
Modern Tools for
Static Website Development

Static Site
Generators

Brian Rinaldi

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1814

Short. Smart.
Seriously useful.

Free ebooks and reports from O’Reilly
at oreil.ly/webdev

We’ve compiled the best insights from
subject matter experts for you in one place,

so you can dive deep into what’s
happening in web development.

Davey Shafik

Upgrading
to PHP 7

Modern Tools for
Static Website Development

Static Site
Generators

Brian Rinaldi

KYLE SIMPSON

UP &I

 GOING

“When you strive to comprehend your code, you create better
work and become better at what you do. The code isn’t just

your job anymore, it’s your craft. This is why I love Up & Going.”
—JENN LUKAS, Frontend consultant

Jens Oliver Meiert
Foreword by Lindsey Simon

The Little Book
of HTML/CSS
Coding Guidelines

http://oreil.ly/webdev

Brian Rinaldi

Static Site Generators

978-1-491-92662-8

[LSI]

Static Site Generators
by Brian Rinaldi

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Matthew Hacker
Copyeditor: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

September 2015: First Edition

Revision History for the First Edition
2015-09-22: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Static Site Genera‐
tors, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

What Are Static Sites?. 1
A Little Background 1
Defining a Static Website 7
Benefits of Static Sites 8

The Basics of Static Site Generators. 15
What Are Static Site Generators? 15
What Skills Are Required for Static Site Development? 22
What Types of Sites Are Static Site Generators Useful for? 25

Popular Static Site Generator Options. 29
Jekyll 30
Wintersmith 35
Hugo 40

Deploying a Static Site. 49
FTP 49
GitHub Pages 52
Cloud Hosting 53
The Possibilities Are (Almost) Endless 55

v

What Are Static Sites?

A Little Background
There’s been a lot of talk recently about static sites and the new gen‐
eration of tools used to create them, commonly referred to as “static
site generators” or “static site engines.” As with any new technology,
it can sometimes be hard to differentiate the hype from the reality.
This book aims to give you a broad understanding of the technol‐
ogy: what it is and where it best applies. First, however, we need to
define what static sites are and where they came from.

The term “static site” is an interesting one if you think about it, as it
defines itself by what it lacks. The “static” aspect doesn’t so much
describe a feature as the absence of one: dynamic page rendering.
Once upon a time, probably before we commonly used the term
“static site,” this would have been considered a weakness.

Those of us who’ve been working in web development for some time
probably recall building static sites using tools like Dreamweaver,
HomeSite, or (heaven forbid) FrontPage. The content on these pages
could only be changed by manually altering the existing site files
and replacing the files on the server via FTP.

There were a number of issues with this process. Adding content to
the site required a moderately high level of technical knowledge,
either knowledge of the specific tool used to design and build the
site or of HTML to handcode the site. One also needed to under‐
stand how to deploy the site to a host via FTP, which isn’t necessarily
straightforward for nontechnical users. This meant that the content
creators, who are frequently nontechnical, could not directly or

1

easily contribute to the site and required the assistance of a web
developer to add new content.

Creating new pages typically required copying and tweaking exist‐
ing pages. As the site grew, maintaining proper navigation and links
typically became both tedious and extremely error prone. Some
tools offered features like templates that tried to solve these issues,
but these could be complicated or cumbersome to create.

In addition to these issues, there was the limitation that if your site
required dynamic features like comments or forums, for example,
this was simply not possible in a purely static site.

The Dynamic Site Era
Dynamic sites seemed to fix these issues. Nontechnical content crea‐
tors could create and update pages via backend forms without the
need to understand the specifics of website development tools or
HTML. Since the content and pages were all driven from a database,
navigation could be generated automatically. In addition, by defini‐
tion, dynamic sites allow for dynamic features such as forums or
comments.

In the case of content-focused web pages, dynamic sites often took
the form of a content management system (CMS). These could be
custom built to the needs of the site or, very frequently, selected
from a number of commercial or open source options.

To this day, most of the content published on the Web runs through
some form of content management system. Popular open source
options include Drupal, Joomla, and Typo3 (see Figure 1-1). Nowa‐
days, these systems typically handle much more than simply content
creation and publication, with features such as complex roles and
access control, workflow management, document management, and
syndication.

2 | What Are Static Sites?

http://drupal.com/
http://www.joomla.org/
http://typo3.org/

Figure 1-1. Adding an article in the Drupal CMS (source: Drupal.org).

These additional features lead to the biggest issue with dynamic
sites, which is that the solution is often more complex than the
problem. By virtue of its need to cater to a broad set of customers, a
pre-built CMS often has a steep learning curve for both developers
and content creators. Meanwhile, a custom CMS requires both
extensive development efforts and access to a developer should
issues or necessary changes arise.

Hosting dynamic sites is complicated by the need for database stor‐
age (and backups) as well as support for whatever dynamic language
the site is built upon (PHP, Ruby, etc.). Factor in the need for regular
updates to the dynamic language, database solution and even the
CMS software itself, and it becomes rather obvious that, while
dynamic sites solve many difficult problems, they bring with them
their own set of complications.

The Rise of Blog Engines
The complexity of content management systems was not well suited
for smaller, content-focused sites or blogs that didn’t require
advanced features like complex user roles or workflow. Blogging
engines, the most popular being Wordpress (see Figure 1-2), aimed
to solve this by making development simple, with pre-built and

A Little Background | 3

https://wordpress.org/

easily customizable templates, and publishing content quick and
easy.

Blog engines don’t negate the need for supporting a dynamic lan‐
guage (PHP in the case of WordPress) or for a database (typically
MySQL for WordPress). WordPress, however, became popular
enough that many hosts made “out-of-the-box” hosting solutions
that simplified setup and maintenance. To give you a sense of the
popularity of WordPress, according to W3Techs, as of May 2015,
Wordpress is used on approximately 23.9% of the top 10 million
sites, a percentage that dwarfs every other content management
system.

Figure 1-2. The WordPress dashboard (source: WordPress.org).

Nonetheless, over time, WordPress has begun to gain some of the
complexity of a typical CMS, and it is generally lumped in the cate‐
gory of CMS by most industry research. Many sites heavily depend
on features that are added via plug-ins, the quantity and quality of
which can dramatically impact site performance. In addition, fea‐
tures like plug-ins and “shortcodes” can impact the portability of
content, keeping your site tied to the Wordpress platform.

Some in the blogging community felt that Wordpress and compet‐
ing blog engines like Moveable Type had strayed so far from the
simplicity of their initial blogging focus that they created new

4 | What Are Static Sites?

http://w3techs.com/technologies/overview/content_management/all/
http://wpengine.com/2013/08/28/plugins-and-fast-wordpress-sites-its-not-the-number-of-plugins-its-the-quality/
http://wpengine.com/2013/08/28/plugins-and-fast-wordpress-sites-its-not-the-number-of-plugins-its-the-quality/
https://codex.wordpress.org/Shortcode
https://movabletype.org/

projects, like Ghost for example (see Figure 1-3), that aimed to get
back to the basics of just blogging. Ghost’s tagline is, in fact, “Just a
blogging platform.”

Figure 1-3. Ghost offers an intentionally simple and sparse editor
(source: Ghost.org).

Static Pages Get New Life
Whatever complexity dynamic sites may bring, for most use cases,
there is simply no avoiding the need for dynamic data. Even the
most basic content site, like a personal blog, generally has dynamic
aspects: commenting, feedback or contact forms and search, to
name just a few. So it wasn’t until the rise of new services that can fill
these voids that static sites really became a viable option for more
than just “brochureware”.

There are numerous services, both free and paid, that offer the abil‐
ity to add dynamic aspects into static pages (it’s important to note
that these services are not specifically intended for use only on static
sites). Some popular options include:

• Disqus, Livefyre, or Facebook for comments
• Wufoo or Google for forms
• Google, Swiftype, or AddSearch for search
• Discourse for forums

A Little Background | 5

https://ghost.org/
http://www.oxforddictionaries.com/us/definition/american_english/brochureware
https://disqus.com/
http://web.livefyre.com/comments/
https://developers.facebook.com/docs/plugins/comments
http://www.wufoo.com/
http://www.google.com/forms/about/
https://cse.google.com/cse/
https://swiftype.com/
http://www.addsearch.com/
http://www.discourse.org/

There are many more covering a full range of typical site require‐
ments. There even BaaS (backend as a service) solutions like
Parse or Kinvey that offer APIs that allow developers to pull any
form of arbitrary dynamic data into a static page.

Overview of Popular Services

If you’re interested in some of the services listed above
as well as implementation details, Raymond Cam‐
den wrote an article on the topic called “Moving to
Static and Keeping Your Toys”.

What makes all of these services work is the ability to load remote
data requests via Ajax. As an example, let’s look at how to load Dis‐
qus comments onto a page. The following is from my personal blog:

<div id="disqus_thread"></div>
<script type="text/javascript">
 /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO
YOUR WEBPAGE * * */
 var disqus_shortname = 'remotesynthesis'; // required:
replace example with your forum shortname

 /* * * DON'T EDIT BELOW THIS LINE * * */
 (function() {
 var dsq = document.createElement('script'); dsq.type =
'text/javascript'; dsq.async = true;
 dsq.src = '//' + disqus_shortname + '.disqus.com/
embed.js';
 (document.getElementsByTagName('head')[0] || docu
ment.getElementsByTagName('body')[0]).appendChild(dsq);
 })();
</script>
<noscript>Please enable JavaScript to view the comments powered by
Disqus.</noscript>

In a nutshell, the script creates a new <script> element whose
source is a JavaScript file on the Disqus server. The file URL is spe‐
cific to the forum via the configuration variable, disqus_shortname,
allowing it to retrieve the forum name via the URL of the
script. This file then performs a number of actions to remotely
retrieve comment data and display it on the page.

6 | What Are Static Sites?

https://parse.com/
http://www.kinvey.com/
https://twitter.com/raymondcamden
https://twitter.com/raymondcamden
http://modernweb.com/2013/12/16/moving-to-static-and-keeping-your-toys/
http://modernweb.com/2013/12/16/moving-to-static-and-keeping-your-toys/
https://developer.mozilla.org/en-US/docs/AJAX
https://a.disquscdn.com/embed.js

How Disqus Works

If you’re curious for a more specific description, see
“How does Disqus work?” in the Disqus
documentation.

Of course, one need not rely on these services for loading dynamic
data onto a static page—a savvy developer could write his or her
own solution using similar techniques—but these out-of-the-box
services make static pages a much more appealing, and far less
daunting, option than they once were.

Defining a Static Website
So far we’ve covered some background showing how the static web
pages of old failed to meet the needs of the Web as websites became
more complex and interactive. We discussed how dynamic sites gen‐
erally and content management systems specifically solved some of
these problems but led to increased complexity in both development
and authoring. Blog engines partially addressed these issues but also
took on some of complexity over time. Finally, we saw how Ajax and
the rise of services have helped make static pages a viable option
again.

However, before we explore static site generators, I’d like to end our
current discussion by laying a clear definition of a static site. Under‐
standing what a static site is (and isn’t) is essential for evaluating
whether a static site generator is a workable solution for your
project:

Static site files are delivered to the end user exactly as they are on the
server.

This is probably the key defining characteristic of a static site
and part of why static sites tend to perform so well: there is no
server-side generation at runtime. This means, for instance, that
every visitor to your static site will be served an identical copy
of index.html from the server until it is manually overwritten,
say by uploading a new file via FTP.

There is no server-side language.
It follows from the preceding characteristic that there would be
no server-side language (like Ruby or PHP for example)
involved. However, when speaking of static site generators,

Defining a Static Website | 7

https://help.disqus.com/customer/portal/articles/466187-how-does-disqus-work-

some are written using these languages but are intended to be
run locally.

There is no database.
As there is no server-side language to speak to a database, there
is therefore no database. This does not mean that there is no
data. There can be data stored as files or via an external service
like the ones discussed earlier. This means that if you need com‐
mon features like user registration/login, this would need to be
via an external service.

Static sites are HTML, CSS, and JavaScript.
This seems fairly obvious, but it should be clear that since static
sites are intended to run in the browser, they must rely on web
technologies to function. Of course, this can also include images
like JPEG and GIF, graphic files like SVG and WebGL, or data
formats like JSON or XML.

Benefits of Static Sites
While each of the preceding features brings with it certain limita‐
tions, they also lead to some of the primary benefits of static sites:

Performance
There is no server-side processing and no database to connect
to, meaning that there is nothing to slow down getting a static
page from the server to your end user. This also means that
there are no bottlenecks that might cause slowness or outages
should you encounter a significant traffic surge.

Hosting
Since no server-side language is required, hosting requires no
complicated setup or maintenance, making it cheap and easy. In
fact, there are even free options, like GitHub pages or Surge, for
instance (we’ll explore deployment options in a later chapter).

Security
There are no server-side language issues to exploit and no data‐
base to hack. Basically, as long as the files on your host are
secure, your static site is secure.

Content versioning
Since your entire site, from configuration to content, is file-
based, it is very easy to keep all aspects of it within a version

8 | What Are Static Sites?

https://pages.github.com/
https://surge.sh/

control system like Git. This can be especially advantageous for
things like documentation that you may want to allow commu‐
nity contributions, for example, using pull requests on GitHub.

Despite these benefits, static sites, even with the help of a static site
generator, are not the solution for every type of site. In upcoming
chapters, we’ll discuss more some of the limitations of static sites
and the types of sites these solutions are best suited for.

A Word (or More) About Markdown
Before we dig into static site generators, there’s one last item we
need to discuss: Markdown. Markdown has become a de facto part
of the static site stack. It is a shorthand way to write HTML and is
the default tool to write post and page content in most static site
generators. However, it is often unfamiliar to most anyone who isn’t
a web developer.

What is Markdown?
Markdown is essentially a syntax for a simple, easy-to-read, plain
text format that is designed to be converted to HTML. It was origi‐
nally created in 2004 by John Gruber, who is well known for his
commentary on the technology industry, and he owns the copyright
as well as rights to the name Markdown, though the original conver‐
sion tool is licensed under the BSD open source license.

Markdown has been widely adopted across the industry as a way to
quickly create web content using a simple shorthand. Many popular
web-development tools offer Markdown support out of the box,
including Sublime Text, Atom, Visual Studio Code, and Brackets.
Most blog engines have started offering support for Markdown,
including Wordpress.

There’s even a burgeoning market for standalone Markdown editors,
with some popular options being Mou on Mac, MarkdownPad on
Windows, and Dillinger in the browser. Markdown support is also
central to new services like Beegit, which offers online document
collaboration.

Benefits of Static Sites | 9

http://daringfireball.net/projects/markdown/
http://daringfireball.net/
http://www.sublimetext.com/
https://atom.io/
https://code.visualstudio.com/
http://brackets.io/
https://en.support.wordpress.com/markdown/
http://25.io/mou/
http://markdownpad.com/
http://dillinger.io/
https://beegit.com/

More Markdown Tools

If you are interested in the tool ecosystem in Mark‐
down, I wrote a post that covers more standalone
options as well as conversion tools for doing tasks like
converting Word documents to Markdown.

Markdown syntax
Markdown’s appeal is the simplicity of its syntax. Its philosophy
emphasizes being easy to read first and and easy to write second.
Let’s look at some examples to see how this works.

Headers are generally indicated using the pound symbol. So:

#My Title

results in:

<h1>My Title</h1>

And:

##My Header

results in:

<h2>My Header</h2>

The number of pound symbols indicates the header level. Mark‐
down often offers multiple syntax options for elements, so headers
can also be indicated via underlining. The following would also
result in an <h1> block:

My Title
=============

Unordered lists can be created using either asterisks, pluses or
hyphens:

* My first bullet
* My second bullet

results in:

 My first bullet
 My second bullet

Replacing the * with + or - will result in the same HTML output.

10 | What Are Static Sites?

http://remotesynthesis.com/general/2015/04/29/tools-for-writing-markdown/
http://daringfireball.net/projects/markdown/syntax

Ordered lists use numbers but do not require that the number
actually correlate to the items position in the list. So:

1. My first item
1. My second item
8. My third item

results in:

 My first item
 My second item
 My third item

Italic and bold text typically also uses the asterisk, but can also use
underscore. So:

This is italic and _this is italic_
but **this is bold** and __this is bold__

results in:

This is italic and this is italic
but this is bold and this is bold</
strong>

Links and images use a similar syntax, one that my experience has
found to be the least intuitive of Markdown’s shorthand syntax. So:

![O'Reilly logo](http://cdn.oreillystatic.com/images/sitewide-
headers/ml-header-home-blinking.gif)

And this would be a [link to O'Reilly](http://oreilly.com)

results in:

<img src="http://cdn.oreillystatic.com/images/sitewide-headers/
ml-header-home-blinking.gif" alt="O'Reilly logo">

<p>And this would be a link to
O'Reilly</p>

Hopefully this gives you a sense of what the Markdown syntax looks
like. There is also shorthand syntax for things like block quotes,
code blocks, and horizontal rules. If you would like a comprehensive
overview of the entire syntax, refer to John Gruber’s original syntax
documentation.

The problem(s) with Markdown
Markdown’s biggest flaw is the simplicity of its syntax. Once you
become comfortable with the syntax, it can be very quick and easy

Benefits of Static Sites | 11

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax

to write Markdown documents. But Markdown’s syntax only covers
a limited subset of HTML. To fix this limitation, Markdown allows
you to directly include HTML within a Markdown document, but
this means that you’ll need to know HTML to properly use Mark‐
down for authoring. There are also multiple “flavors” of Markdown
to deal with. These issues can complicate using Markdown with
content contributors. The following are two other problems:

Problem 1: the lack of a standard
There are numerous Markdown variations, called “flavors,”
available. GitHub relies on Markdown as a standard for its doc‐
umentation and uses GitHub-Flavored Markdown. StackOver‐
flow has its own additions to Markdown. According to Wikipe‐
dia, other variations of Markdown also exist from reddit, Dia‐
spora, OpenStreetMap, and SourceForge.

There was even an attempt to standardize Markdown which ran
into copyright issues, as John Gruber owned the rights to the
Markdown name. It now exists under the name CommonMark.

The problem with a lack of a standard is that much of the tool‐
ing around Markdown is built for one variant or another. Some
support multiple variants, but trying to teach a nontechnical
content contributor about the complexity of the Markdown eco‐
system can become a barrier.

Problem 2: Markdown doesn’t replace HTML
Markdown covers a very limited subset of HTML, which means
that authors will need to understand the situations that aren’t
covered as well as know the HTML to use for those situations.
This forces a content contributor to not only learn Markdown,
but also what Markdown cannot do, and then learn HTML to
fill those gaps.

Let’s look at a very common example. Markdown currently has
no syntax for named anchors, but named anchors are frequently
used in content to allow a user to quickly jump to a location in a
page. In order to achieve a named anchor, you’ll need to mix
Markdown and HTML as follows:

##My Subheader

While Markdown’s support for embedded HTML means that
there is nothing HTML can do that Markdown cannot, it adds a

12 | What Are Static Sites?

https://help.github.com/articles/github-flavored-markdown/
http://stackoverflow.com/editing-help
http://commonmark.org/

great deal of complexity, especially for a content contributor
who is unfamiliar with HTML.

In addition, standalone Markdown editors are not WYSIWIG,
opting instead to offer a live preview of hand-written code. As
Markdown continues to grow in use, the tools keep improving,
but the current state of Markdown tooling offers a very unfami‐
liar experience for many content contributors.

Word to Markdown

One option for content contributors familiar with
working in Word for content authoring is the Micro‐
soft Word to Markdown Converter project by Ben Bal‐
ter. My own personal use of this project has shown that
while the output needs manual cleaning, it is generally
reliable.

Despite these issues, as we’ll see when we look deeper at static site
generators, Markdown has become the standard for writing content
within these tools.

Benefits of Static Sites | 13

http://word-to-markdown.herokuapp.com/
http://word-to-markdown.herokuapp.com/

The Basics of Static Site Generators

What Are Static Site Generators?
The basic concept of a static site generator (aka static site engine) is
simple: take dynamic content and data and generate static HTML/
JavaScript/CSS files that can be deployed to the server. This idea isn’t
new. The oldest static site generator tracked by the Static Site Gener‐
ators list, which currently tracks 394 different projects, is 13 years
old. Even some CMS systems have functioned this way for many
years.

Comprehensive Lists of Static Site Generators

The Static Site Generators list is definitely the most
comprehensive list of these tools available. While a list
of nearly 400 tools may seem overwhelming, it offers
helpful details, such as the language the tool is built
with, when it was created, and even the last time it was
updated, all of which you can sort by.
StaticGen doesn’t aim to be nearly as comprehensive,
but it offers a good amount of additional details about
each project. For example, it pulls the short and long
description from the project repository and lists the
templating languages it supports. You can filter by the
language the tool is built with and sort by stars, forks,
issues, or title.

Still, the new generation of static site generator tools tend to have
some characteristics in common:

15

https://staticsitegenerators.net/
https://staticsitegenerators.net/
https://staticsitegenerators.net/
http://www.staticgen.com/

• Run via the command line
• Support one or more templating languages for theming
• Have a local development server for testing and debugging
• Support file-based data formats
• Have an extensible architecture
• Have a build process

Let’s start by taking a look at each of these characteristics in a bit
more detail.

Popular Generators and What They’re Built In

Generator Language

Jekyll Ruby

Middleman Ruby

Hexo JavaScript

Pelican Python

Hugo Go

Wintersmith CoffeeScript

Harp JavaScript

Run Via the Command Line
Most modern static site generators are designed to be run via a
command-line interface, meaning that there is no GUI (graphical
user interface). Everything from generating the default site files to
running a test server to building and often even deploying the site
happens within Terminal’s command prompt.

For example, to start a new Jekyll site and test it in the browser, you
would open Terminal and enter the following commands:

$ jekyll new mysite
$ cd mysite
$ jekyll serve

(Note: this example is running on a Mac but would work the same
once Jekyll is properly installed on Linux, Unix, or Windows.)

16 | The Basics of Static Site Generators

http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Graphical_user_interface

Any output resulting from these commands would also be shown in
Terminal (see Figure 2-1).

Figure 2-1. The output of starting and serving a new site using Jekyll in
the Mac Terminal application.

Web-Based Static Site Editors

While most static site development occurs via the
command line, there has been recent growth in
browser-based editors for static sites.
Prose.io is a free service designed specifically for edit‐
ing Jekyll projects stored in GitHub. Meanwhile,
CloudCannon offers an web-based editor geared
towards nontechnical users, allowing them to create
and edit pages on a Jekyll site via a web-based site
admin. Netlify offers an open source CMS built for
building and maintaining static sites.
In addition, the Harp generator also offers the Harp
Platform, a commercial service that, while it doesn’t
offer web-based editing, does allow for easy publishing
via Dropbox.

Templating Languages for Theming
A large part of the power of static site development comes in the
ability to quickly and easily develop themes. These themes allow
developers to customize the look and feel of the site as well as

What Are Static Site Generators? | 17

http://prose.io/
http://cloudcannon.com/
https://www.netlify.com/
https://github.com/netlify/netlify-cms
http://harpjs.com/
https://www.harp.io/
https://www.harp.io/

designate where and how content will be displayed within the final
output of the site.

Fortunately, most static site generators rely on pre-existing tools for
theming rather than creating their own, proprietary solution. Many
static site generators even allow you to choose which solution you
use for theming—many doing so via extensions.

For example, Jekyll uses the Liquid Templating language by default.
Liquid is an open source templating solution that was originally cre‐
ated for the Shopify ecommerce system. Liquid templates are a mix‐
ture of HTML and Liquid markup. For example, the following snip‐
pet would loop through the first two posts in a Jekyll blog and out‐
put the titles, dates, and excerpts within the HTML shown:

{% for post in site.posts limit:2 %}
 <div class="6u">
 <section class="box">
 <a href="{{ post.url | prepend: site.baseurl }}"
class="image featured"><img src="{{ post.banner | prepend:
site.baseurl }}" alt="" />
 <header>
 <h3>{{ post.title }}</h3>
 <p>Posted {{ post.date | date: "%b %-d,
%Y" }}</p>
 </header>
 <p>{{ post.excerpt }}</p>
 <footer>
 <ul class="actions">
 <a href="{{ post.url | prepend:
site.baseurl }}" class="button icon fa-file-text">Continue
Reading

 </footer>
 </section>
 </div>
{% endfor %}

Many static site generators built upon Node.js default to the Jade
template language, which has a very different syntax. The next
example is the same template, but rewritten in Jade for Wintersmith:

- var i=0
- var articles = env.helpers.getArticles(contents);
each article in articles
 - i++
 if i<3
 div(class="6u")
 section(class="box")
 a(href= article.url, class="image featured")

18 | The Basics of Static Site Generators

http://liquidmarkup.org/
https://nodejs.org/
http://wintersmith.io/

 img(src= article.metadata.banner)
 header
 h3= article.title
 p= "Posted " + moment.utc(arti
cle.date).format('MMM DD, YYYY')
 | !{ typogr(article.intro).typogrify() }
 footer
 ul(class="actions")
 li
 a(href= article.url, class="button
icon fa-file-text") Continue Reading

There are a multitude of other template language options used by
popular static site generators. Each has its pros and cons, which are
important to consider whether it comes down to specific features or
just stylistic preference.

More Code Samples

These examples and others throughout this document
are taken from my Static Site Samples project on Git‐
Hub. The project aims to help developers learn the dif‐
ferences between various static site engines by recreat‐
ing the same example site using multiple engines. As of
this writing, there are examples built with Jekyll, Harp,
Middleman, Wintersmith, Hugo, and Hexo static site
generators.

Local Development Server
Most static site generators include a local server utility that can be
spun up within the development directory to allow quick live-
previewing of the site. This lets developers easily see their edits and
preview content without needing to generate the entire site upon
each change (see Figure 2-2).

Most local development servers also include the ability to see
changes “live” (i.e., without reloading the browser), similar to Liv‐
eReload. This is useful for development using the templating lan‐
guage. However, as many static site generators support pre-
processed languages like Sass, LESS, and CoffeeScript, it can dra‐
matically ease the development workflow. Of course, the live pre‐
view also previews Markdown content.

What Are Static Site Generators? | 19

https://github.com/remotesynth/Static-Site-Samples
http://livereload.com/
http://livereload.com/
http://sass-lang.com/
http://lesscss.org/
http://coffeescript.org/

Figure 2-2. Loading the default Jekyll site within Chrome using the
local development server.

File-based Data Formats
Almost no site contains purely long-form content, so simply sup‐
porting article/post/page content would severely hinder the applica‐
bility of a static site generator. Thankfully, most static site generators
support one or more file-based data formats like JSON, YAML, and
TOML.

File-based data formats are useful for structuring any sort of arbi‐
trary data independent of its display. This allows the designer or
developer to both reuse the data in multiple places or change the
way it is displayed without duplicating or modifying the original
data.

To better understand the value of this feature, let’s explore a simple
example. I’m a fan of the Cartoon Network show Adventure
Time! and I want to create a fan page for the show. I need to display
characters on various pages throughout the fan site. First, I’d create a
file containing the data (the following example portion uses YAML):

20 | The Basics of Static Site Generators

http://www.json.org/
http://yaml.org/
https://github.com/toml-lang/toml
http://www.imdb.com/title/tt1305826/
http://www.imdb.com/title/tt1305826/

- name: "Finn the Human"
 image: "/images/finn.jpg"
 description: "Finn is a 15-year-old human. He is roughly
five feet tall and is missing several teeth due to his habit
of biting trees and rocks among other things."
- name: "Jake the Dog"
 image: "/images/jake.jpg"
 description: "Jake can morph into all sorts of fantastic
shapes with his powers, but typically takes the form of an aver
age sized yellow-orange bulldog."

Now that I have the character data in a structured format, I can use
it to display the characters anywhere on the site. For instance, in the
following snippet, I am displaying them on my site’s home page
using the Middleman generator and the Erb templating language:

<section>
 <header class="major">
 <h2>Characters</h2>
 </header>
 <div class="row">
 <% data.characters.each do |character| %>
 <div class="4u">
 <section class="box">
 <img src="<%=
character.image %>" alt="" />
 <header>
 <h3><%= character.name %></h3>
 </header>
 <p><%= character.description %></p>
 </section>
 </div>
 <% end %>
 </div>
</section>

Extensible Architecture
Many, if not most, static site generators support the concept of
extensions or plug-ins to either customize the behavior of the gener‐
ator or add support for additional functionality. Depending on the
size of the community for the specific generator, there are often
many pre-built plug-ins or extensions available. In most cases, you
can build your own, though this requires knowledge of the language
upon which the tool was built.

A solid list of community-built extensions is generally a sign of a
healthy user community for a particular static site generator. Jekyll,
for instance, has a long list available plug-ins as well as instructions

What Are Static Site Generators? | 21

http://www.stuartellis.eu/articles/erb/
http://jekyllrb.com/docs/plugins/

on building your own using Ruby. Middleman, another popular
generator built with Ruby, also has an extensive list of available
extensions built by its user community. The same goes for Winter‐
smith, which is built on Node.js.

A Build Process
I saved this for last because it is the defining feature of a static site
generator—building static HTML, CSS and JavaScript files.

In most cases, the process is simply a matter of entering the build
command on the command line. For example:

jekyll build

or:

wintersmith build

Most static site generators offer a variety of options when building,
such as verbose error logging or a watch option to continuously
rebuild when files change. These are either added as options to the
command line, set via some form of configuration file, or some
combination of both. In most cases, tacking on --help to the com‐
mand on the command line will give you the available options for
building with that generator.

What Skills Are Required for Static Site
Development?
The core, common characteristics of static site generators should
have helped shed a little bit of light on to what kind of technical
skills are required for static site development. Assuming you intend
to customize the look and feel or functionality of your site to any
degree, static site development will require the same general skill set
that any sort of web development requires: web design, HTML, CSS,
and JavaScript. Beyond that, though, static site development may
require a couple of additional skills.

Comfort Working with the Command Line
Many developers are used to working within IDEs that perform or
assist with many of the common day-to-day development tasks. No
such tooling currently exists for static site development, so develop‐

22 | The Basics of Static Site Generators

https://directory.middlemanapp.com/#/extensions/all/
https://directory.middlemanapp.com/#/extensions/all/
https://github.com/jnordberg/wintersmith/wiki/Plugins
https://github.com/jnordberg/wintersmith/wiki/Plugins

ers will have to be comfortable using the command line to perform
most tasks related to developing, testing and deploying a static site.

Some popular editors do have plug-ins or extensions for working
with static site generators, though the scope of their functionality is
generally limited, meaning that they will not eliminate the need to
work on the command line to perform many tasks. Here are a few
examples:

sublime-jekyll
offers features such as tasks for building new posts/drafts and
code completion for Jekyll variables and filters;

middleman-sublime
simply offers integrated building of Middleman projects within
Sublime Text;

Jekyll-Atom
provides shortcuts for creating new posts, running the Jekyll
server and more as well as snippets for common Liquid tem‐
plating tasks;

brackets-jekyll
a Brackets extension specifically geared towards building Git‐
Hub Pages with Jekyll.

It’s also important to point out that a majority of debugging gener‐
ally occurs on the command line. In most cases, errors generated
during the testing or building processes will be output to the
console.

Ability to Learn and Work with Complementary
Languages and Tools
This one sounds confusing, probably because it covers a broad array
of tools and languages. The point is that developers working on
static sites may encounter one or many of the following within a
given project over and above the standard HTML, CSS and
JavaScript:

• Markdown
• Sass
• LESS
• Stylus

What Skills Are Required for Static Site Development? | 23

https://github.com/23maverick23/sublime-jekyll
https://github.com/recomp/middleman-sublime
https://atom.io/packages/jekyll
https://github.com/alexsalas/alexsalas.brackets-jekyll
https://pages.github.com/
https://pages.github.com/

• CoffeeScript
• Jade
• Liquid
• Erb
• EJS
• Handlebars
• Mustache
• YAML
• JSON
• TOML
• npm
• RubyGems

This is just to name a few! Obviously, you won’t be working with all
of these at all times, but let’s take a typical Jekyll project. By default,
it would include:

• Markdown
• Liquid
• YAML
• RubyGems

Depending on the generator and/or the level of customization you
require, you may also need some degree of knowledge about the
underlying language used to build the tool. For example, if you
needed to write an extension for Middleman or Jekyll, you’d need to
know Ruby; or for Wintersmith or Hexo, JavaScript (and perhaps an
understanding of Node.js). In my own experience, some tools neces‐
sitated a knowledge of the underlying language simply due to limi‐
ted documentation or, as in the case of Hugo, to properly write
templates.

Static Site Generators Are Tools for Developers
Just in case this isn’t already clear, I want to emphasize that static site
generators are built for developers. This starts with the development
of the site all the way through to adding content. It’s unlikely that
nondevelopers will feel comfortable writing in Markdown with
YAML or JSON front matter, which is the metadata contained at the
beginning of most static site engine content or files. Nor would non-
technical users likely feel comfortable editing YAML or JSON data
files.

24 | The Basics of Static Site Generators

This doesn’t mean that you can’t use them within a team comprised
of developers for site development and writers for content contribu‐
tion, for example. Still, you’d need to take into account that the
developers would likely be more heavily involved in the publishing
process than with a traditional database-driven CMS.

What Types of Sites Are Static Site Generators
Useful for?
The basic answer to this question is that static site generators are
useful for building sites that:

• Focus heavily on delivering content
• Have a low degree of user interactivity
• Update infrequently

It’s important to note that all of these criteria are subjective: you may
find that a static site is still worthwhile despite not meeting the crite‐
ria discussed here. There’s no magic formula to determining
whether a static site generator is the proper solution for your site. As
with most anything in web development, the answer is, “It depends.”
Nonetheless, let’s look at these a little closer at the criteria.

Focus on Delivering Content
While one could make a valid argument that the entire Web is
focused on delivering content in some manner, in this case, we’re
generally talking about informational (and typically textual) content
like articles, blog posts, and pages. This is different from, say, a web
application that is focused on functionality.

As we’ve discussed, the internal mechanisms within a static site gen‐
erator are limited to outputting content from files such as Mark‐
down, HTML, YAML, or JSON, all of which lend themselves to
long-form text content (e.g., Markdown, HTML) or short-form text
data (e.g., YAML or JSON). Of course, static sites can also support
things like video or audio content via the standard HTML <embed>,
<video>, or <audio> tags.

Low Degree of User Interactivity
Because the dynamic aspects of any static site must rely on either
pre-built or custom-built services, the degree of interactivity in a

What Types of Sites Are Static Site Generators Useful for? | 25

http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_application

static sites tends to be limited. As discussed earlier, there are easy
solutions for common interactive elements like comments and
calendars, but most static sites don’t stray beyond the core function‐
ality these services can provide.

Yes, you can build just about anything using a combination of Ajax
and a cloud-based data store. However, if your static site relies upon
a lot of complex, asynchronously loaded JavaScript and data, it begs
the question as to why it is static site to begin with?

Update Infrequently
Keep in mind that, with each site update, you need to build and
push a whole new batch of static files up to the server. For instance,
even though you may only have added an article to a subsection of
your site, this will likely cause changes to the home page, the naviga‐
tion, the RSS feed, and so on. This means that a whole new batch of
files will need to be compiled and pushed live to support this single
change. While there are tools that can ease the build and deploy
process (we’ll discuss some of these in an upcoming chapter),
depending on how frequently your site updates, this could still
become an enormous bottleneck to managing your site.

The exact meaning of “infrequently” is open to interpretation and
can be impacted by the size and complexity of your site, which can
impact the time it takes to build and deploy. If, for instance, you are
running a news site, you are likely focused on delivering content and
have a low degree of user interactivity but you may add or update
content constantly throughout the day to keep up with the news
cycle. In this case, deploying as a static site will probably not be
appropriate. Nonetheless, it may be a perfect fit for a news magazine
that typically publishes articles on a publication schedule, even if
that is daily.

Common Use Cases
While static site generators are not built as a one-size-fits-all solu‐
tion and support all sorts of customizability, there are common
types of sites that meet the criteria above and therefore work well as
static sites. The most common are:

26 | The Basics of Static Site Generators

Blogs
Blogs are the most frequent use case for a static site engine and,
in fact, most generally use a blog site as their default site files.

Informational sites or brochureware
A lot of sites around the Web actually fall into this category
(even if the term brochureware is often used in a derogatory
manner). For instance, sites for restaurants, hotels, tourist
attractions, and even many company websites.

Documentation
While sometimes large and complex, documentation sites can
also benefit from the file-based structure of a static site, which
easily lets them be hosted openly on sites like GitHub, allowing
input or pull requests from the user community.

There are plenty of other ways to leverage static site generators, but
these three use cases are definitely the most common and obvious.
In the next chapter, we’ll take a closer look at some of the most pop‐
ular static site generators to gain a better understanding of which
solutions may be better suited to your specific needs.

What Types of Sites Are Static Site Generators Useful for? | 27

Popular Static Site
Generator Options

At this point, we understand what a static site generator is, that it is a
tool geared toward developers and what types of sites it is most use‐
ful for. But, with close to 400 options, it can be hard to know where
to start. In this chapter, we’ll look at a few of the more popular
options available to give you a deeper understanding of what differ‐
entiates each solution.

In order to give a the broadest overview possible while covering a
small subset of tools, I’ve chosen three options representing differ‐
ent languages: Jekyll, built with Ruby; Wintersmith, built with Cof‐
feeScript (a language that compiles to JavaScript); and Hugo, built
with Go.

While covering each engine in depth is definitely beyond the scope
of this book, I will take a look at each engine focusing on some key
elements:

Getting started
The ease of setup, cross-platform support, and generation of
initial site files

Templating and authoring
The choice of default template language, the basics of customiz‐
ing a site, and writing content

Documentation and resources
A look at the existing documentation and availability of addi‐
tional community resources

29

http://coffeescript.org/
http://coffeescript.org/

Jekyll
Jekyll was originally created in 2008 by Tom Preston-Werner,
founder and former CEO of GitHub. Jekyll is arguably the most
popular static site generator currently available—the Jekyll wiki lists
over 800 sites built with Jekyll. Part of this popularity is due to the
fact that Jekyll is the engine frequently used for running free GitHub
Pages.

Jekyll is built on Ruby, though a knowledge of Ruby is really only
necessary if you intend to extend the engine itself. Otherwise,
although it may rely on Ruby-style conventions, there’s no need to
have a Ruby background to use Jekyll.

Getting Started
Jekyll is installed via RubyGems. If you’re on OS X, installation is
simple. Open Terminal and run the following command:

sudo gem install jekyll

Jekyll is not officially supported on Windows. The Jekyll documen‐
tation offers a link to a walk-through covering how to get Jekyll run‐
ning on a Windows machine. While not as simple as the one com‐
mand install on OS X, I have personally had success using these
instructions on a Surface Pro running Windows 10.

Once you have successfully installed Jekyll, generate the default site
files with the following command, where [project name] is the
folder you want Jekyll to create for your site (see Figure 3-1):

jekyll new [project name]

Figure 3-1. The default generated Jekyll files.

Let’s do a quick overview of the files and folders that Jekyll generated
for you:

30 | Popular Static Site Generator Options

http://jekyllrb.com/
https://github.com/jekyll/jekyll/wiki/Sites
https://pages.github.com/
https://pages.github.com/
https://rubygems.org/
http://jekyll-windows.juthilo.com/
http://jekyll-windows.juthilo.com/

_config.yml
The YAML configuration file for your site.

_includes
Where any template partials should be placed (we’ll discuss
what these are later in this chapter).

_layouts
Holds templates for posts. The template a post uses can be con‐
figured in its “front matter” (we’ll discuss what front matter is
later on).

_posts
Holds the Markdown files for your blog posts.

_sass
Contains Sass includes. Sass is a CSS preprocessor. It is sup‐
ported by default in Jekyll, but it is not required that you use it.
Plain CSS works fine if you prefer. If you do not use Sass in your
site, this folder is not required.

css
Contains your site’s CSS or primary Sass files.

feed.xml
A template that generates an RSS feed for your site.

index.html
The template for your site’s home page.

You can find out more about the directory structure of a Jekyll site
in the documentation, including optional folders that Jekyll did not
autogenerate for you.

If you explore the generated files, it is worth noting that any file or
folder name that starts with an underscore will not have a corre‐
sponding file when the site files are generated. For instance, in
Figure 3-1 you can see the default files: about.md will generate an
about.html file in the generated site, but _config.yml will not have a
corresponding file in the generated site.

To test the newly created project using Jekyll’s local server, first
change directory into the project folder and start Jekyll’s local server:

cd [project name]
jekyll serve

Jekyll | 31

http://sass-lang.com/
http://jekyllrb.com/docs/structure/

There are a number of configuration options available for the Jekyll
server, but by default, it will run the site on port 4000, meaning the
running site will be accessible in a browser via http://localhost:4000.
For the full list of server options, use the jekyll serve -h

command.

Templating and Authoring
As discussed, Jekyll uses the Liquid template library by default,
though it does support additional templating options via extensions.
Let’s look at some of the basics of building templates.

Template basics
Outputting the contents of variables within a template requires
wrapping the variable in curly braces:

<h2>{{ page.title }}</h2>

In this case, page.title is a default variable that Jekyll makes avail‐
able on all pages. The documentation contains a full list of default
variables that Jekyll provides. You can have custom site and page
(i.e., post) variables as well. These are configured in the _config.yml,
for site variables, or in the post’s front matter, for page variables.

Liquid also includes a number of filters that allow for formatting of
output. A full list of standard filters can be found in the Liquid doc‐
umentation, and the Jekyll documentation has details on the addi‐
tional filters that Jekyll provides. For example, the following stan‐
dard filter formats the output of dates:

<p>Posted {{ post.date | date: "%b %-d, %Y" }}</p>

Liquid allows you to separate and organize your templates into dif‐
ferent files using partials, which are essentially includes. Includes are
placed in the _includes folder on the root of a Jekyll site. For exam‐
ple, the following line would include a file named header.html within
the _includes folder:

{% include header.html %}

Liquid templates can contain conditionals. In the following code, a
portion of the template is only shown if the user is on the site’s home
page:

32 | Popular Static Site Generator Options

http://liquidmarkup.org/
http://jekyllrb.com/docs/plugins/#converters-1
http://jekyllrb.com/docs/variables/
http://jekyllrb.com/docs/variables/
https://github.com/Shopify/liquid/wiki/Liquid-for-Designers#standard-filters
http://jekyllrb.com/docs/templates/
http://jekyllrb.com/docs/templates/

{% if page.url == "/index.html" %}
 <section id="banner">
 <header>
 <h2>Clever Title</h2>
 </header>
 </section>
{% endif %}

It’s also possible to loop through a collection, such as an array of
articles or blog posts:

{% for post in site.posts %}
 <div>
 <section>
 <header>
 <h3>{{ post.title }}</h3>
 <p>Posted {{ post.date | date: "%b %-d,
%Y" }}</p>
 </header>
 <p>{{ post.excerpt }}</p>
 <footer>

 <a href="{{ post.url | prepend:
site.baseurl }}">Continue Reading

 </footer>
 </section>
 </div>
{% endfor %}

Loops allow things like limits and offsets to further specify the out‐
put of a loop.

There is a lot more to templating in Jekyll that we can cover here.
Refer to either the Liquid or Jekyll documentation for more details.

Content authoring
By default, Jekyll pages or posts are authored in either HTML or
Markdown. The key things to understand about authoring for Jekyll
are the concept of Front Matter and the importance of naming.

Front Matter. Front matter is YAML metadata that can be included
at the beginning of any file within Jekyll. This includes Markdown
and HTML content, as well as CSS or JavaScript files. However,
every post that is placed in the _posts folder generally includes the
following front matter:

Jekyll | 33

https://github.com/Shopify/liquid/wiki/Liquid-for-Designers
http://jekyllrb.com/docs/templates/
http://jekyllrb.com/docs/frontmatter/

Layout
Specifies which layout file (from the _layouts folder) will be
used when generating this post.

Categories
A space-separated list that defines a subfolder in which a post
will be placed when the site is generated. For example, a post
with categories: programming javascript will be generated
into a /programming/javascript/ subdirectory. If a post only has
one category, the singular category property can be used.

Date
This is the only predefined variable specific to posts and over‐
rides the date that is parsed from the post’s filename (more on
that in a moment). This can be useful for ensuring that posts are
properly date-sorted by Jekyll.

Title
Title is not technically a predefined variable according to
the documentation, but posts generally include a title property
(in fact, the default generated posts do).

Using just the default values, a post’s front matter might look like
this:

layout: post
title: "The Law Offices of Gabriel John Utterson"
date: 1886-01-05 09:00:00
categories: services

It’s also worth noting that you can add any arbitrary metadata to a
post’s front matter and access it via the page variable. For example, if
I were to add a description to the front matter, it could be accessed
as page.description.

Naming. Jekyll expects posts to be named in a particular manner.
Posts must be placed in the _posts folder and must be named using
the format of year-month-day-title.markdown (or .md). Year should
be a four-digit number, while month and day should both be two
digits.

As an example, a post published on June 5, 2015 and named “Hello
World” should be named 2015-06-05-hello-world.markdown. The
title portion of the filename doesn’t have to match the actual title of

34 | Popular Static Site Generator Options

http://jekyllrb.com/docs/frontmatter/#predefined-variables-for-posts
http://jekyllrb.com/docs/frontmatter/#predefined-global-variables

the page in the metadata. When the final page is generated, the URL
will have the format /2015/06/05/hello-world.html. This portion of
the URL follows any category specified in the metadata. Thus, by
default, if our “Hello World” post was in the category “general,” the
full URL would be /general/2015/06/05/hello-world.html. This URL
can be configured if you would prefer a different URL format.

Documentation and Resources
The documentation for Jekyll is reasonably comprehensive, but
there are ample additional resources available. This is not a compre‐
hensive list, but the following are some resources that go beyond the
information in the official documentation:

Getting started
• “Getting Started with Jekyll” by Brian Rinaldi (yes, that’s

me!)
• “Building Static Sites with Jekyll” by Andrew Burgess
• “Learning Jekyll by Example” by Andrew Munsell (requires

purchase)
• Jekyll Now, a tool for creating a Jekyll blog without touch‐

ing the command line, by Barry Clark

Themes and plug-ins
• Jekyll Themes by Matt Harzewski
• Jekyll-Plugins by Grok Interactive
• Poole, the Jekyll “butler,” by Mark Otto

Migration
• Wordpress-to-Jekyll Exporter by Ben Balter

Wintersmith
Wintersmith is one of the more popular Node-based static site gen‐
erators. It was created by Johan Nordberg in 2013.

One of the differentiators of Wintersmith is that it tries to be less
prescriptive about how you structure your site or name your files. It
also aims to make it easy to extend the capabilities of the generator
through the enormous number of resources available in npm, the
package manager for Node.js.

Wintersmith | 35

http://jekyllrb.com/docs/permalinks/#built-in-permalink-styles
http://jekyllrb.com/docs/home/
http://developer.telerik.com/featured/getting-started-with-jekyll/
http://code.tutsplus.com/articles/building-static-sites-with-jekyll--net-22211
https://www.andrewmunsell.com/tutorials/jekyll-by-example
https://github.com/barryclark/jekyll-now
http://jekyllthemes.org/
http://www.jekyll-plugins.com/
http://getpoole.com/
https://github.com/benbalter/wordpress-to-jekyll-exporter
https://www.npmjs.com/
https://nodejs.org/

In my opinion, working in Wintersmith will require a reasonable
comfort level with JavaScript programming, as JavaScript is often
necessary for writing Wintersmith templates. However, Wintersmith
was actually written in CoffeeScript. It’s not entirely necessary that
you understand CoffeeScript to use Wintersmith, but the limited
documentation often necessitates referencing the source code of the
project. Thus, I believe the ability to read and understand Coffee‐
Script code is definitely helpful.

Getting Started
Wintersmith is installed via npm, which comes with Node. If you
don’t already have Node installed, you’ll want to download and
install that first.

Once you have Node and npm installed, installing Wintersmith is a
single command on Windows or OS X. Open Terminal or the com‐
mand prompt and enter the following command:

npm install -g wintersmith

It should be noted that on OS X you may need to use the sudo com‐
mand to perform a global install (the -g indicates a global install for
npm).

To create a new site with Wintersmith, use the new command (where
[project name] is the folder you want Wintersmith to create the
new site files in); see Figure 3-2:

wintersmith new [project name]

Figure 3-2. The default Wintersmith generated files.

The root Wintersmith files all relate to configuration and customiza‐
tion of the site. The site’s content is contained within the contents
folder, while the look and feel of the site is determined by the files in
the templates folder.

To test the generated site, change directory into the project folder
and start Wintersmith’s local preview server:

36 | Popular Static Site Generator Options

http://coffeescript.org/
https://nodejs.org/
https://nodejs.org/

cd [project name]
wintersmith preview

By default, the server runs on port 8080, so you can access it at the
URL http://localhost:8080. It is also verbose, meaning that it will out‐
put detailed error messages and loaded resources to the console.
These features and others are configurable via options. To view the
preview options, use wintersmith preview -help command.

Templating and Authoring
As is common with Node.js-based static site generators, Winter‐
smith defaults to Jade for templating, though it does support a num‐
ber of other template engines via its available plug-ins. Jade touts its
terse syntax, which is very different from standard HTML. For
instance, it has no brackets, or closing tags, and indentation matters.
Let’s dive into some of the basics.

Template basics
There are a number of ways to output variables in Jade. To output
the value of a variable within a code block, use an equal sign. The
following code would output the value of the page.title variable
within an h2 block:

h2= page.title

There is some information about what variables a Wintersmith page
makes available in the documentation.

One way to concatenate a variable with other string contents within
a tag block is to use the following syntax:

h2= The title is #{page.title}

Variables can also be output using an equal sign within attributes on
a tag, which are placed within parentheses (Note: the article vari‐
able in the following example is not a default variable.):

a(href= article.url, class="image featured")

It’s worth noting that by default, variables are escaped, meaning that
special characters are turned into HTML entities. Jade allows you to
specify that you would like the contents of variables to remain unes‐
caped by using an !. More details on how this all works are available
in the Jade documentation.

Wintersmith | 37

http://jade-lang.com/
https://github.com/jnordberg/wintersmith/wiki/Plugins#template-plugins
https://github.com/jnordberg/wintersmith#the-page-plugin
http://jade-lang.com/reference/interpolation/

Jade doesn’t include any formatting helpers by default. However,
Wintersmith can be extended with npm modules, many of which
offer functions for formatting or filtering output. Wintersmith
includes several of these by default: Moment.js, Underscore.js, and
Typogr. Let’s look quickly at how you would use Moment.js to for‐
mat a date within a Wintersmith template:

p= "Posted " + moment.utc(article.date).format('MMM DD, YYYY')

You can split templates into smaller chunks to make them more
manageable and reusable using includes. The following code
includes a header.jade file from a partials folder that is within the
templates directory:

include ./partials/head

You can also separate portions of templates using template
inheritance.

Jade allows for conditionals. The following snippet only shows if the
user is on the site’s home page:

if !page
 section(id="banner")
 header
 h2 Clever Title

It’s also possible to loop through arrays of content, such as posts or
data. The following code loops through the full list of posts:

- var articles = env.helpers.getArticles(contents);
each article in articles
 div
 section
 header
 h3= article.title
 p= "Posted " + moment.utc(article.date).for
mat('MMM DD, YYYY')
 | !{ typogr(article.intro).typogrify() }
 footer
 ul
 li
 a(href= article.url) Continue Reading

There are two important thing to note about the preceding code.
First is the way the articles variable is defined. Using the - prefix
on a line allows you to include any arbitrary JavaScript that is evalu‐
ated during the compile process. In this case, we are defining a vari‐
able named articles that can then be used in the template. This

38 | Popular Static Site Generator Options

http://momentjs.com/
http://underscorejs.org/
https://www.npmjs.com/package/typogr
http://jade-lang.com/reference/extends/
http://jade-lang.com/reference/extends/

line will not exist in the compiled HTML page. Second, the pipe
(i.e., |) before !{ typogr(article.intro).typogrify() } indi‐
cates that this line is plain text, meaning it isn’t wrapped in a tag.

This has just been a basic overview of what is possible in Winter‐
smith templates. For a more detailed look, check the Jade or Winter‐
smith documentation.

Content authoring
Posts in Wintersmith are written in Markdown. It uses the marked
renderer for Markdown, although other renderers are available as
plug-ins. By default, posts are placed in the contents/articles folder.

One major difference between Wintersmith and Jekyll is that each
post is typically given its own directory, which will determine its
SEO-friendly URL (although this is not a requirement). For
instance, a “Hello World” post would be placed in a directory named
articles/hello-world. Inside that directory would be a Markdown file
for the post named index.md. There is no specific file-naming for‐
mat required.

Each Markdown post can have metadata on top (aka front mat‐
ter) using the YAML format. No metadata is required, but template,
title, and date are commonly specified:

title: "Hello World"
date: 2015-06-08 10:33:56
template: article.jade

The template property designates the template that will be used to
render the post, title is the title of the post, and date is the date it
was posted. It’s important to note that if template isn’t specified, the
post will not be rendered (which likely isn’t what you intended). If
title and date are unspecified, their values will receive defaults.

Wintersmith allows you to specify any arbitrary metadata within the
front matter. It is accessible within a template via a metadata prop‐
erty on the page object.

You can also pass metadata to a template using JSON rather than
YAML front matter. For more details on that, refer to the
documentation.

Wintersmith | 39

http://jade-lang.com/reference/
https://github.com/jnordberg/wintersmith#quick-start
https://github.com/jnordberg/wintersmith#quick-start
https://github.com/chjj/marked
https://github.com/jnordberg/wintersmith/wiki/Plugins
https://github.com/jnordberg/wintersmith/wiki/Plugins
https://github.com/jnordberg/wintersmith#model

Documentation and Resources
The documentation for Wintersmith is very limited, consisting
mainly of a quick-start guide. Because Wintersmith can also be used
programmatically within Node.js, there is an API guide, but it offers
little assistance when developing a site using the standard
command-line generator. Here are some resources that can supple‐
ment the documentation:

Getting started
• “Getting Started with Wintersmith: A Node.js-based Static

Site Generator” by Brian Rinaldi (yup, that’s me, again)
• “Creating Posts, Custom Metadata, and Data in Winter‐

smith” by Brian Rinaldi
• “Introduction to the Wintersmith Process” by David

Tucker, rundown of getting set up but looks at using Nun‐
jucks for templating within Wintersmith

Themes and plug-ins
• Wintersmith Showcase: many of the projects listed are open

source, so you can borrow techniques by viewing the source
code.

Hugo
There are two key things that make Hugo different than most other
static site generator options. The first is that it is one of only a hand‐
ful of generators written in the Go programming language, a lan‐
guage originally developed by Google. The second is that it focuses
on extremely fast build times. This can be an important considera‐
tion, as build times using other engines can become a significant
impediment as the size of a site grows.

As we’ll discuss in more detail in the next section, Hugo templates
are built using the Go template language. In my own experience, if
you are unfamiliar with the Go language, the syntax can be a signifi‐
cant departure from what you are used to. Also, some aspects of
building even basic templates require at least a basic knowledge of
the Go language, though this can be gleaned from the Go language
documentation.

40 | Popular Static Site Generator Options

https://github.com/jnordberg/wintersmith#quick-start
http://wintersmith.io/docs/
http://www.sitepoint.com/getting-started-wintersmith-nodejs-static-site-generator/
http://www.sitepoint.com/getting-started-wintersmith-nodejs-static-site-generator/
http://www.sitepoint.com/creating-posts-custom-metadata-data-wintersmith/
http://www.sitepoint.com/creating-posts-custom-metadata-data-wintersmith/
http://davidtucker.net/articles/introduction-to-wintersmith/
http://mozilla.github.io/nunjucks/
http://mozilla.github.io/nunjucks/
https://github.com/jnordberg/wintersmith/wiki/Showcase
https://golang.org/
https://golang.org/doc/
https://golang.org/doc/

Getting Started
Installing Hugo is mostly a matter of downloading the proper binary
executable for your platform from the releases page. Hugo supports
Windows, OS X, Linux, and FreeBSD. I say mostly because you will
likely want Hugo on your PATH to make it easy to access from any‐
where via the command line.

The PATH Variable

PATH is a variable on most operating systems that tells
the OS where to look for executable files. Adding Hugo
to the PATH means that you can simply use the hugo
command from the command line without needing to
specify the full path to the executable file on your
computer.

On Windows, this requires accessing the Environment Variables
within the Advanced System Settings in your Control Panel. On OS
X, the easiest way to install Hugo is using Homebrew, which will
automatically take care of making it available via the $PATH variable.
If you have Homebrew installed, you can simply enter the following
command via Terminal:

brew install hugo

Once Hugo is installed, it’s time to generate the files to begin a new
site. Similar to the other two engines, creating the default files (see
Figure 3-3) uses the new command as follows (where [project
name] is the folder you want Hugo to place the new site files in):

hugo new site [project name]

Hugo offers the option of specifying the kind of data format you
would like to use for a site when generating new site files. By default,
Hugo uses TOML, but you can add add the option
--format="yaml" when generating your site if you prefer to use
YAML, as the other engines we discussed have used.

Hugo | 41

https://github.com/spf13/hugo/releases
http://brew.sh/
https://github.com/toml-lang/toml

Figure 3-3. The default site files generated by Hugo. All of the folders
are empty to start.

The base site files and folders are all empty except for the configura‐
tion file. In the next section, we’ll look at how you can install a
theme and generate content.

Of course, Hugo also includes a local web server to test your site.
The site is empty right now, but once you’ve created some content,
enter the following command from the command prompt:

hugo server

The default port is 1313, so to open the site in a browser, you would
use the URL http://localhost:1313/. There are a number of options
for the server, such as specifying the port or watching for file
changes. To get a full list of options, use hugo server --help.

Templating and Authoring
Hugo doesn’t create any layout files or install a theme of any sort by
default. You have two options to start, either creating layouts in the /
layouts folder or installing a theme. There is a long list of available
themes and instructions on how to install them via Git.

Building your own layouts requires using the Go html/template
library. The official documentation on this topic isn’t a friendly
read, although the Hugo documentation offers a good primer on the
topic. Let’s look at some of the basics.

Template basics
To output variables within a template, you surround them by curly
braces:

<h2>{{ .Title }}</h2>

42 | Popular Static Site Generator Options

https://github.com/spf13/hugoThemes
https://github.com/spf13/hugoThemes
https://github.com/spf13/hugoThemes#installing-themes
http://golang.org/pkg/html/template/
http://golang.org/pkg/html/template/
http://gohugo.io/templates/go-templates/

Hugo has a long list of variables that can be used in templates
depending on the context. For instance, the .Title variable in the
preceding snippet is a page variable. The dot in the example refers to
the current context, which, in this case, is a page.

To format the output of variables, you can use the available utilities
within the Go language. For example, to format the output of the
date, we can use Go’s date/time format function:

<p>Posted {{ .Date.Format "Jan 2,2006" }}</p>

The Go by Example site offers other examples of string formatting
using the Go language.

Hugo templates can be split into separate files to make them easier
to maintain and reuse. The following code includes a header.html
file from a partials subfolder that is within the layouts directory:

{{ partial "header.html" . }}

Notice that the partials folder is left off the path. You can organize
partials within subfolders, but the partials folder should still be left
off of the path.

Go templates let you use conditionals within your layouts. In the
following code, the banner is only shown if the user is on the home
page of the site rather than a post or page:

{{ if .IsNode }}
 <section id="banner">
 <header>
 <h2>Clever Title</h2>
 </header>
 </section>
{{ end }}

The .IsNode variable is a page variable that is always false on a page.

Loops use a range construct that functions somewhat differently
from the Liquid or Jade samples earlier in the chapter. For example,
the following snippet loops through all posts:

Hugo | 43

http://gohugo.io/templates/variables/
http://gohugo.io/templates/variables/#page-variables:2b8b8ac4006be88c769f5e3fd99b009a
http://gohugo.io/templates/go-templates/#context-a-k-a-the-dot:e2fc23c6497b774f0cb0b339042e10c3
https://golang.org/pkg/time/#Time.Format
https://gobyexample.com/
https://gobyexample.com/string-formatting
http://gohugo.io/templates/variables/#page-variables:2b8b8ac4006be88c769f5e3fd99b009a

{{ range .Site.Pages }}
 <div>
 <section>
 <header>
 <h3>{{ .Title }}</h3>
 <p>Posted {{ .Date.Format "Jan 2,2006" }}</p>
 </header>
 <p>{{ .Summary }}</p>
 <footer>

 Continue
Reading

 </footer>
 </section>
 </div>
{{ end }}

It is also possible to use the first keyword to limit the loop, such as
in the following code example, where we only output the first five
posts:

{{ range first 5 .Site.Pages }}

If you need to access the index of a range item, however, you’ll need
to define the range somewhat differently:

{{ range $index, $element := .Site.Pages }}

Now I can access the $index for a zero-based index of the item in
the range.

The Hugo documentation on templates does a good job of covering
the basic information you’ll need to continue developing templates.
In my experience, you will, nonetheless, need to keep a tab open to
the Go language documentation as well.

Content authoring
One of the nice things about Hugo is that it offers a command to
generate new content, which can be helpful for at least laying out the
front matter metadata format for a new post.

To create a new page or post, open up Terminal or the command
prompt and type the following command to create a new “About Us”
page:

hugo new about-us.md

44 | Popular Static Site Generator Options

http://gohugo.io/templates/overview/
https://golang.org/doc/

Hugo Has No Default Templates

It’s important to note at this point that Hugo does not
generate default templates for your site. If you are
working off of the initially generated set of default site
files, but have not yet installed a theme or created lay‐
out files, you will still be unable to preview your
“About Us” page. You can either follow the instructions
for installing a theme or create the necessary layout
files yourself.
To create these yourself, you’ll need, at a minimum, a
home page and a single post template within the lay‐
outs folder. The home page template is named
index.html, and the default single post page would be
placed in layouts/_default/single.html. For a good, min‐
imalist example of a Hugo site, check out my Static Site
Samples project on GitHub.

Hugo will generate a basic Markdown file with the default front
matter metadata in the default format, TOML. For the most part,
TOML is very similar to YAML, but the formatting is slightly differ‐
ent. The following code snippet is the default TOML front matter
for our “About Us” page:

+++
date = "2015-06-10T14:42:51-04:00"
draft = true
title = "about us"

+++

If you prefer YAML for front matter, you can use the command new
about-us.md --format="YAML" to create the “About Us” page. The
preceding draft value tells Hugo not to render this page yet, as it is
still being written.

According to the documentation, Hugo requires the following val‐
ues for front matter: title, description, date, and taxonomies (i.e.,
tags or categories). The latter two values are not included in the
default generated content file for some reason. Fortunately, Hugo
supports the concept of archetypes, allowing us to specify additional
default metadata we want in the file.

In the archetypes folder under the site root, create a default.md file.
Within that file, we’ll put some default content:

Hugo | 45

https://github.com/spf13/hugoThemes#installing-themes
https://github.com/spf13/hugoThemes#installing-themes
https://github.com/remotesynth/Static-Site-Samples
https://github.com/remotesynth/Static-Site-Samples
http://gohugo.io/content/front-matter/
http://gohugo.io/content/archetypes/

+++
description = "My amazing new post"
tags = [
 "x",
 "y"
]
categories = [
 "x",
 "y"
]
+++

#My Amazing New Post

After saving this file, when you enter the new about-us.md com‐
mand, it will not only have the title and date properties, but also the
description, tags, categories, and Markdown title as specified in the
default.md file. This can be helpful to create boilerplate for writing
new content.

You can also specify any arbitrary front matter metadata you choose.
This can be accessed via the .Params variable on a page. For exam‐
ple, if you were to add a banner value in the front matter to specify a
banner image, it could be accessed via .Params.banner.

The last thing to note is that, although Hugo puts new posts in the
content folder by default, you can organize the content within that
folder however you choose. If you wanted the SEO URL for your
post to be /2014/06/10/hello-world.html, then your folder structure
within the content folder would look like Figure 3-4.

Figure 3-4. A Hello World post with the URL of /2014/06/10/hello-
world.html.

Hugo offers a lot of customization options for creating content. The
documentation does a generally good job of covering all of the
details about creating content.

46 | Popular Static Site Generator Options

http://gohugo.io/content/organization/

Documentation and Resources
The good news about Hugo is that the documentation is pretty thor‐
ough. As I’ve mentioned a couple times already, you will need to
occasionally refer to the Go language documentation to supplement
the information.

The bad news is that, as search terms go, Hugo and Go are both
awful, making finding additional resources an often difficult matter.
Here are a few that are worth exploring:

• “Migrating to Hugo from Octopress” by Nathan Leclaire, Octo‐
press is a Jekyll-based static site generator.

• (Hu)go Template Primer by Daisuke Tsuji.
• “Build Static Sites in Seconds with Hugo” by Dan Hersam. Note

that this is a commercial course through Udemy. I have not per‐
sonally reviewed the content, but the curriculum offers two
hours of material covering everything from setup to deploy‐
ment of a Hugo site.

And So Many More...
In this chapter, we looked at only a few of the approximately 395
static site generators currently available. The three we looked at were
chosen not just because each represents a different underlying lan‐
guage—Ruby, JavaScript/CoffeeScript, Go—but because they each
have very different approaches to building static sites.

Obviously it is impossible to try even a small fraction of the avail‐
able static site generators before making a decision on what to
choose for your project. While the right option depends heavily on
the requirements for your project, my best advice would be to use
the following criteria when evaluating:

What language is it built in?
While it isn’t a requirement that you know the language that the
tool was built with, it can certainly help in some important
ways. For instance, it opens up the possibility of extending the
core through extensions or even by modifying the source
(which you could even contribute back to the project). It can be
useful for debugging some difficult errors. Lastly, it is a good
backup when the documentation and available resources fall
short—you can read the source code.

Hugo | 47

http://gohugo.io/overview/introduction/
https://golang.org/doc/
http://nathanleclaire.com/blog/2014/12/22/migrating-to-hugo-from-octopress/
http://octopress.org/
http://octopress.org/
http://yet.unresolved.xyz/hugo_theme_aglaus/blog/2014/04/02/hugo-template-primer/
https://www.udemy.com/build-static-sites-in-seconds-with-hugo/

How recently was it updated?
Open source projects get abandoned. It’s worth checking the
repository for the project and ensuring that there has been some
activity within the last six months to a year. If there hasn’t, this
could be a sign that the project is dormant or dead.

How thorough is the documentation?
Many, if not most, static site generators suffer from the same
problem that afflicts many open source projects: a lack of useful
documentation. Be sure you spend time looking through the
documentation, as even some that look complete at first glance
are often lacking in critical details or examples.

How many third-party resources are available?
Unless the project is brand new, you should be able to find peo‐
ple posting guides and resources for how to use the tool and/or
answering questions on sites like Stack Overflow. If you don’t,
this could be a sign that adoption of the tool has been limited.
This can mean that you won’t be able to easily get help with
issues and generally increases the chances that the project will
eventually be abandoned.

In my opinion, unless you have specific reasons for choosing other‐
wise, such as you are uncomfortable with Ruby and want a tool built
in a language you already know, the safest option is Jekyll. It is
consistently maintained, has good documentation, and there are a
wide array of third-party resources and tools that support it.

48 | Popular Static Site Generator Options

http://stackoverflow.com/
http://jekyllrb.com/

Deploying a Static Site

Once you’ve built your static site using the generator of your choice,
it’s time to share it with the world. The good news is that, because
these are static files, there’s no complicated database deployment or
environment to set up. Deploying a static site is simple.

This simplicity also opens up a huge number of options. In this
chapter, we’ll look at just a few of the deployment and hosting
options available to you for your static site.

FTP
Since you are dealing with static assets—typically just HTML, CSS,
JavaScript, and images—deploying to just about any host via FTP
requires no special setup. The only important thing to remember is
that you need to build your site first; you do not upload the tem‐
plates and Markdown.

Building Your Site
Some static site generators, like Jekyll, generate the site files when‐
ever you preview the site. Nonetheless, it is best practice to do a
build of the site before deploying. All of the static site generators
have a build command of some form, often with some options. Let’s
look at the process using the three generators we covered in the
prior chapter.

In Jekyll, you’d use:

jekyll build

49

You can have Jekyll rebuild the site every time you make a change by
adding -w to enable the watch option. For a full list of Jekyll build
options, add --help.

In Wintersmith, you’d use:

wintersmith build

If you want to force Wintersmith to clear the output folder before
building, use the -X option. For a full list of Wintersmith build
options, add --help.

In Hugo, you’d use:

hugo

Hugo’s build process also includes the option to watch for changes
with the -w option. For a full list of Hugo build options, add --help.

Assuming there were no errors, once you run the build process,
your static files will be in the output directory that you set in your
site configuration. But what happens if you do encounter an error?

Debugging
A majority of the debugging experience with static site generators is
done via the console log within the terminal. This experience can
differ with each generator and often depends on the underlying lan‐
guage or tools upon which the generator was built.

Some generators enable verbose logging in the console by default,
and others do not. Verbose logging can be useful when trying to
debug complex issues, but often it is extraneous information (see
Figure 4-1).

Some generators will also give you error details when previewing a
site in the browser; others fail silently in the browser but display
errors in the console (see Figure 4-2).

The point is, there is no consistent debugging experience across
static site generators, and the current experience often leaves much
to be desired.

50 | Deploying a Static Site

Figure 4-1. A Jekyll build error with verbose logging enabled. Jekyll
does not provide verbose logging by default. To enable it, use the -v
option when running a build.

Figure 4-2. Hugo displays error messages in the console but simply fails
to display at all in the browser.

FTP | 51

Once your site is built, open your FTP client, for example Filezilla or
Transmit, and push the files to your host. One thing to remember is
that some static site generators regenerate the entire site upon each
build, so the sync feature available on many FTP clients will simply
push the entire site, regardless.

Glynn

Glynn is a tool that combines the build and deploy via
FTP steps into a single command or Jekyll-based sites.
To set up Glynn, you first need to install it via Ruby
Gems:
gem install glynn --source http://gemcutter.org

Then configure it via your site’s _config.yml. There are
a number of configuration options, but setting the
host, root directory, and passive mode are the required
options. In the following example configuration, user‐
name is included, meaning it will not have to be re-
entered upon each use:
#glynn
ftp_host: 'your_site.com'
ftp_dir: 'site/root'
ftp_passive: true
ftp_username: 'your_username'

Once properly configured, enter the command glynn
from the command line/terminal. Glynn will ask for
your FTP password and, once entered, will push the
files live.

GitHub Pages
GitHub and its free website hosting service, GitHub Pages, probably
had a lot to do with the popularity of Jekyll. While technically Git‐
Hub Pages can host any static site, not necessarily ones created with
Jekyll, there is close integration with Jekyll that makes it the de facto
option. Let’s look at the how it works, since, in my opinion, the offi‐
cial documentation on Jekyll’s site makes it seem more complicated
than it really is.

There are two types of GitHub pages: user/organization pages and
project pages. It’s important to note that although we call these
“pages,” they are actually full sites, not a single page. Let’s see how to
create a user page.

52 | Deploying a Static Site

https://filezilla-project.org/
https://panic.com/transmit/
https://github.com/dmathieu/glynn
https://pages.github.com/
http://jekyllrb.com/docs/github-pages/
http://jekyllrb.com/docs/github-pages/

First, go to GitHub and create a new repository. This repository
must be named [username].github.io. For example, my username on
GitHub is remotesynth, so my repository is named remotesynth.git‐
hub.io. Next you’ll need to clone the new repository, either using the
command-line Git client or the GitHub desktop app.

At this point, your repository is empty. Via the command
line, change directory into the new repository and enter jekyll
new ., which will create a new Jekyll site in the current directory.
Open the _config.yml and modify the configuration with your cor‐
rect site details.

Finally, just check the source of your Jekyll site into the GitHub
repository. There’s no need to run a build (and the .gitignore file is
set up to ignore the _site directory by default anyway, so don’t worry
if you ran a preview). Your new GitHub Pages user site should
already be up and running at [username].github.io, albeit using the
default Jekyll blog files.

GitHub Pages is an easy and free solution for sites such as a personal
blog or a project blog. You can even set up a custom URL as
opposed to using a github.io subdomain. GitHub offers addi‐
tional documentation covering how to set everything up and run a
Jekyll blog on GitHub Pages.

Surge

Another hosting option for static sites similar to Git‐
Hub Pages is Surge. Surge offers free publishing and
custom domains on its basic account and more
advanced options via a commercial offering. The bene‐
fit of Surge is that it makes the deployment process
transparent via an easy-to-use command-line tool. It
also offers integration options for various other build
tools so that it can easily fit within an existing build
and deployment process. Surge includes instructions
for deploying Jekyll sites, but it will work with any
static site generator.

Cloud Hosting
The list of cloud hosting options seems to grow every day, but any
cloud host should easily be able to handle a static assets. Many of the
popular static site generators include plug-ins, third-party tools, or

Cloud Hosting | 53

https://help.github.com/articles/using-jekyll-with-pages/
https://surge.sh/
https://surge.sh/help/deploying-a-jekyll-project
https://surge.sh/help/deploying-a-jekyll-project

direct integration for deploying to some of the more widely-used
cloud hosting services like Amazon EC2, Heroku, Azure, and
Modulus.

With the growth in popularity of static site generators though, some
services have cropped up that offer cloud hosting services specifi‐
cally targeting these tools. They offer some added conveniences that
a traditional hosting service cannot because of their integration with
the generators. Let’s look at a couple of options.

Netlify
Netlify is a commercial service that offers a cloud hosting solution
specifically designed for static site generators. You can use their
command-line tool to push static assets live. Even better, connect it
to a GitHub or Bitbucket account and have it continuously build
and deploy your application whenever new or updated files have
been checked in.

The benefit of the latter option is that the build process occurs
entirely on the Netlify servers. This means that there is no need to
handle deployment of the static assets at all. Netlify pulls changes
from the repository and updates the live site with the results of run‐
ning the build command, which is configurable.

For example, I was able to get my personal blog, built with Jekyll,
building and deploying on Netlify with only the addition of a Gem‐
file and Gemfile.lock. The gemfile only defined my Jekyll
dependency:

source 'https://rubygems.org'
gem 'jekyll'

The Gemfile.lock will be automatically generated when you run bun
dle install after the Gemfile is created.

Once the files are committed to the repository, Netlify will automat‐
ically try to build the site and, if successful, it will immediately be
available live.

CloudCannon
CloudCannon is a commercial cloud hosting service designed
specifically for static sites built with Jekyll. The key difference
between CloudCannon and the alternatives is that it offers a web-

54 | Deploying a Static Site

https://www.netlify.com/
http://cloudcannon.com/

based user interface designed to allow nontechnical users to add or
edit content on the site.

CloudCannon also integrates with repositories on GitHub or Bit‐
bucket or even a specialized folder on Dropbox. This means that it
will automatically sync and build changes to your site whenever they
are checked in, eliminating the need for the build-and-deploy step.

Once the files are synced, they can be edited via the browser-based
interface using a WYSIWYG-style editor for Markdown. For
instance, Figure 4-3 is a screenshot of the editor that allows me to
make modifications to my “About” page on my personal blog.

Figure 4-3. Modifying my “About” page using CloudCannon’s WYSI‐
WYG editor for Markdown pages.

As you can see in the screenshot, CloudCannon even allows me to
edit the Jekyll front matter using a form-based interface (on the
right-hand side of the screen). There’s also a web-based editor for
Jekyll collections.

The Possibilities Are (Almost) Endless
We’ve only managed to cover a handful of the many deployment
possibilities available to you for your static site. Because we are deal‐
ing in purely static files, there aren’t the typical deployment limita‐
tions that may come with hosting a dynamic server-side language
with a database server. A static site can be hosted just about any‐
where, and usually extremely cheaply.

As I hope this and the previous chapters illustrate, however, is that
static does not mean simple. Static site generators offer a lot of flexi‐
bility and power. You can build anything from a simple blog to a
complex documentation site to a business website.

The Possibilities Are (Almost) Endless | 55

http://jekyllrb.com/docs/collections/

Yes, some of these tools can often seem obtuse and hard to use at
times, especially depending on your level of comfort with the com‐
mand line and Markdown, but, if you are able to overcome some of
the initial hurdles in development, a static site can be remarkably
easy to maintain, with the added benefits of speed, security, and
simplicity.

56 | Deploying a Static Site

About the Author
Brian Rinaldi is the content and community manager on the devel‐
oper relations team at Telerik, where he is responsible for running
the Telerik Developer Network site. He has over 15 years of web
development experience and in recent years has focused on front-
end web development and mobile development using web technolo‐
gies. Brian speaks frequently at conferences such as Fluent, Dev‐
Nexus, and the inaugural JekyllConf and has served on the confer‐
ence committees for Fluent and QCon NY. Brian writes frequently
for publications including the Telerik Developer Network, SD
Times, SitePoint, and InfoQ. He is also coeditor of the Mobile Web
Weekly newsletter. You can follow Brian on his blog at RemoteSyn‐
thesis.com or on Twitter as @remotesynth.

http://remotesynthesis.com/
http://remotesynthesis.com/
https://twitter.com/remotesynth

	Additional Resources
	Copyright
	Table of Contents
	Chapter 1. What Are Static Sites?
	A Little Background
	The Dynamic Site Era
	The Rise of Blog Engines
	Static Pages Get New Life

	Defining a Static Website
	Benefits of Static Sites
	A Word (or More) About Markdown

	Chapter 2. The Basics of Static Site Generators
	What Are Static Site Generators?
	Run Via the Command Line
	Templating Languages for Theming
	Local Development Server
	File-based Data Formats
	Extensible Architecture
	A Build Process

	What Skills Are Required for Static Site Development?
	Comfort Working with the Command Line
	Ability to Learn and Work with Complementary Languages and Tools
	Static Site Generators Are Tools for Developers

	What Types of Sites Are Static Site Generators Useful for?
	Focus on Delivering Content
	Low Degree of User Interactivity
	Update Infrequently
	Common Use Cases

	Chapter 3. Popular Static Site Generator Options
	Jekyll
	Getting Started
	Templating and Authoring
	Documentation and Resources

	Wintersmith
	Getting Started
	Templating and Authoring
	Documentation and Resources

	Hugo
	Getting Started
	Templating and Authoring
	Documentation and Resources
	And So Many More...

	Chapter 4. Deploying a Static Site
	FTP
	Building Your Site
	Debugging

	GitHub Pages
	Cloud Hosting
	Netlify
	CloudCannon

	The Possibilities Are (Almost) Endless

