
INFLUENCES OF VARIABLES AND THRESHOLDINTERVALS UNDER GROUP SYMMETRIESJ. Bourgain(1) G. Kalai(2)0. Introduction.A subset A of f0; 1gn is called monotone provided if x 2 A; x0 2 f0; 1gn; xi � x0i fori = 1; : : : ; n then x0 2 A. For 0 � p � 1, de�ne �p the product measure on f0; 1gn withweights 1� p at 0 and p at 1. Thus�p(fxg) = (1� p)n�jpj where j = #fi = 1; : : : ; njxi = 1g: (0.1)If A is monotone, then �p(A) is clearly an increasing function of p. Considering A as a\property", one observes in many cases a threshold phenomenon, in the sense that �p(A)jumps from near 0 to near 1 in a short interval when n ! 1. Well known examples ofthese phase transitions appear for instance in the theory of random graphs. A generalunderstanding of such threshold e�ects has been pursued by various authors (see for in-stance Margulis [M] and Russo [R]). It turns out that this phenomenon occurs as soon asA depends little on each individual coordinate (Russo's zero-one law). A precise statementwas given by Talagrand [T] in the form of the following inequality.De�ne for i = 1; : : : ; n Ai = fx 2 f0; 1gnjx 2 A; Uix 62 Ag (0.2)where Ui(x) is obtained by replacement of the ith coordinate xi by 1� xi and leaving theother coordinates unchanged. Let  = supi=1;::: ;n�p(Ai): (0.3)(1)Institute for Advanced Study, Princeton, NJ 08540, USA(2)Hebrew University of Jerusalem, Jerusalem, Israel Typeset by AMS-TEX1



Then d�p(A)dp � c log(1=)p(1� p) log[2=p(1� p)] �p(A) [1� �p(A)] (0.4)where c > 0 is some constant.De�ning for i = 1; : : : ; n the functions"i(x) = 2xi � 1 (0.5)one gets d �pd�1=2 = 
ni=1 [1 + (2p� 1)"i] (0.6)d�p(A)dp = 2=p nXi=1 Z �A(x)"i(x) 
j 6=i [1 + (2p� 1)"j ]� 12 (dx)= 2=p nXi=1 �p(Ai): (0.7)The number �p(Ai) is the inuence of the ith coordinate (with respect to �p) and the rightside of (0.7) represents thus the sum of the inuences. Hence a small threshold intervalcorresponds to a large sum of inuences. Relation (0.7) is due to Margulis and Russo. In[T], (0.4) is deduced from an inequality of the form�p(A)[1� �p(A)] � C(p) nXi=1 �p(Ai)log[1=�p(Ai)] : (0.8)This last inequality and its proof relies on the paper by Kahn, Kalai and Linial [KKL],where it is shown that always sup1�i�n�1=2(Ai) � c lognn : (0.9)Friedgut and Kalai [FK] used an extension of (0.9) given in [BKKKL] to show that forproperties which are invariant under the action of a transitive permutation group thethreshold interval is O(1= logn) and proposed some conjectures on the dependence of thethreshold interval on the group. 2



Our aim here is to obtain a re�nement and strengthening of the preceding in the contextof \G-invariant" properties. Let f be a 0; 1-valued function on f0; 1gn and G a subgroup ofthe permutation group on n elements n = f1; 2; : : : ; ng. Say that f is G-invariant providedf(x1; : : : ; xn) = f(x�(1); : : : ; x�(n)) for all x 2 f0; 1gn; � 2 G: (0.10)Given G, de�ne for 1 � t � n�(t) = �G(t) = minS�n;jSj=t log(#f�(S)j� 2 Gg) (0.11)and for all � > 0 a� (G) = supf�(t)j�(t) > t1+�g: (0.12)Observe that since �(t) � log�nt �, necessarily a� (G) . (logn)1=� .Theorem 1. Assume G transitive and A a monotone G-invariant property. Then for all� > 0 d�p(A)dp > c�a� (G)�p(A)[1� �p(A)] (0.13)provided p(1� p) stays away from zero in a weak sense saylog[p(1� p)]�1 . log logn: (0.14)It follows that in particular the threshold interval is at mostC�a� (G)�1 for all � > 0: (0.15)Previous results as mentioned above only yield estimates of the form (logn)�1 and themain point of this work is to provide a method going beyond this.Theorem 1 is deduced from (0.7) and the following fact, independent of monotonicityassumptions. 3



Theorem 2. Assume A G-invariant and (0.14) holds. Then for all � > 0X�p(Ai) > c�a� (G)�p(A)[1� �p(A)]: (0.18)Comments.(1) For every group G one can always exhibit a G-invariant property with threshold interval� 1a(G) . For primitive permutation groups except when G = Sn is the full permutationgroup (or equivalently the alternating group), the result is nearly optimal in the sensethat one may always exhibit a G-invariant property with threshold interval � 1a(G) . ForG = Sn; An a threshold interval . 1pn is obtained,(�) while Theorem 1 only (logn)�M(M arbitrary) predicts. In fact, the analysis as presented below permits to take � �1plog t but may conceivably be further re�ned. It is possible that the theorem holds for� � log tt and even an improvement to � � 1log t will imply a precise (up to a multiplicativeconstant) answer for all primitive groups.(2) In the particular case of monotone graph properties on N vertices, we get n = �N2 �and G is induced by permuting the vertices. One gets essentially�(t) � log� Npt� (0.16)in this situation and the conclusion of Theorem 1 is that any threshold interval is atmost C� (logN)�2+� ; � > 0. This is essentially the sharp result, since, �xingM � logN ,the property for a graph on N vertices to contain a clique of size M yields a thresholdinterval � (logN)�2.For primitive permutation groups Theorem 1 implies a close to complete description ofthe possible threshold interval of a G-invariant property, depending on the structure of G.(Recall that a permutation group G � Sn is primitive if it is impossible to partition n toblocks B1; : : :Bt, t > 1 so that every element in G permute the blocks among themselves.)(�)Consider for instance A = fx 2 f0; 1gnjP xi > n2 g, with threshold interval � 1pn4



It turns out that there are some gaps in the possible behaviors of the largest thresholdintervals. This interval is proportional to n�1=2 for Sn and An but at least log�2 n for anyother group. The worst threshold interval can be proportional to log�c n for c belongingto arbitrary small intervals around the following values: 2; 3=2; 4=3; 5=4 : : : or for c whichtends to zero as a function of n in an arbitrary way. This (and more) is summarized inthe next theorem. First we need a few de�nitions. For a permutation group G � Sn letTG(�) = supfq � p : �p(A) = �; �q(A) = 1� �g;where the supremum is taken over all monotone subsets of f0; 1gn which are invariantunder G. A composition factor of group G is a quotient group H=H 0 where H is a normalsubgroup of G and H 0 is a normal subgroup of H. A section of G is a quotient H=H 0where H is an arbitrary subgroup of G and H 0 is a normal subgroup of H.Theorem 3.Let G � Sn be a primitive permutation group.1. If G = Sn or G = An then TG(�) = log(1=�)=n1=2.2. If G 6= Sn; An, TG(�) � c1 log(1=�)= log2 n.3. For every integer r > 0 and reals � > 0; � > 0 if TG(�) � c2 log(1=�)=(logn)(1+1=(r+1))then already TG(�) � c3(�) log(1=�)=(logn)(1+1=r��):4. If G does not involve as composition factors alternating groups of high order thenTG(�) � log(1=�)= logn log logn:5. Let n = �mr � and G is Sm acting on r-subsets of [m]. Then for every � > 0(log(1=�)= log(1+1=(r�1)) n) � TG(�) � c(�)(log(1=�)= log(1+1=(r�1)��) n)6. For G = PSL(m; q) acting on the projective space over Fq, for �xed q,TG(�) = O(log(1=�)= logn log logn)5



7. For every function w(n) such that logw(n)= log logn ! 0 there are primitive groupGn � Sn such that TGn(�) behaves like log(1=�)= logn � w(n).8. For every w(n) > 1 such that w(n) = O(log logn) there are primitive group Gn � Snwhich do not involve alternating groups of high order as composition factors such thatTGn(�) behaves like log(1=�)=(logn � w(n)).9. If G does not involve as sections alternating groups of high order then TG(�) �O(log(1=�)= logn):Sections 1-3 are devoted to the proof of Theorem 2 with p = 12 . In Section 4 we proveTheorem 3. We give the proof of (0.18) for p = 12 . The general case, assuming (0.14), isdone completely similarly, replacing the f"igi=1;:::n variables and the usual Walsh system(wS)S�n wS(x) =Yi2S "i(x) (0.19)by the coordinate variables 8<: ri(x) =q 1�pp if xi = 1ri(x) =q p1�p if xi = 0 (0.20)satisfying R rid�p = 0; R r2i d�p = 1, and the corresponding orthonormal basis (rS)S�n ofL2(f0; 1gn; �p) rS(x) =Yi2S ri(x): (0.21)This is the same procedure as in [T], used to adjust the [KKL] argument.As in most of these arguments, the key property of the system needed is some momentinequality comparing L2 and Lq-norms, q > 2, on the linear subspaces [rSj jSj = k]. Onehas in the present setting (see [T], Lemma 2.1)Lemma 0.22. Denote � = [p(1� p)]�1=2: (0.23)6



Then for all q � 2; k � 1 and scalars (aS)jSj�k XjSj�k aSrSq � (q � 1)k=2 �k� XjSj�k a2S�1=2: (0.24)For p = 12 , (0.24) results from the standard hypercontractivity result. See [T] for thegeneral case. We use (0.24) with a �xed q > 2. If (0.14) holds, the factors Ck need to bereplaced by Ck:(log log n) which is harmless in the subsequent analysis.We may clearly assume jAj(1� jAj) > (logn)�1=� : (0.25)Denote f = �A and f(") = XS�n fS:wS(") (0.26)its expansion in the Walsh system. Letf(i) = 12[f("1; : : : ; "i�1; 1; "i+1; : : : ; "n)�f("1; : : : ; "i�1;�1; "i+1; : : : ; "n)] =Xi2S fSwSnfig(0.27)and I(f) =X kf(i)k22 =X jSjf2S (0.28)corresponding to the left member of (0.18), (multiplied by a factor p(1� p) in the p-case).1. First reduction of the problemSince f = �A, we have XjSj>0 f2S = jAj(1� jAj) = � (1.1)assuming (0.25).Fix K. Assume X0<jSj�K f2S > �10 : (1.2)7



De�ne g(") = X0<jSj�K fS wS("): (1.3)>From (1.2), (0.27)�10 < X0<jSj�K f2S � XjSj�K jSjf2S =X jSj fSgS =Xi Z f(i)g(i) �Xi kf(i)k4=3 kg(i)k4:(1.4)One has kf(i)k4=3 = �Z jf(i)j4=3�3=4 � �Z jf(i)j2�3=4 = kf(i)k3=22 (1.5)since f(i) ranges in f0; 1;�1; 12 ; � 12gand kg(i)k4 � CK kg(i)k2 (1.6)by (0.22).(�)>From (1.4), (1.5), (1.6)�10 < CK �ikf(i)k3=22 kg(i)k2 < CK maxi kg(i)k1=22 : Xi kf(i)k3=22 kg(i)k1=22< CK �maxi kg(i)k1=22 �: I(f)3=4 I(g)1=4< CK �maxi kg(i)k1=22 �: I(f): (1.7)Estimate kg(i)k2 using group action. From the invariance assumptionfS = f�(S) for � 2 G:Fix i. By transitivity of G, one may take �1; : : : ; �n 2 G with �j(i) = j. Thenkg(i)k22 = Xi2SjSj�K f2S = 1n nXj=1 Xi2SjSj�K f2�j(S) = 1n nXj=1 Xj2S0jS0j�K f2S0 = 1n XjS0j�K jS0j f2S0 < Kn �:(1.8)(�)We will use C to indicate possibly di�erent constants.8



>From (1.7), (1.8) �10 < n�1=4 I(f)CK (1.9)I(f) > C�K n1=4:� (1.10)This means that either I(f) > n1=4� or K & log n. We assume the second alternative,thus XjSj>log n f2S > �10 : (1.11)(2) Improving the logarithmic estimateChoose K & log n such thatXjSj>K f2S > �10 and XjSj�K f2S > �log n: (2.0)Our aim is to improve the lower bound on K. Before describing a more e�cient schemewe give �rst a simpler version of it which already yields an improvement of the log n-lowerbound.Let v = v(k) < K be an integer to be speci�ed.Let I � f1; : : : ; ng be a random set of size � vK � n. Thus I = I! is generated asI! = fj = 1; : : : ; n j �j(!) = 1g (2.1)where f�jgj=1;::: ;n are independent 0,1-valued random variables (= selectors) of expecta-tion Z �j = vK : (2.2)For given S � f1; : : : ; ng, one has jS \ I!j =Xj2S �j(!)9



hence, by (2.2) 1v ���� jS \ I!j � vK jSj ���� = 1v ����Xj2S��j(!)� Z �j����� (2.3)and, by (2.3) E! �1v ����jS \ I!j � vK jSj���� � � 1v E! � jS \ I!j1=2� � v�1=2: (2.4)De�ne S = SI = �S � f1; : : : ; ng ���� 12 vK jSj < jS \ Ij < 2 vK jSj�: (2.5)Thus XjSj�K;S=2SI! f2S . XjSj�K f2S �1v ���� jS \ I!j � vK jSj���� � (2.6)and averaging in ! yields by (2.4)E! � XjSj�K;S=2SI! f2S� . v�1=2 XjSj�K f2S: (2.7)Hence, there is ! such that I = I! ful�llsXjSj�K; jS\Ij�v f2S � XjSj�K f2S � � > �log n: (2.8)This is a preliminary construction. Write " = ("1; "2) = ("j jj2I ; "j jj =2I) according to thedecomposition f1; 2; : : : ; ng = I [ Ic.De�ne for S � IFS("2) = XS0\I=S fS0wS0nS and GS("2) = XS0\I=SjS0j�K fS0wS0nS : (2.9)Hence, from (2.8) XS�I; jSj�v Z FSGS = � > �log n: (2.10)10



Observe also that XS�I F 2S = kfk2L2("1) � 1: (2.11)Fix � > 0; M to be speci�ed and de�ne�i("2) = �f( Pi2SjSj�v G2S)1=2>�g for i 2 I� = �f(P G2S)1=2<Mg: (2.12)Hence Xi2I �i:� < ��2 "Xi2I 0BB@ Xi2SjSj�v G2S1CCA#� < ��2v:�XG2S�� < ��2:v:M2 (2.13)Z (1� �)d"2 < M�2 Z �X G2S("2)� �M�2: (2.14)One has by (2.10) �log n < Z XjSj�v jFS j:jGSj <Z XjSj�v jFS j jGSj�:Yi2S �i (2.15)+ Z X jFS j jGSj (1� �) (2.16)+ Z Xi XjSj�vi2S jFSj : jGS j : (1� �i): (2.17)Estimation of (2.15).By (2.13) XjSj�v�: Yi2S �i <  Xi2I �i : �!2v < (��2v:M2)2v (2.18)11



hence(2:15) � (��2v:M)2v � Z maxjSj�v jFS j:jGSj < (��2v:M2)2v: Z maxjSj�v jGS jd"2: (2.19)By (2.9) and (0.22) Z maxjSj�v jGS j d"2 < � XS�IjSj�v kGSk4L4("2)�1=4
< CK � XS�IjSj�v kGSk4L2("2)�1=4
< CK maxS�IjSj�v � XS0\I=SjS0j�K f2S0�1=4: (2.20)< CK maxjSj�v � XS0�SjS0j�K f2S0�1=4: (2.21)Fix S � f1; : : : ; ng; jSj = v. Estimate again PS0�SjS0j�K f2S0 using the group action.Recall that e�(v) = minjSj=v (]f�(S) j� 2 Gg) : (2.22)Then, choosing again a system (��)��A in G with ��(S) mutually di�erent, A = e�(v),we get from the invarianceXS0�SjS0j�K f2S0 = 1A AX�=1 XS0�SjS0j�K f2��(S0) = 1A AX�=1 XS0���(S)jS0j�K f2S0< 1A XjS0j�K� jS0jjSj � f2S0 < e��(v)K2v (2:23)Substituting (2.23) in (2.21) and (2.19) yields thus(2:15) < (��2vM2)2v CK e� 14 �(v)K v2 : (2.24)12



Estimation of (2.16).Estimate by H�older's inequality and (2.11), (2.14)Z X jFS j jGSj (1� �) � Z �X F 2S�1=2 �X G2S�1=2 (1� �)� Z �X G2S�1=2 (1� �)� �1� Z ��1=2< M�1: (2.25)Estimation of (2.17).By Cauchy-Schwartz(2:17) < Z d"2Xi � XjSj�vi2S F 2S�1=2� XjSj�vi2S G2S�1=2(1� �i)< �1=2 Z Xi2I� XjSj�vi2S F 2S�1=2� XjSj�vi2S G2S�1=4 (by (2.12), de�nition of �i)< �1=2Xi2I � XjSj�vi2S F 2S�1=2L4=3("2)� XjSj�vi2S G2S�1=4L4("2)< �1=2C2vXi kf(i)kL4=3("1)L4=3("2)� Xi2S0;jS0j�K f2s0�1=4 (dualizing (0.22))< �1=2C2vXi kf(i)k3=22 jf(i)k1=22< �1=2C2vI(f): (2.26)Collecting (2.24), (2.25), (2.26) yields from (2.15)-(2.17)�log n < (��2 vM2)2v CK e� 14�(v)Kv=2 + 1M + �1=2Cv: I(f): (2.27)13



Recall that log 1=� � log logn.Taking logM � log log n; log 1� � v � log logn gives thus1 < Cv2+K e� 14�(v) + 2�v I(f): (2.28)Choose v = t such that �(t) > C 0 t2: (2.29)(2.28) implies that either K & t2 or I(f) > 2tand hence certainly I(f) & t2: (2.30)In the application to graphs, one has�(t) > log �pnpt � � pt: log n: (2.31)Hence, in (2.29), we may let t � (log n)2=3 and we getI(f) > (log n)4=3 (2.32)from (2.30), improving on the logn lower bound.Our next purpose is to improve on estimate (2.28). Our aim is to replace the exponentCv2 � �(v) by a better one. The main idea is to carry out a �nite iteration process, (2)represents one step o�.(3) Proof of Theorem 2.Let r be an arbitrary large but �xed constant. Let v be an integer such thatv > (r log logn)10; vr+2 < K (3.1)14



where K satis�es (2.1).We introduce a tree of subsets (Ic)c2f1;::: ;vgr0 ;r0<r of f1; : : : ; ng (of length r�1) of re�ningpartitions of I = I� = I1 [ I2 [ � � � [ Iv (3.2)Ii = v[i0=1 Ii;i0 (i = 1; : : : ; v) (3.3)and in general Ic = v[i=1 Ic;i (jcj � r � 2) (3.4)such that XS2S f2S � XjSj�K f2S � �log n (3.5)whereS = fS � f1; 2; : : : ; ng �� jSj � K; jS \ Icj � vr�jcj for all c 2 f1; : : : ; vgr0 ; r0 < rg:(3.6)Clearly it su�ces to satisfyjS \ Icj � v for c 2 f1; : : : ; vgr�1: (3.7)To achieve (3.7), consider for (Ic)jcj=r�1 a family of disjoint random subsets of f1; : : : ; ngof size vK � n and observe that for �xed S; jSj � K, the expectation ofmaxjcj=r�1 1v ���� jS \ Icj � vK jSj ���� (3.8)is bounded by (from (3.1)) (log vr�1)1=2: v�1=2 < v�1=3 (3.9)instead of (2.4). One may then easily deduce (3.5) as in section 2 for (2.8).15



After this preliminary construction, we now perform an inductive process (with r steps)along the lines of section 2.Step 1.Write " = ("1; "2) = ("j jj2I� ; "j jj =2I�) and "1 = ("1;1; : : : ; "1;v) where "1;i = "j jj2Ii .De�ne S� = fS \ I�jS 2 Sg (3.10)� fS � I� ���� jS \ Icj � vr�jcj for all c 2 f1; : : : ; vgr0 ; r0 < rg (3.11)De�ne FS = XS0\I�=S fS0wS0nS and GS = XS0\I�=SS02S fS0 wS0nS: (3.12)One has X F 2S = kfk2L2("1) � 1: (3.13)By (3.5), one gets XS2S� Z FSGS d"2 = XS02S f2S0 > �log n: (3.14)Decomposing I� = I1 [ I2 [ � � � [ Iv, write for S 2 S�S = S1 [ S2 [ � � � [ Sv: (3.15)De�ne � = �("2) = �[(P G2S)1=2<M ] (3.16)and for i = 1; : : : ; v �iSi = �iSi("2) = �� PS\Ii=SiG2S!1=2>�1�: (3.17)Hence, from (3.16), (3.17), for i = 1; : : : ; vXSi �iSi � � < ��21 �XG2S�� < ��21 M2 (3.18)16



and 1� Z � < M�2 Z XG2S < M�2: (3.19)WithXS2S� Z FSGS =X Z FSGS (1� �1S1)+X Z FSGS �1S1 (1� �2S2)+...+X Z FSGS Yi0<i�i0Si0 (1� �iSi) (3:20)+...+X Z FSGS vYi=1�iSi : (3.21)Estimate (3.21) asX Z jFS j jGSj (1� �) + � Z jFS j jGS j vYi=1 �iSi � �by (3.13), (3.18)� Z �X G2S�1=2 (1� �) + (��21 M2)v Z max jGS jby (3.19), (3.6), (3.12), 0.22)� M�1 + (��21 M2)v CK maxS2S� kGSk1=2L2("2): (3.22)17



where kGSk2 � � XS�S0jS0j�K f2S0�1=2: (3.23)Recall that S 2 S�, hence jSj � vr. Using the group action as in section 2, we get thenthat XS�S0jS0j�K f2S0 < e��(vr) �2Kvr � < e��(vr)K2vr : (3.24)Hence, we get (3:21) < M�1 + (��21 M2)v CK e� 14�(vr) K 12vr (3.25)and letting M = ��1(log n)2(3:21) < �(log n)2 + ��2v1 CK Kvr e� 14�(vr): (3.26)Assume ��2v1 CK Kvr e� �4�(vr) < �(log n)2 : (3.27)Then one of the terms (3.20) is at least �v: log n , sayX Z FSGS Yi0<i�i0Si0 (1� �iSi) > �v: log n (3.28)for some i = 1; : : : ; v. We now replace I� by Ii and letSi = fS [ IijS 2 S�g (3.29)� fS � Ii �� jS \ Icj � vr�jcj for all Ic � Iig (3.30)De�ne FSi = XS0\Ii=Si fS0wS0nSi = XS\Ii=Si FS ("j jj =2I�) wSnSi ("j jj2I�nIi): (3.31)18



and rede�ne GSi as GSi = XS\Ii=Si GS Yi0<i�i0Si0 (1� �iSi) wSnSi (3.32)where GS Qi0<i�i0Si0 (1� �iSi) only depends on "j jj =2I� .Hence, by (3.28)XSi2Si Z FSiGSi = XS2S� Z FSGS Yi0<i�i0Si0 (1� �iSi) > �v log n: (3.33)Also XSi kGSik22 �X kGSk22 � 1: (3.34)Estimate nextkGSik44 = Z � Yj =2I� d"j� (1� �iSi) Z � Yj2I�nIi d"j� ���� XS2S�;S\Ii=SiGS Yi0<i�i0Si0 wSnSi����4:(3.35)Since jSj � vr for S 2 S�, (0.22) yields(3:35) < Cvr Z � Yj =2I� d"j� (1� �iSi) � XS\Ii=SiG2S Yi0<i�i0Si0�2by (3.17) < Cvr �21 kGSik22hence kGSik4 < Cvr �1=21 kGSik1=22 : (3.36)Put Cvr�1=21 = 1 (3.37)hence kGSik4 < 1 kGSik1=22 (3.38)19



and condition (3.27) becomes�4v1 :Cvr+1+K : e� 14�(vr) < �(log n)2 : (3.39)Step ` < r:We estimate, cf. (3.33) �v`�1 log n < XS2Sc Z FSGS (3.40)where jcj = `� 1 andSc � fS � Ic �� jS \ Ic0 j � vr�jc0j for all c0 with Ic0 � Icg (3.41)X kGSk22 � 1 (3.42)kGSk4 < `�1 kGSk1=22 (3.43)(cf. (3.34), (3.38)).Decompose Ic = Ic;1;[ � � � [ Ic;v and S = S1 [ S2 [ : : : [ Sv for S 2 Sc.De�ne again � = �("j jj =2Ic) = �[(P G2S)1=2<M ] (3.44)�iSi = �iSi ("j jj =2Ic = ��� PS\Ic;i=SiG2S�1=2>�`� (3.45)and proceed as before, letting M = ��1v`�1(log n)2: (3.46)Repeating (3.22), estimating R max jGS j � (P kGSk44)1=4, (3.42), (3.43),(3.46) yields the following estimate on the (3.21) term�v`�1(log n)2 + (��2` v2(`�1)(log n)4��2)v `�1: (3.47)20



We require (��2` v2(`�1) (log n)4��2)v `�1 < �v`�1(log n)2 (3.48)which by (3.1) is satis�ed for `�1 < e�v2 �2v` : (3.49)Then again one of the terms (3.20) is at least �v` log n , sayXS2Sc Z FSGS Yi0<i�i0Si0 (1� �iSi) > �v` log n (3.50)for some i = 1; : : : ; v. We de�ne for Si 2 Sc;i = fS \ Ic;ijS 2 ScgFSi = XS0\Ic;i=Si fS0 wS0nS = XS\Ic;i=Si FS ("j jj =2Ic)wSnSi ("j jj2IcnIc;i) (3.51)and rede�ne GSi as GSi = XS\Ic;i=SiGS Yi0<i�i0Si0 (1� �iSi) wSnSi (3.52)with GS Qi0<i�i0Si0 (1� �iSi) only dependent on "j jj =2Ic .Hence, by (3.50)XSi2Sc;i Z FSiGSi = XS2Sc Z FSGS Yi0<i�i0Si0 (1� �iSi) > �v` log n: (3.53)One has, repeating the calculation of (3.35) with I�(resp Ii) replaced by Ic (resp. Ic;i)and taking (3.41), (3.45) into accountkGSik44 < Cvr�`+1 �2̀ kGSik22: (3.54)Hence kGSik4 < ` kGSik1=22 (3.55)with ` = Cvr�`+1 �1=2` : (3.56)21



Condition (3.49) becomes thus `�1 < 4v` C�vr�`+2 : (3.57)Last Step.Assume �vr�1 log n < XS2Sc Z FSGS (3.58)where jcj = r � 1 and FS; GS depend only on ("j)j =2Ic ,X kGSk22 � 1 (3.59)kGSk4 < r�1 kGSk1=22 : (3.60)Repeat the estimate from section 2, taking M = ��1vr�1(log n)2; � = �r in (2.12).Estimate in (2.19)Z maxS2Sc jGS j < �X kGSk44�1=4 < r�1 �X kGSk22�1=4 < r�1 (3.61)from (3.59), (3.60). Hence (2:15) < (��2r vM2)2v r�1: (3.62)Estimate (2:17) < �1=2r Cv I(f): (3.63)In order to get a contradiction, we require thus that(3:62) + (3:63) < �vr�1(log n)2 : (3.64)Hence, let �r < C�v I(f)�2 (3.65)22



and r�1 < C�v2 I(f)�8v: (3.66)Recall (3.57) `�1 < 4v` � C�vr�`+2 : (3.57)Assuming log I(f) < v (3.67)(3.66), (3.57) yield thus the condition` < C�(v)r�`+1 (4v)r�`�1r�1 ; ` < C�(4v)r�`+1 for ` < r � 1: (3.68)Hence, (3.39) �4v1 Cvr+1+K e� 14�(vr) < �(log n)2 (3.69)yields a contradiction for 1 = C�(4v)r : (3.70)Consequently, (4v)r+1 +K & �(vr): (3.71)Recall also assumption (3.1) K > vr+2: (3.72)Letting v = 15K1=r+2 > (log n)1=r+2, it follows from (3.67), (3.71) thateither log I(f) > (log n)1=r+2 (3.73)or K & � �5�rK rr+2 � : (3.74)Recall (0.12) and thus a� (G) = �(t0) (3.75)23



where t0 is de�ned by �(t) > t1+� for t < t0: (3.76)Thus, from (3.74), (3.76) K & (5�rK rr+2 )1+� (3.77)provided 5�rK rr+2 < t0. Given � > 0, a choice of su�ciently large r contradicts (3.77).Hence 5�rK rr+2 � t0 and (3.74), (3.75) implyK & a� (G) (3.78)and by (0.28), (2.0) I(f) & a� (G):�: (3.79)This is obviously also true if (3.73), proving (0.18) (for p = 12 ).4. Orbits of primitive groups on large setsLemma. [Friedgut] Let A be a monotone family so that all minimal sets in A have cardi-nality at most K. Then I(A) � k�p(A)(1� �p(A)).Proof: (Compare also [M]) For S 2 A let h(S) denotes the number of neighbors of Swhich are not in A. I(A) = R h(A)d�p. We will show that for every S 2 A, h(S) � K.Indeed, if S 2 A and B � A is a minimal set then for every i 2 SnB we have that Snfigcontains B and hence belongs to A. Therefore, h(S) � K.We will prove now that for every permutation group G there is a G-invariant monotonefamily A such that TG(�) & log(1=�)1=a(G). Consider a set S of minimal size so thatlogjG(S)j � jSj+ 1, and the family of subsets of [n] which contain a set of the form g(S)for some g 2 G. Now for p = 1=2 the expected number of sets in the orbit of S which arecontained in a random set is at most 1/2. Therefore the critical probability q for which�q(A) = 1=2 satis�es q � 1=2. But by the previous Lemma I(A) � �p(A)(1� �p(A))jSjand therefore the length of the threshold interval of A is at least � log(1=�)1=jSj.24



In the rest of this section we give upper bounds on the sum of inuences for certainG-invariant families. We need to study the of sizes of orbits of permutation groups on setsof unbounded cardinality, which seems to complement the vast knowledge on the orbit-sizeof sets of bounded cardinality, and thus being of independent interest. We refer the readerto [C,P] for related material on permutation groups.For a permutation group G � Sn and 0 � t � n recall that �(t) = �G(t) is the minimalsize of an orbit of a t-subset of [n] under G. Let St be a set of cardinality t whose orbitsize is �(t). Consider the family At of those subsets U of f0; 1gn which contain a set in theorbit of St. It is reasonable to guess that At will have in some asymptotic sense smallestinuence among G-invariants families.We will �rst describe the value of a� (G) for the case of graph properties, the moregeneral case of properties of k-uniform hypergraphs and the case where G = GL(q;m)acting on Fmq . (Fq is the �eld with q elements.)Lemma.1. Let G = Sm acting on �mk �. If t is of the form �r�1k � < t � �rk�, and tl � n� r then�G(t) � �mr �.2. Let G = GL(q;m) acting on Fmq . If [� mr�1�](q) < t � [�mr �](q), and r < m=2 then�t(G) � [�mr �](q).Proof: (1) Let T be a set with jT j = t which supported by u points. Then u < n� r sothe orbit of T is at least �nr�. (2) Let T be a t-subset of Fmq , and let U be the subspace ofFnq spanned by T . Clearly dimU � r. If dimU � m� r we are done. Otherwise the orbitof T is at least jGL(q;m� r)j=t!, and this number is larger than [�mr �](q) in the range ofthe Lemma.Corollary 4.1.(1) Let k � log logm and let G = Sm acting on �mk �, (thus n = �mk �.) Then a(G) =25



log1+1=(k�1)m and a� (G) = O(log1+(1��)=(k�1)m). (2) Let G = GL(q;m) acting on Fmq(thus n = qm) then a(G) = a� (G) = O(logn(1 + logq logn)).Proof: (1)If log �mr � = �rk�1+� then r logm = �rk�1+� and logm = rk(1+�)�1 so that�rk� = logmk=(k+�k�1 and a� (G) = �rk�1+� = (logm)(k+�k)=(k+�k�1). (2) If log[�mr �](q) =(qr)1+� , then r = logqm+ logq logqm+ logq log2 q and a� (G) = qr(1+�) = O(log2 n � (1 +logq log2 n)), for every � � 0.We will continue now to discuss general primitive permutation groups. We need thefollowing Theorem from Cameron [C] This theorem relies on the classi�cation of �nite sim-ple groups and speci�cally on the O'nan-Scott classi�cation theorem for primitive groups.It is quite possible that by a more delicate group-theoretic argument via the O'nan-Scotttheorem it will be possible to identify the values of a� (G) for every primitive permutationgroup.Theorem. [Cameron]There is a constant c such that if G is a primitive permutation group of order n thenone of the following holds:(i) G has an elementary abelian regular normal subgroup, in other words G is a subgroupof AGL(n; q) acting on Fnq .(ii) G is a subgroup of Aut(T )WrSl, where T is an alternating group acting on k-elementsubsets, and the wearth product has the product action.(ii') G is a subgroup of Aut(T )WrSl, where T is a classical simple group acting onan orbit of subspaces or (in case T = PSL(d; q)) pairs of subspaces of complementarydimensions, and the wearth product has the product action.(iii) jGj � nc log logn:Proof of Theorem 3: We will �rst prove that for all groups of type (i),(ii)' and (iii)a(G) � O(logn log logn). Next we will describe completely the value of a� (G) for groupsof type (ii). 26



Note that clearly a(G) � log jGj, therefore for groups of type (iii) a(G) � O(logn log logn).If G = AGL(m; q) acting on Fmq then by the same argument as the proof of (4.1) we getthat a(G) � O(logn(1 + logq logn)).In case (ii') we �rst consider the case l = 1. It follows by a case by case checking thatthe action of H = Aut(T ) has a(H) � logn log logn. First note that Out(T ) = Aut(T )=T ,is always very small. More precisely, if G is of Lie type G = X(m; q) where m is thedimension and the �eld is of size q = pk, then Out(T ) has order O(mk) and consists of socalled �eld automorphisms, diagonal automorphisms, and \diagram automorphisms", see[KL]. Therefore, if you multiply T (S) by O(dk) to get a bound for Aut(T )(S) the changein the orbit size is negligible.We �rst consider the case where G = PSL(m; q). (It make no di�erence to considerGL(m; q) and the action on Fmq was studied above.) We will consider now the action on k-dimensional subspaces of Fmq . If k < plogm consider the orbit of all k-dimensional spacesof some r-dimensional space, where r � logqm+logq logm+logq log q. If r is larger considertwo disjoint spaces V1 and V2 of dimensions a and b respectively and consider the orbit ofthe set of all k-subspaces which contain V1 and have a (k�a)-dimensional intersection withV2. A simple adjusting of the parameters shows that in both case a(G) � logn log logn.(When k get larger than logm, b = k+1� a and in this case a(G) � logn.) We have alsoto check the case of action on pairs of complementary subspaces and this works exactlylike action on single subspaces.Next, we have to check tha cases where X(m; q) = PSL(m; q); SP (m; q), P
+(m; q),P
�(m; q), 
(m; q) and PSU(m; q), linear, simplectic, orthogonal and unitary groups. Ineach such case a set of small orbits is obtained from an appropriate subspace. It is quitelikely that a(G) can be computed precisely for all these groups and all their primitiveactions but we will describe a short veri�cation of the fact that a(G) � O(logn log logn).First consider the case where X is acting on Fmq or on 1-dimensional subspaces of Fmq .In this case the result follows from the result for GL(m; q) since the size of orbits ofsubspaces is maximal in this case. More generally X can act on either nonsingular or27



totally singular subspaces. The result still follows from those for PSL(m; q) because thenumber of such subspaces of given dimension d (provided it is not 0) depends polynomiallyon the corresponding numbers for GL(m; q). And in the ranges of interest to us thesenumbers of subspaces will be zero only if certain parity conditions holds. In short, theexamples for PSL(m; q) with perhaps changing the dimensions in question by 1, continueto apply for X(m; q).To see this last statement look at tables 3.5 in [KL] pp. 70 - 74 giving the isomorphictype of the point-stabilizer. (You should look at the line corresponding to C1). By lookingat another table with the orders of classical groups - on p. 170, one can compute the ordersof the groups G, the stabilizer H, hence the index (G : H) which is the number of relevantsubspaces. Doing this one �nds a polynomial relation, as we wanted.Now, let H � Sm be a permutation group and G = HWrSl acting on ml with theproduct action. If l > logm then a(G) � l logm = logn (even if H = Sn).If l � logm then from a(H) � c logm log logn it follows easily thata(G) � 2cl logm log log(ml):So the only case where a(G) is bigger than O(logn log logn) is when G � SmWrSl, andSm is acting on k-subsets of m and G contains Alm. (Thus n = �mk �l:). These cases aredealt with as (4.1) and it turns out that a(G) is of the form 
(logn1+1=r), for r = kl� 1,and a� (G) � O(logn1+(1��)=(r)).We will continue now in the proof of Theorem 3. Part 1 is well known. Part 2, 3 and 4follow from Theorem 1 and the computations above. Parts 5-8 follows from the Theorem1 and Corollary (4.1) For part 7 consider groups of the form Sm acting on �mk �, wherek = k(m) � log logm depends on m in an arbitrary way and for part 8 consider the groupGL(m; q) acting on Fmq , where q = q(m) � logm depends on m in an arbitrary way. Part9, follows from the following Theorem of Babai, Cameron and Palfy [BCP].Theorem. [Babai, Cameron and Palfy] For a n integer D, let G � Sn be a primitive28



permutation group which does not involve Ad as a section for d > D. Then jGj is boundedby a polynomial in n (depending on D).This complete the proof of Theorem 3.Remark: The hypothesis of the Babai, Cameron and Palfy theorem is equivalent tothe following: in all the nonabelian decomposition factors of G the Lie rank and degree(of Ak) are bounded.A theorem from [FK] asserts that for a monotone property A if the critical proba-bility is q (namely, �q(A) = 1=2) then the length of the threshold interval is at mostO(qlog(1=q)= logn). (q can depend on n.) One can ask what are all the (abstract) groupsfor which this theorem is sharp for every primitive representation and every q. It is plausi-ble that these groups are precisely the groups with no large alternating groups as factors.Aknowledgement: We would like to thank Aner Shalev for his help on primitivepermutation groups and Ehud Friedgut for fruitful discussions.
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