INFLUENCES OF VARIABLES AND THRESHOLD
INTERVALS UNDER GROUP SYMMETRIES

J. Bourgain(l) G. Kalai®

0. Introduction.

A subset A of {0,1}" is called monotone provided if x € A, 2" € {0,1}", x; < z} for
i=1,...,n then 2’ € A. For 0 < p < 1, define y, the product measure on {0,1}" with

weights 1 —p at 0 and p at 1. Thus

ppy({x}) = (1 —p)"p’ where j=#{i=1,... ,nlz; =1}. (0.1)

If A is monotone, then f,(A) is clearly an increasing function of p. Considering A as a
“property”, one observes in many cases a threshold phenomenon, in the sense that z,(A)
jumps from near 0 to near 1 in a short interval when n — oc. Well known examples of
these phase transitions appear for instance in the theory of random graphs. A general
understanding of such threshold effects has been pursued by various authors (see for in-
stance Margulis [M] and Russo [R]). It turns out that this phenomenon occurs as soon as
A depends little on each individual coordinate (Russo’s zero-one law). A precise statement

was given by Talagrand [T] in the form of the following inequality.

Define for i = 1,... ,n
A ={xe€{0,1}"|v € A, Uix & A} (0.2)

where U;(z) is obtained by replacement of the i*" coordinate x; by 1 — x; and leaving the

other coordinates unchanged. Let

y= sup fp(A;). (0.3)

i=1,...,mn

(DInstitute for Advanced Study, Princeton, NJ 08540, USA
(D) Hebrew University of Jerusalem, Jerusalem, Israel

Typeset by ApS-TEX



Then

Vel 5 ) () 1=y () (0.4
where ¢ > 0 is some constant.
Defining for : = 1,... ,n the functions
gi(x) =22, — 1 (0.5)
one gets
ju—'[f/pz =@ 14+ (2p—1)g] (0.6)
dpp(A)

=22 [ Xaeite) Oy 1+ 2 ey ()
= 2/pZNp<Ai)- (0.7)

The number p,,(A;) is the influence of the it coordinate (with respect to j1,) and the right
side of (0.7) represents thus the sum of the influences. Hence a small threshold interval
corresponds to a large sum of influences. Relation (0.7) is due to Margulis and Russo. In

[T], (0.4) is deduced from an inequality of the form

(A1 = pip(A)] < Clp) 3 Hp(As)

— log[1/41,(A;)] (0.8)

This last inequality and its proof relies on the paper by Kahn, Kalai and Linial [KKL],

where it is shown that always

logn
sup py/a(Ai) > ¢ 81 (0.9)
1<i<n n

Friedgut and Kalai [FK] used an extension of (0.9) given in [BKKKL] to show that for
properties which are invariant under the action of a transitive permutation group the
threshold interval is O(1/logn) and proposed some conjectures on the dependence of the

threshold interval on the group.



Our aim here is to obtain a refinement and strengthening of the preceding in the context
of “G-invariant” properties. Let f be a 0, 1-valued function on {0, 1}" and G a subgroup of

the permutation group on n elements n = {1,2,...,n}. Say that f is G-invariant provided

frr,..o 2n) = f(Xrys - s Treny) forall z € {0,1}", 7€ G. (0.10)

Given G, define for 1 <t <n

o(t) = ¢a(t) = Scrﬂrf‘ightlog(#{ﬁ(s)\ﬁ € G}) (0.11)
and for all 7 > 0
0 (@) = sup{o(t)|o(t) > 117}, (0.12)

n

Observe that since ¢(t) < log ( ;

), necessarily a,(G) < (logn)/".

Theorem 1. Assume G transitive and A a monotone G-invariant property. Then for all

7>0

@%9>wmm%mm—an (0.13)

provided p(1 — p) stays away from zero in a weak sense say

log[p(1 —p)] ="' < loglog n. (0.14)
It follows that in particular the threshold interval is at most

Crar(G)™' forall > 0. (0.15)

Previous results as mentioned above only yield estimates of the form (logn)~! and the

main point of this work is to provide a method going beyond this.

Theorem 1 is deduced from (0.7) and the following fact, independent of monotonicity

assumptions.



Theorem 2. Assume A G-invariant and (0.14) holds. Then for all T > 0

Z fp(Ai) > crar(G)pp(A)[L — pp(A)]. (0.18)

Comments.

(1)

For every group GG one can always exhibit a GG-invariant property with threshold interval

> ﬁ For primitive permutation groups except when G = S, is the full permutation
group (or equivalently the alternating group), the result is nearly optimal in the sense
that one may always exhibit a G-invariant property with threshold interval ~ ﬁ For

G = S,, A, a threshold interval < \/iﬁ is obtained,*) while Theorem 1 only (logn)~"

(M arbitrary) predicts. In fact, the analysis as presented below permits to take 7 ~

1
Viogt
lo 1

T~ Tgt and even an improvement to 7 ~ Tog 1 will imply a precise (up to a multiplicative

but may conceivably be further refined. It is possible that the theorem holds for

constant) answer for all primitive groups.

In the particular case of monotone graph properties on N vertices, we get n = < 5 >

and G is induced by permuting the vertices. One gets essentially

() ~ log (%) (0.16)

in this situation and the conclusion of Theorem 1 is that any threshold interval is at
most C, (log N)~2+7 7 > 0. This is essentially the sharp result, since, fixing M ~ log N,
the property for a graph on NV vertices to contain a clique of size M yields a threshold

interval ~ (log N)~2.

For primitive permutation groups Theorem 1 implies a close to complete description of

the possible threshold interval of a G-invariant property, depending on the structure of G.

(Recall that a permutation group G C S, is primitive if it is impossible to partition n to

blocks By, ... By, t > 1 so that every element in G permute the blocks among themselves.)

(*)Consider for instance A = {z € {0,1}"| 3 z; > 5}, with threshold interval ~ L

NG



It turns out that there are some gaps in the possible behaviors of the largest threshold
intervals. This interval is proportional to n=1/2 for S, and A,, but at least log ™% n for any
other group. The worst threshold interval can be proportional to log™“n for ¢ belonging
to arbitrary small intervals around the following values: 2,3/2,4/3,5/4 ... or for ¢ which
tends to zero as a function of n in an arbitrary way. This (and more) is summarized in

the next theorem. First we need a few definitions. For a permutation group G C 9, let

Ta(e) = sup{q —p: pp(A) =€ pg(A) =1—€},

where the supremum is taken over all monotone subsets of {0,1}"™ which are invariant
under G. A composition factor of group G is a quotient group H/H' where H is a normal
subgroup of G and H' is a normal subgroup of H. A section of G is a quotient H/H’
where H is an arbitrary subgroup of G and H' is a normal subgroup of H.
Theorem 3.

Let G C S, be a primitive permutation group.

1. IfG =S, or G= A, then Tg(e) = log(1/€)/n'/?.

2. If G # Sn, Ay, Ta(€) > 1 log(1/e)/ log” n.

3. For every integerr > 0 and reals 6 > 0,¢ > 0 if Tg(e) < cplog(1/€)/(logn)1+1/(r+1)
then already Tg(€) < c3(8)log(1/€)/(logn)1+1/7=9),

4. If G does not involve as composition factors alternating groups of high order then

Te:(€) > log(1/€)/lognloglogn.

5. Letn= (") and G is Sy, acting on r-subsets of [m]. Then for every § > 0

(1og(1/6)/ log! "+ "=V 1) < T (e) < e(6)(log(1/e)/ 1og 11/ =1=5) )

6. For G = PSL(m,q) acting on the projective space over Fy, for fized q,

Te:(€) = O(log(1/€)/lognloglogn)
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7. For every function w(n) such that logw(n)/loglogn — 0 there are primitive group

G, C S, such that Te, (€) behaves like log(1/€)/logn - w(n).

8. For every w(n) > 1 such that w(n) = O(loglogn) there are primitive group G,, C S,
which do not involve alternating groups of high order as composition factors such that

Tc, (€) behaves like log(1/€)/(logn - w(n)).

9. If G does not involve as sections alternating groups of high order then Tg(e) >
O(log(1/€)/logn).

Sections 1-3 are devoted to the proof of Theorem 2 with p = % In Section 4 we prove
Theorem 3. We give the proof of (0.18) for p = 3. The general case, assuming (0.14), is

done completely similarly, replacing the {¢;};=1 ., variables and the usual Walsh system

(ws)scn

wg(x) = Hsi(x) (0.19)

ieS
by the coordinate variables
ri(x) = lp%p if ;=1
(0.20)
ri(x) =/ if z;=0

satisfying [ r;dp, = 0, frfdup = 1, and the corresponding orthonormal basis (rs)scn of
L2({0, 1} prp)
rs(z) = Hr,(x) (0.21)

1€ES
This is the same procedure as in [T], used to adjust the [KKL] argument.
As in most of these arguments, the key property of the system needed is some moment

inequality comparing L? and L9-norms, ¢ > 2, on the linear subspaces [rg||S| = k]. One

has in the present setting (see [T], Lemma 2.1)

Lemma 0.22. Denote
0= [p(1—p)]~ "> (0.23)



Then for all ¢ > 2, k > 1 and scalars (as)|s|<k

g asrs

|S|<k

< (g —1)k/? 9’“( > a§>1/2. (0.24)

9 |S|<k

3

general case. We use (0.24) with a fixed ¢ > 2. If (0.14) holds, the factors C* need to be

For p = 1, (0.24) results from the standard hypercontractivity result. See [T] for the

replaced by C*-(Ioglogn) which is harmless in the subsequent analysis.

We may clearly assume

|Al(1 — [A]) > (logn)~*/7. (0.25)
Denote f = y4 and
fle) =" fsws(e) (0.26)
SCn

its expansion in the Walsh system. Let

£(i) = %[f(el,... it it e = f(en et =L )] = 3 fewsvs
< (0.27)

and
1) =Y w3 =D ISIf3 (0.28)

corresponding to the left member of (0.18), (multiplied by a factor p(1 — p) in the p-case).
1. First reduction of the problem

Since f = x4, we have

Yo A=A A =p (1.1)

|S|>0

assuming (0.25).

Fix K. Assume

p
> ofi> i (1.2)

0<|S|<K



Define
gle) = Z fsws(ze). (1.3)

0<|S|<K

JFrom (1.2), (0.27)

3

p
10 < S Y ISIE =) IS] fsgs = Zl / f@i)9a) < ZZ 1 feiyllass lgiylla-

0<|S|<K SISK
(1.4)
One has
3/4 3/4 3o
lolas = ([ 17004) " ~ ([ 1508) " =150l (15)
since f(;) ranges in {0, 1, —1, %, - %}
and
lgcylla < C™ Mlgeyll (1.6)
by (0.22).0)
JFrom (1.4), (1.5), (1.6)
P 3/2 1/2 3/2 1/2
15 < O  Sillfola lgllz < €% maxlig |l Y- ol llgo |l
< " e g2 01/ 1t9)
<t fmax gy 18] 107 (1.7)
Estimate ||g(;)||2 using group action. From the invariance assumption
fs = fﬁ(s) for m™ed.
Fix 7. By transitivity of G, one may take m,...,m, € G with 7;(i) = j. Then
2 s 1 ¢ 2 IR 2 1 e I
Hg(i)HQZ Z f5 = n Z Z fwj(S) - n Z Z f5 = n Z 15" fs < gﬂ-
i€S j=1 ies j=1  jes' |S"|<K
|SISK SISK S <K
(1.8)

(*)We will use C to indicate possibly different constants.
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’

;From (1.7), (1.8)

P —1/4 K
10 <" I(f)C (1.9)
I(f) > c~Knt/4, (1.10)

This means that either I(f) > n'/*p or K > log n. We assume the second alternative,
thus

p
> > (1.11)

|S|>log n
(2) Improving the logarithmic estimate

Choose K 2 log n such that

Zf§>1—’:) and Y fi> L (2.0)

log n’
1S|>K S|~ K &

Our aim is to improve the lower bound on K. Before describing a more efficient scheme
we give first a simpler version of it which already yields an improvement of the log n-lower

bound.

Let v = v(k) < K be an integer to be specified.

Let I C {1,...,n} be a random set of size ~ + - n. Thus I = I, is generated as
I,={j=1...,n|¢&(w)=1} (2.1)

where {¢;};=1,.. » are independent 0,1-valued random variables (= selectors) of expecta-

/ & = % (2.2)

tion

For given S C {1,...,n}, one has

SN L= &(w)

jeSs



hence, by (2.2)
1 v
— | SNni,|—=|S|=-
! -4

> (st [6) (23)

jJES
and, by (2.3)
B, L lsnn - 25 | ~Ltm [1snL2] <12 (2.4)
“ o “ K v Y “ - ' '
Define
1
Sszz{SC{l,...,n}2 ]“ S|<lsni <2 5|} (2.5)

Thus

> s ¥ li|isn- s | (26)

S|~K, sezsfw S|~K

and averaging in w yields by (2.4)

| Y flsee Yo (2.7

S|~K, S¢Sy, |S|~K

Hence, there is w such that I = I, fulfills

> ~ ) fi= log - (2.8)

|S\~K,\Sﬁ]|~v |S|~K

This is a preliminary construction. Write ¢ = (¢',e?) = (gj],er, jj¢s) according to the

decomposition {1,2,... ,n} =TUI".

Define for S C I

FS( Z fS/wS/\S and GS Z fS’wS’\S (29)
S'nI=S S'nI=
|S’ \NK

Hence, from (2.8)

3 FsGg =T > lop . (2.10)
SCI,|S|~v &

10



Observe also that

S Fi=|fl7 o) < L.

SCI

Fix 6 > 0, M to be specified and define

Hence

i€l

One has by (2.10)

X¢(52) = X{( .EZS G2)1/2>5} for 1€l

|S

o

X = X{(Z Gy /2<my

i€l 1€S
ST~

> yx<o? [Z > Gy

Y < 6 2. (Z G%) Y < 6 2u.M?

/(1 —\)de? < M2 / {Z Gg(eQ)] < M2

S|~wv

p
< Fs.|Gg| <
<[ Y Imslies

| > Esiesi Iy

S|~v

1€S

/ S [Es| 1Gs) (1)

/ do> IFsl-1Gsl. (1= vy).

i |S|~o
1€S

Estimation of (2.15).

By (2.13)

PR || RS

S|~v  i€S

[

in-x

el

11

2v
) < (o

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



hence
(2.15)g(5—%.M)2v-/gl'aX|FS|.|GS<(5—%.M2)2v. max Gsld, (219

By (2.9) and (0.22)

1/4
max |Gg|de? < ( > |\G5|ﬁ4(52)>
|S]|~v Scr

|S|~v
1/4
<o (3 IGsltar
ScI
|S|~v
4
<ok max[ > fs,} : (2.20)
|Sl~v SS8'NI=S
|S' [~ K
4
<C rg1|ax< > f5,> : (2.21)
YN gi5s
|s'\3~1<

Fix S C {1,...,n}, |S| = v. Estimate again Y. f2, using the group action.
S'>S
1S [~ K

Recall that

) = = min (#{m(S) |7 € G}). (2.22)

Then, choosing again a system (7, )a<a in G with 7, (S) mutually different, 4 = e¢(*),

we get from the invariance

, 1 v _1A )
ZfS/AZZMs' > > &

S'os a=1 g’ a=1 §'57r,(S)
S|~ K | 5"~ S|~ K
1 S| 2 —o(v) |2
— / VKA (2.23
<A Z(ﬂ)““ (2:29)
|5 |~k
Substituting (2.23) in (2.21) and (2.19) yields thus
(2.15) < (6720 M?)? CK =390k, (2.24)

12



Estimation of (2.16).

Estimate by Holder’s inequality and (2.11), (2.14)

’

[ Sirteda-v= [ (T )" (T et) " a-v

<M1
Estimation of (2.17).
By Cauchy-Schwartz
1/2 1/2
(2.17) < /d522< T FS> (Z Gg) (- )
LISl |S|~v
i€S €S
1/2 1/4
<o >N FS (Z G§> (by (2.12), definition of ;)
i€l 25|~ |S|~v
1€ES i€S
1/2 1/4
<y (X ) (3 @)
el 1\ gy A CO LA L4(e5)
€S 1€S

[ feiyllpars ey

< 61/202”2‘
v 3/2 1/2
<8120 3 f) 13 foy |1

< §Y2C*I(f).

i€S,|S! |~ K

Collecting (2.24), (2.25), (2.26) yields from (2.15)-(2.17)

p 2 220 K —Yé(v) pruj2 L 1/2 Fw
M I — . .
logn<(6 v M) CH e < +M—|-6 Cv. I(f)

13
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1/4
( > fj) (dualizing (0.22))
LA4/3(£2)

(2.26)

(2.27)



Recall that log1/p ~ loglogn.
Taking log M ~ loglog n, log % ~ v > loglogn gives thus
1< CVHE ¢=390) L o=v I(f). (2.28)

Choose v = t such that
o(t) > C' 2. (2.29)

(2.28) implies that either

and hence certainly

I(f) z . (2.30)

In the application to graphs, one has

o(t) > log (@) ~ Vt. log n. (2.31)

Hence, in (2.29), we may let ¢ ~ (log n)?/? and we get
I(f) > (log n)*/? (2.32)
from (2.30), improving on the logn lower bound.

Our next purpose is to improve on estimate (2.28). Our aim is to replace the exponent
Cv? — ¢(v) by a better one. The main idea is to carry out a finite iteration process, (2)

represents one step off.

(3) Proof of Theorem 2.

Let r be an arbitrary large but fixed constant. Let v be an integer such that

v > (rloglogn)'?, v < K (3.1)

14



where K satisfies (2.1).

We introduce a tree of subsets (1..) of {1,...,n} (of length r — 1) of refining

ce{l,... v} r'<r
partitions of

I=I1,=L1Ul,U---UI, (3.2)

v

[i = U Iz’,z” (Z = 1, ce ,’U) (33)

=1
and in general
L=|JIi (c<r-2 (3.4)
i=1
such that
p
dofi~ Y fiz (3.5)
ses S|~E log n
where

S={Sc{1,2.....n}|[S|~K, |SNL|~v""l forall ce{l,...,0}", 1" <r}.

(3.6)
Clearly it suffices to satisfy
SNI|~v for ce{l,...,0}" 7" (3.7)
To achieve (3.7), consider for (/.)|c|=,—1 a family of disjoint random subsets of {1,... ,n}
of size £ - n and observe that for fixed S, |S| ~ I, the expectation of
AICLVARERY] (33)
max — el — = .
le]l=r—1 v K
is bounded by (from (3.1))
(log v"~H)V/2, =12 < y=1/3 (3.9)

instead of (2.4). One may then easily deduce (3.5) as in section 2 for (2.8).

15



After this preliminary construction, we now perform an inductive process (with r steps)

along the lines of section 2.

Step 1.
Write ¢ = (51’52) = (€j|j€f¢7 5j‘j€]¢) and ¢! = (81’1, ce ,El’v) where 1% = €jljel; -
Define
S¢ = {S N I¢|S € S} (3.10)
c{Scl,||SnL|~vl forall ce{l,..., 0}, <r} (3.11)
Define
Fs = Z fswsns and Gs = Z fsr wsns- (3.12)
S'nly=5 S'nI,=S
S'es
One has
Y FE=fl7e < 1. (3.13)

By (3.5), one gets

> / FsGgde® = > f& > 1ogn' (3.14)

SESy S'eS

Decomposing Iy = I U, U---U I, write for S € S,

S =8 USyU---US,. (3.15)
Define
X =x(%) = x|x G2)1/2< M] (3.16)
and forz=1,...,v
X5, = X5, (%) = x e 1 (3.17)
()
sni;=s;
Hence, from (3.16), (3.17), fori =1,...,v
Soxs <o (YoaE) v <ot (3.18)
Si

16



and

1— /x < M™? / d Gy< M (3.19)

With
Z /FSGS:Z / FsGs(l—X}gl)
S€S¢
+
1 2
Z /FSGSX51 (1-x5s,)
+
+
> /FsGs I, =) (3.20)
' <1
+
+
> /FSGS x5, (3.21)
=1

Estimate (3.21) as

> [iEstiasia-v+s [ 15 e ﬁlxgi-x
by (3.13), (3.18)

< [ (Ze)” a-vrerey [ mxies
by (3.19), (3.6), (3.12), 0.22)

(3.22)

-1 —2a372\v ~K 1/2
< M=+ (6y°M*)"C SI%%)(;HGSHLZ(E2)'

17



where

IGsla < (Y f2)"%

scs’
S|~ K

(3.23)

Recall that S € Sy, hence |S| ~ v". Using the group action as in section 2, we get then

that
Z fa < e?(") <2A> < e W) K27

,U'r
scs'
S'|~K
Hence, we get

(3.21) < M~' 4 (672M?)" O e 7007) g3V

and letting M = p~!(log n)?

(3.21) < m 4672 OK KV em 1907,
Assume
5T CK KV e < m.
Then one of the terms (3.20) is at least 55— say
> / FsGs l;[ X5, (1=, > Mgg -
for some i = 1,...,v. We now replace I, by I; and let

S; = {SU IZ|S S 8¢}

c{ScL||SnI|~v7l forall I.CI;}

Define

Fs, = Z fswsns;, = Z Fs (ejljer,) ws\s, (gjljer )
S'NI;=S; SNI;=S;

18
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(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)



and redefine Gg, as

SNI;=S; <1

where Gg H Xs ,(1=x%,) only depends on €iljgr,-
i<

Hence, by (3.28)

3 / Fs,Gs, = Y / FsGs [ i, (1 Ulopgn. (3.33)

S€Si SeSy i <i

Also

2,

5<)  1Gsl3 <1 (3.34)

Estimate next

4_/ <.Hd€j> (1—Xf§i>/<.H d€j>

4

Z Gs H qu’i, Ws\s;

j¢1¢ 3614)\]7; S€S¢,Sﬁli25i i<
(3.35)
Since [S| <" for § € Sy, (0.22) yields
(3.35) < C¥" / < H d€j> (1—x5,) < Z G% HXS,>
J¢1, SNil;= i<
by (3.17)
<0 8 |65
hence
5177 |G, 132, (3.36)
Put
v =y (3.37)
hence
(3.38)

19



and condition (3.27) becomes

—4v ~"TIHK —Lo(v™) P
v .C .e 1 < (log n)2

Step ( <.

We estimate, cf. (3.33)

F
v—1loo n llogn Z/ sGs

€S,

where |¢| = ¢ — 1 and

S.c{Scl. |SnIs~v"ll forall ¢ with I C L.}

Y llaslE <t
1Gslla < ve_1 ||Gs |y

(cf. (3.34), (3.38)).

Decompose I, =1, ;,U---Ul., and S =S, US;U...US, for S € S..

Define again

X = X(5j|j§£1c) = X[(XZ G2)1/2<M]

ng = X:Ls.b (SJ“]EIC =X 1/2
[( > G%) >5z:|
snI, ;=8;

c,i =

and proceed as before, letting
M = p~ ' (log n)%

Repeating (3.22), estimating [ max|Gs| < (3 [|Gs[[})Y/4, (3.42), (3.43),
(3.46) yields the following estimate on the (3.21) term

P

S Tlog )2 (6, 20* D (log n)*p=2)" ve_1.

20
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(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)



We require
p

—2 2(0—1) 4 2w
(6, 7w (log n)"p™7)" ve—1 < o 1(log 1)? (3.48)
which by (3.1) is satisfied for
Y1 < eV 82, (3.49)
Then again one of the terms (3.20) is at least m, say
y . p
FsG o (1—=x%)> 3.50
Z / 5T H X5, (1= X5,) vllog n (3.50)
SES, <1
for some i = 1,...,v. We define for S; € S.; = {SN1.;|S € S.}
Fs,= Y fowsns= Y. Fs(glier)ws\s, (&5ljerns.,) (3.51)
S’ﬂ[c,i:Si Sﬁ]c,izsi
and redefine G'g, as
Gs,= Y Gs [] x5, (1-x5,) wss, (3.52)

SNI. ;=S; i<

with Gg [] Xg., (1 —x%§,) only dependent on &;;¢7, .

' <
Hence, by (3.50)

il i P
> /FS.;GS.; => / FsGs ] xs, (1-x§) > vlog 1 (3.53)

S;€Sc i SeS. i<

One has, repeating the calculation of (3.35) with I(resp I;) replaced by I. (resp. I.;)
and taking (3.41), (3.45) into account

3

r—L0+1

1Gs,[lz < C7 6; [|Gs.1I3. (3.54)
Hence
1G5, lla < 7e 1Gs, 115" (3.55)
with
e = Cvr4+1 651/2- (3.56)
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Condition (3.49) becomes thus

r—04+2

Yoo1 <t CTY

Last Step.

Assume

P
S FqeG
< ¥ [ FGs

SeS.

where |¢| =7 —1 and Fs, Gg depend only on (€j>j§élcv

> lGslE <1

IGslla < -1 [|Gs]l3>.

(3.57)

(3.58)

(3.59)

(3.60)

Repeat the estimate from section 2, taking M = p~tv""!(log n)?, § = 6, in (2.12).

Estimate in (2.19)

1/4 1/4
[ maxiGsl < (3 16slE) " < (X l6sI) < e

from (3.59), (3.60). Hence
(2.15) < (6720 M*)?¥ 7,_4.

Estimate

(2.17) < 812 CV I(f).

In order to get a contradiction, we require thus that

(3.62) + (3.63) < P

Hence, let

6, < CTVI(f)~?
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v"~1(log n)?’

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)



and

Yeo1 < CTUI(f)TR

Recall (3.57)

_ o r—Ll+2

Ye—1 <721U'C !

Assuming

log I(f) <w
(3.66), (3.57) yield thus the condition

(U)r—e+1 (4U)r7471

77‘—1 ; 7@ < C_

(4,0)1"—2—}—1

Ye < C™

Hence, (3.39)

—4v ~TTIER 1607 P
C e 1 < —
o (log n)?

yields a contradiction for

yo=C W

Consequently,

(40)" T+ K > ¢(v").

Recall also assumption (3.1)

K > ot

Letting v = 1 KY/"*2 > (log n)Y/"*2, it follows from (3.67), (3.71) that
either

log I(f) > (log n)*/"+?
or

K2¢ (5 "K7).

Recall (0.12) and thus
a-(G) = é(to)
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for ¢ <r—1.

(3.66)

(3.57)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)



where tq is defined by
o(t) >t for t < tg. (3.76)

Thus, from (3.74), (3.76)
K> (57 "Kwe )47 (3.77)

provided 5-" K72 < to. Given 7 > 0, a choice of sufficiently large r contradicts (3.77).
Hence 57 "K 72 > tq and (3.74), (3.75) imply

K > a,(G) (3.78)

and by (0.28), (2.0)
I(f) 2 a-(G).p. (3.79)

This is obviously also true if (3.73), proving (0.18) (for p = ).

4. Orbits of primitive groups on large sets

Lemma. [Friedgut] Let A be a monotone family so that all minimal sets in A have cardi-

nality at most K. Then I(A) < ku,(A)(1— ppy(A)).

Proof: (Compare also [M]) For S € A let h(S) denotes the number of neighbors of S
which are not in A. I(A) = [ h(A)du,. We will show that for every S € A, h(S) < K.
Indeed, if S € A and B C A is a minimal set then for every i € S\B we have that S\{i}
contains B and hence belongs to A. Therefore, h(S) < K.

We will prove now that for every permutation group G there is a G-invariant monotone
family A such that Tg(e) 2 log(1/€)1/a(G). Consider a set S of minimal size so that
log|G(S)| > |S| + 1, and the family of subsets of [n] which contain a set of the form ¢(.5)
for some g € G. Now for p = 1/2 the expected number of sets in the orbit of S which are
contained in a random set is at most 1/2. Therefore the critical probability ¢ for which
fg(A) = 1/2 satisfies ¢ > 1/2. But by the previous Lemma I(A) < p,(A)(1 — up(A))|S|
and therefore the length of the threshold interval of A is at least ~ log(1/€)1/]S|.
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In the rest of this section we give upper bounds on the sum of influences for certain
G-invariant families. We need to study the of sizes of orbits of permutation groups on sets
of unbounded cardinality, which seems to complement the vast knowledge on the orbit-size
of sets of bounded cardinality, and thus being of independent interest. We refer the reader

to [C,P] for related material on permutation groups.

For a permutation group G C S,, and 0 < t < n recall that ¢(t) = ¢ (t) is the minimal
size of an orbit of a t-subset of [n] under G. Let S; be a set of cardinality ¢ whose orbit
size is ¢(t). Consider the family A; of those subsets U of {0, 1} which contain a set in the
orbit of S;. It is reasonable to guess that A; will have in some asymptotic sense smallest

influence among G-invariants families.

We will first describe the value of a,(G) for the case of graph properties, the more
general case of properties of k-uniform hypergraphs and the case where G = GL(q, m)

acting on Fi". (F, is the field with ¢ elements.)

Lemma.

1. Let G = Sy, acting on (). Ift is of the form ("") <t < (}), and tl < n —r then
o (t) > (7)-

2. Let G = GL(q,m) acting on F*. If [([™)](¢) < t < [(7))(q). and v < m/2 then
o (G) < [(7)](a)-

Proof: (1) Let T be a set with |T'| = ¢t which supported by u points. Then u < n—1r so
the orbit of T is at least (). (2) Let T be a t-subset of F;", and let U be the subspace of
F} spanned by T'. Clearly dimU > r. If dimU < m —r we are done. Otherwise the orbit
of T is at least |GL(q,m — r)|/t!, and this number is larger than [("')](¢) in the range of

the Lemma.

Corollary 4.1.
(1) Let k < loglogm and let G = S, acting on (), (thus n = (7).) Then a(G) =
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log' Y =Y and a-(G) = O(log! T/ *=1 )y (2) Let G = GL(q, m) acting on Fr
(thus n = q ) then a(G) = a-(G) = O(logn(1 + log,logn)).

Proof: (1)If log (™) = (}) "7 then rlogm = (}) 7 and logm = r*(1+7)=1 5o that
(1) =logmt/(k+7k=1 and a,(G) = (}) T (log m)(k+7R)/(k+7k=1) = (2) Tf log[(")](q) =
(¢")'*7, then r = log, m + log,log, m + log, log, ¢ and a,(G) = ¢""+7) = O(logyn - (1 +

log, logy 1)), for every 7 > 0.

We will continue now to discuss general primitive permutation groups. We need the
following Theorem from Cameron [C] This theorem relies on the classification of finite sim-
ple groups and specifically on the O’nan-Scott classification theorem for primitive groups.
It is quite possible that by a more delicate group-theoretic argument via the O’nan-Scott
theorem it will be possible to identify the values of a,(G) for every primitive permutation

group.
Theorem. [Cameron]

There is a constant ¢ such that if G s a primitive permutation group of order n then

one of the following holds:

(i) G has an elementary abelian reqular normal subgroup, in other words G is a subgroup
of AGL(n,q) acting on F'.

(ii) G is a subgroup of Aut(T)WrS;, where T is an alternating group acting on k-element
subsets, and the wearth product has the product action.

(ii’) G is a subgroup of Aut(T)WrS;, where T is a classical simple group acting on
an orbit of subspaces or (in case T = PSL(d,q)) pairs of subspaces of complementary

dimensions, and the wearth product has the product action.

(ZZZ) |G| S ncloglogn.

Proof of Theorem 3: We will first prove that for all groups of type (i),(ii)’ and (iii)
a(G) < O(lognloglogn). Next we will describe completely the value of a,(G) for groups

of type (ii).
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Note that clearly a(G) < log |G|, therefore for groups of type (iii) a(G) < O(logn loglogn).
If G = AGL(m, q) acting on F;" then by the same argument as the proof of (4.1) we get
that a(G) < O(logn(1 + log, logn)).

In case (ii’) we first consider the case [ = 1. It follows by a case by case checking that
the action of H = Aut(T) has a(H) < lognloglogn. First note that Out(T') = Aut(T)/T,
is always very small. More precisely, if G is of Lie type G = X(m,q) where m is the
dimension and the field is of size ¢ = p*, then Out(T) has order O(mk) and consists of so
called field automorphisms, diagonal automorphisms, and “diagram automorphisms”, see
[KL]. Therefore, if you multiply T'(S) by O(dk) to get a bound for Aut(T)(S) the change

in the orbit size is negligible.

We first consider the case where G = PSL(m,q). (It make no difference to consider
GL(m, q) and the action on F," was studied above.) We will consider now the action on k-
dimensional subspaces of F". If k < V/Iog m consider the orbit of all k-dimensional spaces
of some r-dimensional space, where r ~ log, m+log, log m+log, logq. If r is larger consider
two disjoint spaces Vi and V5 of dimensions a and b respectively and consider the orbit of
the set of all k-subspaces which contain V; and have a (k —a)-dimensional intersection with
V5. A simple adjusting of the parameters shows that in both case a(G) < lognloglogn.
(When k get larger than logm, b = k + 1 — a and in this case a(G) ~ logn.) We have also
to check the case of action on pairs of complementary subspaces and this works exactly

like action on single subspaces.

Next, we have to check tha cases where X (m,q) = PSL(m,q), SP(m,q), PQ*(m,q),
PQ~(m,q), Q(m,q) and PSU(m, q), linear, simplectic, orthogonal and unitary groups. In
each such case a set of small orbits is obtained from an appropriate subspace. It is quite
likely that a(G) can be computed precisely for all these groups and all their primitive
actions but we will describe a short verification of the fact that a(G) < O(lognloglogn).
First consider the case where X is acting on F" or on l-dimensional subspaces of F".

In this case the result follows from the result for GL(m,q) since the size of orbits of

subspaces is maximal in this case. More generally X can act on either nonsingular or
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totally singular subspaces. The result still follows from those for PSL(m,q) because the
number of such subspaces of given dimension d (provided it is not 0) depends polynomially
on the corresponding numbers for GL(m,q). And in the ranges of interest to us these
numbers of subspaces will be zero only if certain parity conditions holds. In short, the
examples for PSL(m,q) with perhaps changing the dimensions in question by 1, continue

to apply for X (m, q).

To see this last statement look at tables 3.5 in [KL] pp. 70 - 74 giving the isomorphic
type of the point-stabilizer. (You should look at the line corresponding to C1). By looking
at another table with the orders of classical groups - on p. 170, one can compute the orders
of the groups G, the stabilizer H, hence the index (G : H) which is the number of relevant

subspaces. Doing this one finds a polynomial relation, as we wanted.

Now, let H C S,, be a permutation group and G = HWrS; acting on m! with the
product action. If [ > logm then a(G) < llogm = logn (even if H = S,,).

If | < logm then from a(H) < clogmloglogn it follows easily that
a(G) < 2cllogmloglog(m!).

So the only case where a(G) is bigger than O(lognloglogn) is when G C S,,WrS,, and
S, is acting on k-subsets of m and G contains A! . (Thus n = (7,:‘)1) These cases are
dealt with as (4.1) and it turns out that a(G) is of the form Q(logn'+'/"), for r = ki — 1,

and a,(G) > O(lognt+1=7)/("),

We will continue now in the proof of Theorem 3. Part 1 is well known. Part 2, 3 and 4
follow from Theorem 1 and the computations above. Parts 5-8 follows from the Theorem
1 and Corollary (4.1) For part 7 consider groups of the form S, acting on (7:) where
k = k(m) < loglogm depends on m in an arbitrary way and for part 8 consider the group
G L(m, q) acting on F;", where ¢ = q(m) < logm depends on m in an arbitrary way. Part

9, follows from the following Theorem of Babai, Cameron and Palfy [BCP].

Theorem. [Babai, Cameron and Palfy] For a n integer D, let G C S,, be a primitive
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permutation group which does not involve Ay as a section for d > D. Then |G| is bounded

by a polynomial in n (depending on D ).

This complete the proof of Theorem 3.

Remark: The hypothesis of the Babai, Cameron and Palfy theorem is equivalent to
the following: in all the nonabelian decomposition factors of G the Lie rank and degree

(of Ag) are bounded.

A theorem from [FK]| asserts that for a monotone property A if the critical proba-
bility is ¢ (namely, j,(A) = 1/2) then the length of the threshold interval is at most
O(qlog(1/q)/logn). (q can depend on n.) One can ask what are all the (abstract) groups
for which this theorem is sharp for every primitive representation and every ¢. It is plausi-

ble that these groups are precisely the groups with no large alternating groups as factors.

Aknowledgement: We would like to thank Aner Shalev for his help on primitive

permutation groups and Ehud Friedgut for fruitful discussions.
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