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Abstract

Variables describing atmospheric circulation and other climate parameters de-

rived from various GCMs and obtained from observations can be represented on a

spatio-temporal grid (lattice) structure. The primary objective of this paper is to ex-

plore existing as well as some new statistical methods to analyze such data structures

•. forthepurposeofmodel diagnosticsand intercomparisonfrom a statisticalperspec-

tive.Among theseveralstatisticalmethods consideredhere,a new method basedon

- common principalcomponents appearsmost promisingforthe purposeofintercom-

parisonofspatio-temporaldata structuresarisingin the task ofmodel/modeland

model/dataintercomparison.A completestrategyforsuchan intercomparisonisout-

lined.The strategyincludestwo steps.First,thecommonalty ofspatialstructuresin

two (ormore) fieldsiscapturedin the common principalvectors.Second,thecorre-

spondingprincipalcomponents obtainedas timeseriesarethen compared on theba-

sisofsimilaritiesintheirtemporalevolution.



1. Introduction.

The Atmospheric Model Intercomparison Project (AMIP), of the World Climate

Research Program's Working Group on Numerical Experimentation (WGNE) is an

ambitious attempt to comprehensively intercompare General Circulation Models

• (GCMs). The participants in AMIP will simulate the global atmosphere for the decade

1979 to 1988. All the modeling groups have agreed on a common solar constant and

, CO 2 concentration, and will use a common monthly averaged sea surface temperature

(SST) and sea ice data set. This project provides an unprecedented opportunity for re-

alistic and detailed validation and intercomparison of current GCMs. An overview of

the AMIP is provided by Gates (1992). If the amount of data generated by a single

GCM integration for a ten year period is massive, the output of thirty such integra-

tions is overwhelming. In this work we attempt to present a statistical framework to

begin the difficult task of model intercomparison and verification.

To begin we attempt to summarize the aspects of the task of intercomparison:

• We are required to compare a large number of models. (About 30 modeling

groups are participating in AMIP)

• The model output in each case is a nmltivariate vector of geophysical variables

(temperature, wind, water vapor, etc.) with a large number of components. (The stan-

dard output of AMIP specifies over 15 variables.)

• Each component is defined over a spatial grid and hence is expected to have spa-

- tial autocorrelations of varying magnitudes. This issue is further complicated by the

fact that the various models have different horizontal and vertical grids and thus may

o have different underlying correlation structures.

" ® The gridded data in each case has a temporal evolution based on the _._nderlying

physical processes and will in general, have pronounced temporal autocorvelations.

Once these problems are addressed and overcome, at least in some fashion, then

an effective intercomparison/validation methodology must first devise a parsimonious

representation of the spatio-temporal process(es) described above providing a frame-
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work for intercomparison/validation, as well as a large number of exploratory data

analysis procedures accompanied by, whenever possible, confirming procedures for

the intercomparison/validation.

A significant amount of effort has been expended by climatologists in the past to

address this dual task. Data reduction by Karhunen-Loeve expansion (also known as

• principal components analysis or PCA among statisticians and as empirical orthogo-

nal functions or EOF's by geophysicists) was pioneered by Lorenz (1956). EOF based

, analyses have a long and rich history of several successful applications. EOF's or prin-

cipal vectors are based on the covariance structure of a data set. A recent article by

Bretherton et al. (1992) provided an intercompar_son of several methods of analysis

of the covariance structures of meteorological fields in search of coupled patterns.

This study, however, does not address the problem in a manner that involves an ex-

plicit space-time structure in the analysis.

The importance of building a spatio-temporal framework for detecting coupled

patterns was first emphasized by Preisendorfer and Mobley (1982 a-c). They provided

a comprehensive theory of data intercomparison by splitting the spatio-temporal 'dis-

tance' between two data sets into three parts: 'SITES', describing the separation of the

centroids, 'SPRED' representing the difference in radial spread of the data sets and

'SHAPE', describing the difference in the spatial and temporal configurations of the

data sets. Preisendorfer and Mobley recognized a serious disadvantage in their ap-

proach, especially in the use of the single 'SHAPE' statistic for an intercomparison of

the spatial/temporal correlation structure. The proposed correlation statistic com-

presses all the spatio-temporal information into a single statistic and in the process

loses the detailed information regarding the spatial pattern, temporal evolution and

. distribution of the variance in the data sets. Nevertheless, the use of these statistics

and some extensions thereof (Livezy, 1985, Willmott et al., 1985, Zwiers and Thi-

. beaux, 1987 and Zwiers, 1987, Wigley and Santer, 1990) have been suggested for rou-

tine use in the quantitative comparison of meteorological fields. Whatever the merits

" of these space-time statistics are, the need remains for an effective spatial compres-

sion of data for the purpose of any quantitative study of the temporal evolution of spa-

" tial fields. Accordingly, much of this study is focussed on an effective representation

of the spatial fields in a common framework.
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Temporal evolution of a global grid can be represented in two different ways:

• As a multiple time series (MTS) f(x,t) where x is a vector representing the phys-

ical location on the grid and t is the time.

• • A space-time stochastic process (STSP) f(X) with the index X=(x,t), defined over

the space-time continuum.
4

Section 2 will describe the general structure of MTS in a GCM and some prob-

lems associated with it in handling the problem of model diagnosis and intercompar-

ison. Section 3 will provide a brief summary of the structure of STSp and its role in

GCM output analysis. In an MTS representation the number of components for a glo-

bal grid or even a regional subgrid is inordinately large. A parsimonious description

of such an MTS is essential for meaningful statistical inference procedures. Section 4

will address this issue leading to a Reduced Multiple Time Series (RMTS) based on

the use of a few principal vectors. In discussing PCA for continuous domains, Preisen-

dorfer and Mobley (1988) introduce the concept of rotation of the empirical eigenvec-

tors to bring them to dynamically meaningful configurations and use the 'degree' of

rotation needed as a basis for a diagnostic test for the statistical link between the ob-

servation and the model. In this work we take a somewhat different approach based

on the idea of Common Principal Components (CPC) introduced by Flury (1984). This

will provide a common frame of reference for the purpose of model/data and model/

model intercomparison.

Section 5 will provide the details of the method of Common Principal Vectors

. (CPV) introduced in section 4. Once the CPV fields are obtained to provide a common

frame of reference, one can get the corresponding CPC's as time series by projection

. onto the respective data and model fields. These in turn can be analyzed by the meth-

ods of time series analysis. A crucial step in this analysis is time series model identi-

" fication and intercomparison. This has been dealt with in section 6. In addition to the

standard auto-regressive moving average (ARMA) identification procedure, a new

" procedure based on pattern recognition (PR) methods is indicated there. For the in-

tercomparison of two time series one would like to see how closely the identified time

evolution pattern in one series can be used to predict the other time series data. This

task of prediction is normally handled by traditional methods which are linear and
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parametric in nature and are good as first approximations only. A nonlinear and non-

parametric time series model can be formulated based on Artificial Neural Networks

(ANN) as described by Elsner and Tsonis (1992) for example. A brief introduction to

the use of ANN for prediction in the context of model validation is also provided in

section 6. The next section provides the outline of a strategy for intercomparison of

space-time fields. In section 8, we show an intercomparison using the strategy out-
P

lined in section 7. Finally, directions of future research are considered in section 9.

" 2. Structure of multiple time series (MTS) in GCM analysis

An MTS is regarded as a finite part of the realization of a vector stochastic pro-

cess. Consider an (M x N) grid sampled at time t from a field F with the data arranged

as a one-dimensional array Yt of length K = M x N. The time evolution of Yt in discrete

times is:

t _ Yt (w) e RK

where Yt(w) is a realization of the field of values in the K-dimensional Euclidean

spat:,. As is well known, several useful structures can be imposed on an MTS:

• A vector auto-regressive (AR) process of lag p,

P

VAR(p): Yt = _ AiYt- 1 + _ +ct (1)
i=l

where _ais a K - vector of constants, A is a K x K matrix of coefficients and 'errors' ct,

t e T are independent with E(e t) = 0 and with a non-singular matrix of covariance.m

Here T is the index set for time t representing a set of integers.
6'

• A vector auto-regressive moving average (MA) process with the AR parameter p

• and the MA parameter q, VARMA(p,q).

• VAR(p) with p _ ¢_ also denoted by VAR(**).%

In the last two eases an upper bound on p is unknown, a situation not infrequent in

climate studies. See Lutkepohl, 1991 for a comprehensive study of MTS models.
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Also well known are the methods of estimating _ and A using either the least

squares or the maximum likelihood techniques. Statistical properties of these esti-

mates have also been investigated. Further, reliable criteria for selection of the orders

p, q of the model exist, as given, for example, by Akaike (1974), Hannan and Quinn

(1979) and Hannan and Rissanen (1982).

For GCM applications, a global MTS has two distinct disadvantages. First, for

the full global grid even the simplest time series model becomes unmanageable. Take,

, for example, a simple MTS model VAR(l) given by

Yt = A1Yt- 1 +-a+et (2)

The number of parameters in this model on a K x K grid over a time span I to T is (2

K2+ K). With K = 64. this becomes 2(64)2 + 64 or 8,256. Even if we restrict the grid to

a region of moderate size, the number of parameters to be estimated remains exces-

sively large.

Secondly, it should be borne in mind that GCM outputs are obtained on a global

grid. Observations in one cell are strongly related to those in the neighboring cells. An

MTS based approach does not explicitly take this spatial structure into account. As a

result, information related to spatial structure in the data set is obscured, making it

difficult to provide a physical interpretation of the results derived from an MTS based

analysis (Katz, 1992).

3. Including a Spatial Structure in the Model: A space-time stochastic

process approach

D

Whittle (1954) introduced a 2d spatial analog of an AR time series model. Later,

. Bartlett (1971) considered a spatio-temporal Markov model with a given type of spec-

tral densi_,_, f_nction and Cox (1974) emphasized the need to consider a spatio-tempo-

• ral model on a spatial lattice for studying the instantaneous spatial structure of a

field. Whittle's model can be briefly described as follows.

• Let Yij be the observed value of a process at location (i,j) on a spatial grid. Let

Lx, Ly denote respectively the flag' operator along the horizontal and vertical direc-

tions. Thus,
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Lx Yi,j = Yi-l,j and Ly Yio = YiO-l.

We shall also denote by Lt the time lag operation.

Let Llk= Lk Lk...Lk denotetheresultofapplyingtheoperatorLk (k=x ory)1

times successively.Then the spatialAR model can be definedasb

• F (Lx,Ly)Yi,j= ei,j (3)

where F isa polynomialintheoperatorsLx and Ly:

F (L x, Ly) = _ZCklLkx LI (4)k 1 Y

where k,Iare integerspositiveornegativeand eij'sfordifferentpairs(ij)are inde-

pendentlydistributedwith zeromean and a common covariance.In a firstorderspa-

tialAR model k+ l -1,and the spatialdependenceislimitedtoa lagof1.

Sincethe exponentsk and Iintheexpression(4)can be bothpositiveand nega-

tive,the dependence on neighboringcellsisbidirectional,and standardtime series

methods ofanalysesbased on unidirectionaldependencearenotdirectlyextendable.

Tjctsheim(1983)has introducedthenotionofunilaterallatticeprocessmodels ofthe

causaltype(dependenton a quadrant ora half-space)withinterestingapplications

inwaveform recognition(Tjctsheim,1978)and image processing(Tjctsheim,1981).

An importantalternativetothistypeofmodelsisprovidedby Besag (1974).He used

a firstorderconditionalmodel with a (spatial)transitionprobabilitystructure:

" _ P(Yi,j Irest of the sample) = P(Yi,j I Yi-l,j, Yi, j-1)

• depending only on the immediate neighbors. Oshmni (1988) provided the most gener-

al spatial random field model as a basis of some meteorological applications. He con-

siders a non homogeneous field with second order increments. The method in

principle can be extended to spatio-temporal random fields. However at such a level

of generality our basic problem of model intereomparison becomes hopelessly intzae-

table. SimplLqeations are possible by introducing the notion of separable processes

that was first introduced by Quenouille (1952) and later developed by Martin (1990)

and Basawa et al. (1990).

-6-



Separable Processes

The three dimensional parameter estimation problem can be simplified to the

problem of estimating three one dimensional parameters by introducing the

assumption of separability. We define the notion of separability as follows.

Let 0 = (x,y,t), x e X, y e Y and t e T denote a 3-d index where X, Y, and T are finite

" one-dimensional lattices.

" DEF. The stochastic process X is "Weakly stationary" ifE(X20) < oo and both E(X 0 X0

+H) and E(X e) are independent of O, for all (vector) lag H = (x,y,t) in the product space

XxYxT.

DEF. The "Covariance" F at lag H is given by

F(H)= Cov(Xo+H,X0)

and the "Correlation" _ at lag H as

_(H) = F(H) / F(O)

where, O = (0,0,0) refers to the origin in the index space.

DEF. The stationary process X0 is "separable" if _(H) is factorizable:

_(H) = _l(X) _2(Y) z3(t)

" where _1, _2, _3 are the lag correlations in the factor spaces X, Y and T respectively.

" Before introducing the factor representation of a weakly stationary 3-d separable pro-

cess let us recall that the ARMA(p,q) representation of a 1-d process (using the time

lag operator Lt) is given by:

F(Lt)ft =0(Lt Zt

where Zt is a White Noise (WN) process. F and 0 are polynomials of dqgrees p and q

respectively, representing the AR and the MA components of the model. A similar
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representation in a factorized form is possible for a 3-d weakly stationary separable

process as:

Fx(Lx)Fy(Ly)Ft(L0f(x,y,t) =0 x(Lx)0y(Ly)0t(LOZ(x,y,t) (5)

where Fx, Fy, Ft, Ox, Oy, 0 t are polynomials of specified degrees and Z(x,y,t) is a white

noise process of three dimensions. The separability assumption allows us to represent

. the process by (5) and proceed with the maximum likelihood estimation of the param.

eters involved (Basawa et al., 1990).

An application of a simplified version of the space-time ARMA model has been

considered by Niu and Stein (1990) for analyzing the monthly averages of global ozone

data observed during 1979-88. The model is simplified to include only one spatial di-

mension. The processed satellite ozone data is provided in the form of a global lati-

tude, longitude lattice system. For such data, observations in a given latitude band at

different longitudes are highly interrelated. For observations in different latitude

bands this inter relatedness is much less pronounced, suggesting that the ozone data

should be modeled for each latitude band separately as bidirectional autoregressive

moving average (BARMA) processes with perhaps a trend and a seasonal component

in each. Thus for a fixed latitude band, they modeled the observed ozone concentra-

tion f(t) at longitude j and time t as

f(t) = TREND(j,t) + SEASON(j,t) + BARMA(j,t)

where:

BARMA(j,t) =
pl

" E 0t'kBARMA (j + k, t) +
k = -pl

p2

• _ _kBARMA (j, t - k) +
k=l

q

E 8kej-k(t)
k=0
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Hereej(t)~ NID(0,a2(t)),witha2(t)allowedtobetime-dependent(seasonal).The

authorsthen successfullyfita BARMA(1,1) modelto theirdata.Kim and North

(1992)presentanotherinterestingapplicationofaspace-timeARMA modeltoclimat-

icdata.Itshouldbenotedthatthereisconsiderableflexibilityinchoosingthenature

ofthetrendand theseasonalcomponentaswellasinthechoiceoftheorderspl,p2

andq.FittinganappropriateBARMA modeltothemodel/observationdatamakes the

tasksofmodelvalidationand changedetectionsimpler.

4. Reduced malfipletime series

In section 2 we pointed out that a multiple time series based on a fill global grid

is difficult to analyze due to its computational complexity. In addition, a problem in-

herent in intercomparison of models is the problem of multiplicity (Tukey 1977, Has-

selman 1979). Generally speaking, the problem of multiplicity arises when statistical

significancetestsareperformedsimultaneously.With eachindividualtesthavinga

nominalsigrdficancelevel,theprobabilityoferrorofthefirstkindincreasesgeomet-

ricaUywiththenumber oftestsperformedwhich,inthiscontext,isthenumber of

gridpointsinvestigated.The problemofmultiplicityhas been handledin various

manners(Tukey1977,Zwiers1987,Katz1992).No matterhow thecomplexityishan-

dledsome formofdatareductionisessential.Insearchofparsimonyonemay proceed

alongthreepossibledirections.

Summary statistics

Temporal evolution of selected spatial features derived from the gridded data (e.g.,

. first and second order spatial statistics) can be studied for change detection or model
validation.

°

Using selected grid points

• Representative grid points can be selected based on some statistical feature selection

procedure, analogous to those used in pattern recognition systems.

Feature extraction procedure based on principal vecters

One may select a few significant principal vectors and study their temporal evolution.



In the following, we briefly discuss each of these procedures.

a. Summary Statistics

Various summary statistics can be computed for a given field and their time evolution

can be compared for the model(s) and observations. Various time series characteris-

tics of these summary statistics for the fields under comparison can be estimated and

" compared. We cite below a few of the spatial statistics that have been found useful in

the field of pattern recognition, especially in remote sensing applications. (See for ex-
i

" ample Haralick et al. (1979), Sengupta et al. (1989) and Rabindra et al. (1992)). These
statistics are based on the notion of'texture' in the image processing (IP) literature,

w,_'ch in turn depends on the joint distribution of two grid point values separated by

a fixed vector distance. Such a joint distribution has been called a co-occurrence ma-

trix in the IP literature. The (i,j)th entry in this matrix represents the relative fre-

quency of occurrence of the value pair (i,j) occurring in the field at any pair of grid

points separated by a fixed vector distance. Among the second order statistics derived

from the co-occurrence matrix that have been found useful in the IP literature are:

moments, run length, entropy, angular second moment, correlation, local homogene-

ity and contrast (Welch et al., 1988, 1989, 1991). The characteristic spatial properties
of a field are summarized in these statistics and can be used as the components in an

MTS for the purpose of model intercomparison/validation.

b. Selected Grid Points

Let X be a p-variate random vector representing the model output or observations at

p grid points. Let Y be a linear transtbrm of X with q(_<p)components so that

" Y = A t X (6)

" where A is a p x q matrix with q < p and AtA = Iq, the identity matrix of order q. Fur-

ther, let Zx, Zy denote the covariance matrices for the random vectors X and Y respec-

tively, so that,

Z =AtZA
y x
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Let the nonnegative characteristic roots of Zx be arranged in decreasing order of

magnitude be

I.t1 > I.t2 > I.t3... > I.tq> 0

• McCabe (1984)suggests the following further restriction on the structure of the ma-

trix A. The q columns of A are obtained by an ordered sampling without replacement

from the columns of Ip. The effect of applying the transformation (6) then is tanta-

mount to the selection of a subset of size q of the variables. The selection process can

be based on a suitable optimality criterion. Although these criteria can start from very

different objectives, most of them are equivalent to one of the following:

q

Maximize the total variance criterion: _ _ti (7)
i=l

q

Maximize the generalized variance criterion: YI txi (8)
i=l

McCabe has termed these q variables 'principal variable', a term akin to 'principal

components' in multivariate statistics. If q is sufficiently small and yet adequate for

a parsimonious description of the data then a multiple comparison based on Bonferoni

inequality (Katz 1992) can be employed effectively.

c. Principal vectors / components

. If A is subject only to the requirement of column orthogonality (6) then the result is

l_3wn as the empirical orthogonal functions (EOF) or what is the same as principal

vectors in classical multivariate statistics. As indicated earlier, a substantial volume

of literature exists on the uses (and sometimes abuses) of the method of EOF in atmo-

• spheric/meteorological/oceanographic studies. A strategy for the model(s)/observation

intercomparison will now be outlined. First note that we need to consider three types

- of comparison (Priesendorfer and Mobley, 1982):

° Model/model intercomparison where outputs from two or more GCMs are

compared;

-ll-
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• Model]observation comparison where a GCM output is compared with

observation;

• Modeb'analysis comparison where a GCM output is compared with analysis

based on an incomplete set of observations (ECMWF analysis for example).

d. Comparison strategy

• Compute the first few 'significant' principal components for the data fields under

consideration and compare the resulting sets of time series in the frequency as well
as time domain.

• Contour the principal vectors cocresponding to the 'significant' eigenvalues and

compare the structure of t_ese fields.

There are various strategies for retaining the 'significant' principal vectors in an

eigenstructure analysis. However, in comparing two or more fields regarding their

eigenstructure there may not exist any natural ordering of the principal vectors

where one can legitimately compare the k th principal vector of one field with the

same for the other fields under comparison for all k. This question of correspondence

of principal vectors has apparently been ignored in the literature. We shall address

this problem in a different manner in the next section by using a new tool called the

Common Principal Components first introduced by Flury (1984).

5. Common principal components: A tool for studying common covari-
ance Structure

Let there be k fields under comparison with p components each. Let S i, i =1,2,.

k, be their respective covariances. One of the most important questions in the inter-

. comparison of these fields is: Are the covariance matrices 'similar' in any meaningful

way? Flury (1988) has provided the following levels of hierarchy of similarity of cova-
riance matrices:
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(Zi),i = 1,2,3,...k.

I. Z i's are all equal.

II. Zi's are proportional, that is Zi = ciZ for some constants ci and some fixed

covariance matrix Z.

III. The common principal component model.

One of the main objectives in traditional principal component analysis is to find

a coordinate system in which the representation of the p components of a multivariate

vector are uncorrelated. In the search for a common covariance structure it is then

natural to ask if it is possible to find a coordinate system in which the p variables are

uncorrelated, not only in one field, but in two (or several) fields simultaneously. This

leads to the following inquiry. Does there exist a single orthogonal matrix B of order

p such that

i = B M i B, i= 1,2, ..., k ?

IV. The partial common principal components model (PCPC)

In this model, the full orthogonality restriction is relaxed so that only a subset

consisting of q (< p) of the p principal axes are required to be in common to ali k fields

under comparison. The remaining (p-q) of the principal axes are allowed to be field

specific for each of the k fields. The precise mathematical formulation is relegated to

appendix A.

We shall concent'ate on the levels III(CPC) and IV(PCPC) in the rest of this

" article.

One major advantage in using the CPC/PCPC model is that one can compare

' corresponding principal components. In addition, one can test the hypotheses of

(partial) commonality of the principal axes of representation of two (or several) fields

of data. The statistic rJ tests of significance are given in appendix A. It should be noted

here that the app_'_¢_ation of the tests of significance requires that the sample fields

(over discrete time instants) be independent. This is, in most cases not a valid as-

sumption since fields over successive time instants are in fact correlated. This
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problem itself does not preclude the use of common principal components as a diag-

nostic tool for understanding the commonality of the fields without a formal test of

significance (It should be pointed out that the current use of EOF for intercomparison

does not go beyond a visual comparison of the fields). In order to apply the tests of sig-

nificance however, the following modifications in the procedure are suggested.

First, based on the auto-correlation structure of the time samples one may sub-

sample from them so that the effect of auto-correlation is statistically insignificant on

successive samples. Of course this will typically reduce the effective sample size by a

factor of 3 to 4 for monthly data.

Second, one may consider the principal component analysis in the 'sample space

setting' (Preisendorfer and Mobley, 1988) where each time series on a single grid

point is regarded as a sample, providing as many samples as there are grid points.

Spatial instead of temporal subsampling should now be used to ensure approximately

the independence of the samples should one decide on a significance test.

6. Time series model identification and intercomparison

A crucial step in the model/model (observation) intercomparison as described in

section 5 is the correct ARMA identification of the time series obtained from the com-

mon principal vectors. One may employ the Box-Jenkins methodology (Box a_,d Jen-

kins, 1970) for this. However, the identification using this methodology is often not

unique.In order to get around this problem a method based on PR principles is (Lee

and Park 1988) outlined now. This method for time series identification is based on

the technique of supervised learning. N classes of time series are labelled by the N

pairs (Pi, qi), i= 1,2,..., N based on the identification of N time series ARMA models

under consideration. Simulated ARMA series with these identification characteristics

are used to 'train' a traditional classifier (linear, piece-wise linear or quadratic). The

training essentially consists of building the coefficients of the discriminant functions

which in turn are used i_oform the class boundaries for classification decisions. Once
t

the classifier is trained, a new time series is classified based on the values of the com-

puted discriminant functions generated by the classifier during the training phase.

Traditional classifiers of the types mentioned above are often suboptimal in accuracy

because of the parametric assumptions and fixed boundary types inherent in the

model. A relatively new type of classifiers based on artificial neural networks (ANN)
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overcomestheseproblems.Neural networks can be used tobuildclassifiersthatcan

createarbitrarilycomplex classboundariesfordecisionsurfacesforoptimalperfor-

mance. Furthermore,no distributionalassumptionsare needed inthisclassifier.In

fact,Lee and Park (1991)have recentlyextendedtheirwork by replacingthe tradi-

tionallineardiscriminmlt-basedclassifierwitha classifierbased on artificialneural

network which has improved theirclassificationaccuracy.
o

Inadditiontotheabilitytoperformaccurateclassification,ANN alsohas the ca-

pabilityofaccurateand robustfunctionapproximation.This lastcapabil"_ymakes

ANN a strongcompetitorofothertraditionalmethods thatarebased on regression,

interpolationorsplinefunctions.Inthisarea,ANN enjoystheadvantageoffullyuti-

lizingthe paralleldistributedprocessingcapabilitiesthatare inherentin such net-

works by construction.Furthermore,unlikethetraditionalfunctionapproximation

methods, ANN doesnot requirethe specificnatureofthe approximatingfunctionto

be provided.This implicitfunctionapproximationcapabilityhas recentlybeen ex-

ploredina paper by Eisnerand Tsonis(1992)inthe contextofa meteorologicalpre-

diction.

a. Time series Prediction and intercomparison

We have indicated in section 1 that one way of comparing two (or more) time series

resulting as the common principal components is to check how well the identification

of parameters in one can be used to predict the other. More specifically, one would

identify the ARMA model in one series by estimating the orders p, q and the associ-

ated (p+q) ARMA coefficients and then use these to predict the other series. In a non-

parametric setting one may use an ANN directly for the prediction bypassing the need

to identify the model first as indicated in the following paragraph.

b. ANN in time series prediction and intercomparison

" The fundamental problem in a one-step prediction can simply be stated as the estima-

tion of a mapping f:
t

X(t + n) = f (X(t), X(t+ 1), ..., X(t+n-1)) (9)

where X(T), T = t, t+l, ..., t+n-1 denotes the value of the time series at time T. In the

context of the problem of model intercomparison, one can look at two time series X(T),

Y(T) of a specified CPC pair resulting from two model outputs (or a model output and



observations) and find a predictive function of the form (9) for the X(T) series. This

function is encapsulated in the tbrm of weights of the ANN trained by 'examples' se-

lected as time segments of fixed length (n+l) from the series X(T). These weights are

analogous to the regression coefficients in a regression model. The input (X(t),

X(t+l),..., X(t+n-1)) is a segment of length n, and the output is X(t+n) both taken from

the time series segment (X(t),..., X(t+n)) for t= 1, 2,..., N-n, where N is the length of

the series. This estimated function can then be used to predict Y(t+n) based on an in-

put segment (Y(_), Y(t+l),..., Y(t+n-1)) for different values of t. The corresponding

ANN output is the predicted value of the Y(t) series based on the X(t) series. A widely

used measure of skill of a predictor is the correlation coefficient R between actual and

predicted values (Anthes, 1984). This or other measures of predictive skill can then

be used to validate the similarity of the two models (or the model and the observa-

tions). The process can of course be repeated for the comparison of all significant CPC.

Work is in progress towards this and other model validation/intercomparison (Sen-

gupta and Boyle, 1992).

7. A strategy for space-time data field intercomparison

In section 5 we introduced the notion of common principal vectors as a means of

representation of data from multiple fields in a common frame of reference. This led

to groups of time series of principal components where the time series within each

group need to be intercompared. Section 6 dealt with the methods of intercomparison

by traditional methods as well as methods based on ANN. In this section we combine

the two steps to outline an overall strategy of space-time field intercomparison.

i

1. For a given meteorological/atmospheric/oceanographic variable over k space-time

fields, determine if the mean fields under comparison are very much alike. If they are,

one may consider the comparison of anomaly fields. For example, one might consider

. monthly temperature anomaly patterns over a certain period as given by observation,

GCM output, or analysis derived from an incomplete set of observations.

' 2. Test the hypotheses ofq common principal vectors in succession for q= 1,2,..., until

the hypothesis of commonality of q principal vectors can be rejected for some q(<p),

say, q=Q+ 1.This indicates that the maximal number of common principal vectors is Q.
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3. For each CPV, project each of the k space-time fields on the CPV by taking the sca-

lar product of the CPV and the sample field at each time instant to get k univariate

time series.

4. Using the methods indicated in section 6, the k univariate time series can now be

intercompared with regard to their evolutionary patterns. The methods in section 6

" are all based on time domain analysis. However, frequency domain characteristics

can also be intercompared.

Thus, in search for a coupled set of patterns one first looks at the similarity in

the spatial distribution through the orthogonal common principal vectors and then in

the temporal characteristics of the derived principal components. The latter task can

be accomplished by traditional model identification procedures or by using pattern

recognition methods as indicated in section 6.

In the context of model intercomparison, two fields would be considered to be

'similar' with increasing degrees of similarity in order indicated below, if:

• The significant common principal components explain a 'large' portion of the

variations in the fields under comparison, in most practical applications of principal

components, when dealing with 'explained' variations, a cumulative proportion of 70-

95 percent is considered 'large.'

• The ARMA(p,q) identification of the CPC time series are identical.

• The estimates of the AR and MA coefficients using these parameters in each case

when used to predict the other series shows a high degree of predictive skill. (A widely
o

used measure of skill of a predictor is the correlation coefficient R between actual and

predicted values (Anthes, 1984)).

8. Application
t

The data sets used for the example application of the CPC methodology are ver-

tically integrated temperatures from three sources. The first source is a ten year

climate simulation of the decade 1979 to 1988, the second is the operational analyses

from the European Centre for Medium Range Forecasts (ECMWF), and the third is

-17-



the observations from the Microwave Sounding Unit (MSU) carried on the NOAA

polar orbiting satellites. The MSU data (specifically channel 2) represent a weighted

vertically averaged temperature. These data are described in detail by Spencer and

Christy (1990). Hurrel and Trenberth (1993) describe a method for computing the

equivalent of the MSU temperature given a vertical array of temperature values.

Their method was applied to the model output and the operational analyses to yield

three data sets for comparison.

The model data which were used for this experiment is from the AMIP integ_'a-

tion of the ECMWF model, cycle 36. The model has 19 levels in the vertical and for

this experiment was set to a horizontal resolution of T42. The model is in almost all

respects the same as that described by Miller et al. (1992). The sea st, rface tempera-

tures are specified in accordance with the AMIP guidelines. The surface land temper-

atures are allowed to vary in accordance to the surface parameterizations employed.

The integration started with the ECMWF analyses for 1 January 1979 and continued

for 10 years.

The operational analyses are those of the ECMWF. A rather complete d:'scussion

ofthe nature of these data for the period 1979 to 1988 is given by Hoskins et al. (1989).

The data for the comparison are all available on global grids. It was decided to

perform the analysis on a limited grid covering 15 S-15 N and 120 E-255 E of the equa-

torial Pacific region. The spacing between the data points is 15 degrees of latitude and

longitude. This region was chosen since it is the area within which the major atmo-

spheric and oceanic anomalies occur during ENSO events. In this area the SST have

strong variations that affect the atmospheric temperature. Since the only connection

of the model to actual conditions is the SST patterns, it was felt that this region was

. a good testbed to demonstrate the accuracy of the simulation. The data were available

on latitude longitude grids of approximately 2.5x2.5 degrees, although only data ev-

. ery 15 degrees was used in order to reduce the amount of spatial correlation between

data points.

• Although the data _¢ere available as monthly means, the ECMWF analyses were

available only from 1980 to 1988; the computations were therefore performed for 9

• years yielding 108 time samples. As shown by Newell and Wu (1992) the data possess

a strong temporal correlation. In their paper they provide estimates of the effective

sample size using the observed MSU temperatures for the same time period. They

used these estimates to determine significance levels for correlation coefficients.
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Another reason for restricting the region of computations to the equatorial Pacific is

that the time correlation is relatively homogeneous in this region, which allows for a

less ambiguous estimate of the effective sample size than a region which comprises a

spectrum of time relations should one choose to construct a statistical test based on
estimates.

Finally, anomalies were computed for all the data sets by subtracting the 9 year

mean for each month from each month's data. This procedure effectively removes the

seasonal cycle which would dominate the more interesting non_seasonal signals. As

a result of these decisions the analysis was performed using a 3 x 10 spatial grid with

108 time samples. This small amount of data allowed the analyses to be run quite eas-

ily on a Sun 1+ workstation. The IMSL (1991) subroutine KPRIN based on the FG al-

gorithm for common eigenstructure (Flury and Gautschi, 1986) was used in this work.

Results

The first two common principal vectors for each of the three pairs are shown ii Figs.

la-f for each case and for each field in the pair. For purposes of comparison, Figs. 2

a-f display the first two principal vectors of the individual data sets. Also plotted, in

(a) (d)

(b) (e)

Illl IiOB lllll ]10 ]drll ,I 101$ IJIIV ],11_ ]Jill 1101 ]1$_I 1@0 ldl_ -I-1 I1_ ]JSIW 1JFOIN

(c) (f)
.
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Fig. 1. (a) The first commonprincipal component vectorusing the model and observation data sets of

vertically integrated temperature. (b) As in (a) except for the analyses and observation data sets.

(c)As in (a) except for the model and analyses data sets. (d) As in (a) except for the second CPC.

(e) As in (b) except for the second CPC. (f) As in (c) except for the second CPC.
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Fig. 2. (a) The first principal component vector for the observations. (b) As in (a) except for the model

data set.(c)As in (b) exceptforthe analysesdata set.(d)As in (a)exceptforthe second principal

component. (e)As in(b)exceptforthe secondprincipalcomponent. (f)AS in(c)exceptforthe second

)rincipalcomponent.
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Fig. 3. (a) Time series of the projection of the model and observed data onto the first CPC of the model
. and observations. The solid line is the observed data. (b) Time series of the projection of the analysis

and observed data onto the first CPC of the analysis and observations. The solid line is the observed

data. (c) Time series of the projection of the model and observed data onto second CPC of the model and

observations. The solid line is the observed data. (d) Time series of the projection of the analysis and

observed data onto the second CPC of the analysis and observations. The solid line is the observed data.
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Table 1: CPC 1 in ANAL/OBS Intercomparison EQPAC region

Residual
p q AR coeffs MA coeffs Variance

ANAL. 1 24 al =-0.825 b 1=-0.2970 1.300
" - b24=-0.278

Observation 1 24 a1=-0.847 b12=-0.258 1.119
' • b24=-0.308

Table 2: CPC 2 in AMIP/OBS Intercomparison EQPAC region

Residual
p q AR coeffs MA coeffs Variance

i

AMIP 1 0 al =-0.721 0.321
a2--0.103

Observation 2 0 ai =-0.846 0.323
a2=-0.324

Table 3: CPC 2 in ANAL/OBS Intercomparison EQPAC region

Residual
p q AR coeffs MA coeffs Variance

Q

ANAL. 24 1 a1=-0.919 -0.696 0.337
a18=-0.204
a24=0.230

. Observation 2 0 al =-0.362 b 12=-0.258 0.324
a2=-0.321 b24=-0.308
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Table 4: CPC 1 in AMIP/OBS Intercomparison EQPAC region

Residual
p q AR coeffs MA coeffs Variance

AMIP 11 3 al =-0.0948 b 1=-0.260 1.088
" a2=0.103

Observation 1 24 al =-0.846 b 12=-0.246 1.148
b24=-0.293

Figs. 3a-d, are the projections of the data sets representing the time-varying fields

along these principal vectors resulting in the principal components of these time-

varying fields. These should be interpreted as the principal modes of time evolution

of the spatial fields measured along the common principal vectors. In addition the cor-

relograms of the time series of the first two CPC's (Fig. 3) are shown in Figs. 4 a-d.

The results of an ARMA analysis for the first two principal _omponents are shown in

Tables 1 to 4.

The first common principal vectors for all three cases, Figs. la-c, look similar.

This implies that the model, analysis and observations are in good agreement with

respect to the basic structure of the anomaly fields of integrated temperature in this

region. The percentage of explained variance by the first CPC is at least 70% for all

the cases. The analyses and observations have percent explained variance by the low-

est CPC of roughly 70% while the corresponding model percent is 80%. This might

imply that the model patterns are less complex. The pattern seen in Figs. la-c is also

. typical for the first EOF in the SST fields for the region (Weare et al., 1976, 1981,

and 1983), Hsiung and NeweU, 1983).

. The PCA fields, Figs. 2a-c, for the first mode show that the observations evince

a much larger gradients although the pattern in all three fields is similar. The anal-

. ysis appears to be an intermediate version of the observations and the model. This is

perhaps not surprising in that the ECMWF model was used as the data assimilation

• platform for the analysis. This results in the analysis having characteristics of the

model and observations. The patterns in Figs. la-c can also be compared to the PCA

components in Figs. 2a-c. It is apparent that the CPC algorithm also produces blend-

ing of the characteristics of the input fields. Comparing the PCA analysis, Figs. 2a-c,

-22-



a definitely indicates that the first mode of the three data sets are different, but they

do not provide a common basis for comparision. The CPC analysis puts the (pair-

wise) fields in a common framework allowing for a direct comparison and more de-

tailed an_ysis of their time evolution.

In the time series of Figs. 3a-b the peaks occurring during the E1 Nifio years of

1982--83 and ]986-87 clearly standout. It is the E1 Nifio pattern that is captured by
t

the CPC's ofF°gs. 2a-c. A low frequency component of about 4.5 to 5 years appears to

. be present in all cases. It cannot be determined from this limited time series whether

this is a real phenomenon or an artifact of the short time sample. In general the agree-

ment between the model and the observations is not quite as good as between the

analysis and observations but in both cases the ENSO events are clearly captured.

The agreement for the second CPC, Figs. 3c--d, is not as good, but the amplitude of

this component is red,,_c_.d from the _rst (note the scale change on the ordinate

between Figs. 3a-b and3c-d). The corre!ograms for the model and analysis, Figs.4 a-b,
co_,,o_omc,c , _od.Vo_,.o,d- ob. (b) Co,..,ogromC_C_o,°,_.;./ob..o,id- ob,
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Fig. 4. (a) Correlogramof the time series of the projectionof the model _nd observed data onto the first
CPC of the model and observat,;ons. The solid line is the observed data. The 95%simultaneous con-

fidence bands forwhite noise autocorrelationsare also displayed on the figure. (b) Correlogramof the

time series of the projectionof the analysis and observed data onto the first CPC of the analysis and
observations. The solid line is the observed data. The 95%simultaneous confidencebands are also

displayedon the figure. _c)As in (a) except forthe second CPC.(d) As in (b) except forthe second CPC.
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s,how opposite tendencies, in that the models have greater autocorrelations, Fig. 4a,

and the analysis has smaller autocorrelations. Thus, for their respective first CPC
modes, the model has more persistence, and the analyses less than observed. This is

consistent with the inference drawn before that the model has less complex structure
in the spatial domain. This relationship is reversed for the second CPC mode, Figs.

4c-d, at least for the autocorrelations above the 95% confidence interval. In general,

- the second modes, Figs. 4c-d, exhibit somewhat less persistence than the first, Figs.
4a-b.

' The results of the model identification/intercomparison procedure for the time

series corresponding to the first two common principal components of the model/ob-
servation and analysis/observation pairs are shown in Tables 1-2. The analysis/obser-
vation intercomparison for the first CPC shows the same (p,q) estimates (p- 1, q=24).

The estimated coefficients also are close in value. This indicates that the first princi-

pal components in the analysis and the observstions for the region under consider-

ation are nearly identical. However, the ARMA order structures are different for the

principal components corresponding to the model/observation pair. In CPC 2, the

model/observation pair shows the same MA order (q=0) but slightly different auto-

regressive order (p= 1 for the model compared to p=2 for observation), whereas, the
analysis/observation pair show little resemblance in their respective orders. It should
be noted however that the ARMA estimates of the orders and coefficients are not

unique and hence a more appropriate intercomparison should be based on the predict-
ability of one series by the evolutionary characteristics ofthe other as indicated in sec-

tion 6. This approach although not shown here will be used in our future work.

9. Conclusions and Further Research

An appropriate representation of the spatio-temporal data derived from the ob-d.

servations or as model outputs is a necessary first step in model validationfmtercom-

• parison. Several possible representations have been considered in this report. Of

these, two are particularly attractive for GCM models on a global scale. The first is
the bilateral auto-regressive model restricted to s fixed latitude band, with perhaps a

time-varying trentl and a seasonal component added to it (Niu and Stein, 1990). The

second starts with a reduced data set in the form of a MTS consisting of a few orthog-

onal common principal components for the fields under comparison. The use of CPC's
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are not limited to model intercomparisons only. In fact, it is a powerful tool in detect-

ing coupled patterns involving several simultaneous spatio-temporal fields and mete-

orological variables. This last feature makes it a potentially valuable tool in under-

standing the physical processes associated with these fields. Some of our future effort

willbedirectedtowardsthisaspectoftheapplicationsofCPC's.

Time seriesmodelidentificationmethodologyappliedtotheCPC timeseries

• hasbeenindicatedasthenextstepinthemodelintercomparisonprocess.Thisiden-

tification,whichisnotnecessarilyunique,neednothoweverbecarriedoutexplicitly.

•" We haveindicatedbrieflya methodbasedonANN thatiscapableofbeingusedfor

modelintercomparisonpurposes,bypass'_ngtheneedforexplicitARMA modeliden-

tification.Developingthismethodfurtherwillbea partofourfuturework.
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Appendix A

We provide here the mathematical formulation of the statistical hypotheses re-

ferred to in the levels III and IV of the hierarchy introduced in section 5. These are

respectively the CPC and PCPC hypotheses regarding the covariance structures of

tile space-time fields. We use the same notations introduced in section 5.

Zi = B Mi B', i= 1,2,...k.

where Bpxp is an orthogonal matrix of order p,

Mi = diag(gil' gi2"'" }lip)is a diagonal matrix for i=1,2,...k. In other words, the

covariance matrices are simultaneously diagonalizable. The common principal vec-

tors then provide us with a common frame of reference for the fields under compari-

son. The model so derived is thus called the Common Principal Components (CPC)
model.

The Partial Common Principal Components Model (PCPC)

In this model, we assume that there are q common principal vectors, 131,_2,'"_q,

for all covariances Zi and (p-q) field-specific principal vectors gj(i), j = q+l,...,p;

i= 1,...,k.

• q P

Zi = Z gijl3jl3J + 2 -1jl_'(i)13_i) (_ i))t
j=l j=q+l

i=l,2,...k; q < p-1.

o

Statistical Hypotheses

In IH, the log-likelihood statistic for testing the null hypothesis of common prin-

cipal vectors (Hcp C) against the hypothesis of arbitrary Y-4s is asymptotically chi-

square distributed with (k-1)p(p-1)/2 degrees of freedom and is formally given by
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k det_ i

%2 = _ nidetSi1=1

where Siistheisthelthsamplecovariancematrixand/},_,and _2iare respectivelythe

• maximum likelihoodestimatesofB,M i,and Ziunder the restrictionsofthe hypothe-

^ ^ ^I

• sisHCp C ofcommon principalcomponents.Notethat_;i= Bl'tiB•

Numerical algorithmsforestimatingB and mi areavailable (Fluryand Gaut-

schi,1986) and FORTRAN executablecodescan be found i_ the IMSL statistical

package(IMSL, 1991).

The hypothesiscorrespondingtothelevelIV (PCPC oforderq)ofthehierarchy

can be writteninmatrixnotationas

HIV (q)" Zi = Bi Mi Bi t, i= 1,2,.•.k

where Zi's are positive definite symmetric matrices of order p, Mi = diag (rail,mi2...

,mip) and Bi = (Bo Bi). Each Bi is a (pxp) orthogonal matrix sharing a common part

Bc with p rows and q columns independent of the group i and a group-specific part Bi

with p rows and (p-q) columns. The test statistic for testing HIV(q) against arbitrary

Zi can again be based on the likelihood ratio principle and its asymptotic distribution

turns out to be chi-square. Clearly there are more parameters estimated in this model

under this null hypothesis than under the null hypothesis of level III. This makes for

fewer degrees of freedom of the chi-square statistic viz. (k-1)q(2p-q-1)/2. Furthermore,

the numericalalgorithmtosolvethe system ofequationsforthe MLE ishighlyin-

" volved.In fact,the proofofconvergenceofthisalgorithmisnonexistent.There is,

however,an approximateproceduretofindtheML estimatesofthe parameters in-

" volvedwhich inturncan beusedina conservativemanner totestthenullhypothesis.

Itisconservativeinthesensethatthe approximatetestcan be used onlyibrthepur-

poseofacceptingthenullhypothesiswhen thecomputed chi-squareislessthan the

correspondingcriticalvalue.One cannothoweverrejectthenullhypothesisintheop-

positecase.We have notused eitheroftheseversionsin thiswork. Insteadwe have

used thefullCPC versionofcommon principalcomponents extractioninIMSL (1991)
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subroutine KPRIN in which the columns of B (common principal vectors) are ar-

ranged in increasing order of the sums of the corresponding eigenvalues over the k

groups under consideration. Depending on the relative magnitudes of these sums,

only a few of these common principal vectors are retained for the comparison study.

In our case we retained only those principal vectors where contribution from each

group in a sum exceeded 5% of the total of the eigenvalues for that group.
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Appendix B
List of Symbols

Roman
a K-vector

A Rectangular column-orthogonal matrix

. Ai Kx K matrix

B orthogonal matrix

•. H vector lag: (x,y,t)

K number of grid points

M number of horizontal grid points

N number of vertical grid points

p auto-regressive order in an MTS

q moving average order in an MTS

RK K-dimensional euclidean space

t time instant

T finite index set of a time series

w a single realization of a time series

x a vector representing the grid location

X (x,t)

Yt discreet time MTS

Zt white noise

Greek

Uk spatial AR parameters

_k temporal AR parameters

. 8k temporal MA parameters

error standard deviation

• et error vector at time t in a MTS

0 (x,y,t), the three dimensional index parameter in a STSP
• F covariance matrix

correlation matrix
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Operators

Lx Lag operator along x - direction

Ly Lag operator along y - direction

Lt Lag operator along time axis

• Polynomial

, Z Covariance matrix

_ti eigenvalue
• b

Acronyms

AMIP Atmospheric model intercomparison project

ANN Artificialneural network

AR Auto-regressive

ARMA Auto-regressive moving average

BARMA Bi-directional auto-regressive moving average

CPC Common principal components

CPV Common principal vector

ECMWF European center for medium range weather forecasts

ENSO E1 Nifio southern oscillation

EOF Empirical orthogonal function

GCM General circulation model

IP Image processing

MA Moving average

MSU Microwave sounding Unit

MTS Multiple time series

NID Normal and independently distributed

PCA Principal components analysis

' PCPC Partial common principal components

PR Pattern recognition

RMTS Reduced multiple time series

SST Sea surface temperature

' STSP Space -timestochasticprocess

TSM Time seriesmodel

VAR Vectorauto-regressive
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VARMA Vector auto-regressive moving average

WGNE Working group on numerical experimentation

WN White noise
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