement
in SNR, using the fast instead of the slow filter, is about 10 %. Table 21.1 shows the

statistical results for the two filters in this experiment.
21.2 Statistical Tests to Compare the Performance of the Two Filters

We performed different tests to understand better if there is a difference in the

performance of the two filters and which filter has the better performance.
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Figure 21.4: The time sequence for the fast (blue) and slow (red) events is superimposed in
this figure. We can notice that even if not identical the two time sequence in average follow
each other. It seems that one filter is not ”quieter” than the other.
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Figure 21.5: A closer look at the time sequence of the output of the two filters.
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Figure 21.8: The superposition of the envelope of the fast (blue) and slow (red) filter envelopes.

21.2.1 a) The Threshold Test: In real life experiments to search for gravity wave

bursts in the noisy data one has to use two or more detectors. In fact there is no real
way, using information just from one detector, to determine if large bursts are due to
astronomical events or if some local source of noise has excited the bar. What has to
be done is to look for coincidences of the occurrence of large events between two or
more detectors. We expect environmental noise in different detectors separated by long
distances, to be uncorrellated. There might still be coincidences due to chance but a
large number of coincidences will be a strong evidence for the presence of gravitational

waves that can affect the detectors simultaneously.

The procedure to search for coincidences requires establishing an energy thresh-
old for selection of events. If the filtered time series goes over the threshold the sequence
is followed until falls again below the threshold. This group of consecutive data points

is considered a single candidate gravitational event and its energy is estimated to be
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the maximum of this sequence. A list of such candidate gravitational wave bursts is
compiled for each detectors and then compared to look for coincidences [34]. An illus-
tration of the procedure to identify a candidate event is shown in the following Figures

21.09 and 21.10.

We want to analyze the lists of events created using the slow filter and the fast
filter in the presence of pure noise and when signal are inserted in the time series. This
will be a fair and relevant test to establish the superiority of one filter over the other.
It can be seen that the list of events is very similar but that there is a noticeable small
difference. The slow filter, for a given threshold produces more events. For example
we introduce in a minute of data 9 burst signals with energy 0.0016 kelvin and the
threshold is fixed at 0.0012 we see that the slow filter produces a list of 45 events
and the fast just 35. This difference, even if not big, can create more events over the
threshold for the slow filter and so generating more false alarms for the coincidence
search. This makes the fast filter a slightly better filter in this particular test. Figure
21.11 shows the distribution of the energy of the events over threshold. It is clear that

for a given energy there are less events for the fast filter.

21.2.2 b) Estimation of Energy and Arrival Time of a Signal in Noise Test: The second

test is to include a signal with a certain energy added to the noise.

In this case we introduced three equal pulses, at a certain separation between
each other, in a segment 15 seconds long. The random sequence of noise pulses was re-

initialized using the final condition of the filter delay (see MatLab filter options). This
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Figure 21.9: The events above threshold.
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Figure 21.10: A close up of the events ove threshold and the estimation of the maximum
energy of the event. The circles indicate the maximum for a given event above threshold.
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Figure 21.11: Statistics for the energy of the events above threshold. It is easy to see that
for given energy there are more events for the slow filter. This produces a higher false alarm
rate when performing a coincidence search betweem two detectors.
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allows us to construct a very long, continuous time sequence with three large signal
pulses every fifteen seconds. We run different tests with pulses with strength 25, 50,
80 and 110 times bigger than the average noise impulse. The experiment collected up
to 6x10* samples of the arrival time differential of the pulses and their energy after

filtering with the two different methods.

The arrival time differential is defined as the difference between the known time
of insertion of the large delta function pulse, that is our signal, and the time at which
the largest impulse in a given ”signal window” occurs. The ”signal window” is chosen
to be a 1/5 of a second wide around the time where the inserted force impulse of the
signal is supposed to be. We choose in the given window the largest event after filtering.
We measured the energy of the largest event in the window and identified that with

the energy of the signal assuming that the highest event in the window is the signal

itself. The presence of the noise introduces some uncertainty in the arrival time and
energy of the signal. This means that we can treat the energy and time of arrival as a
statistical quantity. The distribution functions of the value of the energy estimation of

the signal in noise is displayed in the Figure 21.12.

It is possible to see that the distribution functions are quite similar but a small
effect is noticeable. In the fast filter distribution function there is a majority of events
happening at the exact value of the energy of the original signal, that in the example
shown is 0.0074 kelvins. The distribution function of the fast filter is slightly more

narrower than the slow. The standard deviation of the distribution functions give us
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Figure 21.12: The distribution function of the estimation of the energy of the signal in noise.
The red curve is the result for slow filter and the blue is that for the fast. It is possible to
notice that for the fast filter there are more events near the real value of the signal at 0.0074
kelvins.
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Figure 21.13: This figure shows the standard deviations for the energy estimation for the
fast and slow filters. The standard deviation is normalized to the value of the original signal
energy and it is displayed as a function of the energy of the signal.
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Figure 21.14: The energy of the signal in noise after the operation of filtering with the fast
and slow filters are compared against each other. It seems there is a very good correlation
between the two data sets.

a way to quantify this effect. The standard deviations for different signal strength is
given in Figure 21.12. The difference between the two standard deviations is almost
constant over a wide range of values of the initial energy of the signal. Both of the
standards deviations grow with energy of the signal. The difference between the two
standard deviations is about 10 %. There is also another important difference between
the two filters outputs and it is the precision with which the two filters identify the
arrival of the signal. Figure 21.14 shows the arrival time differential of the two filters
compared to each other. The majority of the events are happening at the exact time
where the signal is supposed to be or with zero delay. We can see that there is a bigger

dispersion in the slow filter. We show in Figure 21.13 the comparison of the energy
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Figure 21.15: The arrival time and energy of the signal in noise for the fast (blue) and slow

(red).
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Figure 21.16: The arrival time of signal for the slow filter and the fast filter. The time is given
in sampling points (4096 per second). The energy of the injected signal is 0.0074 kelvin.
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Table 21.2: The standard deviation of the arrival times normalized to the energy of the signal

energy of signal | std dev. of arrival time/slow | std dev. of arrival time/fast
0.089 kelvins | 4.34 x sample time 12.29 x sample time
0.0110 kelvins 3.29 x sample time 10.68 x sample time
0.0134 kelvins 2.38 x sample time 9.04 x sample time
0.0159 kelvins 1.98 x sample time 8.35 x sample time

estimate of all the signal events for the two different filters. There is good correlation
between them, perfect agreement of the two data sets will mean the points will lie on a
straight line but what is obtained is a configuration of elliptical shape that means the
data sets agree just in average. Figure 21.15 shows both the arrival time and the energy
for the slow and fast filter in a three dimensional plot. The two colors, red and blue,
indicate the energy of the signal for the slow and fast filter. This is a illustration in
one single glance that summarize the previous results. Table 21.2 shows the standard
deviations for the arrival time differential of the two filters. The difference in arrival
time is a much bigger effect than the difference in estimation of the energy of the signal.
In general we conclude that also in this test the fast filter is a better filter than the
slow even if by a factor of 10 % in the estimation of the energy of the original signal.
There is though a real advantage in determining the exact arrival time of the signal
when using the fast filter.

21.2.3 ¢) The Coincidence Test Finally we want to produce a complete random se-

quence of noise and signal that are arriving at different times. To simulate a realistic
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search for coincidences in two detectors separated by large distances we create two set
of different noise and one set of identical signal for the two detectors. We produce
two event lists using the two filters and compare the efficiency of one filter to identify
real coincidences versus random coincidences. We found similar results to test a), indi-
catinng that there is an excess of false alarm of 10 % for the slow in comparison with

the fast filter.
21.2.4 Conclusions for the One Mode Case The slow and fast filter differ in their

performance by just 10 % in the one mode case. Temperature difference between the
filter is not a fair way to compare them. We have shown that the envelopes of the two
outputs are very close to each other and performed different tests showing that the
ability of the two filters to extract a signal from noise is very comparable.

It is interesting that there are already differences between the slow and fast filter
in the one mode case. Still we don’t get a factor of 2 in signal to noise ratio as claimed
in the Astone paper [30]. We want to verify if this significant difference appears when
the filter is applied to the response of a two mode oscillator. We use our simulated two

mode oscillator.

21.3 The Results for the Two Modes Case

We might think that dealing with two modes should not alter significantly the
previous results because the two modes are statistically independent. It is possible,
tough, that the fast filter is better suited to distinguish between the situation when the
signal is present and when it is not. However the gravitational wave signal is different

from noise because it intereracts mainly with the massive bar and almost not at all
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with the transducer.

It is possible to show that this difference in interaction should be evident in the
target waveform which can be used to distinguish between signal and noise. The fast
filter function H (see Figure 23.1) has a very different form when is applied to a large
event interacting with both the bar and transducer and when the same large event
excites just the bar. This difference is not evident in the Fourier domain of the slow
filter applied to similar situations. This can happen because the fast filter optimizes the
information from both modes, through cross terms in the energy formula for an event
(see Chapter 23). The slow filter simply add linearly the energy of the two mode in this
way loosing valuable information on the cross correlation between the two modes. So
the interaction between the two modes in the presence or absence of a signal can be the
significant difference between the one and two mode case with consequence difference

in the fast and slow filter performance.

In this section we are going to show the results of tests similar to that used

used in the previous sections.

21.3.1 The Superposition of the Outputs and SNR First we show a superposition of

the output of the slow filter and the fast filter. Again it seems that the low filter output

is consistentely at a high energy that the slow filter.

We introduced many signals with an burst energy of 0.0552 kelvins in the noise
and calculated the average signal to noise ratio SNR. We adjusted the signal to noise
ratio of the fast filter by a factor of 2 to account for the fast oscillation to zero, that

are not physically meaningful. The SNR for the two filter in this particular experiment
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Figure 21.17: The comparison between the energy time series of the slow (red) and fast (blue)
output, for the two modes oscillator.

Table 21.3: Statistical parameters for the fast and slow filter. This is the two modes oscillator
case.

statistical parameter fast slow

SNR? 155.25 61.18
stand. dev. (noise) 2.6916e-004 | 9.2317e-004
stad. dev. (signal)/signal energy | 0.1198 0.1361

and other statistical data are reported in Table 21.3. The improvement of the SNR
given by the fast filter is about 40 %. This improvement is much better than in the

case of the one mode oscillator (10 % improvement).

21.3.2 Energy Estimation and Time of Arrival As in the one mode case in our ex-

periment every minute of data contains three equal input signal at a fixed distance
from each other. We collected the maximum value in the window where we inserted

the signal. This is the value attributed to the signal in the presence of noise. We
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Figure 21.18: The distribution of the energy estimation for the fast (blue) and slow (red)
filter in the case of the two modes oscillator. The energy of the injected singnal is at 0.052
kelvin.

show in Figure 21.16 the distribution functions of the energy of the signals after 2000
minutes of simulation time. The distribution of the energy of the signal after the slow
filter procedure is noticeably wider. This means that there is a bigger chance for a
false alarm trigger when using the slow filter. The percentile difference between the
standard deviation of the signal energy estimation of the two filters is around 14 %.
This is a small improvement in comparison with the one mode case where the average
percentile difference in the standard deviations was around 10 %. Next we are going
to show what this improvement means in terms of how fewer events we can find above
a given threshold using the fast filter instead of the slow.

The following Figures 21.17, 21,18 and 21.19 show the result of a simulation
in which we inserted three pulses at 0.006 kelvin, just above the average 4 millikelvin

of the noise temperature. We established a threshold at a given energy and collected
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samples above the given threshold. We group together a sequence of samples from
the time goes above threshold to when again goes below the threshold. We consider
this sequence as a single event above threshold and call it a ”collapsed event”. The
energy of the collapsed event is the maximum of the sequence. The time of arrival of
the collapsed event is the time of maximum of sequence. The energy distribution of
the collapsed events is shown in Figure 21.17. It is possible to show that the fast filter
produces fewer events above a given threshold. The presence of the signals is revealed
by the ”bump” in the distribution at 0.06 kelvin. This is due to the high density of our
signals, 3 of them each minute. In real experiments we can expect that the gravitational
wave signal are quite rare. When we are looking for possible gravitational waves we
don’t know what is the burst energy of the astrophysical signal. The only way to
distinguish environmental noise from genuine gravitational wave signals is to look for
coincidences between different detectors. We can see that the slow filter can produce
more false alarms than the fast filter. Figure 21.19 shows that the ratio between the
number of events above threshold can be between twice to 10 times more for the slow
filter, when the threshold is at high energy. For comparison we also show the result
of the same experiment without any signal, just noise. Again it is possible to see in
Figure 21.20 and 21.21 that the slow filter is producing consistently more events above
a given energy threshold. The ratio between the number of events above threshold in

absence of signal is given in Figure 21.22.
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Figure 21.19: The distribution of the collapsed events above threshold for fast (blue) and slow
(red). The simulation contains signal plus noise.
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Figure 21.20: The integral distibution of the collapsed events above threshold; i.e the total
number events above given energy.

209



Collapsed events above given energy; noise +signal, signal 0/06 Kelvin
0.9 T T T T T T

0.7 b

0.6 1

0.5- 1

0.2+ i

fast/slow ratio of events above given threshold

0.1 1

O 1 1 1 1
2 4 6 8 10 12 14 16

energy/kelvin

Figure 21.21: The ratio between the collapsed events over a given threshold for the fast filter
blue) and slow filter (red).
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Figure 21.22: The distribution of events above threshold, for fast (blue) and slow (red) filters.
No signal is present.
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Figure 21.23: Integral distribution of the events above threshold. Just noise is present.
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Figure 21.24: The ratio between fast over slow number of events above threshold. Just noise
is present.
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CHAPTER 22
IS SAMPLING AT FAST RATE ESSENTIAL?

22.1 Effects of Demodulation

There is a problem in applying the fast filtering procedure to the ALLEGRO
data. The data acquisition system of the ALLEGRO detector samples data at a certain
rate, then demodulates and decimates (this is done through the hardware) and creates
two channels of data that are the in phase and in quadrature part of the data. The
question that we need to explore is if we can implement the fast filtering procedure
to this demodulated and slower sampled rate data. Demodulation can be represented

mathematically as a multiplication of the data by a phasor function ® :

& = exp(2mi f4t + ¢). (22.1)

where f; is the demodulation frequency, the frequency that will be the zero frequency
of the demodulated data. The quantity ¢ is an unknown phase. The real valued
amplitude of the raw data becomes a complex value function after has been multiplied
by the phasor. The real part z and imaginary part y of the values of this function can
be considered as the in phase and in quadrature part of the data. This is equivalent
to assuming a phase ¢ = 0. We used again our simulated detector to understand the
effect of demodulation and the loss of information due to not knowing the exact value
of ¢. We performed a comparison of the results of the fast filtering on the original data
and the same data sequence demodulated down by 980 hertz. Also we low pass filter
the demodulated data with a corner frequency of a few Hertz more than the frequency

offset of the mode. Finally we decimate by 3 the time sequence. The original data is
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the response of a one mode detector with a resonant frequency at 1000 Hz excited by
thermal noise at 4 millikelvin. We also added to the bar response some SQUID noise.

When demodulating we tried different values of ¢.

There are several remarks that should be made about details of the procedure
to filter the demodulated data. Demodulation, in the frequency domain, causes a
frequency shift. In constructing the fast filter for the demodulated data we need the
spectrum of the frequency shifted noise. That spectrum is similar to the original non-
demodulated spectrum but with the resonant peak at 20 Hertz from the zero frequency,
that is in the middle of the spectrum. In our simulation we used the algebraic form of
the spectrum calculated at properly shifted frequencies. Also a demodulated, low pass

filtered and decimated signal is used for the template to construct our filter.

Our simulation shows that demodulation doesn’t change very much the physical
properties of the fast filter output. For example,comparing the demodulated and the
original version of the fast filter, in a sample of 400 seconds of simulated data the mean
of the two sequences are respectively 0.0022 and 0.0023 kelvins. That is a proportional
difference of about 6 percent. We show in Figure 22.2 the distribution of non modulated
and modulated data. We selected high energy events, to reduce the effect of the high
frequency oscillations of the non demodulated data. It is already possible to see that

the two distributions are very close.

The envelope of the data extracts the real physical behavior of the noise after
filtering, eliminating the oscillation typical of the fast filter. We used our routine to

pull out the envelope of the non demodulated data. The direct comparison of the time
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Figure 22.1: The time series of the demodulated data (blue) and the original data (red). It
is simple to see that the demodulated data ”follows” the original sequence.
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Figure 22.2: The histogram for the demodulated data (blue) and the original data (red). It
is clear that at high energy the two histograms are comparable.
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Figure 22.3: The envelope of the non-demodulated (red) data superimposed on the time series

of the demodulated data (blue).

series of the envelope of the undemodulated and the demodulated data is shown in the
next Figure 22.3.

One could ask why the two outputs are not perfectly identical. Let’s define the
output filtered time series as ¢g(t). Then the demodulated filtered time series g(t) is

related to the non-demodulated sequence by:

g(t) = Real (g(t)exp(if2t)). (22.2)

where €2 is the demodulation frequency and ¢ is the time. We can rewrite the previous

expression as:

g(t) = z cos(Qt) — ysin(Qt); (22.3)

where x and y are the in phase and in quadrature part of the demodulated data: ie

x =Real (¢(t)) and y =Imag (g(1)).
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The envelope of the original time series is Ee,,, (t) = \/x(t}? + y(t)? . The square

of Eeny(t) in our simulation is the time sequence that we plotted in blue in the previous
Figure 23.3. This time series is not perfectly identical to the envelope ”extracted”
using our smoothing algorithm. If our demodulation calculation is correct we should
be able to reproduce our original data sequence using the equation (22.3). We tested
the validity of our demodulation procedure on a large signal with no noise present.
In this case the demodulation frequency was 1000 Hz. The result is shown in Figure
22.4. The signal is a narrow-band signal, in this case the response of the bar to a delta
function impulse. The original time series is plotted in blue. The "reconstructed” time
series is plotted in red. The "reconstructed” time series is the application of equation
(22.3) using the xz and y components of the demodulated signal. We can see that the
agreement is excellent (note though that the reconstructed time series is decimated by
a factor of 3). This is in agreement with the fact that the extracted envelope square of
a large signal in our simulation is always identical to the quantity E.,(¢)?. In the case
of noise we noticed an interesting effect. When we apply equation (22.3) to noise we
see that the reconstructed noise agrees with the original time series for a while then it
seems to go suddenly out of phase, i.e. it seems to have similar amplitude but shifted

in time by a certain amount. The phase of the demodulated data is defined as:
(t) = tan ! (g) . (22.4)

In the case of a large signal the phase is constant in time. We plotted in Figure

22.5 the phase (as defined in equation 22.4) for a typical noise segment in our simulation.
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Figure 22.4: The comparison of the large signal (no noise) original time series (blue) and
the "reconstructed” from the demodulated data time series. There is complete agreemetn

between the two series.
The phase follows a characterestic random walk in time. We noticed that any time that
there was a change in phase between the original noise sequence and the reconstructed
data, there was a sudden change in the phase. Figure 22.6 shows the changes in phase
and we can easily these sudden jumps or "glitches”. We think the glitches are due to
the discrete nature of or simulation. When we reduced the sample time the glitces are
smaller but they still cause a certain time shift in the reconstructed noise time series.
This effect is not a serious problem though. All that we care about noise is that the
statistical characteristics are maintained if we go from the original time series to the
demodulated one.
We compared the histogram of the energy of the extracted envelope of the non-

demodulated filtered data with the histogram energy of the demodulated data (the

envelope FEe,,(t)). The result is illustrated in the following Figure 22.7. The two
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Figure 22.5: The time series of the phase phi for the demodulated data.
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Figure 22.7: The histogram of the energy of the demodulated (red) and not demodulated
(blue) data.

distribution are very close to each other.

It is clear that the statistical behavior of the filtered output before and after
demodulation is very similar. So we can conclude that the technique of fast filtering

can be applied to the demodulated data of ALLEGRO without any serious impediment.

22.2 Effects of Decimation

The other important question we want to answer is what is the effect of the rate
of sampling on the performance of the matched filter. The relevance of this question is
first at a practical level. In fact, again the acquisition system of ALLEGRO samples
the data at a lower sampling rate than that used in our simulation. The term fast
filter suggests that an essential element of the filtering process is to work with data
that are sampled at a high sampling rate, much higher than the resonance frequency.

If the fast sampling rate is fundamental in the improved performance of the fast filter,

219



sampling rate effect on SNR in the case of white noise detector
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Figure 22.8: The effect of the sampling rate on the SNR. This experiment simulates the
presence of a short lived signal in a white noise (broad-band) detector.

then we could not achieve any improvements in applying the fully matched filter to the
ALLEGRO data. After demodulation, the resonant frequency is shifted at a very low
frequency so it seems that is not really essential to sample the data at a high sample
rate. In general, the sampling rate can influence the performance of the fast filter.
This depends on the type of noise we are dealing with. For example, we simulated a
situation where white noise is the principal type of noise in the detector (as in the case
of interferometric gravitational wave detectors). We inserted a short lived sinusoidal
signal and sampled the data at different sampling rates. Figure 22.5 shows the measured
signal to noise ratio as a function of sampling rate for this particular experiment. It is
possible to notice how the sampling rate has an evident effect on the performance of

the filter.

In our bar detector our noise is an equal mixture of white and colored noise (the
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response of the bar to the Gaussian thermal noise). The effect of this is that most of the
power in the noise spectrum is concentrated around the resonant frequency. The shape
of the noise spectrum, the FFT of the signal and the Fourier domain fast filter form
suggests that most of the information that characterizes the behavior of the filter is in
the Fourier coefficients near the resonant frequencies. See figure 19.3 for the shape of
the fast filter in the Fourier domain. Because the fast decay of the filter away from the
resonant, frequency it is reasonable to expect that we don’t loose a lot of information
just keeping the coefficients close to the resonant peak. In fact, reducing the sampling
rate or performing a decimation is equivalent to discarding the high frequency part of
the Fourier representation of the filter. More precisely if we reduce, for example, by a
factor of 3 the sampling rate we cut off a third of the high frequency coefficients of the
Fourier representation of the filter. But this operation should not effect too much the
qualities of the filter. In fact, most of the Fourier coefficients we discarded have a small
value compared to the one close to the resonant frequency. The sampling theorem says
that the highest frequency contained in the Fourier transform of the sample data is at
half the sampling frequency. This frequency is the Nyquisit frequency. The important
requisite in decimating the data is of course that the Nyquisit frequency is higher than
the resonant frequency (or its value after demodulation). We performed a simulation
using the one mode detector with a very high sampling rate. We decimated the data
with different decimation factors and fast filtered the decimated data. No noticeable
effect in the signal to noise ratio of the filter was noticed up to the point where the

Nyquisit frequency reached less than 10 % of the resonant frequency. So we conclude
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when filtering the colored noise of a resonant detector the sampling rate is not a key
element in the performance of the optimal filter. The fast filter is a better filter but not
because is applied to fast sampled data. So the fast filter name is actually a misnomer
and we propose the name of fully matched filter instead. This name indicates that the
filter is applied directly to the data without separating the information from the two
modes. In chapter 24 we are going to indicate few factors that could explain the better
performance of the fully matched filter over the partially matched filter both in the one
mode case (where the two filter should not show any difference at all) and in the two
modes case (where the difference between the two filter can mostly be attributed to

how the two filters deal with information from the two modes).
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CHAPTER 23
WORKING WITH REAL DATA

The simulation of the one and two mode cases allows us to study the filtering
process in a simplified environment. In fact we have pointed out that real detectors
are more complicated than the model that we have developed. For example, analyzing
the spectrum of a real detector, like ALLEGRO, we notice that there are more than
two peaks, suggesting that there are more that two modes present in the detector.
Fortunately most of the power in the spectrum is in the two main resonant modes. This
means that we can still model the detector as a two mode system within reasonably

small error.

23.1 The Spectrum of the Real Detector

One difficulty with real data is that the noise imay be stationary on a short time
scale but can change over a longer time frame. The consequence of this is that we need
to extract the current spectrum of the detector for the construction of the filter. For
this reason, instead of using an analytical form of the noise we rely on an average of the
spectrum over a few hours to characterize the noise for a particular day. We eliminate
from the data needed to calculate the spectrum high energy events that lie outside the
normal distribution of the noise.

The following Figure 23.1 shows a typical spectrum of ALLEGRO.

We can point out different features of the spectrum. The main resonant peaks
are at 896.4 and 919.6 Hz. There is a peak at 887.7 Hz the origin of which is not well

understood. It is suspected that is a mechanical resonant mode that has its location in
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Table 23.1: Parameters of the ALLEGRO detector spectrum.

mode frequency | quality factor Q
minus mode 896.414 Hz | 107°

plus mode 919.659 Hz | 107°

mystery mode 887.742 Hz | ?

15th hrmonics of 60 Hz | 900 Hz 107°

calibration pulse 855 Hz ?

the transducer. At 900 Hz it is possible to notice another peak in the spectrum. This

is the fifteenth harmonic of the 60 Hz frequency of the commercial AC electricity line.

Finally we notice the peak at 855 Hz. This is the peak due to the continuous

sine wave that is injected to calibrate the detector.

The following Table 23.1 summarizes the main frequency peaks and their mea-

sured quality factor QQ, when this is known.

At high and low frequency we notice the ”attenuation” of the power spectrum
due to the low pass (antialising) filter used in the acquisition apparatus. The entire data
sequence is demodulated to low frequency in the acquisition system of ALLEGRO. The
reference frequency is between the two main modes. Its actual value is 908.03 Hz. This
has the consequence that the lower resonant frequency has actually a negative value
if we use the reference frequency as the zero of frequency. This explains the common

name of the two main frequencies as the minus and plus mode.
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Figure 23.1: The Spectrum of the ALLEGRO detector.

23.2 The Mauceli Filter

The current burst event filter used by the LSU experimental group was developed
by different people but mainly by Even Mauceli, a Ph. D. graduate from LSU. The
code for the filter is written in the MatLab programming language and its algorithm
is explained in section 23.3. We are going here to summarize the main steps of the
filtering process in the Mauceli filter. The acquisition system demodulates the analog
signal of the SQUID with a reference frequency that is in between the two resonant
modes. Then the filters applies a low pass filter and reduces the sampling time trough
decimation. The sampling time of this raw data is 0.08 seconds. The data is separate in
two sets called the in phase and in quadrature part of the data by a lock in apparatus.
The Mauceli filtering program then multiplies the two sets of data with sine and cosine

functions (called "mixing”) to demodulate the data to the minus and plus modes of

225



the detector. Then a low pass filter is applied to keep just the frequencies near the
resonant modes, and finally another decimation is applied. The final decimation rate
is once each 0.0008 seconds. We have at this point 4 sets of data: the in phase and
in quadrature components for each of the two modes. On these demodulated and low
pass filtered data sets it is applied the slow filter that is described in Chapter 20.

The filter weights are obtained in the time domain using a real calibration pulse
as the target signal and the auto-correlation function of the noise of a typical day,
eliminating very large energy events. The total energy data sequence is generated sum-
ming the square of the in phase and in quadrature components and giving appropriate
weights to the minus and plus modes to compensate for the empirical difference in

temperature of the two modes.
23.3 DemonTemper Program

The main program that implements the slow filter is the program called Demon-
Temper.m. This is a program written in the MatLab programming language.

The algorithm of the program is as follows.

1) Read the raw data: the raw data from the acquisiton and collection system is

organized in records. These are segments of data 20 seconds long. The sampling rate
is 8 ms so one record contains 2500 samples. The raw data contains an header, the in
phase and in quadrature output channels, environmental information as seismographic
data from devices around the bar, hardware status information, various vetos and the
sample time in Coordinate Universal Time (UTC).

2) Remove DC offset: the amplitude of the bar has both rapid and slow changes
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(due to environmental changes as the moon tides for example). The gravitational
wave relevant changes are the rapid, high frequency changes so the mean value of the
amplitude is subtracted from the data.

3) Mixing: the four set of data, the in phase and in quadrature is multplied with
sine and cosine functions with frequency values that are the minus and plus frequency
(after the appropriate frequency relabeling to account for the first hardware demodula-
tion). We have at this point four data sets the in phase plus and minus =, and z_, the
in quadrature plus and minus y, and y_ components of the amplitude of the detector.

4) Low pass filter: a 8 order digital Bessel anti-aliasing filter with a corner

frequency at 2.35 Hz is applied to the four components of the data, keeping in this way
just the frequencies near by the resonant frequencies.

5) Decimation: the data is decimated by a factor of 10 reducing the sample time

to 80 ms.

6) Apply the slow filter: the filter described in Chapter 20 is applied to the

proceced data in the time domain. Also the weights are already normalized in such
way that the energy of the filter output matches the ”energy” trnasfer of the calibration

pulse.

9) Energy Estimation: the energy is evaluated squaring the separate in phase

and in quadrature components for each mode and adding them together.

10) Data selection and storage: an energy threshold is chosen (typically a value

10 times larger than the average noise temperature) and the samples above threshold

are collected and tagged with their corresponding arrival time.
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Also the average over a record of the amplitudes of the in phase and in quadrature
components and the energy for each mode is stored in a file. All the environmental

data is also stored.
23.4 The FastDemon

We modified the Demontemper program to implement the fast filter on the
ALLEGRO data.

This program is called FastDemon.m. It is very similar in structure to the
DemonTemper. The main difference is in the filtering procedure and partitioning of
the data set. We are going to explain the main differences.

1) Read the raw data: the reading of the raw data is exactly the same as before

except we read many records at once. The MatLab routine for the FFT can handle up
to 218 Fourier coefficients without slowing down too much the computational process.
In constructing our real data fast filter we choosed a number of coefficients close to
216 = 65536. The choice of this number limits the amount of data samples we can
filter at once. Each record is made of 2500 samples, that means that 27 records have
a total number of samples quite close to the ideal 2!9. This number is 67500 and it is
not a power of 2, but we verified experimentally that FFT processing time is not much
affected by this. A group of 27 records is called in our program a long record. A long
record is exactly 9 minutes of data, and there exactly 160 long records in a 24 hours
day.

2) Creating the complex variable z: we combine the in phase (denoted with an

z) and in quadrature data (denoted with the variable name y) components to form a
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single complex variable (called z). We have that:

z=1T+1y (23.1)

We don’t do any further demodulation in software.

3) Apply the fully matched filter: The fully matched filter is constructed in the

following way. The measured spectrum of the noise for the day is calculated using the
MatLab PSD routine. We clean the noiseof vetoed data and large impulses. The signal
template, see Figure 23.2, is formed using the analytical form of FFT of the signal as
described in section 17.4. Because demodulation is just a shift of the frequencies in the
Fourier domain we simply relabel the frequencies to account for the frequency shift of
the acquisition system of ALLEGRO. Then the FFT is calculated using formula 17.22,
using the parameter in Table 23.1 for the transfer function of the bar. The idea again
is that a gravitational wave signal will affect just the bar and not the transducer. We
make sure that the peaks in our FFT are aligned with that in the spectrum. We divide
the conjugate of the FF'T of the signal by the Spectrum to get the filter H. We apply H
to the FFT of z, and calculate the inverse transform to get the amplitude of the filtered
data. This is a complex variable because of the demodulation and we calculate the
total energy as the absolute value squared of this quantity. We multiply this quantity
by a normalization constant derived from a large calibration pulse in the stored data

library of ALLEGRO. The pulse that was used for normlization was in day 250 of 1997.

4) Storage: the storage of the data is similar to that of Demon Temper except

that we don’t have data from two modes, but a single set of data that combine naturally
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Figure 23.2: The FFT of the template signal using ALLEGRO parameters.

the information from the two modes.
23.5 Results for the Real ALLEGRO Data

We compared the result of filtering using our fully matched filter and the Maucelli
filter. We made sure that the response of the two filters to a large calibration pulse
was the same. Then we compared the output of the two filters in a section of data
where not large events were present. We applied to the fast data our routine to extract
its envelope, that contains the physical meaningful information. Figure 23.3 shows the
distribution functions of the envelope of the fast filtered data and the Maucelli filtered
data. It is evident that a noticeable improvement in reduction of noise temperature
is achieved by using the fully matched filter. If we fit the distributions with straight
lines the ratio between the two slopes is about 50 %. This should be equivalent to the

reduction of the noise temperature.
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Figure 23.3: The real detector result for the fast filter (blue) and the slow filter (red). This
is the hystogram for the envelopes of the data sets.
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CHAPTER 24
WHY IS THE FAST BETTER THAN THE SLOW FILTER?

In this Chapter we point out a few important charactersitics of the fast filter that
could contribute to its better performance in comparison with the slow filter. We could
not find in the literature a convincing explanation on why the fast filters is better than
the slow. For example, Astone et. al look at the statistical properties of the distribution
functions of the two filter to arrive to a conclusion that one filter outperform the other,
and they quantify the improvement in signal to noise ratio. We already explained how
this is a misleading comparing the statistical properties of the two filters because they
have different distribution functions. We have also pointed out that the fast oscillations
of the fast filter that contribute to the form of its distribution function don’t have a
real physical meaning. Also in the paper by Astone et al. there is not consideration on
the difference between one or more modes in the detector. Actually their analysis seem
to be completely independent of how many modes are present in their mathematical
model. We showed above that the fast filter is a better filter than the slow but the
difference in performance between the two filters becomes more evident in the two
modes case. At the moment we don’t have an analytic demonstration of why one filter
is better than the other. Not withstanding we want to show some qualitative arguments
that can point to the relevant characteristics of fast filter that make it a better filter.

This can be useful for further investigation on this subject.
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24.1 One Mode versus Two Modes

In the two mode case the most important characteristic of the fast filter is that
the information of the two modes is not separated and then recombined in quadrature
in the end as in the slow filter procedure. At first consideration we can think that the
approach followed by the slow filter is acceptable because the two modes are statistically
independent. There is though an important characteristic of the gravitational wave
signal that can introduce correlation between the modes. This is the fact that the
gravitational wave signal excites just the bar and not the transducer which causes the
normal modes to be equally excited at the same moment and same phase. The fast
filter can distinguish very well between the situation, when a large impulse excites
just the bar and when the bar and the transducer are both affected. The first case is
typical of gravitational wave signal,s and the second is typical of some of the noise. To
illustrate this we show in Figure 24.1 the frequency domain form of the filter applied to
the response of the two mode detector when a large impulse is applied to the bar, and
also the opposite situation when a force impulse acts just on the transducer. There is
a very evident difference between the two cases. The time domain form of the filtered
output is shown in Figure 21.2. The energy of the input impulse in both cases is the
same. We can see that the energy value assigned to the filtered output in the case of
the impulse acting just on the transducer is less than in the case where the force acts
just on the bar. This is to be expected because we optimized the filter to signals that
act only on the bar. The fractional difference in the filter output energy between the

two cases is about 15 percent. When we use the slow filter, the fractional difference is
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4 %. Figure 24.5 illustrates pictorially these results.

The difference in the energy output between the impulse on the bar and the
impulse on the transducer depends on the parameter I' (that determines the ratio
between narrow and broad band noise, see Section 17.3). Figure 24.3 shows the result
for another case, where I' was incremented the value by a factor of 2. It is easy to see
an evident difference between the two cases. Increasing the I' increases the ability to
distinguish between the excitation of the bar and excitation of the transducer. This
ability can be quatified with the ratio Ry /¢rans, defined as the ratio of energy outputs
for equal excitation of the bar and transducer. A plot of his ratio, as a function of I, is
shown in Figure 24.4. The slow filter was found to be insensitive to changes in I'. The
Signal to Noise (SNR) was used to compare the performance of the fast filter and slow
filter for different values of I'. We used the Signal to Noise Ratio (SNR) to compare
the two filters using the previos justified correction for the fast filter (see Chapter 14).
Figure 24.6 shows our final result. The improvement due to the fast filter in comparison
with the slow is proportional to the ratio Rper/trans and this ratio, as already shown,
is proportional to the parameter I'. This shows that for detectors with large values
of I' the fast filter has a noticeable higher performance than the slow filter. One last
question is, if in our process of increasing I', we allowed for the cutoff frequency of
the low pass filter, applied to the demodulated data in the slow filter construction, to
be beyond the frequency where the white noise contribution becomes smaller than the
narrow band noise. This will mean that the improvement in the fast filter is just due to

our choice of cutoff frequency and it is not really an intrisic porperty of the fast filter. A
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more careful choice of the cutoff frequency, in this case, it will offset the improvement.
Figure 24.7 shows that this is not the case. The Figure ilustrates the cumulative power

(in meters squared) of the two quantities:

Su(t) = 2t (24.1)

w

Sit) = |Gu -Gl Sy

where the quantity 22 is the mean value of amplitude of the SQUID noise. The two
curves cross at a certain point, where the two noise contributions are equivalent. We
notice that the cutoff frequency of the low pass filter and decimation is at a lower
frequency than this point. This means that the demodulated, low passed and decimated
data in the slow filter still contains information on the white noise. We choose the lowest
value of the white noise used to generate the graph in Figure 24.6. Our conclusion is

that the difference between the two filters as a funtion of I' is a real effect.
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Figure 24.1: The fast filter applied to a large impulse tha excites just the bar (blue, as in the

gravitational wave signal) and both the bar and transducer. The filter assigns more energy
to the first type of event.
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Figure 24.2: The fast filter output in the case of energy being delivered just in the bar (blue)
and both in the bar and transducer (red).
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CHAPTER 25
CONCLUSIONS

In our study we explored the performance of two different types of filters, the
fast filter and slow filter. We used a simulated damped harmonic oscillator with one
and two modes. It was shown that there is a small but noticeable difference between
the two filters even in the one mode case. In terms of Signal to Noise ratio (SNR)
the improvement between the fast and slow is about 10 %. The fast filter is a better
filter in the sense that produces less events above a certain fixed threshold used in the
coincidence search between different detectors. This in turn means that using the fast
filter we have fewer false alarms when producing a list of possible event candidates used
for coincidences searches.

The advantage of the fast filter is much more evident in the case of the two
mode oscillator. The SNR improvement in this case is about 40 %. The number
of events above threshold is a function of the energy of the threshold. When we use
threshold energy that are few times the average noise temperature we can have between
2 to 10 times more events above threshold for the slow filter in comparison with the
fast filter. This a considerable and useful effect. We also applied the fast filter to
the real ALLEGRO data and found similar results. In particular we reduced the noise
temperature by a factor of 2 in comparison with the average temperature of the Mauceli
filtered noise. We have also shown that the Signal to Noise Ratio improvement of the
fast filter over the slow filter is proportional to the parameter I'. The parameter is the

ratio between the narrow band and broad band noise power. This means that for bigger
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values of T" we have higher SNR for the fast filter output in comparison with the slow

filtered output.
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APPENDIX 1
THE PRECESSION OF A ROTATING NON-AXISYMMETRIC
ELLIPSOID

The actual shape of the neutron star could be quite complicated. The defor-
mations from perfect spherical symmetry will be however quite small. The fraction of

ellipticity allowable before the crust will break is of the order of 10~%.

For simplicity let’s assume the star can be approximated as a solid object. Even

a small deformation will produce a wobble in the motion of a rotating neutron star
More precisely the rotation axis will change its orientation, relative to a distant
observer. The axis will appear to move in a circular pattern with a certain rotation
frequency f, This motion is called precession. There are two possibilities that can
create the precession. The first is that the star is deformed along just one of the axis
of symmetry, let’s say along the axis as. If the rotation axis coincides with the axis ag
then there is not precession. Precession will occur, though, if the axis of rotation is not

parallel to the axis as.

In this case we derive a simple expression that relates the ellipticity to the

precession frequency and the rotation frequency of a rigid body.

This derivation can be found in most classical mechanics books. See for exam-

ple [12]. Let’ s start with the Euler equations for force-free motion, solutions to the
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Lagrangian of a rigid body motion:

(]2 — ]3)&)2&)3 — ]1 (.,;)1: 0

(1.1)

-~

(13 — Il)LU3wl — IQ C;JQ: 0

(Il — IQ)CU]_(UQ — 13 L;J3: 0

Ve

In the case of a spheroid (a; = ay > a3g) we have Iy = Iy # I3. The we can

rewrite Euler ’s equations as:

(]1 - ]3)&)2&)3 - ]1 (.,;)1: 0

(1.2)

-~

(]3 — ]1)&)3(.4)1 - ]1 (.,;)2: 0

I3 L;J3: 0
/
where we have substitute I; for I,. Let’s assume that the center of mass of the

object is at rest and the spheroid rotates with angular velocity w along an axis non

parallel with the symmetry axis as. The third equation in (17) gives us ws= 0 that

implies
ws = const. (1.3)
So we can rewrite (17) :
i (1.4)
by Uil |
Define the constant:
Y (L5)
I
to get:
wi +Qw; =0 (16)

C;JQ —QWQ =0
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The solution of this equations is:
wi(t) = AcosQt
wa(t) = AsinQt
where A = \/w? + wi.

This is showing that the projection of the vector w onto the a; — as plane
describes a circle with time. This motion of the velocity vector w around the symmetry
axis ag is called precession.

Notice that the ellipticity ,defined earlier, can be express in terms of moments
of inertia as:

a3 —a; Masa; — Mayay I3 —1;

= = ~ 1.8
c \/aias Malw/alag Il ’ ( )

where M is the mass of the star.

This gives us a value for the ellipticity as function of the ratio between precession

angular velocity and rotation angular velocity:

L-L Q
=2 12 (1.9)

5L w3

€

Then using the values given in the introduction for the case of 1987A, we have
(P =1/f is the period):

Q 1/P,  0.00214 seconds 6
= = = =2.1x10 1.10
T ws 1/P 1000 seconds x 107 (1.10)

that is the estimated value for the ellipticity in the Middleditch et al.’” paper.
The ellipticity for the pulsar PSR B1828-11 can be also easily estimated using

the given observational data in that case are:

Q  1/P 0.405 seconds T
=— = = =4.6 x 10
c wg 1/P 8.6 x 107 seconds %
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The more general case of ellipticity along more than one axis and the consequence
for precession and gravity wave emission is discussed in a series of paper by Zimmerman

[5-6).
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APPENDIX 2
HOW THE EQUATION OF STATE WILL INFLUENCE THE VALUE
OF THE ELLIPTICITY.

The above calculation assumes that the neutron star can be imagined as a rigid
body. There are different model of neutron stars and they have in some cases very
complicated equation of states. We can find in the literature some simpler models with
easy expressions for the level of rigidity or stiffness of the equation of state in a neutron
star. More rigid the equation of state closer is the star to a rigid body or at least to a
star with a large solid core, solid crust and small fluid material in between. More soft
is the equation more fluid is the interior of the star.

Now in one of earliest paper on the subject of rotating neutron star [5] there is
a discussion of a model for a neutron stars that consists of a thick crust and a liquid
interior. The liquid interior part is small in comparison with the crystalline crust. The
shear modulus p (that expresses the ability of the material to support shear stresses)

for a Coulomb lattice is:

p < (Ze)N?, (2.1)

where N, is the number density of nuclei of charge Z. Ruderman (an expert in neutron

star physics) estimates:

p < 10°° dynes em ™2, (2.2)
for typical neutron star mantles.
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In this case if the star is set in free precession, the precession will not be as

before € = 13[;11 = £ put:
1 w3

I3 —1 Q194+ 2gpR Q
_ 13 1 e 19l gp > (2.3)

© Il w3 19/,6 w3

where R is the radius of the neutron star, about 10* meters, g = <3 and p ~ 10g/cm?
is the density of the star.

Playing around with different values of shear modulus, density and radii of neu-
tron stars we can get an enhancement between 10* and 10* for the ellipticity. This
is just to show that even a little softness in the equation of state will imply a bigger
ellipticity that could be enough to make the neutron star generate enough gravitational
radiation to be detectable by the improved ALLEGRO after one year or so of obser-
vation. In the case nothing is observed, the experiment will put strong limits on the

equation of state of the neutron star left behind the Supernova 1987A, a non trivial

astrophysical result.
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APPENDIX 3
CODES IN MATLAB

3.1 Program # 1: Spectrum of the Noise for Two modes System. Spec_2mode.

hcalculating the theoretical spectrum for the double resonant detector
and comparing it with the measured spectrum from the simulation
clear

xfs= 6.8404e-017; %normalization factor

wl=2*xpi*xf0x1;

w2=2xpi*xf0x2;

kl=massl*wl~2

k2=mass2*w2"2

bl=massl*sqrt(kl/mass1)/Q1; %friction coefficients for springs
b2=mass2*sqrt (k2/mass2) /Q2;

hcalculating the strength of the forces acting on the detector
Temp=4*10~-3; % temperature

Sfb=4*kb*Temp*massi*sqrt (k1/mass1)/Q1;

%spectrum of force noise acting on the bar
Sft=4*kb*Temp*mass2*sqrt (k2/mass2) /Q2;

%spectrum of force noise acting on the transducer

Fb=sqrt (Sfb/(dT))%average size of force in Newtons on bar

Ft=sqrt(Sft/(dT))%average size of force in Newtons on transducer
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Fnoiseb=Fb*randn(nfft,1);%this is the time sequence of the noise on the bar
Fnoiset=Ft*randn(nfft,1);’%this is the time sequence of the noise on transducer
F1=Fnoiseb-Fnoiset;%this is the noise on x1

F2=Fnoiset;%this is the noise on x2

hforce of the signal

mult=1000;%how many times the signal is bigger than average noise force on
bar

Fsign=mult*Fb;

% size of burst-signal force in Newtons on bar (mult times the average noise
force on bar)

Flsign=[zeros(10,1);Fsign;zeros(nfft-11,1)];

Jthe signal time sequence (one single force burst acting on bar)
F2sign=zeros(nfft,1);%no force on transducer in this case

hcalculating the parameters of the normal modes trough linear algebra
GAMMA=[1/sqrt(massl) 0;0 1/sqrt(mass2)] ’the mass-normalizing Matrix
BETA=[bl 0; O b2];%the matrix of the friction coefficient in x1,x2 coordinates
BETAy=GAMMA*BETA*GAMMA ; /transfrornation to y

OM=[-(wl1~"2+mass2/mass1*w272) sqrt(mass2/massl)*w272;

sqrt (mass2/massl)*w2"2 -w2"2]

%»this is the omega matrix ,

Jmass the normalized spring constant matrix OM=gamma K gamma

[A,D]=eig(OM) ;%spring constant and rotation Matrix
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A
D
Y%transformations to eta coordinates (normal modes coordinates)

BETAeta=A’*BETAy*AJithe friction coefficients matrix in etal, eta2 coordinates

Qetal=sqrt(-D(1))/BETAeta(l)’%quality factor for normal model
Qeta2=sqrt (-D(4))/BETAeta(4)%quality factor for normal mode2
Forcemu=A’*GAMMA ;%the transformation matrix for the force
Fetal=Forcemu(1)*F1+Forcemu(3)*F2;%noise force in eta coordinates
Feta2=Forcemu(2)*F1+Forcemu(4)*F2;
Fetalsign=Forcemu(1)*Flsign+Forcemu(3)*F2sign;%sign force in eta coordinates
Feta2sign=Forcemu(2)*Flsign+Forcemu(4)*F2sign;
om01=sqrt(-D(1));%resonant frequency of normal modes

om02=sqrt (-D(4));

f01=om01/ (2*pi)

£02=0m02/ (2*pi)

theta=acos (A(1));

%%t specifing variables in terms of Papoulis H(s) function p.167
alphanl = om01/(2*Qetal) ;

betanl = omOl*sqrt( 1 - 1/(4xQetal”2) );

Anl = exp(-alphani*dT)*sin(betanl*dT)/betani;

bpnl = 2*exp(-alphanl*dT)*cos(betanl*dT);
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cnl = exp(-2*alphanl*dT);
%% calculate digital filter constants

bnl

[0,An1%dT];

ani [1,-bpnil,cni];

Jthe second mode

alphan2 = om02/(2*Qeta2) ;

betan2 = om02*sqrt( 1 - 1/(4*Qeta272) );

An2 = exp(-alphan2*dT)*sin(betan2+*dT) /betan?2;
bpn2 = 2*exp(-alphan2*dT)*cos(betan2+dT) ;

cn2 = exp(-2xalphan2x*dT) ;

%% calculate digital filter constants

bn?2 [0,An2*dT];

an2 [1,-bpn2,cn2];

%kl make random force sequence

%f_noisebar =Forceex1(1l)*randn(nfft,1);
%f_noiset=Forceex2(2)*randn(nfft,1);

%»f noise_etal=f noisebar-f noiset;’force excting etal

%f _noise_eta2=f_noiset;

%f_noise = [1; zeros(npts-1,1)];

%% calculate the entire output displacement sequence in eta coordinates

%»this is the noise output sequence

eta_l = filter(bnl,anl,Fetal);%filter gives initial and final condition of
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delay

etal=eta_l*weigth un;’mass normalization (meters), mass=1

eta 2 = filter(bn2,an2,Feta2);%filter gives initial and final condition of
delay

eta2=eta 2*weigth un;’mass normalization (meters)

%»this is the signal sequence(no noise)

eta_ls = filter(bnl,anl,Fetalsign);’%filter gives initial and final condition
of delay

etals=eta_ls*weigth un;’mass normalization (meters), mass=1

eta2s = filter(bn2,an2,Feta2sign);’%filter gives initial and final condition
of delay

eta2s=eta 2s*weigth un;’mass normalization (meters)

hsave

Jhtranforming to y and then x coordinates

Jnoise

y1=A(1)*etal+A(3)*eta2;

y2=A(2) *etal+A(4) *eta2;

x1=1/sqrt (mass1)*yl;

x2=1/sqrt (mass2) *y2;

%signal (no noise)

yls=A(1)*etals+A(3)*etals;

y2s=A(2)*xetals+A(4)*etals;
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x1s=1/sqrt(massl) *yls;

x2s=1/sqrt (mass2) *y2s;

difcoorn=x2-x1;

hdifference in the two coordinates (the observable quantity) , just noise
difcoors=x2s-x1s;

hdifference in the two coordinates (the observable quantity) , just signal
x_asn=10% 0.07*x10"(-16);

x_white noise =x_asn*randn(nfft,1);

Jthe squid white noise (comparable size to observable x2-x1)
xnoisetot=difcoornt+x_white_noise;
[spectn,frn]=psd(xnoisetot,nfft,samp_freq,hanning(nfft));
[spects,frs]=psd(difcoors,nfft,samp_freq,hanning(nfft));
figure(5)

semilogy(frn,spectn)

hfiltering

hcalculating the spectrum

S_xtot2m=spectn/samp_freq;

Jthe normalized spectral density of the noise

P=S_xtot2m;

s1=(1: (length(P)-1)) ;% here we make a 2 sided

s2=(1: (length(P)-1)); %power spectrum : psd will be nfft long

P1=P(s1+1)’;
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P2(length(P)-s2)=P(s2);

P=[P2,P1];

SXX=P’;

PP=[P1,P2];

SXX1=PP’;

Sw=x_asn"2x*dT;

%Qetal=Q1;

%Qeta2=Q2;

im=sqrt(-1);

om=2x*pix*f1l;
Gll=cos(theta)~2./(mass1*(om01~2-im*omO1.*om/Qetal-om."2))
+sin(theta) 2./ (mass1*(om02"2-im*om02.*om/Qeta2-om. " 2));
G12=-sin(theta)*cos(theta).

*x1/(sqrt (massl*mass2)*(om01~2-im*om01.*om/Qetal-om. ~2))
+sin(theta)*cos(theta)

.*1/(sqrt (massl*mass2)*(om02~2-im*om02. *om/Qeta2-om."2)) ;
G22=sin(theta) "2./(mass2* (om01~2-im*om01.*om/Qetal-om.~2))
+cos(theta) 2./ (mass2*(om02~2-im*om02. *om/Qeta2-om. ~2)) ;
% the noise spectrum
Sptot=abs(G12-G11) . 2*Sfb+abs (G22-2*G12+G11) . "2*Sft+Sw;
figure(22)

semilogy(f1,5XX1, ’bo-")

257



hold on
semilogy(f1, Sptot,’r-’)
hold off

save spec_2mode_Sptot_4_31n Sptot difcoors

3.2 Program # 2, Collapse of Events: Stat_events.mat

% statistc of collapsed events 2718 = 1 minute of data’2 mode oscillator
%»This subroutine creates a simulated record of data (with a preset

%length between 1-30 sec.)

Jcreates longer data set n minutes and creates statics of collapsed events
%hcalculating the spectrum

clear

Eevl_tot=0;

Eev_tot=0;

save fl1_sh Eevl_tot Eev_tot

clear Fnoiseb Fnoiset GAMMA BETA BETAy OM A D

xfs=3.1682e-015; ;%normalization factor
%xfs= 7.9839e-016;%for less noise
weigth un=1;

kb=1.3806*10" (-23) ;%boltzmann constant
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samp_freq =4096; % sampling frequency [1/s]
nfft=2"18;

npts=nfft;

%h% calculate derived paramters

dT

1/samp_freq; % ’’dT’’ == the time (s) between samples

df

samp_freq/nfft;’ the frequency spacing for ffts
t=linspace(0,2718%dT,2718);

f1 = dfx[0:nfft/2, (-nfft/2+1):-1];% the storage order of ’’fft’’ function
%t specify the parmeters of the damped harmonic oscillator

fOx1 =900; % the nominal frequency of the dho [Hz]

f0x2=900;%the frequency of the transducer;

Q1 =5%10"4; 7% the nominal quality factor of the dho [dimensionless]
02=5%107"4;

massl = 1000;

mass2=1;

wl=2*xpi*xf0x1;

w2=2*xpi*f0x2;

kl=massl*wl~2

k2=mass2*w2"2

bl=massl*sqrt(kl/mass1)/Q1; %friction coefficients for springs
b2=mass2*sqrt (k2/mass2) /Q2;

%hcalculating the strength of the forces acting on the detector
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Temp=4*10~-3; % temperature

Sfb=4%kb*Temp*massi*sqrt (k1/mass1)/Q1;

%spectrum of force noise acting on the bar
Sft=4*kb*Temp*mass2*sqrt (k2/mass2) /Q2;

%spectrum of force noise acting on the transducer

Fb=sqrt (Sfb/(dT))%average size of force in Newtons on bar
Ft=sqrt(Sft/(dT))%average size of force in Newtons on transducer
Fnoiseb=Fb*randn(nfft,1);%this is the time sequence of the noise on the bar
Fnoiset=Ft*randn(nfft,1);%this is the time sequence of the noise on transducer
F1=Fnoiseb-Fnoiset;%this is the noise on x1

F2=Fnoiset;%this is the noise on x2

hforce of the signal

mult=10"3;%how many times the signal is bigger than average noise force on
bar

Fsign=multx*Fb;

% size of burst-signal force in Newtons on bar (mult times the average noise
force on bar)

Flsign=[zeros(10,1) ;Fsign;zeros(nfft-11,1)];

Jthe signal time sequence (one single force burst acting on bar)
F2sign=zeros(nfft,1);%no force on transducer in this case
WF2sign=[zeros(10,1) ;Fsign/3;zeros(nfft-11,1)];

%Flsign many=[zeors(10,1) ;Fsign;zeros(10,1)];
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hcalculating the parameters of the normal modes trough linear algebra
GAMMA=[1/sqrt(massl) 0;0 1/sqrt(mass2)]%the mass-normalizing Matrix
BETA=[bl 0; 0 b2];

%the matrix of the friction coefficient in x1,x2 coordinates
BETAy=GAMMA*BETA*GAMMA ; /transfrornation to y
OM=[-(w1~2+mass2/mass1*w27~2) sqrt(mass2/massl)

*w2"2;sqrt (mass2/mass1)*w2"2 -w2°2]

%»this is the omega matrix ,

Y%mass the normalized spring constant matrix OM=gamma K gamma
[A,D]=eig(OM) ;%spring constant and rotation Matrix

A

D

;htransformations to eta coordinates (normal modes coordinates)
BETAeta=A’ *BETAy*A

%the friction coefficients matrix in etal, eta2 coordinates
Qetal=sqrt(-D(1))/BETAeta(l)’%quality factor for normal model
Qeta2=sqrt (-D(4))/BETAeta(4)%quality factor for normal mode2
Forcemu=A’*GAMMA ; %the transformation matrix for the force
Fetal=Forcemu(1)*F1+Forcemu(3)*F2;

Jnoise force in eta coordinates
Feta2=Forcemu(2)*F1+Forcemu(4)*F2;

Fetalsign=Forcemu(1)*Flsign+Forcemu(3)*F2sign;
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%sign force in eta coordinates
Feta2sign=Forcemu(2)*Flsign+Forcemu(4)*F2sign;
om01=sqrt(-D(1)) ;’%resonant frequency of normal modes
om02=sqrt (-D(4));

f01=om01/ (2*pi)

f02=0m02/ (2*pi)

theta=acos (A(1));

%kt specifing variables in terms of Papoulis H(s) function p.167
alphanl = om01/(2xQetal) ;

betanl = omOl*sqrt( 1 - 1/(4*Qetal”2) );

Anl = exp(-alphanl*dT)*sin(betanl*dT)/betani;

bpnl = 2*exp(-alphanl*dT)*cos(betan1*dT) ;

cnl = exp(-2*alphanlx*dT);

%kt calculate digital filter constants

bn1l [0,An1*dT];

ani [1,-bpnil,cni];

%the second mode

alphan2 = om02/(2*Qeta2) ;

betan2 = om02*sqrt( 1 - 1/(4*Qeta272) );

An2 = exp(-alphan2*dT)*sin(betan2+*dT) /betan?2;

bpn2 = 2xexp(-alphan2#*dT)*cos (betan2*dT) ;

cn2 = exp(-2*alphan2*dT);
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%kt calculate digital filter constants

bn2

[0,An2%dT] ;

an2 [1,-bpn2,cn2];

%kl make random force sequence

%f noisebar =Forceex1(1)*randn(nfft,1);

%f _noiset=Forceex2(2)*randn(nfft,1);

»f noise_etal=f noisebar-f noiset;’%force excting etal
%f_noise_eta2=f_noiset;

%f noise = [1; zeros(npts-1,1)];

%% calculate the entire output displacement sequence in eta coordinates
%this is the noise output sequence

eta_l = filter(bnl,anl,Fetal);

J»filter gives initial and final condition of delay
etal=eta_l*weigth un;’%mass normalization (meters), mass=1
eta 2 = filter(bn2,an2,Feta2);

hfilter gives initial and final condition of delay
eta2=eta 2*weigth un;’mass normalization (meters)

%»this is the signal sequence(no noise)

eta_ls = filter(bnl,anl,Fetalsign);

J»filter gives initial and final condition of delay

etals=eta ls*weigth un;’mass normalization (meters), mass=1

eta2s = filter(bn2,an2,Feta2sign);
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%filter gives initial and final condition of delay
eta2s=eta_2s*weigth un;’mass normalization (meters)
hsave

hfigure (1)

subplot(2,1,1)

hplot(etal)

htitle(Peta-1’)

%subplot(2,1,2)

Jplot(eta2,’r-’)

htitle(Ceta 2?)

Jtranforming to y and then x coordinates
Jnoise

y1=A(1)*etal+A(3)*eta2;

y2=A(2) *etal+A(4) *eta2;

x1=1/sqrt (mass1)*yl;

x2=1/sqrt (mass2) *y2;

%signal (no noise)
yls=A(1)*etals+A(3)*etals;
y2s=A(2)*etals+A(4)*etals;
x1s=1/sqrt(massl) *yls;

x2s=1/sqrt (mass2) *y2s;

hfigure(2)
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%subplot(2,1,1)

%iplot (x1)

htitle(’x_17)

subplot(2,1,2)

hplot(x2,’r-7)

htitle(’x.27)

difcoorn=x2-x1;

hdifference in the two coordinates (the observable quantity) , just noise
difcoors=x2s-x1s;

hdifference in the two coordinates (the observable quantity) , just signal
hfigure(3)

hplot(difcoorn,’m-’)

hfigure(4)

hplot(difcoors,’m-’)

difcoorsi=[zeros(nfft/2,1) ;difcoors];
difcoorsi=difcoorsi(1:nfft);

x_white noise = 4*10* 0.07%10"(-16)*randn(nfft,1);

Jthe squid white noise (comparable size to observable x2-x1)
xnoisetot=difcoorn+x_white_noise+difcoorsi;
FFTsign=fft(difcoors );

hcalculating transfer function G

%Qetal=Q1;
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%Qeta2=Q2;

im=sqrt(-1);

om=2*pix*xf1l;

Gll=cos(theta) ~2./(mass1*(om01~2-im*omO1.*om/Qetal-om."2))
+sin(theta) 2./ (mass1*(om02~2-im*om02.*om/Qeta2-om. ~2)) ;
G12=-sin(theta)*cos(theta) ./ (sqrt(massi*mass2)* (om01~2-im*om01.*om/Qetal-om."~2))
+sin(theta)*cos(theta) ./ (sqrt(massl*mass?2)* (om02"2-im*om02 . *om/Qeta2-om. "2)) ;
G22=sin(theta) "2./(mass2* (om01~2-im*omO1.*om/Qetal-om.~2))
+cos(theta) 2./ (mass2* (om02"2-im*om02 . *om/Qeta2-om. "2)) ;
x_asn=10% 0.07*x10"(-16);

Sw=x_asn"2x*dT;
Sptot=abs(G12-G11) . 2*Sfb+abs (G22-2*G12+G11) . "2*Sft+Sw;
Gsignal=G11-G12;

InGsignal=1./Gsignal;

InGsignal2=1./abs(Gsignal)."2;

th=find (£1>700 & £1<1200);
WhtSignalom=InGsignal (th) .*FFTsign(th)’;
WhtSignalt=ifft(WhtSignalom) ;

figure(8)

semilogy (£1(th),1./abs( G11(th)-G12(th) )."2 )

figure(9)

semilogy(£f1(th),abs(WhtSignalom))
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