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Abstract

My 2018 lecture at the ICA workshop in Singapore dealt with quantum computation as a meeting
point of the laws of computation and the laws of quantum mechanics. We described a computational
complexity argument against the feasibility of quantum computers: we identified a very low-level com-
plexity class of probability distributions described by noisy intermediate-scale quantum computers, and
explained why it would allow neither good-quality quantum error-correction nor a demonstration of
“quantum supremacy,” namely, the ability of quantum computers to make computations that are impos-
sible or extremely hard for classical computers. We went on to describe general predictions arising from
the argument and proposed general laws that manifest the failure of quantum computers.

In October 2019, Nature published a paper [5] describing an experimental work that took place at
Google. The paper claims to demonstrate quantum (computational) supremacy on a 53-qubit quantum
computer, thus clearly challenging my theory. In this paper, I will explain and discuss my work in the
perspective of Google’s supremacy claims.

1 Introduction

In this paper I want to present to you my theory explaining why computationally superior quantum
computing is not possible, discuss the laws of nature that may support this theory, and describe some
potential connections and applications. This is a fairly ambitious task; for one, many experts do not
understand my argument, while most experts do not agree with me. On top of that, the assertion of
a paper [5] published in Nature in October 2019, declaring that “quantum computational supremacy”
was achieved by a team from Google on a 53-qubit computer, seems to refute my argument. We will
describe and give a preliminary evaluation of Google’s claims. The story of quantum computers is
related to exciting developments and problems in physics and in the theory of computation, and my
purpose here is to tell you about it in non-technical terms (with short subsections entitled “under the
mathematical lens” that offer a glimpse of the mathematics and can be skipped).
∗Work supported by ERC advanced grant 834735
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2 Classical computers

2.1 Easy and hard problems

The central concept in the theory of computational complexity is that of an efficient algorithm (also
called “polynomial-time algorithm”). An efficient algorithm is an algorithm that requires a number of
operations that is at most polynomial in the size of the input. The class of algorithmic tasks that admit
efficient algorithms is denoted by P. For example, given a list of n numbers the task of finding the
maximal number has an efficient algorithm.

Another important algorithmic task is that of matching. Let me elaborate a little: we are given two
collections A and B of an equal size n, and for every element a ∈ A we are given a set Ba ⊂ B. The
task at hand is to decide whether we can find a function f from A to B such that

• f(a) 6= f(a′) for every distinct a and a′,

• f(a) ∈ Ba for every a.

Such a function is called a perfect matching. A major landmark in computer science was the discovery
by Ford and Fulkerson of an efficient algorithm for matching.

Our third algorithmic task will be the famous traveling salesman problem. There are n cities and on
the road between each pair of cities c1 and c2 there is a toll T (c1, c2). A traveling salesman needs to travel
between these cities, that is, to start at the city c1 and to then travel through each city exactly once, until
returning to the initial city, so as to minimize the overall toll. There is a simpler version of this problem
that is called the Hamiltonian cycle problem. For every pair of cities c1 and c2 we are told in advance
whether the road connecting the two is open or blocked. The challenge is to start at the city c1 and to
then travel through each city exactly once, returning at the end to c1 and using only open roads. Such
a route is called a Hamiltonian cycle. A major conjecture in the theory of computational complexity
is that there is no efficient (polynomial-time) algorithm for solving the traveling salesman problem and
there is no efficient algorithm to tell whether a Hamiltonian cycle exists. In fact, it is commonly believed
that an algorithm for these problems (in the most general cases) requires an exponential number of
steps and therefore goes beyond reach of digital computers, as the number of cities grows. The task of
deciding whether there exists a Hamiltonian cycle constitutes an NP-complete problem: Being in the
computational class NP means that there is proof that a graph G has a Hamiltonian cycle that can be
verified in a polynomial number of steps. Being NP-complete means that any other NP-problem can be
reduced to this problem.

2.2 When theory meets practice: Naturalness in computer science

Our main tools for the study of the complexity of algorithms are asymptotic. For example, we make a
distinction between exponential running time and polynomial running time. When trying to gain insights
into practical questions we need to make an assumption of naturalness, namely, that the constants in-
volved in the asymptotic descriptions are mild. Without such an assumption, computational complexity
insights hardly ever apply to real-life situations. With the assumption of naturalness we do gain much
insight: if an algorithmic task can be solved (asymptotically) in a polynomial number of steps, then
usually this suggests that the task is practically feasible. On the other hand, if a class of algorithms, or
computational devices, represent polynomial-time computation, then usually we cannot expect that this
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class of algorithms will practically solve intractable problems. For example, if we are offered a device
for solving the Hamiltonian cycle problem, and we can analyze the device and realize that it represents
an asymptotically polynomial-time algorithm, then we cannot expect that this device will outperform, by
a very large margin, ordinary digital computers. Naturalness is a heuristic assertion, but it is a powerful
one. Of course, the lower the computational power of a class of algorithms or computing devices is in
the hierarchy of computational complexity classes, the more implausible it becomes that such algorithms
or computing devices will allow, in practice, powerful computation.

2.3 Randomness and computation

One of the most important developments in the theory of computing was the realization that the ad-
dition of an internal randomness mechanism can enhance the performance of algorithms. Since the
mid-1970s, randomized algorithms have become a central paradigm in computer science. One of the
greatest achievements was the polynomial-time randomized algorithms of Solovay and Strassen (1977)
and Rabin (1980) for testing whether an n-digit integer is a prime. Rabin’s paper stressed that the algo-
rithm was not only theoretically efficient but also practically excellent, and gave “probabilistic proofs”
that certain large numbers, like 2300 − 153, are primes. This was a new kind of proof in mathematics.

2.4 Under the mathematical lens: Determinants and Lovasz’s algorithm for perfect match-

ing

Let us go back to the problem of finding a perfect matching and consider an n-by-n matrix M where
the rows correspond to the elements of A, a1, a2, . . . , an and the columns correspond to the elements of
B, b1, b2, . . . , bn. Now we consider variables xij for every i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, and let mij = 0
if bj /∈ Bai and mij = xij if bj ∈ Bai . Lovasz’s first observation was that a perfect matching exists if
and only if the determinant of M (regarded as a polynomial in the variables xijs) is not zero. Lovasz’s
second observation was that if you create a new matrix M ′ by replacing xij with a random element in a
large finite field, and if the determinant of M is not zero, then, with high probability, the determinant of
M ′ is not zero either.

Here is Lovasz’s algorithm: given the data, we build at random the matrix M ′ and check whether its
determinant equals zero and repeat this process k times. If we get a non-zero answer once, we know that
there is a perfect matching; if we always get zero, we know with high probability that a perfect matching
does not exist.

We need one additional ingredient that goes back to Gauss: when the entries are concrete numbers,
there is a polynomial-time algorithm for computing determinants. This is based on Gauss’s elimination
method, and can be considered as one of the miracles of our world.

3 Quantum computers

3.1 Huge computational advantage: Factoring and sampling

Quantum computers are hypothetical physical devices that allow the performance of certain compu-
tations well beyond the ability of classical computers, in a polynomial number of steps in the input size.
The basic memory unit of a quantum computer is called a qubit and the basic computational step on
one or two such qubits is performed by gates (further details are given below). Shor’s famous algorithm
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shows that quantum computers can factor n-digit integers efficiently, in roughly n2 steps! (The best
known classical algorithms are exponential in n1/3.) This ability for efficient factoring allows quantum
computers to break the majority of current cryptosystems.

A sampling task is one where the computer (either quantum or classical) produces samples from a cer-
tain probability distribution D. In the main examples of this paper each sample is a 0-1 vector of length
n, where D is a probability distribution on such vectors. Quantum algorithms allow sampling from
probability distributions well beyond the capabilities of classical computers (with random bits). Shor’s
algorithm exploits the ability to sample efficiently on a quantum computer a probability distribution
based on the Fourier coefficients of a function.

3.2 Noisy quantum computing

Quantum systems are inherently noisy: we cannot accurately control them, nor can we accurately
describe them. In fact, every interaction of a quantum system with the outside world amounts to noise.
A noisy quantum computer has the property that every computational step (applying a gate, measuring
a qubit) makes an error with a certain small probability t. (These errors are described more specifically
in Section 5, whereas in Section 7.5 we get a glimpse of the mathematics of noise in quantum systems.)
The threshold theorem [2, 22, 23] asserts that if the rate of errors t is small enough (and if a few ad-
ditional assumptions are made), then a noisy quantum circuit can simulate noiseless quantum circuits.
To implement such a simulation we need certain building blocks called quantum error-correcting codes,
where a collection of 100–5000 quantum qubits (or more) can be “programmed” to represent a single
stable “logical” qubit.

3.3 NISQ computers

Noisy intermediate-scale quantum (NISQ) computers, are quantum computers where the number of
qubits is in the tens or at most in the hundreds.

Over the past decade researchers hace conjectured [1] that the huge computational advantage of sam-
pling with quantum computers can be realized by NISQ computers that only approximate the target
probability distribution. These researchers have predicted that quantum computational supremacy (for
sampling tasks) could be achieved without using quantum error-correction for NISQ computers. NISQ
computers are also crucial to the task of creating good quality quantum error-correcting codes. An im-
portant feature of NISQ systems – especially for the tasks of achieving quantum supremacy and quantum
error-correction – is the fact that a single error in the computation sequence has a devastating effect on
the outcome. In the NISQ regime, the engineering task is to keep the computation error-free. We shall
refer to the probability that not even a single error occurs as the fidelity.

Many companies and research groups worldwide are implementing quantum computations via NISQ
computers (as well as by other means). There are several different approaches to realizing individual
qubits and gates, and each of the main approaches is marked by different variations. Realizing quantum
circuits by superconducting qubits is a leading approach, whereas trapped-ion qubits, photonic qubits,
topological qubits, and others are considered notable alternatives.
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3.4 Under the mathematical lens: The mathematical model of quantum computers

3.4.1 Quantum computers (circuits)

• A qubit is a piece of quantum memory. The state of a qubit is a unit vector in a two-dimensional
vector space over the complex numbers H = C2. The memory of a quantum computer (quantum
circuit) consists of n qubits and the state of the computer is a unit vector in the 2n-dimensional
Hilbert space, i.e., (C2)⊗n.

• A quantum gate is a unitary transformation. We can put one or two qubits through gates, which
representunitary transformations, that act on the corresponding two- or four-dimensional Hilbert
spaces. There is a small list of gates that are sufficient for the full power of quantum computing.

• Measurement of the state of k qubits leads to a probability distribution on 0-1 vectors of length k.

• A quantum circuit is composed of a collection of gates acting successively on n qubits. To describe
an efficient (or polynomial-time) quantum algorithm, we assume that the number of gates is at
most polynomial in n. (We also assume that the sequence of gates can be produced efficiently by
a classical algorithm.)

3.4.2 Superposition and entanglement

The state of a single qubit is a superposition of basis vectors of the form a |0〉 + b |1〉, where a, b are
complex and |a|2 + |b|2 = 1. The complex coefficients a and b are called amplitudes. A measurement
of a qubit in state a |0〉+ b |1〉 will lead to a random bit of 0 with probability |a|2 and 1 with probability
|b|2. This rule for moving from complex amplitudes to probabilities is referred to as the “Born rule.”

Two qubits are represented by a tensor product H ⊗ H and we denote |00〉 = |0〉 ⊗ |0〉. The cat
state 1√

2
|00〉 + 1√

2
|11〉 can be regarded as a quantum analog, called entanglement of correlated coin

tosses that yealds two heads with probability 1/2, and two tails with probability 1/2. The cat state is the
simplest example of entanglement, and the strongest form of entanglement between two qubits.

4 The argument against quantum computers

4.1 My argument against quantum supremacy and quantum error-correction

Here, in brief, is my argument against quantum computers. For more details see [18, 17].

(A) From the perspective of computational complexity theory, noisy intermediate scale
quantum (NISQ) circuits are low-level classical computational devices.

(B) Therefore, by naturalness, NISQ systems do not support quantum supremacy. In
other words, the rate of noise cannot be reduced to the level allowing quantum supremacy.
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(C) Achieving good-quality quantum error-correction requires an even lower noise rate
than the one required for achieving quantum supremacy.

(D) Therefore, NISQ systems do not support quantum error-correction.

(E) Hence, large-scale quantum computing based on quantum error-correction is beyond
reach.

4.2 Four thresholds

To put the above argument a little differently, we can consider four crucial thresholds of noise,
α, β, γ, δ:

• α is the rate of noise required for universal quantum computing,

• β is the rate of noise required for good-quality quantum error-correction,

• γ is the rate of noise required for quantum supremacy, and

• δ is the rate of noise that can realistically be achieved.

Since universal quantum computing requires very high-quality quantum error-correcting codes, we
get that α < β. At the center of my analysis is a computational complexity argument stating that γ < δ,
and I also rely on the argument that β < γ which is in wide agreement. Given these inequalities, we get
that

α < β < γ < δ. (1)

We note that it is a strong intuition of many researchers that with sufficient engineering efforts, δ can
be reduced as close to zero as we want. My argument implies that this belief is incorrect.

4.3 Four facts that strengthen the argument

There are four facts that strengthen this argument against quantum computers.

1. The first is that NISQ circuits are very, very low-level classical computational devices.

2. The second is that while our argument asserts that the level of noise that can realistically be
achieved will be above the level of noise allowing the demonstration of quantum supremacy, there
is yet another related argument, asserting that when we consider n-qubit circuits, then for a wide
range of lower levels of noise, the outcomes will be chaotic: no robust probability distributions
will be possible as the output.

3. The third fact is that there are also direct reasons why probability distributions supported by quan-
tum error-correcting codes (like the popular “surface codes”) are not supported by the very low-
level computational complexity class of NISQ circuits.

4. The fourth fact is that while quantum error-correction requires achieving very high fidelity for
tens or hundreds of qubits, it has been realized in recent years (and this forms the very basis for
Google’s experiment) that quantum supremacy can be demonstrated even with low fidelity.
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The first and second items in the list are the most important, and I would therefore like to say a little
more about them. (The reader is referred our next mathematical Section 4.4 and to [18, 17] for more
details.)

The computational complexity class describing NISQ circuits is LDP (low-degree polynomial) and
this class is contained in the familiar class of distributions that can be approximated by bounded-depth
(classical) computation.

Let me phrase the second point a little differently. The threshold for realistic noise δ cannot be pushed
down to allow quantum supremacy; but more than that is true: there is a large range of error rates below
δ, where even if you could reduce the error rate to these levels, the resulting probability distribution
would be chaotic and would largely depend on the fine parameters of the noise itself.

4.4 Under the mathematical lens: Noise stability and sensitivity and Fourier-Walsh ex-

pansion.

The first assertion in my argument is related to a mathematical theory of noise stability and noise
sensitivity that goes back to Benjamini, Kalai, and Schramm (1999) [9] (and can be traced back to [14]).
In my lecture in Singapore I described this theory in the context of voting methods. How likely is it that
the outcome of an election will be reversed because of noise in counting the votes?

Let Ωn be the set of 0-1 vectors of length n. We start with a real function f(x1, x2, . . . , xn), and for a
real number t, we define the noise version of f as

Nt(f)(x) =
∑
y∈Ωn

f(x+ y)t|y|(1− t)n−|y|. (2)

Here y = (y1, y2, . . . , yn) is also a 0-1 vector and yi = 1 indicates “error in the ith coordinate”.
The sum x + y should be considered as a sum modulo 2: xi + 0 = xi and xi + 1 = 1 − xi, and
|y| = x1 + x2 + · · ·+ xn.

It turns out ([9]) that the behavior of noise for functions on Ωn is closely related to the Fourier–Walsh
expansion of the function. Here is a quick description. Recall that for S ⊂ [n] = {1, 2, . . . , n}, the
Walsh function WS is defined by W∅ = 1 and WS(x1, x2, . . . , xn) =

∏
i∈S zi, where zi = −2xi + 1. If

the Fourier-Walsh expansion of f is
f =

∑
S⊂[n]

f̂(S)WS, (3)

then
Nt(f) =

∑
S⊂[n]

f̂(S)(1− 2t)|S|WS. (4)

If the value of f is always 0 and 1 we call a f a Boolean function, and we can then regard f as a
voting rule for a two–candidate election. A deep finding from [9] is that for a wide class of voting rules,
only those voting rules that are close enough to the “majority” voting rule (or a weighted version of the
majority rule) are noise stable. We note that the majority voting rule is related to the very basic methods
for achieving robust classical information and computation.

We can now describe the “very low-level” computational complexity class LDP of probability dis-
tribution described by NISQ systems. The class LDP consists of probability distributions that can be
approximated by polynomials of bounded degrees. Indeed, when t > 0 is fixed and we apply the noise
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Figure 1. Probability distributions described by NISQ systems represent a low-level computational
class LDP.

Nt (defined by Equation (2)) to an arbitrary probability distribution D, the resulting distribution Nt(D)
can be well approximated by polynomials of bounded degree (roughly 1/t). (This easily follows from
Equation (4).) Distributions that can be (approximately) described by bounded-degree polynomials can
also be approximately described by bounded-depth (classical) circuits. (Those define a well-known
low-level complexity class AC0.)

When D is a probability distribution proposed for “quantum supremacy” (or arising from quantum
error-correcting codes), then, even when the level of noise is subconstant but (well) above 1/n, the
correlation between the two distributions D and Nt(D) tends to zero. This suggests that for realistic
forms of noise the noisy probability distribution will strongly depend on fine parameters of the noise
itself, leading to a “chaotic” behavior.

We note that the analysis of noise sensitivity of NISQ systems was initially carried out on another
model called “Boson Sampling” in [19]. For further discussion of Boson Sampling see [1, 34, 18, 15, 17].

5 The Google supremacy claims

5.1 The experiment

The Google experiment is based on the building of a quantum computer (circuit) with n qubits, that
perform m rounds of computation. The computation is carried out by a 1-qubit and 2-qubit gates. At
the end of the computation the qubits are measured, leading to a probability distribution on 0-1 vectors
of length n. For the ultimate experiment (n = 53, m = 20, 1113 1-qubit gates, 530 2-qubit gates) the
Google team produced a sample of a few million 0-1 vectors of length 53.

The specific circuit C used for the computation is a random circuit. For every experiment, the specific
gates are chosen, once and for all, at random (by a classical computer). Without noise the quantum
computer will produce samples from a certain probability distribution DC that depends on the specific

8



circuit C. Google’s quantum computers (like any other quantum computers currently available) are
“noisy,” so what the computer is actually producing are not samples from DC but rather a noisy version
that can roughly be described as follows: a fraction F of the samples are from DC and a fraction (1−F )
of the samples are from a uniform distribution. F is referred to as the fidelity.

5.2 The Google supremacy claims

The paper made two crucial claims regarding the ultimate 53-qubit samples.

A) The fidelity F of their sample is above 1/1000.

B) Producing a sample with similar fidelity would require 10,000 years on a supercomputer.

5.3 Google’s argument

As it was only possible to give indirect evidence for both these claims, we shall now describe the logic
of Google’s quantum supremacy argument.

For claim A) regarding the value of F , the paper describes a statistical estimator for F and the argu-
ment relies on a bold extrapolation argument that has two ingredients. One ingredient is a few hundred
experiments in the classically tractable regime: the regime where the probability distribution DC can be
computed by a classical computer and the performance of the quantum computer can be tested directly.
The other ingredient is a theoretical formula for computing the fidelity. According to the paper, the
fidelity of entire circuits closely agrees with the prediction of the simple mathematical formula (Formula
(77) in [6]; Equation (5) below) with a deviation below 10–20 percent. There are around 200 reported
experiments in the classically tractable regime including ones carried out on simplified circuits (which
are easier to simulate on classical computers). These experiments support the claim that the prediction
given by Formula (77) for the fidelity is indeed very robust and applies to the 53-qubit circuit in the
supremacy regime. We note that the samples for the 53-qubit experiment demonstrating “supremacy”
are archived, but that it is not possible to test them in any direct way.

For claim B) regarding the classical difficulty, the Google team mainly relies on extrapolation from
the running time of a specific algorithm they use. They also rely on the computational complexity
support for the assertion that the task at hand is asymptotically difficult. (It is also to be noted that using
conjectured asymptotic behavior for insights into the behavior in the small and intermediate scales relies
on a naturalness assumption.)

5.4 Estimating the fidelity

The Google argument relies crucially on the following simple formula (Formula (77) in [6]) for esti-
mating the fidelity F of their experiments.

Formula (77) in the Google paper F =
∏
g∈G1

(1− eg)
∏
g∈G2

(1− eg)
∏
q∈Q

(1− eq). (5)

Here G1 is the set of 1-gates (gates operating on a single qubit), G2 is the set of 2-gates (gates operating
on two qubits), and Q is the set of qubits. For a gate g, the term eg in the formula refers to the fidelity
(probability of an error) of the individual gate g. For a qubit q, eq is the probability of a read-out error
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when we measure the qubit q. If we replace the detailed individual values for the fidelities by their
average value we get a further simplification.

F ′ = (1− 0.0016)|G1|(1− 0.0062)|G2|(1− 0.038)n. (6)

The rationale for Formula (77) (Equation (5)) is simple: as long as there are no errors in the perfor-
mance of all the gates and all the measurements of the qubits, then we get a sample from the correct
distribution. A single error in one of these components leads to an irrelevant sample. The Google paper
reports that for a large number of experiments the actual fidelity estimated by Formula (77) (Equation
(5)) agrees with the statistical estimator for the fidelity up to 10%–20% percent. We can expect that the
value of F ′ will be a few percentage points higher than that of F . For the main form of circuits (full
circuits) used by Google, when the number of qubits is n and the number of layers is m (m is an even
integer), |G1| = n(m+ 1) and |G2| = nm/2.

5.5 Under the mathematical lens: The Porter–Thomas probability distributions, Archimedes,

and size-biased distributions

What does a “random” probability distribution look like?

Let X be a set and our task will be to describe a “random” probability distribution D on X . Consider
another real probability distribution Z where Z is a positive real number and E(Z) = 1. Now, to
x ∈ X we assign a probability z(x)/|X| drawn at random from Z. (To make sure that those are
indeed probabilities you need to normalize

∑
x∈X z(x) to 1.) This construction was made in a nuclear

physics paper by Porter and Thomas (1956) [29] for the case where Z is a χ2-distribution. The general
construction was made in a statistics paper by Kingman (1975) [21].

In the case of Google’s experiment, X = Ωn (the set of all 0-1 vectors of length n) and Z is the
exponential distribution with density function e−z. Also, D is not really random: it is a pseudorandom
distribution with properties very similar to those of a truly random distribution. Here, by pseudorandom
we mean a value, drawn by a computer program, that behaves “like” a random value. The twist here
is that the computer program is a quantum computer program. The assumption behind the quantum
supremacy claims is that computing this pseudorandom distribution is a very hard problem for a classical
computer, yet sampling from this distribution can be easily carried out by a quantum computer.

The exponential distribution, Archimedes and moment maps

The state of a quantum computer that performs a random sequence of gates is similar to a random unit
vector in the Hilbert space described by the computer. Now, when you consider a random unit vector
in a high-dimensional complex vector space, the distributions of the real and complex parts of each
coordinate are close to Gaussian and, therefore, the distribution of their sum of squares is exponential.
Indeed, recall that, in general, the sum of squares of k statistically independent Gaussians is χk, the
χ-square distribution with k degrees of freedom, and for k = 2 this is the exponential distribution. (The
statistical independence condition approximately holds for random unit vectors in high dimensions.)

There is a further interesting mathematical story related to why the probabilities DC(x) behave ac-
cording to a Porter–Thomas distribution based on an exponential distribution Z. The space ∆ of all
probability distributions on Ωn is a simplex of dimension 2n − 1. Now, consider a point, drawn at ran-
dom from a unit sphere in a complex space of dimension 2d. When we replace “amplitudes” (complex
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coefficients) by the associated real probabilities, we obtain (precisely, on the nose) a random probabil-
ity distribution, namely, a point from this simplex ∆ drawn uniformly at random. As pointed out by
Greg Kuperberg [24], the connection between the complex amplitudes and the probability distribution
is related to a theorem of Archimedes (c. 287 – c. 212 BC), whereby a natural projection from the unit
sphere to a circumscribing vertical cylinder preserves area. (It is also related to the “moment map” in
modern symplectic geometry.)

Statistics: Size-biased distributions

Let us suppose that you want to estimate the distribution D of the number of people in apartments. You
sample random people on the street and ask each one how many people share his apartment with him.
The distribution, E, of answers will not be identical to D: a quick way to see this is based on the fact
that people you meet on the street are not from empty apartments. We face a similar situation when
we let the quantum computer sample x ∈ Ωn (this is an analog to the random person we meet on the
street) and then computeDC(x) (this is an analog to asking about how many people share his apartment).
The resulting size-biased distribution is given by Γ = xe−x, and constitutes the basis for the statistical
estimator FXEB for the fidelity F . For more on size bias see [4].

Google’s statistic FXEB.

Once the quantum computer produces m samples x1, x2, . . . , xm, the following statistics is computed

FXEB = −1 + 2n 1

m

m∑
i=1

DC(xi).

The expected value of 2nDC(x) when x is drawn uniformly at random is∫ ∞
0

xe−xdx = 1,

while the expected value of DC(x) when x is drawn from the distribution Dc itself is∫ ∞
0

x2e−xdx = 2.

It follows that when x is drawn from the distribution FDC + (1− F )U , the expected value of 2nDc(x)
is 1 + F and, therefore, FXEB is an unbiased estimator for the fidelity F .

6 Preliminary assessment of the Google claims

The Google experiment represents a very large leap regarding several aspects of the human ability
to control noisy quantum systems. Accepting the Google claims requires a very careful evaluation
of the experiments and, of course, successful replications as well. The burden of producing detailed
documentation of the experiments and careful examining the experimental data and that of replications
lies primarily with the Google team itself and, naturally, also with the scientific community as a whole.
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In my view, there are compelling reasons to doubt the correctness of the Google supremacy claims.
Specifically, I find the evidence for the main supremacy claim A) concerning the 53-qubit samples too
weak to be convincing. Furthermore, in my opinion, there are compelling reasons to question the crucial
claims regarding perfect proximity between predictions based on the 1- and 2-qubit fidelity and the
circuit fidelity. Some of the outcomes reported in the paper appear to be “too good to be true”; that is,
the experimental outcomes are unreasonably close to the expectations of the experimentalists. In this
section we shall focus on the main example of this type.

It is to be noted that there are also several works that challenge Google’s claim B) regarding the
complexity of their sampling task on a classical computer. A team from IBM [27] demonstrated a
way of improving the running time by 6 orders of magnitude. Another group [37] demonstrated an
improvement all the way to within 1–2 orders of magnitude above the quantum running time for a
related (albeit, easier) sampling problem.

6.1 Formula (77): An amazing breakthrough or a smoking gun?

As you may recall, Formula (77) in the Google paper (Equation (5), Section 5.4) provides an estima-
tion the fidelity of a circuit based on the fidelities of its components.

Formula (77) F =
∏
g∈G1

(1− eg)
∏
g∈G2

(1− eg)
∏
e∈Q

(1− eq).

The Google paper claims that this formula estimates with a precision of 10–20% the probability of
the failure (fidelity) of a circuit. This remarkable agreement is a major new scientific discovery and
it is not needed for building quantum computers. Reaching sufficiently high fidelity levels is indeed
crucial, but the demonstration of such accurate predictions on the fidelity based on the error rates of the
individual components is neither plausible nor required. The precise fidelity estimation is only needed
for the specific extrapolation argument leading to the Google team’s supremacy declarations.

In my opinion the claim regarding the fidelity estimation is implausible nonsense and even if quantum
computers will eventually be built we are not going to witness the realization of this particular claim. Of
course, it might be interesting to check whether we ever see anything remotely like this for other groups
attempting to build quantum circuits, or indeed whether we ever see in any other field of engineering
such a good estimatiion of the failure probability of a physical system, with hundreds of interacting
elements, as the product of hundreds individual error-probabilities.

The Google team’s interpretation of this discovery is that it shows that there is “no additional decoher-
ence physics” when the system scales, and they justify the remarkable predictive power of their Formula
(77) (Equation (5)) with a statistical computation that is based on the following three ingredients.

1. Individual read-out and gate errors are accurate. The Google team reported that the level of mis-
takes for the individual qubit and gate fidelities is 20%.

2. Mistakes for the individual error estimates are unbiased; namely, there are no systematic mistakes

3. Error probabilities are statistically independent.

In my view all these claims are questionable and the second and third claims are very implausible.
This suggests that the excellent quality of the predictions based on Formula (77) reflects naive statistical
experimental expectations rather than physical reality.
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A few remarks: Let me first explain the issue of biased versus unbiased estimation (the second item)
with a simplified example. Suppose that you have space rocket with 900 components and the probability
of any component failing is estimated at 0.01. If one component fails, the entire space rocket fails.
Under a statistical independence assumption, the probability of success is (1− 0.01)900, which roughly
is 0.00012. If your estimate 0.01 for each individual component is correct up to an unbiased error of
20% (namely, with probability 1/2 the correct error probability is 0.012 and with probability 1/2 it is
0.008), then the deviation of the outcome can be estimated within roughly 3%. But if your estimation is
systematically biased in one direction by 20% then the effect on the probability of success is by a factor
of five or so.

We also note that positive correlation between the error probabilities will actually lead to higher fi-
delity. There is, in fact, an entire discipline, in statistics and systems engineering, called reliability
theory, that studies failure properties of devices based on the failure distributions of individual compo-
nents.

Finally, an explanation for the success of Formula (77), suggested by Peter Shor (in a discussion in
my blog) and various other scholars [13], is that the statistical independence needed for the success of
Formula (77) is justified for random circuits. I do not see a justification for this claim, but it surely
deserves further study.

6.2 What needs to be done

Listed below are steps required for a further assessment of the Google supremacy claims:

• Further documentation of past experiments and a more careful documentation of future experi-
ments.

• Replications of the experiments by the Google team: larger samples and further experiments in
the classically tractable regime.

• Blind tests: some of the required replications by the Google team should apply the standard
methodology of blind tests.

• Replications by other groups of various aspects of the Google claims including the supremacy
claims, the fidelity prediction claims, and the calibration methodology.

• Careful examination of the supremacy experiments both by the Google quantum-computing group
itself, by the scientific community, and by Google.

6.3 Under the mathematical lens: Noise, variance, and Pythagoras

Another aspect of the experiment that deserves thorough examination is the extent to which the noisy
distributions presented by Google’s experiment fit the theoretical expectation. This is one aspect of the
work I am currently conducting with Yosi Rinott and Tomer Shoham [20]. In this section we talk about
several interesting mathematical and statistical aspects of distributions produced by NISQ circuits.
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A toy model for the noise of quantum circuits

Below is a simple toy model of what the noisy version of a quantum sampling problem may look like.
It is based on the model from Section 4.4. Let D(x1, x2, . . . , xn) be a probability distribution on 0-1
vectors of length n. Given a parameter t we consider the noisy version of D as

Nt(D)(x) =
∑
y∈Ωn

D(x+ y)tk(1− t)n−k. (7)

Here, again, y = (y1, y2, . . . , yn) is also a 0-1 vector and yi = 1 indicates “error in the ith coordinate.”
The sum x + y should be considered as a sum modulo 2: xi + 0 = xi and xi + 1 = 1 − xi. If E is a
probability distribution on Ωn then we can consider a more general form of noise

Nt(D)(x) =
∑
y∈Ωn

D(x+ y)E(y). (8)

Equation (7) is the case where E(z) = Bt(z) = tk(1 − t)n−k, where k = |z|. For random (or
pseudorandom) quantum circuits, I expect that the effect of the noise on gates will be close to our model
for the case where E is a mixture of Bt(y)’s (more specifically, a Curie–Weiss distribution), and that this
mixture will have a strong positive correlation between errors. Modeling the noise by equations (7, 8)
abstracts away the dependence of noise on the structure of the circuits and I expect that such modeling
will be useful both qualitatively and quantitatively.

The second-order term of noise

Let us now move from an abstract study of noise to the Google experiment. A simple approximation of
the noisy distribution considered by Google is

FDC + (1− F )U, (9)

where F is the fidelity. Namely, with probability F we sample according to DC and with probability
(1− F ) we sample according to the uniform probability distribution.

A more detailed description that we may expect is of the form

FDC + (1− F )NC , (10)

where NC is a small fluctuation of the uniform distribution that also depends on the circuit C. As it
turns out, this more detailed form of noise does not affect Google’s size-biased distribution and the
FEXB estimator for the fidelity. Yet such more detailed descriptions of the noise can be examined by
performing similar tests specifically geared to the noise NC .

Let us denote by Fg the probability that no error occurs for 1-qubit or 2-qubit gates. We can split the
noisy distribution into three parts,

FDC + (Fg − F )NRO + (1− Fg)NG, (11)

where NG describes errors that involve also faulty gates, and NRO describes the effect of read-out errors
when there are no faulty gates. For the read-out errors, Equation (7) appears to give a good approxima-
tion, particularly under Google’s statistical independence assumption of read-out errors. Let ei denote
the error probability for the ith qubit; then,
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(Fg − F )NRO = (Fg − F )
∑

y∈Ωn,y 6=0

DC(x+ y)
∏

i:yi=1

(ei)
∏

i:yi=0

(1− ei). (12)

If we use averaged errors as in Equation (6) we reach a simpler formula. Let F ′ = (1−0.0016)|G1|(1−
0.0063)|G2|(1− 0.036)n, and F ′g = (1− 0.0016)|G1|(1− 0.0063)|G2|. We replace F ′DC + (1−F ′)U with
F ′DC + (F ′g − F ′)N ′RO + (1− F ′G)U with

(F ′g − F ′)N ′RO = (F ′g − F ′)
∑

y∈Ωn,y 6=0

DC(x+ y)(1− 0.036)|y|(0.036)n−|y|. (13)

Variance computation and Pythagoras

Let me refer to a problem that was raised in relation to the variance estimation of this statistical param-
eter. Given a circuit C one can estimate the variance of the parameter for various samples. However,
when considering the required size of samples for several experiments for various circuits, one needs to
compute the variance across different circuits, while using the following formula:

var(A) = E(var(A|B)) + var(E(A|B)). (14)

When my friend and colleague Yosi Rinott teaches this formula for computing the variance, he tells
the students that they have surely seen this formula before. For us it is an opportunity to see Greg
Kuperberg’s reference to Archimedes (Section 5.5) and raise him another 200 years (backwards) to
Pythagoras (c. 570 – c. 495 BC). Indeed Equation (14) is just a disguised form of the Pythagorean
theorem.

A further glimpse into my study with Yosi Rinott and Tomer Shoham

Our study [20] of the variance estimate of the Google team supports the judgement they made in choos-
ing the statistics FXEB. Compared to other estimates of a similar nature, FXEB has smaller variance and
therefore smaller samples are required for definite results. Our study also shows that a more precise de-
scription of the noise (of the kind considered above) will not make a difference as to the expected value
of FXEB and will only make a small insignificant difference as to the variance. (Here the Pythagorean
formula for the variance (Equation (14)) comes into play.)

On the other hand, essentially the same computation shows that the small sample size allows us to
check on the data our proposal for the read-out noise, NRO, and thus to distinguish between noisy
samples according to the more naive Equation (9) from those based on the more realistic Equation (11).
This amounts to an interesting statistical test of the quality of the data of the Google experiment that
calls for further study.

7 The laws

Without further ado let us now move to the laws of physics that emerge from the failure of quantum
computers.
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Law 1: Time-dependent quantum evolutions are inherently noisy.

Law 2: Probability distributions described by low-entropy states are noise-stable and can

be expressed by low-degree polynomials.

Law 3: Entanglement is accompanied by correlated errors.

Law 4: Quantum noise accumulates.

We emphasize that these four laws are compatible with quantum mechanics.

7.1 The first law – Time-dependent quantum evolutions are inherently noisy.

Time dependence for a quantum evolution amounts to an interaction with the environment and the
first law asserts that there is no way around the noise – not for a single qubit and not for more involved
quantum evolutions. In Section 7.5.2 below we briefly suggest how to put the first law on formal grounds.

7.2 The second law – Probability distributions described by low-entropy states are noise-

stable and can be approximated by low-degree polynomials.

The second law extends our discussion of quantum computers in the NISQ regime. The noise causes
the high-degree terms, in a certain Fourier-like expansion of the probability distribution, to be reduced
exponentially with the degree. Low-entropy states for which the effect of the noise is small, have prob-
ability distributions expressed by low-degree Fourier terms.1 Such noise-stable states represent the very
low-level computational complexity class, LDP, the class of probability distributions that can be approx-
imated by low-degree polynomials. Our second law applies to quantum evolutions in nature that can be
described by quantum circuits, and it is a plausible assumption that this applies universally (under some
caveats; see Section 8.21). We can expect that the specific “Fourier-like expansion” will be different for
different physical settings but that the same computational class LDP will apply in general.

7.3 The third law – Entanglement is accompanied by correlated errors.

The third law asserts that the errors for the two qubits of a cat state necessarily have a large positive
correlation. Here also we extend well-accepted insights for NISQ systems to general quantum systems.
This is an observed and accepted phenomenon for gated qubits and, without quantum error-correction, it
is inherited to all pairs of entangled qubits. An important consequence of the third law is that complicated
quantum states and evolutions lead to error synchronization, namely, to a substantial probability that a
large number of qubits, far beyond the average rate of noise, are hit by noise.2 We note that this law is
related to our proposed modeling in Section 6.3 (Equation (8)) but is not related to correlations in the
computation of fidelity via Formula (77).

1For the definition of entropy see Section 7.5.1 below. Meanwhile, we can think of “low entropy” as a synonym for “high
fidelity”.

2The third law is not based on a new way to model noisy quantum circuits, but rather is derived from the ordinary models
under the assumption that the error rate does not enable quantum error-correction. It will be interesting to test quantitative
aspects of the law both by simulation and by experiments.
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7.4 The fourth law – Quantum noise accumulates.

The fourth law expresses the fact that without noise cancellation via quantum fault-tolerance, quantum
noise must accumulate. In Section 7.5.2 we briefly suggest how to put the fourth law on formal grounds.

7.5 Under the mathematical lens: Noise, time, and non-commutativity

7.5.1 Noise, mixed states, density matrices, and entropy

In quantum physics, states and their evolutions (the way they change over time) are governed by the
Schrödinger equation. A solution of the Schrödinger equation can be described as a unitary process on
a Hilbert space, and the states (which are called “pure states”) are simply unit vectors in this Hilbert
space. Quantum computers, as described above, form a large class of such quantum evolutions, and it
is even a common view that all quantum processes in nature (or at least all “local” quantum processes)
can be described efficiently by quantum computers. When you add noise to the picture you encounter
more general types of states (called “mixed states”) that can be described (not in a unique way) as a
classical probability distribution of pure quantum states.3 Mathematically speaking, if ρ is a pure state
and hence a (row) unit vector in (say) an N -dimensional space, we represent ρ by the matrix ρtrρ. (This
matrix is the outer product of φ with itself; in the quantum “bra-ket” notation we write it as |ρ〉〈ρ|.) A
convex combination of such matrices represents a general mixed state and this representation is referred
to as the density matrix representation.4 The von Neumann entropy S(ρ) of a state ρ (in terms of the
density matrix description) is defined by S(ρ) = −tr(ρ log ρ). (Here we refer to logarithm as a function
on matrices and logarithm is taken to the base 2.) The entropy is always non-negative and, for a state ρ,
S(ρ) = 0 if and only if ρ is a pure state.

7.5.2 Commutativity, time, and time-smoothing

I will now briefly describe some mathematical ideas required for putting the first and fourth laws on
more formal grounds. One obstacle we face when trying to mathematically express the claim that time-
dependent evolutions are noisy is that the parameterization of time we start with is arbitrary. We need
to consider a canonical parameterization of time. Now, you may recall that two operators U and W (or
matrices) are commutative if UW = WU . For two operators U and W that do not commute (namely,
UW 6= WU ) a non-commutativity measure refers to a quantitative way to measure by how much U and
W fail to commute.

The first law (reformulated): Noise in a certain time interval is bounded below by a non-

commutativity measure of the involved unitary operators.

Furthermore, such a non-commutativity measure can be regarded as an intrinsic parameterization of
time for a quantum evolution.

The fourth law asserts that quantum noise must accumulate and that noise cancellation via quantum
fault-tolerance is not possible. To express this idea mathematically we model “noise accumulation”

3An alternative description of noisy states and evolutions can be given in terms of a larger Hilbert space H ′ ⊃ H , and
unitary process on H ′.

4Quantum evolutions on density matrices are described by “quantum operations.” We will not discuss them here, but only
mention that their study was the starting point of central areas in mathematics.
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by considering a subclass of all noisy quantum evolutions where the noise is given by a certain time-
smoothing operation.

The fourth law (reformulated) – Noisy quantum evolutions are subject to convoluted time-

smoothed noise.

Convoluted time-smoothing is a certain mathematical operation that averages out the error over time.
(For the definition see [17][Sec.4.6.2],[15].) The crucial property is that the “convoluted time-smoothing”
can be applied to every noisy quantum evolution, but not every noisy quantum evolution is obtained by
such a smoothing. We thus end up with a subclass of all noisy quantum evolutions, which is suggested
as a class of evolutions where quantum noise necessarily accumulates. We face the difficulty that for
general quantum evolutions time parameterization is arbitrary and, here too, we need to take the param-
eterization of time for the smoothing to be intrinsic.

8 Possible connections and applications

In this section we mention various potential applications and connections to physics arising from
a fundamental failure of quantum computation and quantum error-correction. (A few of the insights
described in this section can apply to fragments of quantum physics and quantum engineering even in
the case where quantum computers are possible.)

8.1 Time and geometry

For classical computers, the program you run is not restricted by the geometry of the computer, and the
information described by a piece of your hard disc does not depend on the geometry of that piece. This is
such an obvious insight that we do not even spare it a second thought. Universal quantum computers will
allow implementing quantum states and quantum evolutions on an array of qubits of arbitrary shape. On
the other hand, the impossibility of quantum error-correction suggests that quantum states and evolutions
constrain the geometry. The failure of quantum fault-tolerance will contradict computer-based intuitions
that the information does not restrict the geometry, but will agree with insights from physics, where
witnessing different geometries supporting the same physics is unusual and important. An example of
an important geometric distinction, when it comes to quantum behavior, is the different behavior for
different geometric scales: we witness very different microscopic physics, mesoscopic physics, and
macroscopic physics.

The same is true for time. With quantum fault-tolerance, every quantum evolution that can experi-
mentally be created can be time-reversed and, in fact, we can permute the sequence of unitary operators
describing the evolution in an arbitrary way. In a reality where quantum fault-tolerance is impossible,
time reversal is not always possible

It is a familiar idea that since (noiseless) quantum systems are time-reversible, time emerges from
quantum noise (decoherence). (This idea has its early roots in classical thermodynamics.) Putting
geometry and time together, we can propose that, generally speaking, quantum noise and the absence of
quantum fault-tolerance enable the emergence of time and geometry.
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8.2 Superposition and teleportation

In a recent paper about the future of physics, Frank Wilczek (2015) [35] predicts that large-scale
quantum computers would eventually be built and describes why these excite him: “A quantum mind
could experience a superposition of ‘mutually contradictory’ states, [...] such a mind could revisit the
past at will, and could be equipped to superpose past and present. To me, a more inspiring prospect than
factoring large numbers.”

Indeed, superposition is at the heart of quantum physics – and a common intuition that is supported
by an ability to build universal quantum computers is that for every two quantum states that can be
constructed, their superposition can also be constructed. Similarly, a common intuition is that every
quantum state that can be prepared can also be teleported.

A central insight stemming from the argument against quantum computing (and the various proposed
laws associated with it) is that already for a small number of qubits certain pure states cannot be well
approximated. (The fidelity F is a good measure for what “well approximated” means.) For two pure
states ρ1, ρ2 that can be achieved but are close to the limit, a superposition between ρ1 and ρ2 that requires
a more complicated circuit than that needed for ρ1 and ρ2 may already be beyond reach. By the same
token, there is a quantum state ρ that can be well approximated but is close to the limit, and cannot be
teleported. The reason is that a circuit needed to demonstrate a teleportation for ρ is considerably more
involved than a circuit needed to demonstrate ρ.

8.3 Predictability and chaos

Noise sensitivity asserts that for very general situations the effect of the noise will be devastating.
This means that the actual outcomes not only will largely deviate from the ideal (noiseless) outcomes
but also will be very dependent on fine parameters of the noise, thus leading to processes with large
chaotic components.

8.4 The black-hole information paradox

Quantum information and computation play a role in explanations of the black-hole information para-
dox.5 Of particular importance in these explanations are “pseudorandom” quantum states of the kind
Google attempts to build (but on a much larger number of qubits). According to our laws, such pseu-
dorandom quantum states cannot be achieved locally, and this goes against the rationale of some of the
attempted solutions. On the other hand, our laws asserting that A) qubits are inherently noisy and B)
entanglement is necessarily accompanied by correlated noise, may already suggest a resolution to some
versions of the “paradox” (e.g., to those based on no-cloning, or on monogamy of entanglement).

8.5 The time-energy uncertainty principle

The time–energy uncertainty principle (TEUP) is a much-studied (controversial) issue in quantum
mechanics. Counterexamples were given by (Yakir) Aharonov and Bohm [3], and are based on the
ability to prescribe time-dependent quantum processes. A counterexample to an even weaker and more
formal version of TEUP was given by (Dorit) Aharonov and Atia [7] based on Shor’s factoring algorithm.

5In the absence of a definite theory of quantum gravity, the paradox can be seen as lying between the foundation of physics
and philosophy.
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Our study casts doubt on the very ability to prescribe noiseless time-dependent quantum evolutions at
will, while also challenging the feasibility of Shor’s algorithm, and thus the picture drawn here in fact
militates against the physical relevance of these counterexamples.

8.6 Realistic models for fluctuations

One interesting property suggested by a critical look at the theory of quantum fault-tolerance is that
fluctuations in quantum systems with an (even small) amount of interaction are super-Gaussian (perhaps
even linear). Here, we challenge one of the consequences of the general Hamiltonian models allowing
quantum fault-tolerance (see, e.g., [30]). These models allow for some noise correlation over time
and space but they are characterized by the fact that the error fluctuations are sub-Gaussian. Namely,
when there are N qubits the standard deviation for the number of qubit errors behaves like

√
N and the

probability of more than t
√
N errors decays as it does for Gaussian distributions.

There are various quantum systems where the study of fluctuations will prove interesting. For ex-
ample, systems for highly precise physical clocks are characterized by having a huge number N of
elements with extremely weak interactions. We still expect (and this may even be supported by current
knowledge) that in addition to

√
N -fluctuations there will also be some εN -fluctuations. Of course, the

relation between the level of interaction and ε is of great interest. (The intuition of sub-Gaussian fluc-
tuations may even be more remote from reality for engineering devices and this is also related to our
discussion of Google’s Formula (77).)

8.7 The unsharpness principle

The unsharpness principle is a property of noisy quantum systems that can be proved for certain
quantizations of symplectic spaces. This was studied by Polterovich (in [28]) who relies on deep notions
and results from symplectic geometry and follows, on the quantum side, some earlier works by Ozawa
[25], and Busch, Heinonen, and Lahti [11]. Here, the crucial distinction is between general positive
operator-valued measures (POVMs) and von-Neumann observables, which are special cases of POVMs
(also known as projector-valued POVMs). The unsharpness principle asserts that (under some locality
condition) certain noisy quantum evolutions described by POVMs must be unsharp, namely “far” from
von-Neumann observables. The amount of unsharpness is bounded below by some non-commutativity
measure. It is interesting to explore the (mathematical and physical) scope of the unsharpness principle
and its connection to our first law.

8.8 Topological quantum computing

Topological quantum computing is an approach whereby robust qubits are created not by implement-
ing quantum error-correction on NISQ circuits but by realizing stable qubits via anyons. The argument
from Section 4 can be extended to apply also to this case (see [18][Sec. 3.5]. In any case, it is plausible
that topological quantum computing and circuit-based quantum computing will meet the same fate.

8.9 Are neutrinos Majorana fermions?

Majorana fermions are a type of fermions constructed mathematically by Majorana in 1937 but so
far not definitely detected in nature. However, there is a compelling argument that neutrinos (or, more
precisely, an expected yet undiscovered heavy type of neutrino) are Majorana fermions.
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At the ICA workshop in Singapore, David Gross commented that anyonic qubits required for topologi-
cal quantum computing are based on condensed-matter analogs of Majorana fermions, which constitutes
a strong argument that anyonic qubits are feasible. Taking this analogy for granted, we can ask whether
an argument against topological quantum computing casts doubts on the common (conjectural) expec-
tations for Majorana fermions. However, a review of the literature (e.g., [8]) and consultations with
colleagues revealed that Majorana fermions from high-energy physics are most commonly regarded as
analogs of more mundane objects (Bogoliubov quasiparticles) from condensed-matter physics. There-
fore, the argument against topological quantum computers and stable anyonic qubits does not shed light
on the nature of neutrinos (but this is indeed the kind of insight we would hope to get).

8.10 Noise stability and high energy physics

Extending the framework of noise stability and sensitivity to mathematical objects of high energy
physics is an appealing challenge. Let us assume for a minute that this can be done. We can ask if our
second law asserting that realistic quantum states and evolutions are noise-stable provides some insights
into the various mysteries surrounding definite, but unexplained, features of the standard model.

8.11 Does nature support supersymmetry?

Supersymmetry is a famous mathematical extension of the mathematics of the standard model. It is
widely believed that supersymmetry, and, in particular, supersymmetric extensions of the standard model
are crucial to understanding physics beyond the standard model and quantum gravity. So far, there is no
definite experimental support for this belief.

Our second law imposes a severe limitation on quantum states and evolutions and asserts that they
can be described within a very restrictive computational class LDP of low-degree polynomials. We
asked above whether this law can contribute to the understanding of the standard model, and we can
ask the same question with reference to the proposed supersymmetric extensions of the standard model.
Our second law supports classical error-correction and classical computation but not quantum error-
correction and quantum computation, and an appealing analogy might be that the second law does not
support supersymmetric extensions of the standard model at all.

8.12 Cooling and exotic states of matter

Noise stability, or the bounded-depth/low-degree polynomial description, may shed (pessimistic) light
on the feasibility of various exotic states of matter. In some cases, such exotic states of matter are beyond
reach, and, in other cases, the computational restriction may apply only to low-temperature states. (As
the entropy increases, there are more opportunities to represent our state as a mixture of pure states that
abide by the complexity requirement.) Within a symmetry class of quantum states (or for classes of
states defined in a different way), noise stability, or the low-degree polynomial description, may provide
an absolute lower bound for cooling. An appealing formulation would be that for a class of quantum
states the “absolute zero” temperature may depend on the class.

8.13 The emergence of classical information and computation

The class LDP of functions and probability distributions that can be approximated by low-degree
polynomials does not support quantum supremacy and quantum error-correction, yet it still supports
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Figure 2. Low-entropy quantum states give probability distributions described by low degree polyno-
mials, and very low-entropy quantum states give chaotic behavior. Higher entropy enables classical
information.

robust classical information, and with it also classical communication and computation. The “majority”
Boolean function, has excellent low-degree approximations and allows for very robust classical bits
based on a large number of noisy bits (or qubits). It is possible that every form of robust information,
communication, and computation in nature is based on classical error-correction where information is
encoded by repetition (or simple variants of repetition) and decoded in turn by some variant of the
majority function. (On top of this rudimentary form of classical error-correction, we sometimes witness
more sophisticated forms of classical error-correction.)

8.14 Learnability of physical systems

The theory of computing studies not only efficient computing but also efficient learning, namely, the
ability to efficiently learn a member in a class from examples. One major insight is, that compared to car-
rying out computation when the model is known, it is notably much harder to learn an unknown model.
Efficient learning is very restrictive, but our very low-level class LDP allows for efficient learning. This
might provide an explanation for our ability to understand natural processes and the parameters defining
them.

8.15 Reaching ground states

Reaching ground states is computationally hard (NP-hard) for classical systems, and even harder for
quantum systems. So how does nature reach ground states so often? Quantum evolutions and states
approximated by low-degree polynomials represent severe computational restrictions, that can make
reaching ground states computationally easy, and this provides a theoretical support as to why, in many
cases, nature easily reaches ground states.
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8.16 Noise and symmetry

One insight from the failure of quantum error-correction and the accumulation of noise is that noisy
quantum states and evolutions are subject to noise that respects their symmetries.

An interesting example is that of Bose–Einstein condensation. For a Bose–Einstein state on a bunch
of atoms, one type of noise corresponds to an independent noise for the individual atoms. Another type
of noise represents fluctuations of the collective Bose–Einstein state itself. This is the noise that respects
the internal symmetries of the state and it is expected that such a form of noise must always be present.

8.17 Does Onsager’s thermodynamic principle apply to quantum systems?

(This connection was suggested by Robert Alicki years ago.) Onsager’s thermodynamical law ex-
presses the idea that the statistical laws for the noise are related to the statistical laws for the “signal.”
This idea is related to the effects of noise accumulation and to some of the items previously discussed.
There is some controversy regarding the question of whether and how Onsager’s law extends to quantum
physics and it will be interesting to see whether the proposed counterexamples are in tension with our
restrictions on noisy quantum processes.

8.18 The extended Church–Turing thesis

The extended Church–Turing thesis (ECCT) (see, e.g., [36] and [26]) asserts that every realistic com-
puting device can only perform efficient classical computation. Universal quantum computers violate the
extended Church–Turing thesis. By contrast, our theory supports the validity of the extended Church–
Turing thesis. See [18] for a detailed discussion. (We note that our theory is not based on the ECCT, but
rather on computational complexity consideration for very low-level complexity classes.)

8.19 Naturalness revisited

Here are three examples of similar deductions based on the naturalness heuristic for computational
complexity.

The first example is an important part of the theoretical foundation of the Google experiment.

A1) Finding a sample with FXEB > ε is exponentially hard as a function of n (for a fixed ε).

A2) This supports the assertion that achieving this task (for ε = 1/1000) on 53 qubits represents
quantum supremacy.

The second example refers to a recent proposal for implementing Shor’s factoring algorithm using
classical devices called stochastic magnetic circuits [10].

B1) The computational power of the stochastic magnetic circuits offered for implementing Shor’s al-
gorithm is within P.

B2) This supports the assertion that these devices offer no superior way to factor integers.

And, finally, the third example is the crux of my argument against quantum computers.

C1) The computational power of NISQ computers is P (for a fixed rate, ε, of noise).

C2) This supports the assertion that NISQ computers offer no superior computation.
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8.20 “So what about the energy levels of the lithium atom?”

The argument against superior quantum computation suggests that robust computations performed by
nature can, at least in principle, be carried out efficiently on a digital computer. Yet, there are robust
physical quantities that “nature computes” for which efficient classical computations (and especially
computations “from first principles”) are currently unavailable. (For more on this issue, see [16][Sec.
6.5 and Sec 4.] or [15].)

8.21 “It from qubit”: Does entanglement explain geometry and gravity?

Over the last decade, there have been several proposals (often referred to as “it from qubit”) that grav-
ity (and other parts of physics) can be understood from insights and techniques derived from quantum
information theory and particularly entanglement. People have raised questions like: Does spacetime
emerge from entanglement? Can entanglement shed light on gravity? And can quantum computers
simulate all physical phenomena?

The idea that spacetime emerges from entanglement is in line with the concept whereby quantum
states restrict time and geometry. Yet, the type of entanglement presented in some of these works is
often well beyond the reach of local quantum processes according to our viewpoint. Some proposed
connections between spacetime and entanglement might be consistent with a (speculative) possibility
that nature is described by more than one local system when certain states that are mundane for one
local system are highly entangled for other systems.

8.22 Theory, reality, and practice

Many of the items listed in this section may lead to interesting mathematics, and I hope to put some
of them under the mathematical lens or better yet, to see this done by others. Let me suggest a wider
context for the discussion, on that encompasses understanding the relation between theory, reality, and
practice in computer science, in physics, and in other applications of mathematics.6

9 Conclusion

My work on quantum computation started in 2005 and is marked by three major stages. Until 2013 I
mainly studied correlations of errors (for entangled states) and my efforts could be described (in hind-
sight) as mainly trying to draw conclusions from the failure of quantum fault-tolerance. Some of those
conclusions are described in Sections 7 and 8. The connection to noise stability and noise sensitivity,
leading to my computational theoretic argument against quantum computers arose from my 2014 work
with Guy Kindler on Boson Sampling. Conducting a large part of the discussion in English, while at
times placing some fragments under the mathematical lens, is characteristic not only of this paper but of
my work as a whole.

As of the end of 2019, my argument against quantum computers was challenged by a bold far-reaching
experimental claim. Seeking to critically study and possibly refute the Google claims is different from
merely seeking to understand the laws of abstract noisy quantum systems. Having an opportunity to

6The relations between the theory of computing and practical reality was one of the themes in my ICM2018 paper [17],
and it is based on three examples: linear programming, voting methods, and quantum computers.
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rethink matters of statistics (with my colleague Yosi Rinott and others) is pleasant, but, on the other
hand, trying to understand what is really going on in the Google experiment is also, in various ways, less
uplifting. Yet, I also find this pursuit to be of interest and importance that extend beyond the specific
case in question. I wish to stress that my critique of the Google experiment was first brought to the
attention of the Google team and discussed with them. In the skepticism and debate that have swirled
around quantum computing and that I have been involved with in the past 15 years, winning has not been
the only thing, indeed it has not even been the most important thing. What I find important is making the
right choices and right judgements in delicate scientific and social situations that are full of uncertainties.

Over the past four decades, the very idea of quantum computation has led to many advances in sev-
eral areas of physics, engineering, computer science, and mathematics. I expect that the most important
application will eventually be the understanding of the impossibility of quantum error-correction and
quantum computation. Overall, the debate over quantum computing is a fascinating one, and I can see a
clear silver lining: major advances in human ability to simulate quantum physics and quantum chemistry
are expected to emerge if quantum computational supremacy can be demonstrated and quantum com-
puters can be built, but also if quantum computational supremacy cannot be demonstrated and quantum
computers cannot be built.

Some of the insights and methods characteristic of the area of quantum computation might be useful
for classical computation of realistic quantum systems – which is, apparently, what nature does.
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percolation, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 90 (1999),
5–43.

[10] W. A. Borders, A. Z. Pervaiz, S. Fukami, S. et al., Integer factorization using stochastic magnetic
tunnel junctions, Nature 573 (2019), 390–393.

[11] P. Busch, T. Heinonen, and P. Lahti, Noise and disturbance in quantum measurement, Physics
Letters A 320 (2004), 261–270.

[12] R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics
21 (1982), 467–488.

[13] S. Irani (Moderator), Supremacy Panel, Hebrew University of Jerusalem, Dec. 2019. Partici-
pants: D. Aharonov, B. Barak, A. Bouland, G. Kalai, S. Aaronson, S. Boixo, and U. Vazirani.
https://youtu.be/ Yb7uIGBynU .

[14] J. Kahn, G. Kalai, and N. Linial, The influence of variables on Boolean functions, in Proceedings
of the 29th Annual Symposium on Foundations of Computer Science, 1988, pp. 68–80.

[15] G. Kalai, The quantum computer puzzle, Notices of the American Mathematical Society 63 (2016),
508–516.

[16] G. Kalai, The quantum computer puzzle (expanded version), arXiv:1605.00992.

[17] G. Kalai, Three puzzles on mathematics, computation and games, in Proceedings of the Interna-
tional Congress of Mathematicians 2018, Rio de Janeiro, Vol. I 2018, pp. 551–606.

[18] G. Kalai, The argument against quantum computers, in: M. Hemmo, and O. Shenker,(eds.) Quan-
tum, Probability, Logic: Itamar Pitowsky’s Work and Influence, Springer(2020),pp. 399–422,
arXiv:1908.02499.

[19] G. Kalai and G. Kindler, Gaussian noise sensitivity and BosonSampling (2014), arXiv:1409.3093.

[20] G. Kalai, Y. Rinott, and T. Shoham, work in progress.

[21] J. F. C, Kingman, Random discrete distributions, Journal of the Royal Statistical Society. Series B
37 (1975), 1–22.

[22] A. Y. Kitaev, Quantum error correction with imperfect gates, in Quantum Communication, Com-
puting, and Measurement , Plenum Press, New York, 1997, pp. 181–188.

[23] E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum computation: Error models and thresh-
olds, Proceedings of the Royal Society of London A 454 (1998), 365–384.

[24] G. Kuperberg, Archimedes other principle and quantum supremacy, Guest post on “Shtetl Opti-
mized,” Nov. 2019.

[25] M. Ozawa, Uncertainty relations for joint measurements of noncommuting observables, Physics
Letters A 320 (2004), 367–374.

26



[26] I. Pitowsky, The physical Church thesis and physical computational complexity, lyuun, A Jerusalem
Philosophical Quarterly 39 (1990), 81–99.

[27] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, and R. Wisnieff, Leveraging secondary storage
to simulate deep 54-qubit Sycamore circuits (2019), arXiv:1910.09534.

[28] L. Polterovich, Symplectic geometry of quantum noise, Communications in Mathematical Physics
327 (2014), 481–519.

[29] C. E. Porter and R. G. Thomas, Fluctuations of nuclear reaction widths, Physical Reviews 104
(1956), 483–491.

[30] J. Preskill, Sufficient condition on noise correlations for scalable quantum computing, Quantum
Information and Computing 13 (2013), 181–194.

[31] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer, SIAM Review 41 (1999), 303–332. (Earlier version, Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, 1994.)

[32] P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical Review A
52 (1995), 2493–2496.

[33] A. M. Steane, Error-correcting codes in quantum theory, Physical Review Letters 77 (1996), 793–
797.

[34] L. Troyansky and N. Tishby, Permanent uncertainty: On the quantum evaluation of the determinant
and the permanent of a matrix, in Proceedings of the 4th Workshop on Physics and Computation,
1996.

[35] F. Wilczek, Physics in 100 years, arXiv:1503.07735 (2015).

[36] S. Wolfram, Undecidability and intractability in theoretical physics, Physical Review Letters 54
(1985), 735–738.

[37] Y. Zhou, E. M. Stoudenmire, X. Waintal, What limits the simulation of quantum computers?,
arXiv:2002.07730.

27


