YAML Ain’t Markup Language (YAML
Version 1.1

Working Draft 2005-01-18-CVS

Oren Ben-Kiki <oren@ben-kiki.org>
Clark Evans <cce@clarkevans.com>
Brian Ingerson <ingy@ttul.org>

TM)

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Ain’t Markup Language (YAML ™) Version 1.1
Working Draft 2005-01-18-CVS

by Oren Ben-Kiki, Clark Evans, and Brian Ingerson
Copyright © 2001-2005 Oren Ben-Kiki, Clark Evans, Brian Ingerson

Status of this Document

This specification is a draft reflecting consensus reached by members of the yaml-core mailing list
[http://lists.sourceforge.net/lists/listinfo/yaml-core] . Any questions regarding this draft
should be raised on this list. We expect all further changes to be strictly limited to wording corrections and fixing production
bugs.

We wish to thank implementers, who have tirelessly tracked earlier versions of this specification, as well as our fabulous
user community whose feedback has both validated and clarified our direction.

Abstract

YAML™ (rhymes with “camel”) is a human-friendly, cross language, Unicode based data serialization language designed
around the common native data structures of agile programming languages. It is broadly useful for programming needs
ranging from configuration files to Internet messaging to object persistence to data auditing. Together with the Unicode
standard for charactefisttp://www.unicode.org/] , this specification provides all the information necessary to
understand YAML Version 1.1 and to create programs that process YAML information.

This document may be freely copied, provided it is not modified.

http://lists.sourceforge.net/lists/listinfo/yaml-core
http://www.unicode.org/
http://www.unicode.org/
http://www.w3.org/Style/XSL
http://www.renderx.com/

Table of Contents

I [0T [3o 1T o TP 1
L L. GOAUS ooeiiii it e e————— ettt ettt e a—————— ettt ene e irearans 1
7 o T A 1
G T = =1 F= 1o T T (o T | T 2
R S =T ¢ 01T g To] oo | PP 3

2 POV B ot e e ——— ettt ————— it et enn e eneand 4.
N T o |1 Tox 1] o - NN 4
DS 1 18 [0 1 = TP 5
G T Yor- 1 F= = 6.
A - To L TR 7.
2.5, FUIl LeNgth EXAMPIE.t e e et et ettt et ettt et e e e e 8

3. Processing YAML INfOIMELION.ottt ettt et ettt et e e e e 9
B L PrOCE S S S . ittt e ——— ettt —————— et 9

L L RO PIES ML ettt ————— e ettt ———— e 9
B2, SBIANZE «ovi e —— ettt ————— et aaa 10
G J0 I TR o (=11 =T o | R 10
B L, P IS . it ———— ettt ———— et 10
3L 0. COMIPOSE. . .ottt ——— e m———— e 10
G 700 AL TR o] ¢] 1 o P 10
G T2 1o (o 4 F= 1o T TN 1Y, o o [£ 10
3.2.1. RePresentation Graph.t e 11
G 2 It I N [T =T 12
T N I To 1 PPN 12
3.2.1.3. NOUES COMPAITISON. ... et ettt ettt ettt ettt ettt e et s e et et e e e et et et et et e s o 13
I S Y= = 1= 1[0 T N (=1 13
B.2.2. 0., KBYS OFUEN ...ttt et et e ettt e 14
3.2.2.2. ANCROTIS AN0 AlIBSES. ... vttt e et e e e e et et et et ettt et e e et et e ar e eeenesann 14
T B o (=YY= T a1 = N[0] TS 1 (- 2 4 I 14
32,3, L. NOUE SHYIES. ..ttt e e 15
T B (ot 1 =Y g o] 4= T ST 16

G T TR TR 0] 1.4 0 11=T 0| PN 16
T B B 11 =Yox 11/ Y 16
3.3, L0oading Failure POINTSt ettt m———— 16
3.3.1. Well-Formed and Identified.c.ooriiiiiii et e e ettt et ettt et aaa s 17
G TG T = ==Y 0] V7= To P 17
3.3.3. Recognized and Valid...........ouiiiuiii e e e 18
B.3u 4. AVAIIADIE ..o ——— ettt ——————aaaaaaeaneas 18

o = oo [WTex 1 0] g ISR @0 0 1V7=T o1 1T o 1< TR 19
I o (0 To [V o3 10 I o (=] 11 (1 P 19
o o (0T [V Tox 1o g T o= T = 1 1= (=] 6N TP 19

LT O g =1 = Tox (=] £ PR 21
LT R O g = = Tox (=Y Y= 21
I O o = ot (= gl =1 g Tod oo [] o o B TP 21
TG N [To [o7 o) g @ g T = T 1] £\ 21
LN o TN =Y (== 1 QO = = (o (= 25
ST Y T ol=] | T [T o [V E R O g F= U= (o £ Y 26
5.6. ESCAPE SEOUEBNCES. .. oueuiiiiiiei ettt ettt et ettt e e s e e ettt et e r e et ettt 28

6. SYNTAX PIIMILIVESottt et et o e et e ettt et ettt e a e ettt 31
Lo [0 To [=T 0] e LT g TS o F= Lol PP 31
(ST 011 41 0 11=T 0] 53OS 31
5.3, SEPAIALION SPACES ...t ittt e er——— et ettt et et e m——— e n e enas 33

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

YAML Ain’t Markup Lan-
guage (YAML™) Version 1.1

L0 o [o] =0 B T =T T S 34

B.5. LINE FOIOING ...viiiiii e e e e m———— e 35

A AN O g T = Ty =] 1 (=T o OO 37

45 R T =T 1)Y= PP 37

A N e 4N [T =T 1)Y= PPN 37

A R Y € B 1 (=T 1) TPV PPTPPRR 38

T 0. 2.0 TAg PrefiXeS. . e e e e 39

A A - To I o - T [o =T PP PPN 39

7.2. Document BoOUNAArY MArKEIS.ttt e e et et et e e et e e e et e en s 40

RS T B Lo ol ¥] (=] o | £ PP PP 41

A o] aq] o] 1= LI (=T o T PP 924

ST N[To [PR 72

S0 I Lo To 3 N g o] [o T £ PP 44

S T2 [To [T =T = PPN A5

LIRS T [To [T @o]] (= o | SR PR 47

B, AlIAS INOUES ... e ettt m———— et e 49

8.5. COMPIEIE NOUES. e e e et ettt ettt ettt e e et emmme e e e e e ns 49

S TS I 017V o o = PP 49

8.5.2. BIOCK NOGESt e e ettt ettt e e et ettt et e e e aas 50

0. SCAIAN SEYIES. ...t e et ————— ettt a e e e 52

9.1, FIOW SCaAlAr SEYIES . . ettt ettt et ettt et et et e e e et a e a e 52

0.1.1. DOUDIE QUOLEM. ... et e e e e e et et e e e e et a———————— 52

9.1.2. SINGIE QUOLEM. e ettt et ettt e ——— e a e 54

LS T] - 1 o R PP P PP 57

9.2. BIOCK SCalar HEAUEE e ettt et et a e e e e e et e e e e e 60

1S T2 I = (o o3 QS 1Y/ (SN o 1o 1 (o P 61

9.2.2. BIOCK INAeNtation INGICALON. ettt ettt e et et e e et e e e e e ae e end 61

9.2.3. Block Chomping INGICALON. e ettt et a e e e e aens] 62

9.3, BIOCK SCaAlAr SEYIES. et et e ettt e e e 64

SRS TN I 1 (= - | PP 65

0.3.2. FOIAEA ... ettt a e 66

10. COllECHON SEYIESt e e ettt et e ettt ettt ettt et emm—— et e e e e aaaas 70

10.1. SEUENCE SEYIES. .. ettt e e e e et et e et e e e e a e e e aenenenanenensmmmmeseeeenenenend O

T10.1.0. FIOW SEOUEBNCES. e ettt ettt ettt e e emme e e ettt ettt et e et et e e et et et et et e e e e as 70

O =] o Tod QST To [= o PP 71

O V= o] o[g To S] 1Y [PR 73

O I [0 1V A Y/ F= T o[Lo [TP 73

O = (o Tod TV =T o] o1 o - PP 77

10 To 1= G PP 80
v

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 1. Introduction

“YAML Ain’'t Markup Language” (abbreviated YAML) is a data serialization language designed to be human-friendly
and work well with modern programming languages for common everyday tasks. This specification is both an introduction
to the YAML language and the concepts supporting it; it is also a complete reference of the information needed to develop
applications for processing YAML.

Open, interoperable and readily understandable tools have advanced computing immensely. YAML was designed from
the start to be useful and friendly to people working with data. It uses Unicode printable characters, some of which provide
structural information and the rest containing the data itself. YAML achieves a unigue cleanness by minimizing the amount
of structural characters and allowing the data to show itself in a natural and meaningful way. For example, indentation may
be used for structure, colons separate “mapping key: value” pairs, and dashes are used to create “bullet” lists.

There are myriad flavors of data structures, but they can all be adequately represented with three basic primitives: mappings
(hashes/dictionaries), sequences (arrays/lists) and scalars (strings/numbers). YAML leverages these primitives and adds a
simple typing system and aliasing mechanism to form a complete language for serializing any data structure. While most
programming languages can use YAML for data serialization, YAML excels in working with those languages that are
fundamentally built around the three basic primitives. These include the new wave of agile languages such as Perl, Python,
PHP, Ruby, and Javascript.

There are hundreds of different languages for programming, but only a handful of languages for storing and transferring
data. Even though its potential is virtually boundless, YAML was specifically created to work well for common use cases
such as: configuration files, log files, interprocess messaging, cross-language data sharing, object persistence, and debugging
of complex data structures. When data is easy to view and understand, programming becomes a simpler task.

1.1. Goals

The design goals for YAML are:

1. YAML is easily readable by humans.

2. YAML matches the native data structures of agile languages.
3. YAML data is portable between programming languages.

4. YAML has a consistent model to support generic tools.

5. YAML supports one-pass processing.

6. YAML is expressive and extensible.

7. YAML is easy to implement and use.

1.2. Prior Art

YAML's initial direction was set by the data serialization and markup language discussions among SML-DEV members
[http://www.docuverse.com/smidev/] . Later on, it directly incorporated experience from Brian Ingerson’s
Perl module Data::Dentefhttp://search.cpan.org/doc/INGY/Data-Denter-0.13/Denter.pod]

Since then, YAML has matured through ideas and support from its user community.

YAML integrates and builds upon concepts described by C
[http://cm.bell-labs.com/cm/cs/cbook/index.html] , Java [http://java.sun.com/] , Perl
[http://www.perl.org/] , Python [http://www.python.org/] , Ruby

http://www.docuverse.com/smldev/
http://search.cpan.org/doc/INGY/Data-Denter-0.13/Denter.pod
http://cm.bell-labs.com/cm/cs/cbook/index.html
http://java.sun.com/
http://www.perl.org/
http://www.python.org/
http://www.ruby-lang.org/
http://www.w3.org/Style/XSL
http://www.renderx.com/

Introduction

[http://www.ruby-lang.org/] , RFCO0822 [http://www.ietf.org/rfc/rfc0822.txt] (MAIL),
RFC1866 [http://www.ics.uci.edu/publietf/html/rfc1866.txt] (HTML), RFC2045
[http://www.ietf.org/rfc/rfc2045.txt] (MIME), RFC2396
[http://www.ietf.org/rfc/rfc2396.txt] (URI), XML [http://www.w3.0rg/TR/REC-xml.html] ,
SAX [http://lwww.saxproject.org/] and SOAHhttp://www.w3.0rg/TR/SOAP]

The syntax of YAML was motivated by Internet Mail (RFC0822) and remains partially compatible with that standard.
Further, borrowing from MIME (RFC2045), YAML's top-level production is a stream of independent documents; ideal
for message-based distributed processing systems.

YAML'’s indentation-based scoping is similar to Python’s (without the ambiguities caused by tabs). Indented blocks facil-
itate easy inspection of the data’s structure. YAML's literal style leverages this by enabling formatted text to be cleanly
mixed within an indented structure without troublesome escaping. YAML also allows the use of traditional indicator-based
scoping similar to Perl’s. Such flow content can be freely nested inside indented blocks.

YAML'’s double-quoted style uses familiar C-style escape sequences. This enables ASCII encoding of non-printable or 8-
bit (ISO 8859-1) characters such 4s83B ”. Non-printable 16-bit Unicode and 32-bit (ISO/IEC 10646) characters are
supported with escape sequences suchu@93B " and “\UOOO0O0O03B ".

Motivated by HTML'’s end-of-line normalization, YAML'’s line folding employs an intuitive method of handling line
breaks. A single line break is folded into a single space, while empty lines are interpreted as line break characters. This
technique allows for paragraphs to be word-wrapped without affecting the canonical form of the content.

YAML'’s core type system is based on the requirements of agile languages such as Perl, Python, and Ruby. YAML directly
supports both collection (mapping, sequence) and scalar content. Support for common types enables programmers to use
their language’s native data structures for YAML manipulation, instead of requiring a special document object model
(DOM).

Like XML's SOAP, YAML supports serializing native graph data structures through an aliasing mechanism. Also like
SOAP, YAML provides for application-defined types. This allows YAML to represent rich data structures required for
modern distributed computing. YAML provides globally unique type names using a namespace mechanism inspired by
Java’'s DNS-based package naming convention and XML’s URI-based namespaces.

YAML was designed to support incremental interfaces that include both ingetNExtEvent() ") and output
“sendNextEvent() ") one-pass interfaces. Together, these enable YAML to support the processing of large documents
(e.g. transaction logs) or continuous streams (e.g. feeds from a production machine).

1.3. Relation to XML

Newcomers to YAML often search for its correlation to the eXtensible Markup Language (XML). Although the two languages
may actually compete in several application domains, there is no direct correlation between them.

YAML is primarily a data serialization language. XML was designed to be backwards compatible with the Standard Gen-

eralized Markup Language (SGML) and thus had many design constraints placed on it that YAML does not share. Inheriting
SGML'’s legacy, XML is designed to support structured documentation, where YAML is more closely targeted at data

structures and messaging. Where XML is a pioneer in many domains, YAML is the result of lessons learned from XML

and other technologies.

It should be mentioned that there are ongoing efforts to define standard XML/YAML mappings. This generally requires
that a subset of each language be used. For more information on using both XML and YAML, please visit ht-
tp:/lyaml.org/xml/index.html.

http://www.ietf.org/rfc/rfc0822.txt
http://www.ics.uci.edu/pub/ietf/html/rfc1866.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-xml.html
http://www.saxproject.org/
http://www.w3.org/TR/SOAP
http://yaml.org/xml/index.html
http://yaml.org/xml/index.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Introduction

1.4. Terminology

This specification uses key words based on RFCiti®//www.ietf.org/rfc/rfc2119.txt] to indicate
requirement level. In particular, the following words are used to describe the actions of a YAML processor:

May The wordmay, or the adjectiveptional mean that conforming YAML processors are permittednbat not
behave as described.

Should The wordshould or the adjectiveecommendedmean that there could be reasons for a YAML processor to
deviate from the behavior described, but that such deviation could hurt interoperability and should therefore
be advertised with appropriate notice.

Must The wordmust or the ternrequiredor shall, mean that the behavior described is an absolute requirement of
the specification.

RenderX

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 2. Preview

This section provides a quick glimpse into the expressive power of YAML. It is not expected that the first-time reader grok

all of the examples. Rather, these selections are used as motivation for the remainder of the specification.

2.1. Collections

YAML's block collections use indentation for scope and begin each entry on its owBltok.sequences indicate each

entry with a dash and space- (). Mappings use a colon and space (*) to mark each mapping key: value pair.

Example 2.1. Sequence of Scalars
(ball players)

Example 2.2. Mapping Scalars to Scalars
(player statistics)

- Mark McGwire
- Sammy Sosa
- Ken Griffey

hr: 65 # Home runs
avg: 0.278 # Batting average

rbi: 147 # Runs Batted In

Example 2.3. Mapping Scalars to SequencesExample 2.4. Sequence of Mappings

(ball clubs in each league)

(players’ statistics)

american:

- Boston Red Sox

- Detroit Tigers

- New York Yankees
national:

- New York Mets

- Chicago Cubs

- Atlanta Braves

name: Mark McGwire
hr: 65

avg: 0.278

name: Sammy Sosa
hr: 63

avg: 0.288

YAML also has flow styles, using explicit indicators rather than indentation to denote scope. The flow sequence is written

as a comma separated list within square brackets. In a similar manner, the flow mapping uses curly braces.

Example 2.5. Sequence of Sequences

Example 2.6. Mapping of Mappings

- [name , hr,avg]
- [Mark McGwire, 65, 0.278]
- [Sammy Sosa , 63, 0.288]

Mark McGwire: {hr: 65, avg: 0.278}
Sammy Sosa: {

hr: 63,

avg: 0.288

}

http://www.w3.org/Style/XSL
http://www.renderx.com/

Preview

2.2. Structures

YAML uses three dashes-{- ") to separate documents withirseeam. Three dots'(..
ument without starting a new one, for use in communication channels. Comment lines begin with the Octothorpe (also

called “hash”, “sharp”, or “number sign” #").

Example 2.7. Two Documents in a Stream Example 2.8. Play by Play Feed

(each with a leading comment)

from a Game

Ranking of 1998 home runs

- Mark McGwire
- Sammy Sosa
- Ken Griffey

Team ranking

- Chicago Cubs
- St Louis Cardinals

time: 20:03:20
player: Sammy Sosa
action: strike (miss)

time: 20:03:47
player: Sammy Sosa
action: grand slam

Repeated nodes are first identified byaachor (marked with the ampersari&*), and are thealiased (referenced with

an asterisk -*") thereafter.

Example 2.9. Single Document with

Two Comments

Example 2.10. Node for Sammy Sosa”

appears twice in this document

hr: # 1998 hr ranking
- Mark McGwire
- Sammy Sosa

rbi:
1998 rbi ranking
- Sammy Sosa
- Ken Griffey

hr:
- Mark McGwire
Following node labeled SS
- &SS Sammy Sosa
rbi:
- *SS # Subsequent occurrence
- Ken Griffey

") indicate the end of a doc-

A question mark and spa&” ") indicate a complex mapping key. Within a block collectiey: value pairs can start
immediately following the dash, colon, or question mark.

Example 2.11. Mapping between Sequences Example 2.12. In-Line Nested Mapping

? - Detroit Tigers
- Chicago cubs

- 2001-07-23

? [New York Yankees,
Atlanta Braves]

: [2001-07-02, 2001-08-12,
2001-08-14]

H products purchased

- item : Super Hoop
guantity: 1

- item : Basketball
quantity: 4

- item : Big Shoes
guantity: 1

http://www.w3.org/Style/XSL
http://www.renderx.com/

Preview

2.3. Scalars

Scalar content can be written in block form, usirigeaal style (| ") where all line breaks are significant. Alternatively,
they can be written with thelded style(*>") where each line break is folded to a space unless it ends an empty or a

“more indented” line.

Example 2.13. In literals,
newlines are preserved

Example 2.14. In the plain scalar,
newlines become spaces

ASCII Art
- |
ViV
A

Mark McGwire's
year was crippled
by a knee injury.

Example 2.15. Folded newlines are preserveBxample 2.16. Indentation determines scope

for "more indented" and blank lines

>
Sammy Sosa completed another
fine season with great stats.

63 Home Runs
0.288 Batting Average

What a year!

name: Mark McGwire
accomplishment: >

Mark set a major league

home run record in 1998.
stats: |

65 Home Runs

0.278 Batting Average

YAML's flow scalars include the plain style (most examples thus far) and quoted styles. The double-quoted style provides
escape sequences. The single-quoted style is useful when escaping is not needed. All flow scalars can span multiple lines;

line breaks are always folded.

Example 2.17. Quoted Scalars

Example 2.18. Multi-line Flow Scalars

unicode: "Sosa did fine.\u263A"
control: "\b1998\t1999\t2000\n"
hexesc: "\x13\x10 is \r\n"

single: "Howdy!" he cried.'

quoted: ' # not a "comment".
tie-fighter: "|\-*-/|

plain:
This unquoted scalar
spans many lines.

guoted: "So does this
guoted scalar.\n"

http://www.w3.org/Style/XSL
http://www.renderx.com/

Preview

2.4. Tags

In YAML, untagged nodes are given an type depending on the application. The examples in this specification generally
use the 8eq” [http://lyaml.org/type/seq.html]
[http://yaml.org/type/str.html] types
YAML tag repository [http://yaml.org/type/index.html]

and “str

“int " [http://lyaml.org/type/int.html]

, “map’ [http://lyaml.org/type/map.html]

and float ” [http://lyaml.org/type/float.html]

types. The repository includes additional types suchradl “” [http://yaml.org/type/null.html]

“bool " [http://lyaml.org/type/bool.html]

others.

Example 2.19. Integers

, “set ” [http://lyaml.org/type/set.html]

Example 2.20. Floating Point

canonical: 12345
decimal: +12,345
sexagesimal: 3:25:45
octal: 014
hexadecimal: 0xC

canonical: 1.23015e+3
exponential: 12.3015e+02
sexagesimal: 20:30.15
fixed: 1,230.15

negative infinity: -.inf

not a number:; .NaN

Example 2.21. Miscellaneous

Example 2.22. Timestamps

null: ~

true:y

false: n
string: '12345'

canonical: 2001-12-15T02:59:43.1Z
iS08601: 2001-12-14t21:59:43.10-05:00
Spaced: 2001-12-14 21:59:43.10 -5
date: 2002-12-14

Explicit typing is denoted with a tag using the exclamation poiri) ymbol. Global tags are URIs and may be specified

in a shorthand form using a handle. Application-specific local tags may also be used.

Example 2.23. Various Explicit Tags

Example 2.24. Global Tags

not-date: !!str 2002-04-28

picture: !'binary |
ROIGODIhDAAMAIQAAP//9/X
17unp5WZmzZgAAAOfn515eXv
Pz7Y60juDg4J+fn50Tk6enp
56enmleECcgggoBADs=

application specific tag: !something |
The semantics of the tag

above may be different for

different documents.

PATAG ! tag:clarkevans.com,2002:
--- Ishape
Use the ! handle for presenting
tag:clarkevans.com,2002:circle
- Icircle
center: &ORIGIN {x: 73, y: 129}
radius: 7
- lline
start: *ORIGIN
finish: { x: 89, y: 102 }
- llabel
start: *ORIGIN
color: OXFFEEBB
text: Pretty vector drawing.

A few examples also use

http://yaml.org/type/seq.html
http://yaml.org/type/map.html
http://yaml.org/type/str.html
http://yaml.org/type/index.html
http://yaml.org/type/int.html
http://yaml.org/type/float.html
http://yaml.org/type/null.html
http://yaml.org/type/bool.html
http://yaml.org/type/set.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Preview

Example 2.25. Unordered Sets

Example 2.26. Ordered Mappings

sets are represented as a

mapping where each key is

associated with the empty string
--- llset

? Mark McGwire

? Sammy Sosa

? Ken Griff

H ordered maps are represented as
H a sequence of mappings, with

H each mapping having one key

--- llomap

- Mark McGwire: 65

- Sammy Sosa: 63

- Ken Griffy: 58

2.5. Full Length Example

Below are two full-length examples of YAML. On the left is a sample invoice; on the right is a sample log file.

Example 2.27. Invoice

Example 2.28. Log File

--- I<tag:clarkevans.com,2002:invoice>
invoice: 34843
date :2001-01-23
bill-to: &id001
given : Chris
family : Dumars
address:
lines: |
458 Walkman Dr.
Suite #292
city : Royal Oak
state : Ml
postal : 48046
ship-to: *id001

product:
- sku : BL394D
guantity :4

description : Basketball
price : 450.00

- sku : BL4438H
guantity :1
description : Super Hoop
price : 2392.00

tax :251.42

total: 4443.52

comments:

Late afternoon is best.

Backup contact is Nancy

Billsmer @ 338-4338.

Time: 2001-11-23 15:01:42 -5
User: ed

\Warning:

This is an error message

for the log file

Time: 2001-11-23 15:02:31 -5
User: ed

\Warning:

A slightly different error
message.

Date: 2001-11-23 15:03:17 -5
User: ed
Fatal:
Unknown variable "bar"
Stack:
- file: TopClass.py
line: 23
code: |
X = MoreObject("345\n")
- file: MoreClass.py
line: 58
code: |-
foo = bar

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 3. Processing YAML Information

YAML is both a text format and a method for presenting any data structure in this format. Therefore, this specification
defines two concepts: a class of data objects called YAML representations, and a syntax for presenting YAML representations
as a series of characters, called a YAML stream. A YANdbcessolis a tool for converting information between these
complementary views. It is assumed that a YAML processor does its work on behalf of another module, aaikct an

ation. This chapter describes the information structures a YAML processor must provide to or obtain from the application.

YAML information is used in two ways: for machine processing, and for human consumption. The challenge of reconciling
these two perspectives is best done in three distinct translation stages: representation, serialization, and presentation. Rep-
resentation addresses how YAML views native data structures to achieve portability between programming environments.
Serialization concerns itself with turning a YAML representation into a serial form, that is, a form with sequential access
constraints. Presentation deals with the formatting of a YAML serialization as a series of characters in a human-friendly
manner.

Figure 3.1. Processing Overview

Application 3 YAML
1 Dump >
/Represent\ /Serialize\ / Present \
Native Representation Serialization Presentation
(Data Structure) | (Node Graph) (Event Tree) (Character Stream)
opaque tags, anchors, styles, comments,
program mapping/sequence/scalar, aliases, directives, spacing,
data ! canonical string values key order formatted string values, ...
\Construct/ \ Compose / \ Parse /
< Load

A YAML processor need not expose the serialization or representation stages. It may translate directly between native data
structures and a character streaunipandload in the diagram above). However, such a direct translation should take
place so that the native data structures are constructed only from information available in the representation.

3.1. Processes

This section details the processes shown in the diagram above. Note a YAML processor need not provide all these processes.
For example, a YAML library may provide only YAML input ability, for loading configuration files, or only output ability,
for sending data to other applications.

3.1.1. Represent

YAML representsany native data structure using three node kinds: sequence - an ordered series of entries; mapping - an
unordered association of unique keys to values; and scalar - any datum with opaque structure presentable as a series of
Unicode characters. Combined, these primitives generate directed graph structures. These primitives were chosen because
they are both powerful and familiar: the sequence corresponds to a Perl array and a Python list, the mapping corresponds
to a Perl hash table and a Python dictionary. The scalar represents strings, integers, dates, and other atomic data types.

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Each YAML node requires, in addition to its kind and content, a tag specifying its data type. Type specifiers are either
global URIs, or are local in scope to a single application. For example, an integer is represented in YAML with a scalar
plus the global tagtég:yaml.org,2002:int ". Similarly, an invoice object, particular to a given organization, could

be represented as a mapping together with the localitegite ”. This simple model can represent any data structure
independent of programming language.

3.1.2. Serialize

For sequential access mediums, such as an event callback API, a YAML representationsenesizssito an ordered

tree. Since in a YAML representation, mapping keys are unordered and nodes may be referenced more than once (have
more than one incoming “arrow”), the serialization process is required to impose an ordering on the mapping keys and to
replace the second and subsequent references to a given node with place holders called aliases. YAML does not specify
how theseserialization detailsare chosen. It is up to the YAML processor to come up with human-friendly key order and
anchor names, possibly with the help of the application. The result of this process, a YAML serialization tree, can then be
traversed to produce a series of event calls for one-pass processing of YAML data.

3.1.3. Present

The final output process fesentingthe YAML serializations as a character stream in a human-friendly manner. To
maximize human readability, YAML offers a rich set of stylistic options which go far beyond the minimal functional needs

of simple data storage. Therefore the YAML processor is required to introduce yageeastation detaileshen creating

the stream, such as the choice of node styles, how to format content, the amount of indentation, which tag handles to use,
the node tags to leave unspecified, the set of directives to provide and possibly even what comments to add. While some
of this can be done with the help of the application, in general this process should be guided by the preferences of the user.

3.1.4. Parse

Parsingis the inverse process of presentation, it takes a stream of characters and produces a series of events. Parsing discard
all the details introduced in the presentation process, reporting only the serialization events. Parsing can fail due to ill-
formed input.

3.1.5. Compose

Composingakes a series of serialization events and produces a representation graph. Composing discards all the serializ-
ation details introduced in the serialization process, producing only the representation graph. Composing can fail due to
any of several reasons, detailed below.

3.1.6. Construct

The final input process onstructingnative data structures from the YAML representation. Construction must be based
only on the information available in the representation, and not on additional serialization or presentation details such as
comments, directives, mapping key order, node styles, content format, indentation levels etc. Construction can fail due to
the unavailability of the required native data types.

3.2. Information Models

This section specifies the formal details of the results of the above processes. To maximize data portability between pro-
gramming languages and implementations, users of YAML should be mindful of the distinction between serialization or

presentation properties and those which are part of the YAML representation. Thus, while imposing a order on mapping
keys is necessary for flattening YAML representations to a sequential access medium, this serialization detail must not be
used to convey application level information. In a similar manner, while indentation technique and a choice of a node style

10

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

are needed for the human readability, these presentation details are neither part of the YAML serialization nor the YAML
representation. By carefully separating properties needed for serialization and presentation, YAML representations of ap-
plication information will be consistent and portable between various programming environments.

The following diagram summarizes the three information models. Full arrows denote composition, hollow arrows denote
inheritance, 1” and “*” denote “one” and “many” relationships. A singke’“denotes serialization details, a doubte-"
denotes presentation details.

Figure 3.2. Information Models

YAML Representation
: + YAML Serialization
' ++ YAML Presentation

Tag

++ Directive

Name
Kind

++ Non-Specific Tag

Name
Parameters

*

Scalar Tag

Canonical Format

Node

Ordered
Content

+ Anchor
++ Style, Spacing,
Line Wrapping...

Key
1

Key: Value Pair

47

*

1

Value

/

Sequence Node

Scalar Node

Unordered
+ Ordered
Content

+ Alias Node

T
Canonical

/ ++ Formatted
Content

Mapping Node

String

++ Comment

3.2.1. Representation Graph

YAML'’s representatiorof native data is a rooted, connected, directed graph of tagged nodes. By “directed graph” we
mean a set of nodes and directed edges (“arrows”), where each edge connects one node to another (see a formal definition

[http://www.nist.gov/dads/HTML/directedGraph.html]

Nodes that are defined in terms of other nodes are collections and nodes that are independent of any other nodes are scalars
YAML supports two kinds of collection nodes, sequences and mappings. Mapping nodes are somewhat tricky because

their keys are unordered and must be unique.

). All the nodes must be reachable fromrthat
nodevia such edges. Note that the YAML graph may include cycles, and a node may have more than one incoming edge.

11

http://www.nist.gov/dads/HTML/directedGraph.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Figure 3.3. Representation Model

Tag

Name
Kind
Scalar Tag

Canonical Format

Key
Node 1
<
! * Key: Value Pair <T
<«
1
Ordered Value Unordered
Content Content
" Sequence Node Scalar Node Mapping Node
Canonical
Content
String

3.2.1.1. Nodes

YAML nodeshavecontentof one of threkinds scalar, sequence, or mapping. In addition, each node has a tag which
serves to restrict the set of possible values which the node’s content can have.

Scalar The content of acalarnode is an opaque datum that can be presented as a series of zero or more Unicode
characters.

Sequence The content of @equencaode is an ordered series of zero or more nodes. In particular, a sequence may
contain the same node more than once or it could even contain itself (directly or indirectly).

Mapping The content of mappingnode is an unordered setkafy: valuenode pairs, with the restriction that each of
the keys isunique. YAML places no further restrictions on the nodes. In particular, keys may be arbitrary
nodes, the same node may be used as the value of several key: value pairs, and a mapping could even contain
itself as a key or a value (directly or indirectly).

When appropriate, it is convenient to consider sequences and mappings togethikrctamns In this view, sequences
are treated as mappings with integer keys starting at zero. Having a unified collections view for sequences and mappings
is helpful both for creating practical YAML tools and APIs and for theoretical analysis.

3.2.1.2. Tags

YAML represents type information of native data structures with a simple identifier, cadgd@lobal tagsare URIs
[http://mww.ietf.org/rfc/rfc2396.txt] and hence globally unique across all applications. e ™ URI

12

http://www.ietf.org/rfc/rfc2396.txt
http://www.taguri.org
http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

schemefhttp://www.taguri.org] (mirror [http://lyaml.org/spec/taguri.txt]) is recommended

for all global YAML tags. In contrastpcal tagsare specific to a single application. Local tags start With, are not

URIs and are not expected to be globally unique. YAML providdsA&3" directive to make tag notation less verbose; it

also offers easy migration from local to global tags. To ensure this, local tags are restricted to the URI character set and
use URI character escaping.

YAML does not mandate any special relationship between different tags that begin with the same substring. Tags ending
with URI fragments (containing#”) are no exception; tags that share the same base URI but differ in their fragment part
are considered to be different, independent tags. By convention, fragments are used to identify different “variants” of a
tag, while 7 7 is used to define nested tag “namespace” hierarchies. However, this is merely a convention, and each tag
may employ its own rules. For example, Perl tags may:usétb express namespace hierarchies, Java tags may'iyse “

etc.

YAML tags are used to associate meta information with each node. In particular, each tag must specify the expected node
kind (scalar, sequence, or mapping). Scalar tags must also provide mechanism for converting formatted content to a canon-
ical form for supporting equality testing. Furthermore, a tag may provide additional information such as the set of allowed
content values for validation, a mechanism for tag resolution, or any other data that is applicable to all of the tag’s nodes.

3.2.1.3. Nodes Comparison

Since YAML mappings require key uniqueness, representations must include a mechanism for testing the equality of nodes.
This is non-trivial since YAML allows various ways to format a given scalar content. For example, the integer eleven can
be written as013” (octal) or “OxB” (hexadecimal). If both forms are used as keys in the same mapping, only a YAML
processor which recognizes integer formats would correctly flag the duplicate key as an error.

Canonical Form YAML supports the need for scalar equality by requiring that every scalar tag must specify a mechanism
to producing thecanonical formof any formatted content. This form is a Unicode character string
which presents the content and can be used for equality testing. While this requirement is stronger
than a well defined equality operator, it has other uses, such as the production of digital signatures.

Equality Two nodes must have the same tag and contentaquag Since each tag applies to exactly one kind,
this implies that the two nodes must have the same kind to be equal. Two scalars are equal only when
their tags and canonical forms are equal character-by-character. Equality of collections is defined re-
cursively. Two sequences are equal only when they have the same tag and length, and each node in
one sequence is equal to the corresponding node in the other sequence. Two mappings are equal only
when they have the same tag and an equal set of keys, and each key in this set is associated with equal
values in both mappings.

Identity Two nodes ar@entical only when they represent the same native data structure. Typically, this cor-
responds to a single memory address. Identity should not be confused with equality; two equal nodes
need not have the same identity. A YAML processor may treat equal scalars as if they were identical.
In contrast, the separate identity of two distinct but equal collections must be preserved.

3.2.2. Serialization Tree

To express a YAML representation using a serial API, it necessary to impose an order on mapping keys and employ alias
nodes to indicate a subsequent occurrence of a previously encountered node. The result of this psecedizatian

tree where each node has an ordered set of children. This tree can be traversed for a serial event-based API. Construction
of native structures from the serial interface should not use key order or anchors for the preservation of important data.

13

http://www.taguri.org
http://yaml.org/spec/taguri.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Figure 3.4. Serialization Model

YAML Representation E
+ YAML Serialization

Tag

B AL AL b b Name
Kind
Scalar Tag

Canonical Format

*

Key
Node 1
<
! + Anchor * Key: Value Pair <T
<«
1
Ordered Value + Ordered
Content Content
" Sequence Node Scalar Node Mapping Node 1
Canonical
Content
+ Alias Node
String

3.2.2.1. Keys Order

In the representation model, mapping keys do not have an order. To serialize a mapping, it is necessary t@mgrosg an

on its keys. This order is a serialization detail and should not be used when composing the representation graph (and hence
for the preservation of important data). In every case where node order is significant, a sequence must be used. For example,
an ordered mapping can be represented as a sequence of mappings, where each mappingéya/aingleair. YAML

provides convenient compact notation for this case.

3.2.2.2. Anchors and Aliases

In the representation graph, a node may appear in more than one collection. When serializing such data, the first occurrence
of the node isdentifiedby ananchorand each subsequent occurrence is serialized @saamodewhich refers back to

this anchor. Otherwise, anchor names are a serialization detail and are discarded once composing is completed. When
composing a representation graph from serialized events, an alias node refers to the most recent node in the serialization
having the specified anchor. Therefore, anchors need not be unique within a serialization. In addition, an anchor need not
have an alias node referring to it. It is therefore possible to provide an anchor for all nodes in serialization.

3.2.3. Presentation Stream

A YAML presentatioris astreamof Unicode characters making use of of styles, formats, comments, directives and other
presentation details to present a YAML serialization in a human readable way. Although a YAML processor may provide
these details when parsing, they should not be reflected in the resulting serialization. YAML allows several serializations
to be contained in the same YAML character stream as a sedeswhentseparated by document boundary markers.

14

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Documents appearing in the same stream are independent; that is, a node must not appear in more than one serialization
tree or representation graph.

Figure 3.5. Presentation Model

E YAML Representation E
+ YAML Serialization
Tag

E ++ YAML Presentation E ++ Non-Specific Tag
Frommmenemsennennenennd Name <

Kind
++ Directive 1
Name
Parameters *
Key
Node 1
<
< + Anchor * Key: Value Pair 47*
++ Style, Spacing, [€—
Line Wrapping.. 1
Ordered Value + Ordered
Content Content
" Sequence Node Scalar Node Mapping Node
++ Formatted
Content
+ Alias Node ++ Comment
String

3.2.3.1. Node Styles

Each node is presented in sostggde depending on its kind. The node style is a presentation detail and is not reflected in
the serialization tree or representation graph. There are two groups oftdtdksndflow. Block styles use indentation

to denote nesting and scope within the document. In contrast, flow styles rely on explicit indicators to denote nesting and
scope.

YAML provides a rich set of scalar styld3lock scalar stylesnclude theliteral style and thefolded style flow scalar
stylesinclude theplain styleand twoquoted styleshesingle-quoted styland thedouble-quoted styl& hese styles offer
a range of trade-offs between expressive power and readability.

Normally, the content dflock collectiondegins on the next line. In most cases, YAML also allows block collections to
startin-line for more compact notation when nestiigck sequenceandblock mappingside each other. When nesting
flow collections aflow mappingwith asingle key: value paimay be specified directly insideflaw sequenceallowing

for a compact “ordered mapping” notation.

15

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Figure 3.6. Kind/Style Combinations

Kind
Collection
Scalar Sequence Mapping

| Quoted (P'a'n> - (Explicit) ! | (Explicit) !
!] v |1 Single Paip |
' | Double Single ;; o |

Style L R ‘

Flow

m -
=2 =
o i
)
a v
= z
9 x
— (md
E [
) E
o
— =
=) ©
: x
- t
[-
E} [
) 3
o

3.2.3.2. Scalar Formats

YAML allows scalar content to be presented in seviarahats For example, the booleatrde " might also be written

as ‘yes”. Tags must specify a mechanism for converting any formatted scalar content to a canonical form for use in
equality testing. Like node style, the format is a presentation detail and is not reflected in the serialization tree and repres-
entation graph.

3.2.3.3. Comments

Commentsare a presentation detail and must not have any effect on the serialization tree or representation graph. In partic-
ular, comments are not associated with a particular node. The usual purpose of a comment is to communicate between the
human maintainers of a file. A typical example is comments in a configuration file. Comments may not appear inside
scalars, but may be interleaved with such scalars inside collections.

3.2.3.4. Directives

Each document may be associated with a sditetives A directive has a name and an optional sequence of parameters.
Directives are instructions to the YAML processor, and like all other presentation details are not reflected in the YAML
serialization tree or representation graph. This version of YAML defines a two direc¥ved]™and “TAG'. All other
directives are reserved for future versions of YAML.

3.3. Loading Failure Points

The process of loading native data structures from a YAML stream has several praikmgboints The character stream
may be ill-formed, aliases may be unidentified, unspecified tags may be unresolvable, tags may be unrecognized, the content
may be invalid, and a native type may be unavailable. Each of these failures results with an incomplete loading.

A partial representatiomeed not resolve the tag of each node, and the canonical form of scalar content need not be
available. This weaker representation is useful for cases of incomplete knowledge of the types used in the document. In

16

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

contrast, @omplete representati@pecifies the tag of each node, and provides the canonical form of scalar content, allowing
for equality testing. A complete representation is required in order to construct native data structures.

Figure 3.7. Loading Failure Points

A
VAY
< »
| {)
Parse é
l Well Formed I||-F9rme.d. No
and Identified or Unidentified Representation
83
Compose :
Resolved Unresolved Partial .
Representation
?
Scalar
RECOQNiZ_Ed Unrecognized
and Valid or Invalid
v
* ? Collection
Available Unavailable Complete.
Representation
Construct

Construct
Native Data

3.3.1. Well-Formed and Identified

A well-formedcharacter stream must match the productions specified in the next chapter. Successful loading also requires
that each alias shall refer to a previous node identified by the anchor. A YAML processor shoultfiajeetd streams
andunidentified aliasesA YAML processor may recover from syntax errors, possibly by ignoring certain parts of the input,

but it must provide a mechanism for reporting such errors.

3.3.2. Resolved

It is not required that all the tags of the complete representation be explicitly specified in the character stream. During
parsing, nodes that omit the tag are giver-specific tag" ?” for plain scalars ant! ” for all other nodes. These non-
specific tags must resolvedo aspecific tageither a local tag or a global tag) for a complete representation to be composed.

Resolving the tag of a node must only depend on the following three parameters: the non-specific tag of the node, the path
leading from the root node to the node, and the content (and hence the kind) of the node. In particular, resolution must not
consider presentation details such as comments, indentation and node style. Also, resolution must not consider the content
of any other node, except for the content of the key nodes directly along the path leading from the root node to the resolved
node. In particular, resolution must not consider the content of a sibling node in a collection or the content of the value
node associated with a resolved key node.

17

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

Tag resolution is specific to the application, hence a YAML processor should provide a mechanism allowing the application
to specify the tag resolution rules. It is recommended that nodes having’ ther-specific tag should be resolved as
“tag:yaml.org,2002:seq ", “tag:yaml.org,2002:map " or “tag:yaml.org,2002:str " depending on

the node’s kind. This convention allows the author of a YAML character stream to exert some measure of control over the
tag resolution process. By explicitly specifying a plain scalar has theoh-specific tag, the node is resolved as a string,

as if it was quoted or written in a block style. Note, however, that each application may override this behavior. For example,
an application may automatically detect the type of programming language used in source code presented as a hon-plain
scalar and resolve it accordingly.

When a node has more than one occurrence (using an anchor and alias nodes), tag resolution must depend only on the patt
to the first occurrence of the node. Typically, the path leading to a node is sufficient to determine its specific tag. In cases
where the path does not imply a single specific tag, the resolution also needs to consider the node content to select amongst
the set of possible tags. Thus, plain scalars may be matched against a set of regular expressions to provide automatic resol-
ution of integers, floats, timestamps, and similar types. Similarly, the content of mapping nodes may be matched against
sets of expected keys to automatically resolve points, complex numbers, and similar types.

The combined effect of these rules is to ensure that tag resolution can be performed as soon as a node is first encountered
in the stream, typically before its content is parsed. Also, tag resolution only requires referring to a relatively small number
of previously parsed nodes. Thus, tag resolution in one-pass processors is both possible and practical.

If a document containsnresolved tagsthe YAML processor is unable to compose a complete representation graph. In
such a case, the YAML processor may compose an partial representation, based on each node’s kind and allowing for non-
specific tags.

3.3.3. Recognized and Valid

To bevalid, a node must have a tag whichasognizedy the YAML processor and its content must satisfy the constraints
imposed by this tag. If a document contains a scalar node withranognized tagr invalid contentonly a partial rep-
resentation may be composed. In contrast, a YAML processor can always compose a complete representation for an unre-
cognized or an invalid collection, since collection equality does not depend upon knowledge of the collection’s data type.
However, such a complete representation can not be used to construct a native data structure.

3.3.4. Avallable

In a given processing environment, there need not bealablenative type corresponding to a given tag. If a node’s tag
is unavailable a YAML processor will not be able to construct a native data structure for it. In this case, a complete rep-
resentation may still be composed, and an application may wish to use this representation directly.

18

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4. Productions Conventions

The following chapters describe the syntax of YAML character streams in detail using a series of BNF productions. In
most cases, productions are introduced in a “bottom-up” order; basic productions are specified before the more complex
productions using them. Examples accompanying the productions display sample YAML text side-by-side with equivalent
YAML text using only flow collections and double-quoted scalars. For improved readability, the equivalent YAML text
uses thellseq 7, “!'map ”, and “Istr " shorthands instead of the verbatitstag:yaml.org,2002:seq>
“I<tag:yaml.org,2002:map> " and “I<tag:yaml.org,2002:str> " forms. These types are used to resolve

all untagged nodes, except for a few examples that usditite “ " and “/float " types.

4.1. Production Prefixes

To make the syntax easier to follow, production names use Hungarian-style notation. Each production is given one of the
following prefix based on the type of characters it matches.

e- A production matching no characters.

c- A production matching one or more characters starting and ending with a special (non-space) character.
b- A production matching a single line break.

nb- A production matching one or more characters starting and ending with a non-break character.

S- A production matching one or more characters starting and ending with a space character.

ns- A production matching one or more characters starting and ending with a non-space character.

X-Y- A production matching a sequence of one or more characters, starting Xitltharacter and ending

with aY- character.
I- A production matching one or more lines (shorthandfbr).

X+, X- Y+ A production as above, with the additional property that the indentation level used is greater than the
specifiedn parameter.

4.2. Production Parameters

As YAML's syntax is designed for maximal readability, it makes heavy use of the context that each syntactical entity appears
in. For notational compactness, this is expressed using parameterized BNF productions. The set of parameters and the
range of allowed values depend on the specific production. The full list of possible parameters and their values is:

Indentationn orm Since the character stream depends upon indentation level to delineate blocks, many productions
are parameterized by it. In some cases, the notatoodtiction(<n) ", “production(<n)”
and ‘production(>n) " are used; these are shorthands fooduction(m) " for some spe-
cific mwhere < m<n, 0< m< n andm> n, respectively.

Context:c YAML supports two groups ofontexts distinguishing between block styles and flow styles. In
the block styles, indentation is used to delineate structure. Due to the fact thdt tharacter
denoting a block sequence entry is perceived as an indentation character, some productions distin-
guish between the block-in context (inside a block sequence) and the block-out context (outside
one). In the flow styles, explicit indicators are used to delineate structure. As plain scalars have no
such indicators, they are the most context sensitive, distinguishing between being nested inside a

19

http://www.w3.org/Style/XSL
http://www.renderx.com/

Productions Conventions

flow collection (flow-in context) or being outside one (flow-out context). YAML also provides a
terse and intuitive syntax for simple keys. Plain scalars in this (flow-key) context are the most re-
stricted, for readability and implementation reasons.

(Scalar) Styles Scalar content may be presented in one of five styles: the plain, double-quoted and single-quoted
flow styles, and the literal and folded block styles.

(Block) Chompingt Block scalars offer three possible mechanisms for chomping any trailing line breaks: strip, clip and
keep.

20

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 5. Characters
5.1. Character Set

YAML streams use thprintablesubset of the Unicode character set. On input, a YAML processor must accept all printable
ASCII characters, the space, tab, line break, and all Unicode characters beyond #x9F. On output, a YAML processor must
only produce these acceptable characters, and should also escape all non-printable Unicode characters. The allowed
character range explicitly excludes the surrogate HaE800-#xDFFF , DEL #x7F , the CO control blockx0-#x1F

(except forx9 , #xA, and#xD), the C1 control blockx80-#x9F , #xFFFE, and#xFFFF. Any such characters must

be presented using escape sequences.

[1] c-printable ::= #x9 | #xA | #xD | [#x20-#X7E] I* 8 bit */
| #x85 | [#xA0-#xD7FF] | [#XxE000-#xFFFD] /* 16 bit */
| [#x10000-#x10FFFF] /* 32 bit */

5.2. Character Encoding

All characters mentioned in this specification are Unicode code points. Each such code point is written as one or more
octets depending on tleharacter encodingised. Note that in UTF-16, characters abiéxieFFF are written as four

octets, using a surrogate pair. A YAML processor must support the UTF-16 and UTF-8 character encodings. If a character
stream does not begin witlbgte order mark#FEFF), the character encoding shall be UTF-8. Otherwise it shall be either
UTF-8, UTF-16 LE, or UTF-16 BE as indicated by the byte order mark. On output, it is recommended that a byte order
mark should only be emitted for UTF-16 character encodings. Note that the UTF-32 encoding is explicitly not supported.
For more information about the byte order mark and the Unicode character encoding schemes see the Unicode
FAQ [http://www.unicode.org/unicode/fag/utf_bom.html]

[2] c-byte-order-mark ::= #xFEFF
In the examples, byte order mark characters are displayed’as “

Example 5.1. Byte Order Mark

|E|# Comment only. This stream contains no
documents, only comments.

Legend:
[c-byte-order-mark |

Example 5.2. Invalid Byte Order Mark

Invalid use of BOM ERROR:
[= #inside a A BOM |must not appear
document. inside a document.

5.3. Indicator Characters

Indicatorsare characters that have special semantics used to describe the structure and content of a YAML document.

21

http://www.unicode.org/unicode/faq/utf_bom.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

« A“-"(#2D, hyphen) denotes a block sequence entry.

(3]

c-sequence-entry ;=
« A“?" (#3F, question mark) denotes a mapping key.
[4]

c-mapping-key ::=“?”

e A"“:"(#3A, colon) denotes a mapping value.

(5]

c-mapping-value ::=

Example 5.3. Block Structure Indicators

sequence | | DoYAML 1.1
Done I'map {

tho
|
mapping { | :
2 s
[::]blue

a5 rsa
‘?:sea - 1green .

Legend:
[C-Sequence-entry |

}

}

],

? llstr "mapping"

? lstr "sequence”

llseq [
lstr "one", !lstr "two"

Imap {
? llstr "sky" : llstr "blue”,
? llstr "sea" : llstr "green”,

« A", " (#2C, comma) ends a flow collection entry.

(6]

c-collect-entry ::=*
« A“[” (#5B, left bracket) starts a flow sequence.
[71 c-sequence-start ::=“["

« A“] " (#5D, right bracket) ends a flow sequence.
[8] c-sequence-end ::="]"

« A“{" (#7B, left brace) starts a flow mapping.
[91 c-mapping-start ::=“{"

e« A"“}" (#7D, right brace) ends a flow mapping.

[10] c-mapping-end ::="*}"

22

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

Example 5.4. Flow Collection Indicators

sequence: [, tw:c;}] E_] D DoYAML 1.1
R ST - N -

mapping: {i_s_lgy. blue , sea:green } imap {

Legend: ?I:!str "sequence”
[C-Sequence-start_c-se@uence-end 'iiseq"[. e
c-hiapping-start . cimapping-end Hstrrone’, Histr “two
C-Collect-entry ~~~ "] L .

? llstr "mapping”

:Imap {
? Ustr "sky" : lstr "blue”,
? lstr "sea" : !lstr "green”,

}

}

« An“#" (#23, octothorpe, hash, sharp, number sign) denotes a comment.

[11] c-comment ::=“#"

Example 5.5. Comment Indicator

Comment only. This stream contains no
documents, only comments.
Legend:

* An*“&" (#26, ampersand) denotes a node’s anchor property.

[12] c-anchor ::=*“&”

e An“*” (#2A, asterisk) denotes an alias node.

[13] c-alias ::="“*”

« An*“l”(#21, exclamation) denotes a node’s tag.

[14] c-tag ::=

Example 5.6. Node Property Indicators

- -
anchored:_.:.lgc_:r}ll & anc value
alias: * anchor

CAYAML 1.1

Legend:
c-anchor

I'map {

? llstr "anchored"

: llocal &A1 "value",
? listr "alias"

C*AL,

}

RenderX

23

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

 A*|”(7C, vertical bar) denotes a literal block scalar.
[15] c-literal ::="“|"
* A“>" (#3E, greater than) denotes a folded block scalar.

[16] c-folded ::=

Example 5.7. Block Scalar Indicators

literal: | [] POYAML 1.1
text -
folded: > | : map {
text ? Ustr "literal"
: lstr "text\n",
Legend: ? Ustr "folded"
: lstr "text\n",
cfolded)
« An"“' " (#27, apostrophe, single quote) surrounds a single-quoted flow scalar.

[17] c-single-quote ::=

e A"""(#22, double quote) surrounds a double-quoted flow scalar.

[18] c-double-quote ::=

Example 5.8. Quoted Scalar Indicators

single: te. D PDOYAML 1.1
double: " ext "
I'map {

Legend: ?,:!Str.."dOl.J.ble"
c-single-quote | ?”str text o
C-double-quote 7 ustr 'single

: lstr "text",
}

« A" (#25, percent) denotes a directive line.

[19] c-directive ::= “%”

Example 5.9. Directive Indicator

YAML 1.1 POYAML 1.1

--- text

lIstr "text"
Legend:
24

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

e« The"@ (#40, at) and' ™" (#60, grave accent) ameservedor future use.

[20] c-reserved :=“@" | “"

Example 5.10. Invalid use of Reserved Indicators

commercial-at: @ text] ERROR:
grave-accent: ° te |Reserved indicators can't
start a plain scalar.

e Any indicator character:

[21] C-IndlCﬁtOI’ = “w_n | u?n | “:11 | u’n | “rn | wyn | u{n | u}u
| u#n | u&” | u*n\l u!n I ulu | n>u | wn | i
| u%u I u@u | w

5.4. Line Break Characters

The Unicode standard defines the followlimg breakcharacters:
[22] b-line-feed ::= #xA I*LF*/

[23] b-carriage-return ::= #xD /*CR*/

[24] b-next-line ::= #x85 *NEL*/

[25] b-line-separator ::= #x2028 /*LS*/

[26] b-paragraph-separator ::= #x2029 /[*PS*/

A YAML processor must accept all the possible Unicode line break characters.

[27] b-char:= b-line-feed | b-carriage-return | b-next-line
| b-line-separator | b-paragraph-separator

Line breaks can be grouped into two categofgecific line breakbave well-defined semantics for breaking text into
lines and paragraphs, and must be preserved by the YAML processor inside scalar content.

[28] b-specific ::= b-line-separator | b-paragraph-separator

Generic line breakdo not carry a meaning beyond “ending a line”. Unlike specific line breaks, there are several widely
used forms for generic line breaks.

[29] b-generic ::= (b-carriage-return b-line-feed) /* DOS, Windows */

| b-carriage-return [* Macintosh */
| b-line-feed [* UNIX */
| b-next-line /* Unicode */

Generic line breaks inside scalar content mustimalizedby the YAML processor. Each such line break must be parsed
into a single line feed character. The original line break form is a presentation detail and must not be used to convey
content information.

[30] b-as-line-feed ::= b-generic
[31] b-normalized ::= b-as-line-feed | b-specific

25

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

Normalization does not apply to ignored (escaped or chomped) generic line breaks.
[32] b-ignored-generic ::= b-generic

Outside scalar content, YAML allows any line break to be used to terminate lines.
[33] b-ignored-any ::= b-generic | b-specific

On output, a YAML processor is free to present line breaks using whatever convention is most appropriate, though specific
line breaks must be preserved in scalar content. These rules are compatible with Unicode’s newline guidelines
[http://www.unicode.org/unicode/reports/tr13/]

In the examples, line break characters are displayed as follotver ‘ho glyph for a generic line breal¢1*for a line
separator andfl” for a paragraph separator.

Example 5.11. Line Break Characters

| DAYAML 1.1
Generic line break (no glyph) --- lstr
Generic line break (glyphed) ‘Gener_ic I_ine break (no glyph)\n\
Line separator i G_enerlc line break (glyphed)\n\
- Line separator\u2028\
Paragraph separator § : | Paragraph separator\u2029"
Legend:
[b-generic_brlifie-separator
b-paragraph-separator "~~~}

5.5. Miscellaneous Characters

The YAML syntax productions make use of the following character range definitions:
* A non-break character:
[34] nb-char ::= c-printable - b-char

* Anignored space character outside scalar content. Such spaces are used for indentation and separation between tokens
To maintain portabilitytab characters must not be used in these cases, since different systems treat tabs differently.
Note that most modern editors may be configured so that pressing the tab key results in the insertion of an appropriate
number of spaces.

[35] s-ignored-space ::= #x20 /[*SP*/

26

http://www.unicode.org/unicode/reports/tr13/
http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

Example 5.12. Invalid Use of Tabs

Tabs do's and don'ts:

comment:
quoted: "Quoted =]

block: |
void main() {

[= Jprintf("Hello, world\n");

}

ERROR:

Tabs nay gppear inside
comments and quoted or
block scalar content.

elsewhere, such as
in indentation and
separation spaces.

...........

« A white spaceharacter in quoted or block scalar content:

[36] s-white ::= #x9 *TAB*/ | #x20 /[*SP*/

In the examples, tab characters are displayed as the glyphSpace characters are sometimes displayed as the glyph
“. " for clarity.

Example 5.13. Tabs and Spaces

R

"':"..'?l-ext) éb'h;taining Coe DAYAML 1.1

'b;oth . space : and L listr

S L "Text-containing-\
- i [~ tab [[characters both-space-and-\
Legend:

tab - characters”

« Anignored white space character inside scalar content:

[37] s-ignored-white ::= s-white

« A non space (and non-break) character:

[38] ns-char ::= nb-char - s-white

e A decimal digit for numbers:

[39] ns-dec-digit ::= [#x30-#x39] /*0-9*/

« A hexadecimal digit for escape sequences:

[40] ns-hex-digit ::= ns-dec-digit | [#x41-#x46] [*A-F*/ | [#x61-#x66] /*a-f*/

e An ASCII letter (alphabetic) character:

[41] ns-ascii-letter ::= [#x41-#x5A] [*A-Z*] | [#x61-#xTA] [*a-z*/

27

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

* A word (alphanumeric) character for identifiers:

[42] ns-word-char ::= ns-dec-digit | ns-ascii-letter | “-”

* A URI character for tags, as specified in RFC2B86://www.ietf.org/rfc/rfc2396.txt] with the
addition of the f” and “]” for presenting IPv6 addresses as proposed in
RFC273http://www.ietf.org/rfc/rfc2732.txt] . A limited form of 8-bitescapings available using

the“ 9% character. By convention, URIs containing 16 and 32 bit Unicode characters are encoded in UTF-8, and then

each octet is written as a separate character.
[43] ns-uri-char ::= ns-word-char | “%" ns-hex-digit ns-hex-digit
| u;!l | u/n | H?H | u:n | u@n | u&n | u:)! | H+H | u$n | u,n
| u_n | “_” | LI!H | “w__n | P34 | 1111 | u(n | u)n | u[n | u]n
e The "1 " character is used to indicate the end of a named tag handle; hence its use in tag shorthands is restricted.

[44] ns-tag-char ::= ns-uri-char - *!”

5.6. Escape Sequences

All non-printable characters must be presenteelsaape sequencdsach escape sequences must be parsed into the ap-

propriate Unicode character. The original escape sequence form is a presentation detail and must not be used to convey

content information. YAML escape sequences usé ‘tfienotation common to most modern computer languages. Note
that escape sequences are only interpreted in double-quoted scalars. In all other scalar styleshatecter has no
special meaning and non-printable characters are not available.

[45] c-escape ;="\

YAML escape sequences are a superset of C's escape sequences:
» Escaped ASCII nuli#x0) character:

[46] ns-esc-null ::= “\"“0”

» Escaped ASCII bell#x7) character:

[47] ns-esc-bell := “\"“a”

« Escaped ASCII backspacéx@) character:
[48] ns-esc-backspace ::= “\"“b”

» Escaped ASCII horizontal taBX9) character:
[49] ns-esc-horizontal-tab ::= “\" “t” | “\" #x9

e Escaped ASCII line feedxA) character:

[50] ns-esc-line-feed ::= “\" “n”

« Escaped ASCII vertical tal#XB) character:

[51] ns-esc-vertical-tab ::= “\" “v”

28

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Characters

» Escaped ASCII form feedtXC) character:

[52] ns-esc-form-feed ::= “\" “f”

» Escaped ASCII carriage returixD) character:
[53] ns-esc-carriage-return ;= *\" “r”

» Escaped ASCII escap#x1B) character:

[54] ns-esc-escape ::= “\"“e”

« Escaped ASCII spacéX20) character:

[55] ns-esc-space ::= “\" #x20

« Escaped ASCII double quote'():

[56] ns-esc-double-quote ::= “\" “*”

» Escaped ASCII back slash ():

[57] ns-esc-backslash ::= “\" “\”

« Escaped Unicode next lin#x85) character:

[58] ns-esc-next-line ::= “\" “N”

« Escaped Unicode non-breaking spa®eAQ) character:
[59] ns-esc-non-breaking-space ::= “\"*“_”

« Escaped Unicode line separat$x2028) character:
[60] ns-esc-line-separator ::= “\" “L”

» Escaped Unicode paragraph separatg2(29) character:
[61] ns-esc-paragraph-separator ::= “\" “P”

« Escaped 8-bit Unicode character:

[62] ns-esc-8-bit ::= “\" “X” (ns-hex-digit x 2)

» Escaped 16-bit Unicode character:

[63] ns-esc-16-bit ::= “\" “u” (ns-hex-digit x 4)

» Escaped 32-bit Unicode character:

[64] ns-esc-32-bit ::= “\" “U” (ns-hex-digit x 8)

29

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

e Any escaped character:

[65] ns-esc-char ::= ns-esc-null | ns-esc-bell | ns-esc-backspace
| ns-esc-horizontal-tab | ns-esc-line-feed
| ns-esc-vertical-tab | ns-esc-form-feed
| ns-esc-carriage-return | ns-esc-escape | ns-esc-space
| ns-esc-double-quote | ns-esc-backslash
| ns-esc-next-line | ns-esc-non-breaking-space
| ns-esc-line-separator | ns-esc-paragraph-separator
| ns-esc-8-bit | ns-esc-16-bit | ns-esc-32-bit

Example 5.14. Escaped Characters

"Fun with \ [] oYAML 1.1
[M B[] L un with \W5C
MW [O \x22 \X07 \x08 \x1B \0C
NP W W wi [] \XOA \xOD \x09 \X0B \x00

[\x41 |fu0041 1400000041 " | \X20 \XAO \x85 \u2028 \u2029
AAA"

Legend:
ns-esc-char

Example 5.15. Invalid Escaped Characters

Bad escapes: ERROR:
“c[] - ¢ ib an invalid escaped character.
Xg:i" - g and - are invalid hex digits.

30

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 6. Syntax Primitives

6.1. Indentation Spaces

In a YAML character stream, structure is often determined fnol@ntation where indentation is defined as a line break
character (or the start of the stream) followed by zero or more space characters. Note that indentation must not contain
any tab characters. The amount of indentation is a presentation detail used exclusively to delineate structure and is otherwise
ignored. In particular, indentation characters must never be considered part of a node’s content information.

[66] s-indent(n) ::= s-ignored-space x n

Example 6.1. Indentation Spaces

|- # Leading comment line spaces are POYAML 1.1
| --- #neither content nor indentation.
i phe
Lol ? llstr "Not indented"
Not indented: : 'map {
[- By one space: | ? llstr "By one space"”
.. By four : llstr "By four\n spaces\n”,
[{spaces i
ElO_/\: style: [# Leading spaces llstr "By two",
o f By two, # in flow style lIstr "Still by two",
- Also by two, # are neither lIstr "Again by two",
-] - istill by two # content nor)]
-} # indentation. \
Legend:
S-indent(n) _Cantent " :
Neither content nor_indentation -~~~ """"}

In general, a node must be indented further than its parent node. All sibling nodes must use the exact same indentation
level, however the content of each sibling node may be further indented independently’, TRé and *: ” characters

used to denote block collection entries are perceived by people to be part of the indentation. Hence the indentation rules
are slightly more flexible when dealing with these indicators. First, a block sequence need not be indented relative to its
parent node, unless that node is also a block sequence. Second, compact in-line notations allow a nested collection to begin
immediately following the indicator (where the indicator is counted as part of the indentation). This provides for an intuitive
collection nesting syntax.

6.2. Comments

An explicit commenis marked by 4#” indicator. Comments are a presentation detail and must have no effect on the
serialization tree (and hence the representation graph).

[67] c-nb-comment-text ::= “#" nb-char*

31

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax Primitives

Comments always span to the end of the line.
[68] c-b-comment ::= c-nb-comment-text? b-ignored-any

Outside scalar content, comments may appear on a line of their own, independent of the indentation level. Note that tab
characters must not be used and that empty lines outside scalar content are taken to be (empty) comment lines.

[69] I-comment ::= s-ignored-space* c-b-comment

Example 6.2. Comment Lines

H This stream contains no
H documents, only comments.

Legend:

When a comment follows another syntax element, it must be separated from it by space characters. Like the comment itself,
such characters are not considered part of the content information.

[70] s-b-comment ::= (s-ignored-space+ c-nb-comment-text?)?
b-ignored-any

Example 6.3. Comments Ending a Line

key: -7 Comment 1. DoYAML 1.1
value i
IImap {
Legend: ? llstr "key"
C-Nb-cOMMent-text s-h-comment }: lstr "value

In most cases, when a line may end with a comment, YAML allows it to be followed by additional comment lines.

[71] c-l-comments ::= c-b-comment |-comment*
[72] s-l-comments ::= s-b-comment |-comment*

Example 6.4. Multi-Line Comments

key: +[-# Comment 1] PDOYAML 1.1

SN R R '_'_: Ilmap{

_}/Ialue i ? llstr "key"

L : llstr "value”
}

S-b-comment]-comment 's--fomments_ """

32

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax Primitives

6.3. Separation Spaces

Outside scalar content, YAML uses space charactesefaratiorbetween tokens. Note that separation must not contain
tab characters. Separation spaces are a presentation detail used exclusively to delineate structure and are otherwise ignored
in particular, such characters must never be considered part of a node’s content information.

[73] s-separate(n,c) ::= ¢ = block-out O s-separate-lines(n)

¢ = block-in O s-separate-lines(n)
¢ = flow-out O s-separate-lines(n)
¢ = flow-in O s-separate-lines(n)
¢ = flow-key 0 s-separate-spaces

* YAML usually allows separation spaces to include a comment ending the line and additional comment lines. Note
that the token following the separation comment lines must be properly indented, even though there is no such restriction
on the separation comment lines themselves.

[74] s-separate-lines(n) ::= s-ignored-space+
| (s-I-comments s-indent(n) s-ignored-space*)

* Inside simple keys, however, separation spaces are confined to the current line.
[75] s-separate-spaces ::= s-ignored-space+

Example 6.5. Separation Spaces

{rst: - Sa@y, . IasGSosa - D o DOYAML 1.1
Statistics: ;l'r'nap {
['hr "? Imap {
......... ? Ustr "first"
i : llstr "Sammy",
FTIE T ? " "
SR ; !!str" last)
""""" : lIstr "Sosa
Legend: }”
G-separate-spaces | :limap {
S.saparate-linesin) ? lstr "hr"
S-Separate-lines(n) i g
s-ndent(n) -] ; Hint 65",
? llstr "avg"
: Ifloat "0.278"
}
}

33

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax Primitives

6.4. Ignored Line Prefix

YAML discards the “emptyprefix of each scalar content line. This prefix always includes the indentation, and depending
on the scalar style may also include all leading white space. The ignored prefix is a presentation detail and must never be
considered part of a node’s content information.

[76] s-ignored-prefix(n,s) ::= s = plain O s-ignored-prefix-plain(n)
s = double O s-ignored-prefix-quoted(n)
s = single O s-ignored-prefix-quoted(n)
s = literal O s-ignored-prefix-block(n)
s = folded O s-ignored-prefix-block(n)

« Plain scalars must not contain any tab characters, and all leading spaces are always discarded.
[77] s-ignored-prefix-plain(n) ::= s-indent(n) s-ignored-space*

« Quoted scalars may contain tab characters. Again, all leading white space is always discarded.
[78] s-ignored-prefix-quoted(n) ::= s-indent(n) s-ignored-white*

» Block scalars rely on indentation; hence leading white space, if any, is not discarded.

[79] s-ignored-prefix-block(n) ::= s-indent(n)

Example 6.6. Ignored Prefix

plain: text COYAML 1.1
=t lines
quoted: "text ”Tap {
PR R . " 1 n H" 1)
“i lines : ..str" plalq)
b|OCk| : lstr "text lines",
i ? lstr "quoted”
.Fﬂzf;tht _ : lstr "text lines",
1c:_j1 —lines 2 listr "block”

: llstr "text- - lines\n"
Legend: }

sdndent(n)_ _

An empty lindine consists of the ignored prefix followed by a line break. When trailing block scalars, such lines can also
be interpreted as (empty) comment lines. YAML provides a chomping mechanism to resolve this ambiguity.

[80] I-empty(n,s) ::= (s-indent(<n) | s-ignored-prefix(n,s))

b-normalized

34

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Syntax Primitives

Example 6.7. Empty Lines

DAYAML 1.1

- foo
I| Ilseq {

bar lIstr "foo\nbar”,
|- I1str "foo\n\nbar"

foo }
Il Legend:

bar [Fempty(n,s)]
..... L I-comment

6.5. Line Folding

Line foldingallows long lines to be broken for readability, while retaining the original semantics of a single long line.
When folding is done, any line break ending an empty line is preserved. In addition, any specific line breaks are also
preserved, even when ending a non-empty line.

[81] b-I-folded-specific(n,s) ::= b-specific I-empty(n,s)*

Hence, folding only applies to generic line breaks that end non-empty lines. If the following line is also not empty, the
generic line break is converted to a single sp#x2Q).

[82] b-I-folded-as-space ::= b-generic
If the following line is empty line, the generic line break is ignored.
[83] b-I-folded-trimmed(n,s) ::= b-ignored-generic l-empty(n,s)+

Thus, a folded non-empty line may end with one of three possible folded line break forms. The original form of such a
folded line break is a presentation detail and must not be used to convey node’s content information.

[84] b-I-folded-any(n,s) ::= b-I-folded-specific(n,s)

| b-I-folded-as-space
| b-I-folded-trimmed(n,s)

Example 6.8. Line Folding

>- COYAML 1.1
specific [0 - llstr
trimmed 1 'specific\L\
..... - trimmed\n\n\n\
ol as space”
-
i Legend:
s b-I-folded-Specific(n,s)
Lo b-l-folded-trimmed(n,s). .
space b-I-folded-as-space - :

35

http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax Primitives

The above rules are common to both the folded block style and the scalar flow styles. Folding does distinguish between
the folded block style and the scalar flow styles in the following way:

Block Folding

Flow Folding

In the folded block style, folding does not apply to line breaks or empty lines that precede or follow

a text line containing leading white space. Note that such a line may consist of only such leading white
space; an empty block line is confined to (optional) indentation spaces only. Further, the final line
break and empty lines are subject to chomping, and are never folded. The combined effect of these
rules is that each “paragraph” is interpreted as a line, empty lines are used to present a line feed, the
formatting of “more indented” lines is preserved, and final line breaks may be included or excluded
from the node’s content information as appropriate.

Folding in flow styles provides more relaxed, less powerful semantics. Flow styles typically depend
on explicit indicators to convey structure, rather than indentation. Hence, in flow styles, spaces preceding
or following the text in a line are a presentation detail and must not be considered a part of the node’s
content information. Once all such spaces have been discarded, folding proceeds as described above.
In contrast with the block folded style, all line breaks are folded, without exception, and a line consisting
only of spaces is considered to be an empty line, regardless of the number of spaces. The combined
effect of these processing rules is that each “paragraph” is interpreted as a line, empty lines are used
to present a line feed, and text can be freely “more indented” without affecting the node’s content in-
formation.

36

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 7. YAML Character Stream

A YAML character stream may contain several YAML documents, denoted by document boundary markers. Each document
presents a single independent root node and may be preceded by a series of directives.

7.1. Directives

Directivesare instructions to the YAML processor. Like comments, directives are presentation details and are not reflected
in the serialization tree (and hence the representation graph). This specification defines two diréatilEgrid “TAG,
andreservesll other directives for future use. There is no way to define private directives. This is intentional.

[85] I-directive ::= |-yaml-directive | I-tag-directive | I-reserved-directive

Each directive is specified on a separate non-indented line starting withtimelicator, followed by the directive name
and a space-separated list of parameters. The semantics of these tokens depend on the specific directive. A YAML processor
should ignore unknown directives with an appropriate warning.

[86] I-reserved-directive ::= “%" ns-directive-name
(s-ignored-space+ ns-directive-parameter)*
s-l-comments

[87] ns-directive-name ::= ns-char+

[88] ns-directive-parameter ::= ns-char+

Example 7.1. Reserved Directives

%FOO [bay "baz # Should be ignored POYAML 1.1
with a warning. | -.;(-)(!)!..Str
--- "foo"
Legend:

[-reserved-direciive |

7.1.1. “YAML Directive

The" YAM.” directive specifies the version of YAML the document adheres to. This specification defines vérgidn “
A version 1.1 YAML processor should accept documents with an exhAML 1.1 " directive, as well as documents
lacking a 'Y AML: directive. Documents with aYAML directive specifying a higher minor version (e.goYAML 1.2")
should be processed with an appropriate warning. Documents WithML* directive specifying a higher major version
(e.g. %YAML 2.0") should be rejected with an appropriate error message.

[89] I-yaml-directive ::= “%” “Y” “A” “M” “L"
s-ignored-space+ ns-yaml-version
s-l-comments

[90] ns-yaml-version ::= ns-dec-digit+ “.” ns-dec-digit+

37

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

YAML Character Stream

Example 7.2. YAML directive

%YAML: 1.2:# Attempt parsing CAYAML 1.1
with a warning | ”str oo
foo” egend:

It is an error to specify more than onéAML directive for the same document, even if both occurrences give the same
version humber.

Example 7.3. Invalid Repeated YAML directive

Q0YAML 1.1 ERROR:
0 1.1 The directive must only be
foo given at most once per document.

7.1.2. “TAG Directive

The" TAG' directive establishes a shorthand notation for specifying node tags. EAGh directive associates a handle
with a prefix, allowing for compact and readable tag notation.

[91] I-tag-directive ::= “%" “T" A" “G”
s-ignored-space+ c-tag-handle
s-ignored-space+ ns-tag-prefix
s-l-comments

Example 7.4. ‘TAG directive

WTAG:lyami! tdqg:yaml.org,20027 "~ """ oYAML 1.1
lyaml!str "foo" lstr “foo"
Legend:
[-tag-directive |
c-tag-handle "ns-tag-prefix_ """~ "]

Itis an error to specify more than orfleAG directive for the same handle in the same document, even if both occurrences
give the same prefix.

Example 7.5. Invalid Repeated TAG directive

%TAG ! Ifoo ERROR:

%TAGE Ifoo The TAG directive must only

bar be given at most once per
handle ih the same document.

38

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Character Stream

7.1.2.1. Tag Prefixes

There are twadag prefixvariants:

[92] ns-tag-prefix ::= ns-local-tag-prefix | ns-global-tag-prefix

Local Tags If the prefix begins with al*” character, shorthands using the handle are expanded to a local tag beginning
with “I ”. Note that such a tag is intentionally not a valid URI, since its semantics are specific to the
application. In particular, two documents in the same stream may assign different semantics to the same
local tag.

[93] ns-local-tag-prefix ::= “I” ns-uri-char*

Global Tags If the prefix begins with a character other thai it must to be a valid URI prefix, and should contain

at least the scheme and the authority. Shorthands using the associated handle are expanded to globally
unique URI tags, and their semantics is consistent across applications. In particular, two documents in
different streams must assign the same semantics to the same global tag.

[94] ns-global-tag-prefix ::= ns-tag-char ns-uri-char*

Example 7.6. Tag Prefixes

%TAG !

- Ibar "baz"
- lyamlistr s

Ifoo COYAML 1.1

....................................... | __

llseq [
I<Ifoobar> "baz",

I . . " 4 n
tring" I<tag:yaml.org,2002:str> "string

Legend:

—

7.1.2.2. Tag Handles

Thetag handleexactly matches the prefix of the affected shorthand. There are three tag handle variants:

[95] c-tag-handle ::= c-primary-tag-handle

| ns-secondary-tag-handle
| c-named-tag-handle

Primary Handle Theprimary tag handlés a single I' " character. This allows using the most compact possible notation

[96] c-primary-tag-handle ::=

for a single “primary” name space. By default, the prefix associated with this hantle Thus,

by default, shorthands using this handle are interpreted as local tags. It is possible to override this
behavior by providing an explicilTAG' directive associating a different prefix for this handle. This
provides smooth migration from using local tags to using global tags by a simple addition of a single
“TAG directive.

39

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

YAML Character Stream

Example 7.7. Migrating from Local to Global Tags

Private application: DAYAML 1.1
Ifoo "bar"
I<Ifoo> "bar"
Migrated to global:
%TAG ! tag:ben-kiki.org,2000:app/ DAYAML 1.1
Ifoo "bar" I<tag:ben-kiki.org,2000:app/foo> "bar"

Secondary Handle The secondary tag handles written as 1! ”. This allows using a compact notation for a single
“secondary” name space. By default, the prefix associated with this handle is
“tag:yaml.org,2002: used by the
YAML tag repository[http://lyaml.org/type/index.html] providing recommended
tags for increasing the portability of YAML documents between different applications. It is possible
to override this behavior by providing an explicRAG' directive associating a different prefix for
this handle.

”

[97] ns-secondary-tag-handle ::=

Named Handles A named tag handlsurrounds the non-empty name with’ characters. A handle name must not
be used in a shorthand unless an expliEAG directive has associated some prefix with it. The
name of the handle is a presentation detail and is not part of the node’s content information. In partic-
ular, the YAML processor need not preserve the handle name once parsing is completed.

[98] c-named-tag-handle ::= “I" ns-word-char+ “!"

Example 7.8. Tag Handles

Named handles have no default:
%TAG! lo! tag:ben-kiki.org,2000:

Explicitly specify default settings: DAYAML 1.1
%TAG[!] !
T . . Ilseq [
%TAG: Il : tag:yaml.org,2002:
olAL: = 1 tagy 9 I<!foo> "bar",

I<tag:yaml.org,2002:str> "string"
I<tag:ben-kiki.org,2000:type> "baz"
|

- Ifoo "bar”
- llstr "string” Legend:
- loltype "baz" [C-primary-fag-handle |

7.2. Document Boundary Markers

YAML streams uselocument boundary markets allow more than one document to be contained in the same stream.
Such markers are a presentation detail and are used exclusively to convey structure. A line beginning Wittay

be used to explicitly denote the beginning of a new YAML document.

[N TR LTI

[99] c-document-start ::=

40

http://yaml.org/type/index.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Character Stream

When YAML is used as the format of a communication channel, it is useful to be able to indicate the end of a document
without closing the stream, independent of starting the next document. Lacking such a marker, the YAML processor
reading the stream would be forced to wait for the header of the next document (that may be long time in coming) in order
to detect the end of the previous one. To support this scenario, a YAML document may be terminated by an explicit end
line denoted by .“. ", followed by optional comments. To ease the task of concatenating YAML streams, the end

marker may be repeated.

[T T TR 1]

[100] c-document-end ::=
[101]l-document-suffix ::= (c-document-end s-l-comments)+

Example 7.9. Document Boundary Markers

— COYAML 1.1
foo
------ I1str "foo"
SRR COYAML 1.1
Repeated end marker.
o st "bar
I COYAML 1.1
bar

IIstr "baz"

Legend:

7.3. Documents

A YAML documents a single native data structure presented as a single root node. Presentation details such as directives,
comments, indentation and styles are not considered part of the content information of the document.

Explicit Documents An explicit documenbegins with a document start marker followed by the presentation of the root
node. The node may begin in the same line as the document start marker. If the explicit document’s
node is completely empty, it is assumed to be an empty plain scalar with no specified properties.
Optional document end marker(s) may follow the document.

[102] l-explicit-document ::= c-document-start
(s-I+block-node(-1,block-in) | s-I-empty-block)
I-document-suffix?

Implicit Documents An implicit documentoes not begin with a document start marker. In this case, the root node must
not be presented as a completely empty node. Again, optional document end marker(s) may follow
the document.

[103] l-implicit-document ::= s-ignored-space* ns-I+block-node(-1,block-in)
I-document-suffix?

In general, the document’s node is indented as if it has a parent indented at -1 spaces. Since a nhode must be more indentec
that its parent node, this allows the document’s node to be indented at zero or more spaces. Note that flow scalar continuation
lines must be indented by at least one space, even if their first line is not indented.

41

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Character Stream

Example 7.10. Documents

"Root flow DAYAML 1.1
scalar"

TR Iistr "Root flow scalar”
s D6YAML 1.1
Root block -
scalar Iistr "Root block scalar"
I DAYAML 1.1
Root collection:
foobar 'map {
.'.'.'.'.'.'.'.'.'.'.'.'.'.'_-'.'-' -------------------- ? !!Str "foo"
... # Is optional. _ lIstr "bar"
P t
Explicit document may be empty.

lstr ™

Legend:

7.4. Complete Stream

A sequence of bytes is a YAML charactéeamif, taken as a whole, it complies with thgaml-stream production.

The stream begins with a prefix containing an optional byte order mark denoting its character encoding, followed by op-
tional comments. Note that the stream may contain no documents, even if it contains a non-empty prefix. In particular, a
stream containing no characters is valid and contains no documents.

[104]l-yaml-stream ::= c-byte-order-mark? I-comment*
(I-first-document |-next-document*)?

Example 7.11. Empty Stream

H This stream contains no
H documents, only comments.

= # A stream may contain
no documents. |

Legend:
[-yaml-Stream |

The first document may be implicit (omit the document start marker). In such a case it must not specify any directives
and will be parsed using the default settings. If the document is explicit (begins with an document start marker), it may
specify directives to control its parsing.

[105] I-first-document ::= (l-implicit-document
| (I-directive* |-explicit-document))

42

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Character Stream

Example 7.12. First Document

Implicit document. Root DAYAML 1.1
collection (mapping) node.
foo : bar IImap {

? lstr "foo"
Explicit document. Root : Hstr "bar”
scalar (literal) node. I
| PoYAML 1.1
Text content |

listr "Text content\n"

Legend:
[irst-document

To ease the task of concatenating character streams, following documents may begin with a byte order mark and comments,
though the same character encoding must be used through the stream. Each following document must be explicit (begin
with a document start marker). If the document specifies no directives, it is parsed using the same settings as the previous
document. If the document does specify any directives, all directives of previous documents, if any, are ignored.

[106]l-next-document ::= c-byte-order-mark? I-comment*
I-directive* |-explicit-document

RenderX

Example 7.13. Next Documents

I "First document"

Ifoo "No directives” |
%TAG ! Ifoo

Ibar "With directives” |
%YAML 1.1

Ibaz "Reset settings" |

CAYAML 1.1

I1str "First document"

I<!Ifoo> "No directives"

I<!Ifoobar> "With directives"

I<lbaz> "Reset settings"

Legend:

[Fnext-document]

43

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 8. Nodes

Eachpresentation nodmay have two optiongroperties anchor and tag, in addition to its content. Node properties may
be specified in any order before the node’s content, and either or both may be omitted from the character stream.

[107] c-ns-properties(n,c) ::= (c-ns-tag-property
(s-separate(n,c) c-ns-anchor-property)?)
| (c-ns-anchor-property
(s-separate(n,c) c-ns-tag-property)?)

Example 8.1. Node Properties

st D6YAML 1.1
:::::l | __
&:I 1l

_T.___..J, " IS oTIm Ilmap{
| “foo®: Histr bar .} 2 &A1 listr "foo"
|[&a2);baz : *al - lIstr "bar",

? listr &A2 "baz"
Legend: a1

[c-ns-anchor-property Cc-nsttag-property .-~ h

8.1. Node Anchors

The anchor propertymarks a node for future reference. An anchor is denoted by&thiadicator. An alias node can
then be used to indicate additional inclusions of the anchored node by specifying its anchor. An anchored node need not
be referenced by any alias node; in particular, it is valid for all nodes to be anchored.

[108] c-ns-anchor-property ::= “&" ns-anchor-name

Note that as a serialization detail, the anchor name is preserved in the serialization tree. However, it is not reflected in the
representation graph and must not be used to convey content information. In particular, the YAML processor need not
preserve the anchor name once the representation is composed.

[109] ns-anchor-name ::= ns-char+

Example 8.2. Node Anchors

First occurrence: &anchor Value': CAOYAML 1.1
Second occurrence: * anchor :
--------------- IImap {
t) '| n H n

Legend: : éjﬂr' Flr‘i; ciccHrrence

[C-Ns-anchor-property e stSr alée , §

ns-anchoi-name k *-/f” econd occurrence

}

44

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Nodes

8.2. Node Tags

Thetag propertyidentifies the type of the native data structure presented by the node. A tag is denotéd’bndtieator.
In contrast with anchors, tags are an inherent part of the representation graph.

[110] c-ns-tag-property ::= c-verbatim-tag | c-ns-shorthand-tag

Verbatim Tags

| c-ns-non-specific-tag

A tag may be writtewerbatimby surrounding it with thé<” and “ >" characters. In this case, the
YAML processor must deliver the verbatim tag as-is to the application. In particular, verbatim tags
are not subject to tag resolution. A verbatim tag must either begin with (@ focal tag) or be a

valid URI (a global tag).

[111] c-verbatim-tag ::= “I" “<” ns-uri-char+ “>"

Example 8.3. Verbatim Tags

I<tag:yaml.org,2002:str> foo: | DOYAML 1.1
I<lbar> b}az
I'map {
Legend: ?I!<Itag:y?ml.(lalrg,2002:str> “foo"
c-verbatim-tag | }- I<!bar> "baz
Example 8.4. Invalid Verbatim Tags
- 1< 1> fpo ERROR:
| 1< $:7 > Bar - Verbatim tags aren't resolved,
""""" so ! fis |nvalid.

.........

URI tag nor a local tag starting
with 1.

Tag Shorthands A tag shorthandtonsists of a valid tag handle followed by a non-empty suffix. The tag handle must

be associated with a prefix, either by default or by usinbfas* directive. The resulting parsed tag

is the concatenation of the prefix and the suffix, and must either begin!Wita focal tag) or be a

valid URI (a global tag). When the primary tag handle is used, the suffix must not contalri’ any “
character, as this would cause the tag shorthand to be interpreted as having a named tag handle. If
the 1 ” character exists in the suffix of a tag using the primary tag handle, it must be escaped as
“%21’, and the parser should expand this particular escape sequence before passing the tag to the
application. This behavior is consistent with the URI character quoting rules (specifically, section
1.3 of RFC2396http://www.ietf.org/rfc/rfc2396.txt]), and ensures the choice of

tag handle remains a presentation detail and is not reflected in the serialization tree (and hence the
representation graph). In particular, the tag handle may be discarded once parsing is completed.

[112] c-ns-shorthand-tag ::= (c-primary-tag-handle ns-tag-char+)

| (ns-secondary-tag-handle ns-uri-char+)
| (c-named-tag-handle ns-uri-char+)

45

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Nodes

Example 8.5. Tag Shorthands

%TAG !lo! tag:ben-kiki.org,2000: DAYAML 1.1

- !-ocal foo llseq [
i , I<llocal> "foo",
;' | I<tag:yaml.org,2002:str> "bar",
- !pltype baj I<tag:ben-kiki.org,2000:type> "baz",
I

Legend:
[c-ns-shorthand-tag

Example 8.6. Invalid Shorthand Tags

%TAG !o! tag:ben-kiki.org,2000: ERROR:

L The !s like a handle.
i !0 L The !a! handle has no suffix.

..................

- lo! bar L The !hﬁ'ﬁéjmdle wasn't declared.

i yge baz

Non-Specific Tags If a node has no tag property, it is assigned a non-specifictadprplain scalars and!* for all
other nodes. Non-specific tags must be resolved to a specific tag for a complete representation graph
to be composed. It is also possible for the tag property to explicitly specify the node hdsiire-“
specific tag. This is only useful for plain scalars, causing them to be resolved as if they were non-plain
(hence, by the common tag resolution conventiontaagyaml.org,2002:str "). There is no
way to explicitly set the tag to th@™ non-specific tag. This is intentional.

[113] c-ns-non-specific-tag ::=

Example 8.7. Non-Specific Tags

Assuming conventional resolution: DAYAML 1.1
- 12" L
- 12 llseq [
. ! I<tag:yaml.org,2002:str> "12",
' I<tag:yaml.org,2002:int> "12",
Legend: I<tag:yaml.org,2002:str> "12",
[c-ns-non-Specific-tag I
46

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Nodes

8.3. Node Content

Node contenimay be presented in either a flow style or a block style. Block content always extends to the end of a line
and uses indentation to denote structure, while flow content starts and ends at some non-space character within a line and
uses indicators to denote structure. Each collection kind can be presented in a single flow collection style or a single block
collection style. However, each collection kind also provides compact in-line forms for common cases. Scalar content
may be presented in the plain style or one of the two quoted styles (the single-quoted style and the double-quoted style).
Regardless of style, scalar content must always be indented by at least one space. In contrast, collection content need not
be indented (note that the indentation of the first flow scalar line is determined by the block collection it is nested in, if

any).

[114] ns-flow-scalar(n,c) ::= c-plain(max(n,1),c)

| c-single-quoted(max(n,1),c)

| c-double-quoted(max(n,1),c)
[115] c-flow-collection(n,c) ::= c-flow-sequence(n,c) | c-flow-mapping(n,c)
[116] ns-flow-content(n,c) ::= ns-flow-scalar(n,c) | c-flow-collection(n,c)
[117] c-I+block-scalar(n) ::= c-I+folded(max(n,0)) | c-I+literal(max(n,0))
[118] c-I-block-collection(n,c) ::= c-I-block-sequence(n,c) | c-I-block-mapping(n)
[119] c-lI+block-content(n,c) ::= c-l+block-scalar(n)

| c-I-block-collection(>n,c)

Example 8.8. Mandatory Scalar Indentation

CAYAML 1.1
foo:
E[bar IImap {
Elpaz" ? llstr "foo

: lIstr "bar baz"
\ }

foo DHYAML 1.1

. par

Istr "foo bar"
foo DHYAML 1.1

. Igar

- | Istr "foo bar"
“foo DLYAML 1.1

I1str "foo bar\n"

Legend:

[Normal "more-indented™ Indentation

47

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Nodes

Example 8.9. Flow Content

scalars:

plain: llstr sometekt s

guoted:

single: "some[iext_
double: "some toxt |

collections:

DAYAML 1.1
--- Imap {
? lstr "scalars" : !!'map {
? Ustr "plain”
: lIstr "some text",
? lstr "quoted"
:lmap {
? lstr "single"
: llstr "some text",
? lstr "double"
: lIstr "some text"

)

? lstr "collections"; : !!Imap {

Legend:
[ns-flow-Scalar |

? lstr "sequence" : !lseq [
? Ustr "entry”,
:lmap {
? Ustr "key" : llstr "value"
H
? llstr "mapping™: : 'map {
? Ustr "key" : llstr "value"

11}
Example 8.10. Block Content
block styles: DAYAML 1.1
scalars:
literal: !str | B lmap {
#/usr/bin/per] ? llstr "block styles" : !map {
— = ? Ustr "scalars" : !map {
print "Hello, world\n"; ! 2 listr "literal”
folded: > [: Ustr "#!l/usr/bin/perl\n\
This sentence print \"Hello,
is false. ! | world!\\n\";\n",

collections: !'seq
sequence: !lseq # Entry:_

? lstr "folded"
: lstr "This sentence
is false.\n"
3
? Ustr "collections" : !'map {
? lstr "sequence” : llseq [
lstr "entry",
Imap {
? llstr "key" : Ustr "value"

Legend:

}
1,
? lstr "mapping” : 'map {

? lstr "key" : llstr "value"

111}

48

http://www.w3.org/Style/XSL
http://www.renderx.com/

Nodes

8.4. Alias Nodes

Subsequent occurrences of a previously serialized node are presealias asdesdenoted by the* ” indicator. The

first occurrence of the node must be marked by an anchor to allow subsequent occurrences to be presented as alias hodes
An alias node refers to the most recent preceding node having the same anchor. It is an error to have an alias node use an
anchor that does not previously occur in the document. It is not an error to specify an anchor that is not used by any alias
node. Note that an alias node must not specify any properties or content, as these were already specified at the first occur-
rence of the node.

[120] c-ns-alias-node ::= “*" ns-anchor-name

Example 8.11. Alias Nodes

COYAML 1.1
I'map {
? llstr "First occurrence”
. &A llstr "Value",
? llstr "Second occurrence
CFA

8.5. Complete Nodes
8.5.1. Flow Nodes

A completeflow nodeis either an alias node presenting a second occurrence of a previous node, or consists of the node
properties followed by the node’s content. A node with empty content is considered to be an empty plain scalar.

[121] ns-flow-node(n,c) ::= c-ns-alias-node | ns-flow-content(n,c)
| (c-ns-properties(n,c)
(/* empty plain scalar content */
| (s-separate(n,c) ns-flow-content(n,c))))

Example 8.12. Flow Nodes in Flow Context

[PAYAML 1.1
| Without properties]
[&anchor "Anchored” , | I'seq [
——————— listr "Without properties”,
|!Istr Tagged”,] &A llstr "Anchored",
*anchor , # Alias node listr "Tagged",
Empty plain scalar *A,
I i lstr "™,
I
Legend:

49

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Nodes

Since both the node’s properties and node content are optional, this allowsrfgrlately empty nod€ompletely empty
nodes are only valid when following some explicit indicator for their existence.

[122] e-empty-flow ::= /* empty plain scalar node */

In the examples, completely empty nodes are displayed as the §lyplidte that this glyph corresponds to a position
in the characters stream rather than to an actual character.

Example 8.13. Completely Empty Flow Nodes

{ DGYAML 1.1
?foo:°, D
° I'map {
? ar,
} EP ? listr "foo"
D lstr ™,
Legend: ?I:!str""",)
e-empty-flow | }. llstr "bar",

8.5.2. Block Nodes

A completeblock nodeconsists of the node’s properties followed by the node’s content. In addition, a block node may
consist of a (possibly completely empty) flow node followed by a line break (with optional comments).

[123] ns-I+flow-in-block(n,c) ::= ns-flow-node(n+1,flow-out) s-l-comments
[124] ns-I+block-in-block(n,c) ::= (c-ns-properties(n+1,c) s-separate(n+1,c))?
c-I+block-content(n,c)
[125] ns-l+block-node(n,c) ::= ns-l+block-in-block(n,c)
| ns-I+flow-in-block(n,c)
[126] s-I+block-node(n,c) ::= s-separate(n+1,c) ns-l+block-node(n,c)

Example 8.14. Block Nodes

COYAML 1.1
llseq [
lstr "flow in block",
listr "Block scalar\n”,
Imap {
? Ustr "foo"
Legend: : lstr "bar”
NS-I+flow-in-block(n,c) }
ns-I+block-in-block{n,c) I

A block node always spans to the end of the line, even when completely empty. Completely empty block nodes may only
appear when there is some explicit indicator for their existence.

[127] s-I-empty-block ::= e-empty-flow s-l-comments

50

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Nodes

Example 8.15. Completely Empty Block Nodes

seq: COYAML 1.1
- ° # Empty plain scalar L
- 2 foo liseq [
:(>III Hstr ™,
o Imap {
? III ? llstr "foo"
: bar, s lstr ™,
? lstr ™,
Legend: : lstr "bar",
[s-I-emptiy-block | }
I
51

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 9. Scalar Styles

YAML provides a rich set afcalar stylego choose from, depending upon the readability requirements: three scalar flow
styles (the plain style and the twaoted stylessingle-quoted and double-quoted), and two scalar block styles (the literal
style and the folded style). Comments may precede or follow scalar content, but must not appear inside it. Scalar node style
is a presentation detail and must not be used to convey content information, with the exception that untagged plain scalars
are resolved in a distinct way.

9.1. Flow Scalar Styles

All flow scalar stylesnay span multiple lines, except when used in simple keys. Flow scalars are subject to (flow) line
folding. This allows flow scalar content to be broken anywhere a single space chas2fey ¢eparates non-space
characters, at the cost of requiring an empty line to present each line feed character.

9.1.1. Double Quoted

The double-quoted styls specified by surrounding' ” indicators. This is the only scalar style capable of expressing
arbitrary strings, by using “ escape sequences. Therefore, tHeghd “' ” characters must also be escaped when present
in double-quoted content. Note it is an error for double-quoted content to contain invalid escape sequences.

[128] nb-double-char ::= (nb-char - “\" - ") | ns-esc-char
[129] ns-double-char ::= nb-double-char - s-white

Double-quoted scalars are restricted to a single line when contained inside a simple key.

[130] c-double-quoted(n,c) ::= “” nb-double-text(n,c) “"

[131] nb-double-text(n,c) ::= ¢ = flow-out O nb-double-any(n)
¢ = flow-in O nb-double-any(n)
¢ = flow-key O nb-double-single

[132] nb-double-any(n) ::= nb-double-single | nb-double-multi(n)

Example 9.1. Double Quoted Scalars

" $imple key” - | POYAML 1.1
I'map {
? Ustr "simple key"
: 'map {
? llstr "also simple"
: lstr "value",
? lstr "not a simple key"
Legend: : lstr "any value”
[nb-double-single _nb-double-multi(n) -~ }
L-double-quoted(n,c) _~__} }

A single line double-quoted scalar is a sequence of (possibly escaped) non-break Unicode characters. All characters are
considered content, including any leading or trailing white space characters.

[133] nb-double-single ::= nb-double-char*

52

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

In a multi-line double-quoted scalar, line breaks are subject to flow line folding, and any trailing white space is excluded
from the content. However, &scaped line breafusing a \ ") is excluded from the content, while white space preceding
it is preserved. This allows double-quoted content to be broken at arbitrary positions.

[134] s-I-double-folded(n) ::= s-ignored-white* b-l-folded-any(n,double)
[135] s-I-double-escaped(n) ::= s-white* “\" b-ignored-any

I-empty(n,double)*

[136] s-I-double-break(n) ::= s-l-double-folded(n) | s-I-double-escaped(n)

Example 9.2. Double Quoted Line Breaks

"as space |}t |
trimmed - [T}

4
specific [0
4

escaped 50\

DAYAML 1.1
IIstr "as space \
trimmed\n\
specific\L\n\
escaped\t\
none"

Legend:

A multi-line double-quoted scalar consists of a (possibly empty) first line, any number of inner lines, and a final (possibly

empty) last line.

[137] nb-double-multi(n) ::= nb-l-double-first(n)

[-double-inner(n)*
s-nb-double-last(n)

Leading white space in the first line is considered content only if followed by a non-space character or an escaped (ignored)

line break.

[138] nb-I-double-first(n) ::= (nb-double-char* ns-double-char)?

s-I-double-break(n)

Example 9.3. First Double Quoted Line

COYAML 1.1
last"

= Ilseq [

Iast:‘ """ lstr " last",

) . lstr " last",

i ' lstr " \tfirst last",
last" 1

Legend:

RenderX

53

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

All leading and trailing white space of an inner lines are excluded from the content. Note that while prefix white space
may contain tab characters, line indentation is restricted to space characters only. It is possible to force considering leading
white space as content by escaping the first charagtet,(“\ -” or “\t).

[139]I-double-inner(n) ::= s-ignored-prefix(n,double) ns-double-char

(nb-double-char* ns-double-char)?
s-I-double-break(n)

Example 9.4. Inner Double Quoted Lines

"first DOYAML 1.1
E-I}Einnerl =1 » e
“Vinner 2.\ "7} ?rfae:riti
o= inner 2:\
Legend: last"

[-double-Inner(n) |

The leading prefix white space of the last line is stripped in the same way as for inner lines. Trailing white space is con-
sidered content only if preceded by a non-space character.

[140] s-nb-double-last(n) ::= s-ignored-prefix(n,double)
(ns-double-char nb-double-char*)?

Example 9.5. Last Double Quoted Line

- first PAOYAML 1.1
first tseq [
lstr "first ",
..... ~Tast” lstr "f!rst\plast",
lstr "first inner--\tlast",
- "first]
inner
N Slast” Legend:

[s-nb-double-last(n)

9.1.2. Single Quoted

Thesingle-quoted stylis specified by surroundirig ” indicators. Therefore, within a single-quoted scalar such characters
need to be repeated. This is the only forressfapingperformed in single-quoted scalars. In particular, tHeahd “'”
characters may be freely used. This restricts single-quoted scalars to printable characters.

[141] c-quoted-quote ::=
[142] nb-single-char ::= (nb-char - “*") | c-quoted-quote
[143] ns-single-char ::= nb-single-char - s-white

54

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

Example 9.6. Single Quoted Quotes

|'here " § to 'quotes™ %YAML 1.1
Legend: llstr "here's to \"quotes\""

Bingle-quoted-quote

Single-quoted scalars are restricted to a single line when contained inside a simple key.

[144] c-single-quoted(n,c) ::= “” nb-single-text(n,c) “”

[145] nb-single-text(n,c) ::= ¢ = flow-out O nb-single-any(n)
¢ = flow-in O nb-single-any(n)
¢ = flow-key O nb-single-single(n)

[146] nb-single-any(n) ::= nb-single-single(n) | nb-single-multi(n)

Example 9.7. Single Quoted Scalars

COYAML 1.1
I'map {
? Ustr "simple key"
:map {
? llstr "also simple"
: Ustr "value”,
? lstr "not a simple key
Legend: : lstr "any value"
[nb-single-single _nb-single-multi(n) }

c-single-quoted(n,c) ~ "~~~ X }

A single line single-quoted scalar is a sequence of non-break printable characters. All characters are considered content,
including any leading or trailing white space characters.

[147] nb-single-single(n) ::= nb-single-char*

In a multi-line single-quoted scalar, line breaks are subject to (flow) line folding, and any trailing white space is excluded
from the content.

[148] s-I-single-break(n) ::= s-ignored-white* b-l-folded-any(n,single)

Example 9.8. Single Quoted Line Breaks

‘as space |l COYAML 1.1

1 Lr ="
rimmed - |L lstr "as space \
ﬂ - trimmed\n\
specific [0 specific\L\n\
4] none"
none'

egend:

B-I-single-break(n) |
S-ignored-white ~ s-white (Contenf)~ ~ =~~~ 7

55

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Scalar Styles

A multi-line single-quoted scalar consists of a (possibly empty) first line, any number of inner lines, and a final (possibly
empty) last line.

[149] nb-single-multi(n) ::= nb-I-single-first(n)

[-single-inner(n)*
s-nb-single-last(n)

Leading white space in the first line is considered content only if followed by a non-space character.

[150] nb-I-single-first(n) ::= (nb-single-char* ns-single-char)?
s-I-single-break(n)

Example 9.9. First Single Quoted Line

K COYAML 1.1
last'
RN llseq [
last lstr " last",
. i lstr " last",
F [ofist 1] lstr " \tfirst last",
last' |
Legend:

All leading and trailing white space of inner lines is excluded from the content. Note that while prefix white space may
contain tab characters, line indentation is restricted to space characters only. Unlike double-quoted scalars, it is impossible
to force the inclusion of the leading or trailing spaces in the content. Therefore, single-quoted scalars lines can only be
broken where a single space character separates two non-space characters.

[151]I-single-inner(n) ::= s-ignored-prefix(n,single) ns-single-char

(nb-single-char* ns-single-char)?
s-I-single-break(n)

Example 9.10. Inner Single Quoted Lines

first COYAML 1.1

" Zinner

last’ Istr "first \
inner \

Legend: last"

[~Single=inner(ny |

The leading prefix white space of the last line is stripped in the same way as for inner lines. Trailing white space is con-
sidered content only if preceded by a non-space character.

[152] s-nb-single-last(n) ::= s-ignored-prefix(n,single)
(ns-single-char nb-single-char*)?

56

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

Example 9.11. Last Single Quoted Lines

- ‘first DAYAML 1.1
st llseq [
lstr "first ",
lstr "first\nlast”,
|
i)

Legend:

9.1.3. Plain

The plain styleuses no identifying indicators, and is therefore the most limited and most context sensitive scalar style.
Plain scalars can never contain any tab characters. They also must not contairi #vel™ # ” character sequences as
these combinations cause ambiguity Wgly: value pairs and comments. Inside flow collections, plain scalars are further
restricted to avoid containing thé™ “1”, “{”, “}” and “, " characters as these would cause ambiguity with the flow
collection structure (hence the need forftbe/-in contextand theflow-out context
[153] nb-plain-char(c) ::= c¢ = flow-out O nb-plain-char-out
¢ = flow-in O nb-plain-char-in
¢ = flow-key O nb-plain-char-in
[154] nb-plain-char-out ::= (nb-char - “:" - “#”" - #x9 *TAB*/)
| (ns-plain-char(flow-out) “#")
| (" ns-plain-char(flow-out))
[155] nb-plain-char-in ::= nb-plain-char-out - “,” - “[" - “]" - “{" - “}"
[156] ns-plain-char(c) ::= nb-plain-char(c) - #x20 /*SP*/
The first plain character is further restricted to avoid most indicators as these would cause ambiguity with various YAML
structures. However, the first character may4ig “?” or “: ” provided it is followed by a non-space character.

[157] ns-plain-first-char(c) ::= (ns-plain-char(c) - c-indicator)
[((*"]%?"| ") ns-plain-char(c))

Example 9.12. Plain Characters

Outside flow collection: COYAML 1.1
- :::vector
l'seq [

X L@ ; up and away!
llstr "::std::vector",

-

Inside flow collection:
- [std:jvector,
" A "
Up, up and away!",

ES)

listr "Up, up, and away!",
llint "-123",
llseq [
llstr "::std::vector",
listr "Up, up, and away!",
llint "-123",

Legend:
[nS-plain-first-char(c) |

]

|

57

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

Plain scalars are restricted to a single line when contained inside a simple key.

[158] ns-plain(n,c) ::= ¢ = flow-out O ns-plain-multi(n,c)?
¢ = flow-in O ns-plain-multi(n,c)?
¢ = flow-key O ns-plain-single(c)

Example 9.13. Plain Scalars

simple key : { PoYAML 1.1
[also simple vale,
y T IImap {
_____ heta 2 listr "simple key"
simple key : any : llImap {
value 2 llstr "also simple”
YT : lstr "value",
? lstr "not a simple key"
Legend: : lstr "any value”
AS-plain-single(c)_ns-prain-multi(n,¢) =TT
}

The first line of any flow scalar is indented according to the collection it is contained in. Therefore, there are two cases
where a plain scalar begins on the first column of a line, without any preceding indentation spaces: a plain scalar used as
a simple key of a non-indented block mapping, and any plain scalar nested in a non-indented flow collection. In these
cases, the first line of the plain scalar must not conflict with a document boundary marker.

[159] I-forbidden-content ::= /* start of line */
(c-document-start | c-document-end)
[* space or end of line */

Example 9.14. Forbidden Non-Indented Plain Scalar Content

ERROR:

— I foo The -f- anfl ... document
.- >>>: bar start and end markers must
I not be specified as the

[first content line of a

— non-indented plain scalar.

{

... # Nested

}

I

58

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

YAML provides several easy ways to present such content without conflicting with the document boundary markers. For
example:

Example 9.15. Document Marker Scalar Content

- CAYAML 1.1

foo IImap {
e ﬁar 2 sty "ont

: lIstr "foo",
[2 llstr ...,
T : lstr "bar"
o t
[DAYAML 1.1
5
_' El I'seq [
[e
} lstr"...",
I IImap {
? Ustr "---"
dlstrm.
Legend: }

Content --- and ..] I

Thus, a single line plain scalar is a sequence of valid plain non-break printable characters, beginning and ending with non-
space character and not conflicting with a document boundary markers. All characters are considered content, including
any inner space characters.

[160] ns-plain-single(c) ::= (ns-plain-first-char(c)
(nb-plain-char(c)* ns-plain-char(c))?)
- |-forbidden-content

In a multi-line plain scalar, line breaks are subject to (flow) line folding. Any prefix and trailing spaces are excluded from

the content. Like single-quoted scalars, in plain scalars it is impossible to force the inclusion of the leading or trailing
spaces in the content. Therefore, plain scalars lines can only be broken where a single space character separates two non-
space characters.

[161] s-I-plain-break(n) ::= s-ignored-white* b-l-folded-any(n,plain)

59

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

Example 9.16. Plain Line Breaks

as Space E::l COYAML 1.1
trimmed - T3 ”str "as space \
D B trimmed\n\
specific [0 specific\L\n\
D none"
none

egend:

[-I-plain-break{n)

A multi-line plain scalar contains additional continuation lines following the first line.

[162] ns-plain-multi(n,c) ::= ns-plain-single(c) s-ns-plain-more(n,c)*

Each continuation line must contain at least one non-space character. Note that it may be preceded by any number of
empty lines.

[163] s-ns-plain-more(n,c) ::= s-I-plain-break(n)

s-ignored-prefix(n,plain) ns-plain-char(c)
(nb-plain-char(c)* ns-plain-char(c))?

Example 9.17. Plain Scalars

first line - f{::{ POYAML 1.1

Istr "first line\n\
more line"

Legend:

9.2. Block Scalar Header

Block scalars are specified by several indicators giverhgaderpreceding the content itself. The header is followed by
an ignored line break (with an optional comment).

[164] c-b-block-header(s,m,t) ::= c-style-indicator(s)
((c-indentation-indicator(m)
c-chomping-indicator(t))
| (c-chomping-indicator(t)
c-indentation-indicator(m)))
s-b-comment

60

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Scalar Styles

Example 9.18. Block Scalar Header

- |[# Just the style L

literal

- 31 # Indentation indicator]
-folded

- |+ # Chomping indicator L
keep

- 3-1# Both indicators]
-strip

DAYAML 1.1
Ilseq [

lstr "literal\n",
listr "-folded\n",
listr "keep\n\n”,
lstr "-strip",

|

Legend:
[c-b-block-header(s,m,f)

9.2.1. Block Style Indicator

The first character of the block scalar header is efthérfor a literal scalar of>" for a folded scalar.

[165] c-style-indicator(s) ::= s = literal o

s = folded g "
Example 9.19. Block Style Indicator
_ |D COYAML 1.1
literal
i Ilseq [

lstr "literal\n",

folded lstr “folded\n",
Legend: I

[c-style-indicator(s)

Typically, the indentation level of a block scalar is detected from its first non-empty line. This detection fails when this
line contains leading space characters (note it may safely start with a talJ character). When detection fails, YAML
requires that the indentation level for the content be given using an exyularitation indicator This level is specified

as the integer number of the additional indentation spaces used for the content. If the block scalar begins with leading
empty lines followed by a non-empty line, the indentation level is deduced from the non-empty line. In this case, it is an
error for any such leading empty line to contain more spaces than the indentation level deduced from the non-empty line.
It is always valid to specify an indentation indicator for a block scalar node, though a YAML processor should only do

so in cases where detection will fail.

[166] c-indentation-indicator(m) ::= explicit(m)

detect(m)

9.2.2. Block Indentation Indicator

O ns-dec-digit - “0”
O /* empty */

61

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

Example 9.20. Block Indentation Indicator

- |
- detected
- >

- {explicit
- >

:detected

DAYAML 1.1
llseq [
llstr "detected\n",
lstr "\n\n# detected\n",
lstr "-explicit\n",
listr "\t-detected\n",

|

Legend:

[c-indentation-indicator(m)

Example 9.21. Invalid Block Scalar Indentation Indicators

- |
-£;i
- >
--text
- text
en

ERROR:
- A leading all-space line must

not have too many spaces. |

- A following text line must

""""" ke e g,
L

- The text is less indented

than the indicated level.

9.2.3. Block Chomping Indicator

YAML supports three possible blockiompingmethods:

Strip

lines and are also discarded.

Clip

Strippingis specified using the- ” chomping indicator In this case, the line break character of the last non-empty
line (if any) is excluded from the scalar’s content. Any trailing empty lines are considered to be (empty) comment

Clipping is the default behavior used if no explicit chomping indicator is specified. In this case, The line break
character of the last non-empty line (if any) is preserved in the scalar’'s content. However, any trailing empty

lines are considered to be (empty) comment lines and are discarded.

Keep

The chomping method used is a presentation detail and is not reflected in the serialization tree (and hence the representation

graph).

[167] c-chomping-indicator(t) ::= t = strip
t=clip
t = keep

Keepingis specified using thet+” chomping indicator In this case, the line break character of the last non-empty
line (if any) is preserved in the scalar’'s content. In addition, any trailing empty lines are each considered to
present a single trailing content line break. Note that these line breaks are not subject to folding.

D H_H
O /* empty */
D H+”

62

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

Thus, the final line break of a block scalar may be included or excluded from the content, depending on the specified
chomping indicator.

[168] b-chomped-last(t) ::= t = strip O b-strip-last
t=clip O b-keep-last
t = keep O b-keep-last

[169] b-strip-last ::= b-ignored-any
[170] b-keep-last ::= b-normalized

Example 9.22. Chomping Final Line Break

strip: |- DAYAML 1.1
text 1 []
clip: | !!map{" -
text (1 ? !!str" stnP
K T : lstr "text"”,
eep: | ? llstr "clip”
text (L - lstr "text\n",
_ ? lstr "keep”
Legend: : lstr "text\L",
[b-sirip-last | i
b-keep-last " :

Similarly, empty lines immediately following the block scalar may be interpreted either as presenting trailing line breaks
or as (empty) comment lines, depending on the specified chomping indicator.

[171]l-chomped-empty(n,t) ::= t = strip O |-strip-empty(n)

t=clip O I-strip-empty(n)

t = keep O I-keep-empty(n)
[172] |-strip-empty(n) ::= (s-indent(<n) b-ignored-any)* I-trail-comments(n)?
[173]I-keep-empty(n) ::= |-empty(n,literal)* I-trail-comments(n)?

Explicit comment lines may then follow. To prevent ambiguity, the first such comment line must be less indented than
the block scalar content. Additional comment lines, if any, are not so restricted.

[174]-trail-comments(n) ::= s-indent(<n) c-nb-comment-text b-ignored-any
[-comment*

63

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

Example 9.23. Block Scalar Chomping

Strip DOYAML 1.1

Comments:
strip: |- llseq [

texty ? Ustr "strip"
[O : lstr "# text",
FEcrn-— ? Ustr "clip"
%E_QII: ______ : Nstr "# text\n",
[-# comments:___ 2 listr "keep"
) : lstr "# text\L\n",
clip: | |

text 1

Legend:
[-strip-empty(n) |

Note that if a block scalar consists of only empty lines, then these lines are considered trailing lines and hence are affected
by chomping.

Example 9.24. Empty Scalar Chomping

strip: >- DAYAML 1.1
clip: > liseq [
? Ustr "strip"
: Nstr ™,
k_(_a_:ep. I+ ? llstr “clip”
L : Ustr ™,
? lstr "keep"
Legend: : Hstr "\n",
[-strip-empty(n) I

9.3. Block Scalar Styles

YAML provides twoBlock scalar stylediteral and folded. The block scalar content is ended by a less-indented line or
the end of the characters stream.

64

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

9.3.1. Literal

Theliteral styleis the simplest, most restricted and most readable scalar style. It is especially suitable for source code or
other text containing significant use of indicators, escape sequences and line breaks. In particular, literal content lines may
begin with a tab or a#” character.

[175] c-I+literal(n) ::= c-b-block-header(literal,m,t)
I-literal-content(n+m,t)

Example 9.25. Literal Scalar

| # Simple block scalar] oYAML 1.1

literal |

.'.'.'.'.'.'.'.'.'.'.'.'.'.'.':'" !!Seq[

olext | lstr "literal\n\
\ttext\n"

Legend: I

Inside literal scalars, each non-empty line may be preceded by any number of empty lines. No processing is performed
on these lines except for stripping the indentation. In particular, such lines are never folded. Literal non-empty lines may
include only spaces, tabs, and other printable characters.

[176] I-nb-literal-text(n) ::= l-empty(n,block)* s-indent(n) nb-char+

Example 9.26. Literal Text

CAYAML 1.1

I1str "\nliteral\n\ntext\n

eral | egend
B [-nb-literal-text(n)
!

-# Comment

The line break following a non-empty inner literal line is normalized. Again, such line breaks are never folded.

[177]I-literal-inner(n) ::= I|-nb-literal-text(n) b-normalized

65

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Scalar Styles

Example 9.27. Inner Literal Lines

CAYAML 1.1

I

I1str "\nliteral\n\ntext\n"

-literal % Legend:

. [-nb-literal-inner(n)
~text | b-normalized

!

-# Comment

The line break following the final non-empty literal line is subject to chomping.

[178] I-literal-last(n,t) ::= I-nb-literal-text(n) b-chomped-last(t)

Trailing empty lines following the last literal non-empty line, if any, are also subject to chomping.

[179] I-literal-content(n,t) ::= (I-literal-inner(n)* I-literal-last(n,t))?
[-chomped-empty(n,t)?

Example 9.28. Last Literal Line

| PAOYAML 1.1

o l1str "\nliteral\n\ntext\n"

--literal !

E Legend:

Wl [-nb-literal-lasi(n,i)
= b-chomped-last(t) .

@ I-chomped-emply(n,D_-"_"}
-# Comment

9.3.2. Folded

Thefolded styleis similar to the literal style. However, unlike literal content, folded content is subject to (block) line
folding.

[180] c-I+folded(n) ::= c-b-block-header(folded,m,t)
[-folded-content(n+m,t)

66

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

Example 9.29. Folded Scalar

> # Simple folded scalar L DOYAML 1.1

llseq [
Istr "folded text\n\
\tlines\n"

Legend:

Line folding allows long content lines to be broken anywhere a single space character separates two non-space characters.

[181] s-nb-folded-line(n) ::= s-indent(n) ns-char nb-char*
[182]I-nb-folded-lines(n) ::= (s-nb-folded-line(n)
b-I-folded-any(n,folded))*
s-nb-folded-line(n)

Example 9.30. Folded Lines

> DAYAML 1.1
-folded
T— llseq [
line .
= lstr "folded line\n\
i next line\n\
‘next \ * bullet\n\
line |1 \ * list\n\
last line\n"
* bullet 1
* list
Legend:

ErpTem— [-nb-tfolded-lines(n)
Jast 1

dline |1

Comment

Lines starting with white space characté¢madre indented” line$ are not folded. Note that folded scalars, like literal
scalars, may contain tab characters. However, any such characters must be properly indented using only space characters.

[183] b-I-spaced(n) ::= b-normalized l|-empty(n,folded)*

[184] s-nb-spaced-text(n) ::= s-indent(n) s-white nb-char*

[185]I-nb-spaced-lines(n) ::= (s-nb-spaced-text(n) b-I-spaced(n))*
s-nb-spaced-text(n)

67

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Scalar Styles

Example 9.31. Spaced Lines

> DAYAML 1.1
folded
line Ilseq [
lstr "folded line\n\
next next line\n\
line \ * bullet\n\
\ * list\n\
.. * pullet | last line\n"
—* list !]
| Legend:
ast [-Ab-spaced-lines(n)
line
Comment

Folded content may start with either line type. If the content begins with a “more indented” line (starting with spaces), an
indentation indicator must be specified in the block header. Note that leading empty lines and empty lines separating lines
of a different type are never folded.

[186] I-nb-start-with-folded(n) ::= [-empty(n,block)* I-nb-folded-lines(n)
(' b-normalized |-nb-start-with-spaced(n))?
[187]l-nb-start-with-spaced(n) ::= I-empty(n,block)* I-nb-spaced-lines(n)
(b-normalized I-nb-start-with-folded(n))?
[188] I-nb-start-with-any(n) ::= |-nb-start-with-folded(n)
| I-nb-start-with-spaced(n)

Example 9.32. Empty Separation Lines

> COYAML 1.1
folded
line llseq [
l1str "folded line\n\

next next line\n\
line \ * bullet\n\
o \ * list\n\
“¥ pullet] last line\n

* list
5 Legend:
last b-normalized T-empty(n,s).
line
Comment

The final line break, and trailing empty lines, if any, are subject to chomping and are never folded.

[189] I-folded-content(n,t) ::= (I-nb-start-with-any(n) b-chomped-last(t))?
I-chomped-empty(n,t)

68

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Scalar Styles
Example 9.33. Final Empty Lines
> COYAML 1.1
folded
line llseq [
lstr "folded line\n\
next next line\n\
line \ * bullet\n\
\ * list\n\

* pbullet last line\n"

* |ist |
last Legend:
line [b-chomped-last(f) I-chpmped-empty(n,t) ="~
1
% Comment

69

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 10. Collection Styles

Collection contentan be presented in a sinfiev styleand a singlelock styldor each of the two collection kinds (sequence
and mapping). In addition, YAML provides several in-line compact syntax forms for improved readability of common
special cases. In all cases, the collection style is a presentation detail and must not be used to convey content information.

A flow collection may be nested within a block collection (flow-out context), nested within another flow collection (flow-
in context), or be a part of a simple key (flow-key context). Flow collection entries are separatet,Byiridécator.

The final *, ” may be omitted. This does not cause ambiguity because flow collection entries can never be completely
empty.

[190] in-flow(c) ::= ¢ = flow-out O flow-in
¢ = flow-in O flow-in
¢ = flow-key O flow-key

10.1. Sequence Styles

Sequence conteigt an ordered collection of sub-nodes. Comments may be interleaved between the sub-nodes. Sequences

may be presented in a flow style or a block style. YAML provides compact notations for in-line nesting of a collection in
a block sequence and for nesting a single pair mapping in a flow sequence.

10.1.1. Flow Sequences

Flow sequence conteist denoted by surroundirid ” and“] " characters.

[191] c-flow-sequence(n,c) ::= “[" s-separate(n,c)?
ns-s-flow-seg-inner(n,c)*
ns-s-flow-seg-last(n,c)?
“]”
Sequence entries are separated by’aharacter.
[192] ns-s-flow-seg-inner(n,c) ::= ns-s-flow-seg-entry(n,c) “,” s-separate(n,c)?

The final entry may omit the *

character. This does not cause ambiguity since sequence entries must not be completely
empty.

[193] ns-s-flow-seq-last(n,c) ::= ns-s-flow-seqg-entry(n,c)

70

http://www.w3.org/Style/XSL
http://www.renderx.com/

Collection Styles

Example 10.1. Flow Sequence

DAYAML 1.1
llseq [
llseq [
lstr “inner",
lstr “inner",
1
llseq [
lstr “inner",
lstr "last”,

1,

Legend:

I

Any flow node may be used as a flow sequence entry. In addition, YAML provides a compact form for the case where a
flow sequence entry is a mapping witkiagle key: value pair, and neither thapping node nor its single key node have
any properties specified.

[194] ns-s-flow-seg-entry(n,c) ::= (ns-flow-node(n,in-flow(c))

s-separate(n,in-flow(c))?)
| ns-s-flow-single-pair(n,in-flow(c))

Example 10.2. Flow Sequence Entries

[COYAML 1.1
["double
ermrT— llseq [
oted", 'single
au F' |g IIstr "double quoted",
quoted’, | listr "single quoted",
plain listr "plain text",
text, [nested], | llseq [
---------------------------- listr "nested"
single: palr , . e
] Imap {
Legend: ? llstr "single"
ns-flow-node(n,c) | str “pair”
ns-s-flow-Single-pair(n,c) .-])

10.1.2. Block Sequences

A block sequencis simply a series of entries, each presenting a single node.

[195] c-I-block-sequence(n,c) ::= c-l-comments |-block-seg-entry(n,c)+

71

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Collection Styles

Example 10.3. Block Sequence

block: # Block COYAML 1.1
sequence L] ;l-r-nap ‘
Sone Ll 2 istr "block”
- two : three L :lseq [
llstr "one",
Legend: map {
[c--commenis | 2 listr "two"
I-block-seg-entry(n,c). . - lstr "three”
}
]
}

Each block sequence entry is denoted by a leddifigndicator, separated by spaces from the entry node.

“won

[196]I-block-seg-entry(n,c) ::= s-indent(seq-spaces(n,c))
s-lI+block-indented(seq-spaces(n,c),c)

People read the ” character as part of the indentation. Hence, block sequence entries require one less space of indentation,
unless the block sequence is nested within another block sequence (hence the neethldok-thecontextand

block-out contexjt

[197] seqg-spaces(n,c) ::= ¢ = block-out 0 n-1
¢ = block-in On

Example 10.4. Block Sequence Entry Indentation

block: PAYAML 1.1
“one -
e IImap {
........................ , ? llstr "block”
[itwo lseq [
llstr "one",
Legend: lseq [
m- ||Str "two"
s-l+block-indented(n,c).]
]
}

The entry node may be either completely empty, a normal block node, or use a compact in-line form.

[198] s-I+block-indented(n,c) ::= s-l-empty-block
| s-I+block-node(n,c)
| s-I+block-in-line(n)

72

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Collection Styles

The compacin-line form may be used in the common case when the block sequence entry is itself a block collection, and
neither the collection entry nor its first nested node have any properties specified. In this case, the nested collection may
be specified in the same line as thé& €haracter, and any following spaces are considered part of the in-line nested col-
lection’s indentation.

[199] s-I+block-in-line(n) ::= s-indent(m>0)

(ns-l-in-line-sequence(n+1+m)
| ns-l-in-line-mapping(n+1+m))

Anin-line block sequendeegins with an indented same-line sequence entry, followed by optional additional normal block
sequence entries, properly indented.

[200] ns-l-in-line-sequence(n) ::= “-" s-l+block-indented(n,block-out)
I-block-seqg-entry(n,block-out)*

Example 10.5. Block Sequence Entry Types

- | # Empty COYAML 1.1
-‘I Hseq [
block node : lstr ™
Ilstr "block node\n",
llseq [
llstr "one",
lstr "two",
]
IImap {
Legend: ? llstr "one"
: Hstr "two",
}
I

10.2. Mapping Styles

A mapping nodés an unordered collection kéy:valuepairs. Of necessity, these pairs are presented in some order in the
characters stream. As a serialization detalil, this key order is preserved in the serialization tree. However it is not reflected
in the representation graph and hence must not be used when constructing native data structures. It is an error for two equal
keys to appear in the same mapping node. In such a case the pfablissor may continue, ignoring the second key: value

pair and issuing an appropriate warning. This strategy preserves a consistent information model for one-pass and random
access applications.

10.2.1. Flow Mappings

Flow mapping conteris denoted by surroundirid ” and“}” characters.

[201] c-flow-mapping(n,c) ::= “{" s-separate(n,c)?
ns-s-flow-map-inner(n,c)*
ns-s-flow-map-last(n,c)?

ap

73

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Collection Styles

Mapping entries are separated by, & ¢haracter.

[202] ns-s-flow-map-inner(n,c) ::= ns-s-flow-map-entry(n,c) “,” s-separate(n,c)?

The final entry may omit the “ character. This does not cause ambiguity since mapping entries must not be completely

empty.

[203] ns-s-flow-map-last(n,c) ::= ns-s-flow-map-entry(n,c)

Example 10.6. Flow Mappings

- {]]in,ner ‘entry, also:inner, } D DoYAML 1.1

- {ifner:entry, Jast:eptry } 1] ;I;eq [

Legend:

IImap {
? lstr "inner"

: llstr "entry”,
? llstr "also"
: Ustr "inner"
|3
IImap {
? lstr "inner
: llstr "entry”,
? lstr "last"
: lstr "entry"”

}

|

Flow mappings allow two forms of keys: explicit and simple.

Explicit Keys

[204] s-flow-separated(n,c) ::=

An explicit keyis denoted by th&€?” indicator, followed by separation spaces.

(s-separate(n,c) ns-flow-node(n,in-flow(c))
s-separate(n,c)?)
| (e-empty-flow s-separate(n,c))

[205] c-s-flow-explicit-key(n,c) ::= “?" s-flow-separated(n,c)

Simple Keys

A simple keyhas no identifying mark. It is recognized as being a key either due to being inside a flow
mapping, or by being followed by an explicit value. Hence, to avoid unbound lookahead in YAML
processors, simple keys are restricted to a single line and must not span more than 1024 stream characters
(hence the need for tlew-key conte}t Note the 1024 character limit is in terms of Unicode characters
rather than stream octets, and that it includes the separation following the key itself.

[206] ns-s-flow-simple-key(n,c) ::= ns-flow-node(n,flow-key) s-flow-separated(n,c)?

74

http://www.w3.org/Style/XSL
http://www.renderx.com/

Collection Styles

Example 10.7. Flow Mapping Keys

{ CoYAML 1.1

?° 'value # Empty key

? explicit I'map {

—_— ? Ustr ™

Evalue : Nstr "value",

simple key : value 2 listr "explicit key"

[collection, simple, key | : value § : Nstr "value”,

Yo ? lstr "simple key"

: Ustr "value",

Legend: ?lseq[
[c-s-Tflow-explicit-key(n,C) lstr "cpllect|on",
ns-s-flow-Simplé-key(n,.c) - llstr "simple”,

lstr "key"
]
: lstr "value"
}

Example 10.8. Invalid Flow Mapping Keys
{ ERROR:
multi-line - A simple key is restricted
simple key : value, to qnly one

Very long ...(>1KB).. key " vaiue " A simple key must not be

y o longer than 1024: characters.

Flow mappings also allow two forms of values, explicit and completely empty.
Explicit Values An explicit valueis denoted by thé: ” indicator, followed by separation spaces.

[207] c-s-flow-explicit-value(n,c) ::= “" s-flow-separated(n,c)

Example 10.9. Flow Mapping Values

{ COYAML 1.1
key {value, |
empty [° # empty value ! | I'map {
} ? lstr "key"
: lstr "value”,
Legend: ?,:!Str..l.l.empty"
[c-s-flow-explicit-value(n,c) } s lstr ™,

Thus, there are four possible combinations for a flow mapping entry:
» Explicit key and explicit value:

[208] c-s-flow-explicit-explicit(n,c) ::= c-s-flow-explicit-key(n,c)
c-s-flow-explicit-value(n,c)

75

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Collection Styles

« Explicit key and completely empty value:

[209] c-s-flow-explicit-empty(n,c) ::= c-s-flow-explicit-key(n,c) e-empty-flow

» Simple key and explicit value:

[210] ns-s-flow-simple-explicit(n,c) ::= ns-s-flow-simple-key(n,c)
c-s-flow-explicit-value(n,c)

» Simple key and completely empty value:

[211] ns-s-flow-simple-empty(n,c) ::= ns-s-flow-simple-key(n,c) e-empty-flow

Inside flow mappings, all four combinations may be used.

[212] ns-s-flow-map-entry(n,c) ::= c-s-flow-explicit-explicit(n,c)
| c-s-flow-explicit-empty(n,c)
| ns-s-flow-simple-explicit(n,c)
| ns-s-flow-simple-empty(n,c)

Example 10.10. Flow Mapping Key: Value Pairs

{ DOYAML 1.1
? explicit keyl : Explicit value , |
? explicit key2 :° , # Expli¢it empty

IImap {
? lstr "explicit keyl"
: lstr "explicit value”,
? lstr "explicit key2"
: Nstr ™,
? lstr "explicit key3"
: Nstr ™,
i ? lstr "simple keyl"
: lstr "explicit value”,
? lstr "simple key2"

Legend:

c-s-flow-explicitempty(ne) i cova
I (oM G R Cpagr e

hs-s-flow-simple-empty(n,c) ~ ~~ " "

}

YAML also allows omitting the surroundindg * and ‘} ” characters when nesting a flow mapping in a flow sequence if
the mapping consists ofsingle key: value paiand neither the mapping nor the key have any properties specified. In this
case, only three of the combinations may be used, to prevent ambiguity.

[213] ns-s-flow-single-pair(n,c) ::= c-s-flow-explicit-explicit(n,c)
| c-s-flow-explicit-empty(n,c)
| ns-s-flow-simple-explicit(n,c)

76

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

RenderX

Collection Styles

Example 10.11. Single Pair Mappings

[CoYAML 1.1
? explicit key1 : explicit value , |

? explicit key2 :° , # Expli¢it empty !!ﬁ?r?a[p {

? Ustr "explicit key1"

isimple keyl : explicitvalue,] : lstr "explicit value”,
Zs_ifn_ﬁl_e_ key2:° , # Explicit empty h
T Imap {
? Ustr "explicit key2"
Legend: s str ™,
[c-S-Tlow-explicit-explicit(n,c) h
c-s-flow-explicit-empty(n,c) T !'map {
is-s-flow-simple-explicit(n,c) ~ -~~~ """ ? lstr "explicit key3"
 Ustr ™,
h
Imap {

? lstr "simple keyl"
: lstr "explicit value”,
2
Imap {
? lstr "simple key2"
: Nstr ™,

2

10.2.2. Block Mappings

A Block mappings simply a series of entries, each presenting a key: value pair.

[214] c-I-block-mapping(n) ::= c-I-comments
('s-indent(n) ns-I-block-map-entry(n))+

Example 10.12. Block Mappings

block: # Block POYAML 1.1
mapping] ;l-r-nap ‘
A 3 I!
- key:value | ? listr "block”
: 'map {
Legend: 2 listr "key",
s-indent(n). }
hs-I-block-map-entry(n) —_ -~ 3)

A block mapping entry may be presented using either an explicit or a simple key.

[215] ns-I-block-map-entry(n) ::= ns-l-block-explicit-entry(n)
| ns-I-block-simple-entry(n)

77

http://www.w3.org/Style/XSL
http://www.renderx.com/

Collection Styles

Explicit Key Entries Explicit key nodes are denoted by tH& ‘tharacter. YAML allows here the same inline compact
notation described above for block sequence entries, in which cas# ttleatacter is considered
part of the key’s indentation.

[216] ns-I-block-explicit-key(n) ::= “?” s-I+block-indented(n,block-out)

* In an explicit key entry, value nodes begin on a separate line and are denoted by: Byctiadcter. Here again
YAML allows the use of the inline compact notation which case thieHharacter is considered part of the values’s
indentation.

[217]I-block-explicit-value(n) ::= s-indent(n) *:
s-I+block-indented(n,block-out)

e An explicit key entry may also use a completely empty value.
[218] ns-I-block-explicit-entry(n) ::= ns-I-block-explicit-key(n)

(I-block-explicit-value(n)
| e-empty-flow)

Example 10.13. Explicit Block Mapping Entries

? explicit key # implicit value 1 °'] DOYAML 1.1

>

= I'lma

bIOCk key _______ ' | ____________________________ ? !!gti "explicit key"

:-- one # explicit in-line : Hstr ™,

.- two # block value v ? llstr "block key\n"

"""""""""""""""""""""""""" s lseq [

Legend: listr "one",
[ns-I-block-explicit-key(n) str "two",
I-block-explicit-valte(n)]
g-empty-flow] }

Simple Key Entries YAML allows the “?” character to be omitted for simple keys. Similarly to flow mapping, such a
key is recognized by a following “ character. Again, to avoid unbound lookahead in YAML pro-
cessors, simple keys are restricted to a single line and must not span more than 1024 stream characters.
Again, this limit is in terms of Unicode characters rather than stream octets, and includes the separation
following the key, if any.

[219] ns-block-simple-key(n) ::= ns-flow-node(n,flow-key)
s-separate(n,block-out)? “:”

< In a simple key entry, an explicit value node may be presented in the same line. Note however that in this case, the
key is not considered to be a form of indentation, hence the compact in-line notation must not be used. The value fol-
lowing the simple key may also be completely empty.

[220] s-I+block-simple-value(n) ::= s-l+block-node(n,block-out)
| s-I-empty-block

[221] ns-I-block-simple-entry(n) ::= ns-block-simple-key(n)
s-I+block-simple-value(n)

78

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Collection Styles

Example 10.14. Simple Block Mapping Entries

plain key: ° #lempty value L POYAML 1.1
"quoted key": 1
q ------------- y ------- [-------------------- IImap {
- one # explicit next-ine 2 listr "plain key"
o # block value 1 st ™,
? lstr "quoted key\n"
Legend: :lseq [
[ns-block-simple-key(n) | llstr "one",
s-l+block-simple-value(n) lstr "two",
]
}

An in-line block mappindpegins with a same-line mapping entry, followed by optional additional normal block mapping
entries, properly indented.

[222] ns-l-in-line-mapping(n) ::= ns-I-block-map-entry(n)
('s-indent(n) ns-l-block-map-entry(n))*

Example 10.15. In-Line Block Mappings

- un: yellow] PoYAML 1.1
- 7 edrih. biue T] s (
: mdon: white l|| "!!n?ap{
' ? Ustr "sun"
Legend: : lstr "yellow",
[Ns-I-in-line-mapping(n) }
'Imap {
? lImap {

? llstr "earth”
: lstr "blue”
}
: Imap {
? llstr "moon”
: lstr "white"
}
}
}

79

RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Index

Indicators

I'local tag,13, 39, 45

I named handle, 280, 45

I non-specific tagl?, 46

I tag indicator, 7, 23, 39-4@5

" double-quoted style, 24, 292, 54
comment, 5, 13, 231, 57, 61, 65
% directive, 2437

% escaping in URRS, 45

& anchor, 5, 2344

' reserved indicato5

' single-quoted style, 284

* alias, 5, 2349

+ keep chompingg2

, end flow entry, 22, 5770, 74

- block sequence entry, 4, 19, 22, 31, &7,
- strip chomping62

: mapping value, 4, 22, 31, 575, 78
< ... >verbatim tag45

> folded style, 6, 2461

? mapping key, 5, 22, 31, 574, 78
? non-specific tadl7, 46

@ reserved indicatoR5

[start flow sequence, 22, 28, %0

\ escaping in double-quoted styR8, 28-29, 52-54
] end flow sequence, 22, 28, ¥Q

{ start flow mapping, 22, 573

| literal style, 6, 2461

} end flow mapping, 22, 573

A

alias
information model, 1-2, 5, 10, 184, 16-18
syntax, 23, 4449
anchor
information model, 5, 10, 134, 17-18
syntax, 2344, 44-45, 49
application, 1-2, M, 9-13, 18, 39-40, 45, 73
available tag18

B

block collection style
information model, 4-515
syntax, 31, 4770, 73

block mapping style
information model 15
syntax, 5877

block scalar heade80, 61

block scalar style
information model 15
syntax, 27, 34, 52, 60-61, 63—®4,
block sequence style
information model, 415
syntax, 19, 22, 31, 701, 78
block style
information model, 2, 615, 18
syntax, 19-20, 36, 4B0, 72
block-in context, 1972
block-out context, 1972
byte order mark?1, 42-43

C

canonical form, 213, 16-17
character encodin@]l, 28, 42—-43
chomping, 20, 26, 34, 362, 66, 68
clip chomping, 2062
collection
information model, 2, 1112, 13-14, 16-18
syntax, 31, 47, 5&0, 73
comment
information model, 5, 10, 146, 17
syntax, 2331, 33-34, 37, 41-43, 50, 52, 57, 60, 62-63,
70
complete representatiohy, 17-18, 46
completely empty node, 450, 70, 72, 74-76, 78
composel0, 14, 17-18, 44, 46
construct, 910, 13, 17-18, 73
content
information model, 2, 1012, 13, 15-18, 25, 28, 31-36,
40-41, 44,52, 70
syntax, 21, 31, 4447, 49-50, 52-56, 59-64, 67-68
context,19, 57

D

directive

information model, 10, 14,6

syntax, 2437, 41-43
document

information model, 2, 514, 15-16, 18

syntax, 21, 37, 39-43]1, 49
document boundary marker, 5, 14, 88@,41-43, 58-59
double-quoted style

information model, 2, 615

syntax, 19-20, 24, 28, 432, 56
dump,9

E

empty line, 2, 6, 3234, 35-36, 52, 60-66, 68

equality, 9, 11-1313, 16-18, 73

escaped (ignored) line break, 3@,

escaping in double-quoted style, 2, 6, 21,28/ 52, 54, 65

80

http://www.w3.org/Style/XSL
http://www.renderx.com/

Index

escaping in single-quoted styf} K
escaping in URI, 138, 45
explicit document41, 42-43
explicit key,74, 78

explicit value,75, 78

keep chomping, 2@G2

key
information model, 1, 4-5, 9-112, 13-14, 17-18
syntax, 22, 57, 7173

key order, 10, 1314, 73

F kind, 9-11,12, 13, 15, 17-18, 47, 70

flow collection style
information model15 L

] syntax, 19, 2t2i 47, 57-580 line break character, 2, 6, 19-2b, 2627, 31, 34-36, 50,
Oow mapping style 52-53, 55, 59-60, 62—-63, 65—66, 68
information model, 415 line break normalizatior25, 65
syntax, 2273 line folding, 2, 635, 52-53, 55, 59, 62, 65—68
flow scalar style literal style
information model, 615 information model, 2, 615
syntax, 36, 41, 452, 58 syntax, 20, 24, 52, 61, 685, 66—67
flow sequence style load,9, 16
information model, 415 load failure point, 1016
syntax, 2270, 76 local tag, 7, 1013, 17, 39, 45

flow style
information model, 2, 415 M
syntax, 19-20, 36, 449, 50, 71)
flow-in context, 2057, 70 mapping
flow-key context, 20, 7074 information model, 1-2, 4, 9-112, 13-14, 18
flow-out context, 2057, 70 syntax, 70-7173
folded style may,3 _
information model, 615 more indented line, 6, 367
syntax, 20, 24, 36, 52, 61, 685 must,3
format, 10, 13-1416
N
G named tag handle, 280, 45
generic line breal?s, 28-29, 35 need not3
global tag, 2, 7, 142, 17, 39, 45 node

information model, 5, 10-112, 13-18
I syntax, 31, 4144, 44-46, 49, 70-73
. - node property, 444, 49-50, 71, 73, 76
identified, 5,14, 17 non-specific tag, 7, 10, 167, 19, 46, 52

identity, 13

ignored line prefix34, 54, 56, 59 o)

ill-formed stream, 10, 16,7 .

implicit document41, 42 optional,3

in-line mapping style79

in-line sequence styl@3 P

in-line style parse 10, 14, 17-18, 25, 28, 40, 42-43, 45
information modell5 partial representatiori6, 18
syntax, 31, 47, 7003, 78 plain style

indentation indicator61, 68 information model, 615, 17-18

indentation space, 1-2, 4, 10, 15, 17, 19,33632-34, 36— syntax, 19-20, 41, 4647, 49, 57,
37,41, 47, 54, 56, 58, 61, 63-65, 67, 72-73, 78-79 present, 9-1010, 12-14, 16, 18, 20-21, 26, 28, 36-37, 41,

indicator, 2, 4, 15, 121, 31, 36, 47, 50, 57, 60, 65 45, 47, 49, 52, 59, 62-63, 70-71, 73, 77-78

invalid content, 1618 presentation, 9-114, 41, 45
presentation detail,0, 10-11, 14-17, 25, 28, 31, 33-37, 40—
41,52, 62,70

primary tag handle39, 45

81

http://www.w3.org/Style/XSL
http://www.renderx.com/

Index

printable character, 1-2], 28, 54-55, 59, 65 tag
processor, 39, 9-10, 13-14, 16-18, 21, 25-26, 37, 40-41, information model, 2, 7, 10-132, 16-18, 40
44-45, 61, 73-74, 78 syntax, 23, 28, 38-39, 445
TAG directive, 13, 16, 3738, 45

Q tag handle, 7, 10, 38-399, 45
quoted style tag prefix, _3839, 45

information model, 615, 18 tag resolution, 13, 16,7, 19, 45-46, 52

syntax, 27, 4752 tag shorthand, 7, 19, 28, 38—40,
R U
recognized tagl8 unavailable tag, 10, 168
recommended unidentified alias, 1617
represent, 1-&, 1214 unrecognized tag, 168
representation, 9-111, 13-16, 18, 31, 37, 44-45, 62, 73 unresolved tag, 168
required,3
reserved directive, 187 Vv
reserved indicato£5 valid content18
root node 11, 17, 37, 41 value

information model, 1, 4-5, 92, 13-14, 17

S syntax, 22, 5773
scalar verbatim tag, 1%45

information model, 1-2, 6, 9-112, 13, 15-18

syntax, 20, 25-28, 32-34, &2, 57, 62, 65 W
secondary tag handl¢Q well-formed stream].7
separation space, 26, 38, 72, 74-75, 78 white space27, 34, 36, 52-56, 67
sequence

information model, 1-2, 9, 112, 13-14 Y

syntax,70 YAML directive, 16,37

serialization, 9-1113, 14-16, 31, 37, 44-45, 62, 73
serialization detaill0, 14, 44, 73
serialize, 210, 14, 49
shall,3
should,3
simple key, 20, 33, 52, 55, 58, 704, 78
single pair style
information model 15
syntax, 70-7176
single-quoted style
information model, 615
syntax, 20, 24, 47, 534, 59
specific line break25s, 29, 35
specific tag,17, 46
stream
information model, 2, 5, 9-104, 16-18
syntax, 19, 21, 31, 37, 39-4412, 44, 50, 64, 73-74, 78
strip chomping, 2062
style, 10, 1415, 16-17, 41

T
tab, 2, 2126, 28, 31-34, 54, 56-57, 61, 65, 67

82

http://www.w3.org/Style/XSL
http://www.renderx.com/

	YAML Ain’t Markup Language (YAML™) Version 1.1
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Prior Art
	1.3. Relation to XML
	1.4. Terminology

	Chapter 2. Preview
	2.1. Collections
	2.2. Structures
	2.3. Scalars
	2.4. Tags
	2.5. Full Length Example

	Chapter 3. Processing YAML Information
	3.1. Processes
	3.1.1. Represent
	3.1.2. Serialize
	3.1.3. Present
	3.1.4. Parse
	3.1.5. Compose
	3.1.6. Construct

	3.2. Information Models
	3.2.1. Representation Graph
	3.2.1.1. Nodes
	3.2.1.2. Tags
	3.2.1.3. Nodes Comparison

	3.2.2. Serialization Tree
	3.2.2.1. Keys Order
	3.2.2.2. Anchors and Aliases

	3.2.3. Presentation Stream
	3.2.3.1. Node Styles
	3.2.3.2. Scalar Formats
	3.2.3.3. Comments
	3.2.3.4. Directives

	3.3. Loading Failure Points
	3.3.1. Well-Formed and Identified
	3.3.2. Resolved
	3.3.3. Recognized and Valid
	3.3.4. Available

	Chapter 4. Productions Conventions
	4.1. Production Prefixes
	4.2. Production Parameters

	Chapter 5. Characters
	5.1. Character Set
	5.2. Character Encoding
	5.3. Indicator Characters
	5.4. Line Break Characters
	5.5. Miscellaneous Characters
	5.6. Escape Sequences

	Chapter 6. Syntax Primitives
	6.1. Indentation Spaces
	6.2. Comments
	6.3. Separation Spaces
	6.4. Ignored Line Prefix
	6.5. Line Folding

	Chapter 7. YAML Character Stream
	7.1. Directives
	7.1.1. “YAML” Directive
	7.1.2. “TAG” Directive
	7.1.2.1. Tag Prefixes
	7.1.2.2. Tag Handles

	7.2. Document Boundary Markers
	7.3. Documents
	7.4. Complete Stream

	Chapter 8. Nodes
	8.1. Node Anchors
	8.2. Node Tags
	8.3. Node Content
	8.4. Alias Nodes
	8.5. Complete Nodes
	8.5.1. Flow Nodes
	8.5.2. Block Nodes

	Chapter 9. Scalar Styles
	9.1. Flow Scalar Styles
	9.1.1. Double Quoted
	9.1.2. Single Quoted
	9.1.3. Plain

	9.2. Block Scalar Header
	9.2.1. Block Style Indicator
	9.2.2. Block Indentation Indicator
	9.2.3. Block Chomping Indicator

	9.3. Block Scalar Styles
	9.3.1. Literal
	9.3.2. Folded

	Chapter 10. Collection Styles
	10.1. Sequence Styles
	10.1.1. Flow Sequences
	10.1.2. Block Sequences

	10.2. Mapping Styles
	10.2.1. Flow Mappings
	10.2.2. Block Mappings

	Index

