
Gödel’s Disjunctive Argument

Wesley Wrigley*

Draft of March 2020

Abstract

According to Gödel’s disjunctive argument, the incompleteness theo-
rems entail that the mind is not a machine, or that certain arithmeti-
cal propositions are absolutely undecidable. Gödel’s view was that
the mind is not a machine, and that no arithmetical propositions are
absolutely undecidable. I argue that the Gödelian position in both
cases rests on the assumption that the idealised mathematician can
execute a certain non-recursive procedure. I identify Gödel’s hypoth-
esised ability as one variety of the recursive ordinal recognition ability.
I show that we have this ability if, and only if, there are no absolutely
undecidable arithmetical propositions. These considerations are de-
veloped into an argument for the existence of absolutely undecidable
arithmetical propositions. I argue that no recognizable example of
such a proposition could be identified, in principle. This implies a cer-
tain form of quietism about the limits of our arithmetical knowledge.

Introduction

In his 1951 Gibbs Lecture delivered to the American Mathematical Society,
Gödel claimed that the incompleteness theorems entail the following disjunc-
tion: either the human mind is not a machine, at least in respect of its ability
to prove mathematical truths, or else there are number-theoretic propositions
which are in some sense absolutely undecidable (1951, p.310).

This paper has two aims. The first is to give a thorough assessment of
Gödel’s response to his disjunction. Given the scarcity of source material on
the subject, this will involve some degree of reconstruction from his published
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and reported views on anti-mechanism and absolute undecidability. I’ll ar-
gue that the Gödelian view in both cases rests on the presupposition that
we can execute (at least “in principle”) a certain non-recursive procedure.
The second aim of this paper is to develop the evaluation of Gödel’s presup-
position into a novel argument for the existence of absolutely undecidable
arithmetical propositions.

§§1–2 concern the absolute undecidability disjunct. I present Gödel’s evi-
dence argument, his most compelling case against the absolute undecidability
of problematic arithmetical propositions, notably the consistency sentences
of certain extensions of Peano arithmetic. I’ll argue that the success of the
argument depends on our ability to enumerate a non-recursive set of numbers
which codes information about the ordinals. Drawing on Feferman’s com-
pleteness theorem, I’ll further argue that if Gödel’s argument is successful,
then it establishes the decidability of not only consistency sentences and the
like, but of every arithmetical proposition whatsoever.

§§3–4 concern the anti-mechanical disjunct. Gödel himself wrote frus-
tratingly little on the subject, but drawing on the scant remarks available,
and the development of the view by Lucas, I present a view called Gödelian
anti-mechanism. Once again deploying considerations relating to Feferman’s
completeness theorem, I argue that any remotely plausible version of this
view rests on exactly the same presupposition as the evidence argument,
namely that some particular non-recursive set can be enumerated by the ide-
alised mathematician.

This gives us a single issue in terms of which we can address the disjunc-
tive argument: does the idealised mathematician have the abilities required
to vindicate Gödel’s views? In §5, I identify Gödel’s hypothesised ability as
one kind of recursive ordinal recognition ability, and identify a weaker abil-
ity that would also serve some of Gödel’s purposes. I then argue for a new
disjunction: either we have the recursive ordinal recognition ability (in one
of the two senses), or there are absolutely undecidable arithmetical proposi-
tions. I also briefly review the literature directly relevant to this ability, and
find the existing arguments against our possession of this ability inadequate.

In §6–7 I consider two arguments in favour of our possession of the re-
cursive ordinal recognition ability. One represents Gödel’s rationalistic opti-
mism, and the other is a novel argument in favour of our having the weaker
recursive ordinal recognition ability. In each case, I argue that it would be
an epistemic miracle if we had the proposed ability. On the other hand, a
compelling case can be made against our possession of the recursive ordinal
recognition ability, from which the existence of absolutely undecidable arith-
metical propositions follows.

In §8, I discuss the prospects for exhibiting one of these propositions. I
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argue that, in principle, there is no recognizable example of such a proposi-
tion, despite the compelling case that can be made for their existence. This
serves two purposes. Firstly, it excuses my own lack of a witness to the claim
that such propositions exist, and secondly it suggests that a form of quietism
about the limits of our arithmetical knowledge is the proper philosophical
response to Gödel’s theorems.

1 Gödel’s Evidence Argument

In the Gibbs lecture, Gödel argues for his famous disjunction, that either
the mathematical capabilities of the human mind do not correspond to any
Turing machine, or that some mathematical propositions are undecidable
in an absolute sense. According to Gödel, ‘the epithet “absolutely” means
that they would be undecidable, not just within some particular axiomatic
system, but by any mathematical proof that the human mind can conceive’
(1951, p.310). Hence, I’ll take a proposition φ to be absolutely undecidable
if and only if it is undecided by every formal theory recognizable by us as
sound; i.e. if T 6` φ and T 6` ¬φ for any recognizably sound T.1 In con-
sidering whether certain propositions are absolutely undecidable, we are not
considering whether actual human beings can produce a proof of them. Af-
ter all, actual humans have a limited attention span, very limited life spans,
and pressing needs beyond the production of arithmetical proofs. Rather, we
consider what could be accomplished by the idealised mathematician. It is a
little unclear how much idealisation is allowed in the debate by the various
parties; but unless otherwise stated, I’ll be operating under the standard as-
sumption that the idealised mathematician has an arbitrarily large (though
finite) stock of materials, time, and brain-power available for their reasoning.

In the Gibbs lecture, Gödel does not offer an argument for a particular
disjunct. His first (and best known) argument for the absolute decidability
of all arithmetical propositions appears in handwritten notes from the 1930s
(Gödel 193?). The argument there is terrifically condensed, so I’ll try to spell
it out with a little more clarity. Gödel identifies a special class of polynomial
expressions that give rise to unsolvable Diophantine problems. The Diophan-
tine problem corresponding to such a polynomial expression is to determine
whether the equation P (a1, ..., am, x1, ..., xn) = 0 has any solutions in the

1Note that this includes theories where φ is an axiom, hence this definition does not
beg the question against anyone who thinks that some axioms can only be recognized by
us as valid using informal modes of verification. For if φ were such a proposition, and we
verified it informally, we would then recognize the theory {s | φ ` s} as sound, and hence
φ would not be absolutely undecidable according to the definition given.
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integers for arbitrary integer values of the parameters (the ais). As a conse-
quence of the incompleteness theorems, each recursively axiomatized theory
which can express all Diophantine problems of this kind and is sound with
respect to them is incomplete with respect to them (Gödel 193?, p.165).2

Gödel goes on to argue that the fact that PA (and its extensions) are
incomplete with respect to Diophantine problems gives us no reason what-
soever to suppose that there are problems of this kind which are unsolvable
in an absolute sense. Without loss of argumentative force, I’ll recast Gödel’s
argument in terms of the undecidability of consistency sentences, for the sake
of clarity.

The ‘evidence argument’, as I call it, proceeds as follows. Suppose you
have some particular theory which is known to be sound, such as PA, the
standard first-order formalization of arithmetic. It follows trivially that the
theory is consistent. Hence, if we then recognise some sentence, such as
ConPA, as an expression of this fact, our reasons for believing that PA +
ConPA is sound are just as good as those for believing that PA itself is
sound.3 While not all sentences which entail the consistency of PA will be
recognizable as such, a canonical consistency sentence like ConPA certainly
is. Hence we know that PA + ConPA is sound. Since that theory gives us
a trivial proof of ConPA, that sentence isn’t absolutely undecidable. To use
Gödel’s terminology, the undecidable sentences associated with the incom-
pleteness theorems are ‘exactly as evident’ as the theorems of the old system
(in this case, PA) (Gödel 193?, p.164). In principle, the same argument can
be run for the new theory, and so on. It follows that canonical consistency
sentences, and the undecidable propositions associated with the incomplete-

2Strictly speaking, the disjunction presented by Gödel in the Gibbs lecture is that the
mind is not a machine or that certain Diophantine problems of this kind are absolutely
unsolvable. However, it is harmless to recast Gödel’s disjunction in its more familiar form
as between anti-mechanism on the one hand and the existence of absolutely undecidable
arithmetical propositions on the other, because the Matiyasevich-Davis-Robinson-Putnam
theorem implies that for each sufficiently expressive recursively axiomatized arithmetical
theory T, there is a true (and constructible) Diophantine sentence DT undecided by
the theory, which says that a certain Diophantine equation has no solutions. Hence the
corresponding Diophantine problem is unsolvable just in case the Diophantine sentence is
undecidable.

3One reason to be suspicious here is the idea that our epistemic warrant decreases with
each inferential step in a deduction, as the possibility of making errors increases with the
length of an argument. I take it that such concerns should not apply in the present context,
because we are concerned with absolute undecidability. Since we are in general idealising
away from finite lifetime and supply of paper, we can suppose that the mathematician
can check and re-check any argumentative move arbitrarily many times, so that warrant
is ideally preserved through each deductive step, whether formal or otherwise.
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ness theorems more generally, are not absolutely undecidable propositions.4

In a nutshell then, the evidence argument is that the consistency sen-
tences of knowably sound theories are absolutely decidable because the re-
sult of adding a consistency sentence to any such theory will be exactly as
evident as the axioms with which we started. Something like this argument
must be correct. Indeed, in other places, e.g. (Gödel 1946, p.151), Gödel
takes some version of the argument to be essentially truistic. The inference
from soundness to consistency is trivial, so as long as we accept the premise
that we know that PA is sound, it follows that we do have a proof in some
sound theory of many of the undecidable propositions associated with the
incompleteness theorems. The question, then, is do we have a proof in some-
or-another system of all such propositions?5

It’s crucial to note that the evidence argument relies on an intensional
relation between two theories, namely that the axioms of one are exactly as
evident as those of another. In claiming that the relation the axioms of φ
are exactly as evident as the axioms of ψ is intensional, all I mean is that if
(a) T is a sound theory, (b) the consistency of T is sufficient for the truth of
P , and (c) there is no proof or other rationally compelling reason to believe
(b), then it does not follow that the axioms of T + P are exactly as evident
as the axioms of T.

Clearly, if P is recognizable as a consistency sentence for T, then the ax-
ioms of T + P are exactly as evident as those of T. However, if P is not
recognizably a consistency sentence, then there is no reason to suppose that
T +P inherits the evidential merit of T. In some cases there might be inde-
pendent compelling reasons to believe P ; but Gödel’s argument is supposed
to apply to any extension of a knowably sound theory by its canonical consis-
tency sentence, and so relies on the tacit assumption that the axioms of the
extended theory are always exactly as evident as those of the old theory for
exactly the same reasons. This means that we can assess Gödel’s argument
in terms of whether undecidable sentences, like consistency sentences, are
always recognizable for what they are.

It might be objected that thinking of the relation the axioms of φ are
exactly as evident as the axioms of ψ in this way forces us to adopt an inter-

4There are other interesting candidates for an absolutely undecidable proposition, like
CH, and Gödel has plenty to say about such cases. However, we will here confine our
attention to the arithmetical case.

5The argument could similarly be run using Gödel sentences. In this formulation, the
procedure for constructing the Gödel sentence of a theory known to be sound makes it
obvious that it is true. The same goes for the Diophantine sentences discussed above,
since the construction of the Diophantine sentence of a sound theory is successful only if
the corresponding equation really does have no solution in the integers.
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nalist interpretation of the relevant epistemic notions which is unwarranted.
I don’t want to comment at all on the more general epistemological debate
here, but I do think in this particular dialectic a somewhat internalist inter-
pretation of the relevant epistemic concepts is required. The reason is that
we’re considering the relation under an already high degree of idealisation.
So if the consistency of T is sufficient for the truth of P , but there is no
proof or other rationally compelling reason to believe this, it means that the
entire community of mathematicians, idealised to have as much time, paper,
and brain-power as you like, has no rationally compelling argument for the
fact in question. Furthermore, given the presumptive mathematical neces-
sity involved, these situations are of the kind where the consistency of T is
sufficient for P, but there is no possible proof for creatures like us that this
holds.

So, given the idealisation here, any assertion that the axioms of T + P
are exactly as evident as those of T is essentially a demand to change the
subject, and stop thinking about what propositions creatures like us could
possibly prove. Crucially, thinking that the relation the axioms of φ are ex-
actly as evident as the axioms of ψ is intensional does not beg the question
against the Gödelian, since thinking of the relation in this way does not in-
volve asserting that any situation in which (a), (b), and (c) jointly hold does,
or even could, obtain.

The intensionality of the relevant notions is much clearer when we con-
sider that the general idea of a consistency sentence is an informal one. By
‘a consistency sentence for T’ all I mean is a sentence in the language of T
which expresses that T itself is consistent. The idea of such a sentence is
of course closely tied to formal ideas in the arithmetization of syntax, but
it is no less informal for that. It is, of course, standard practice to give a
canonical form for consistency sentences to take. For example we may stipu-
late that ConT =df ¬∃m PrfT(m, p0 = 1q), for any T. But that definitional
schema is not a functor into which the axioms of T can simply be inserted,
because the relation PrfT is different for different sets of axioms, and hence
must be defined afresh for different sets of axioms. This is not altered by the
stipulation of a canonical shape for consistency sentences to take.

Crucially, the need to define a new proof relation occurs whenever the
axioms of T are changed, even if this makes no difference whatsoever to the
theory considered as a set of sentences. Consistency sentences, and related
constructions which code information about axiomatic theories, are in gen-
eral are sensitive to the particular axiomatic presentation of a theory. In
many cases, the addition of a new axiom to two extensionally equivalent
theories (i.e. sets of axioms with the same deductive consequences) results
in two new theories which are extensionally equivalent to one another. The
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addition of consistency sentences to extensionally equivalent theories does
not, however, preserve extensional equivalence in this way. This is because
such sentences code information about axiomatic theories (such as their con-
sistency or soundness) under some particular description of those theories.

Consider the following example based on Feferman’s early discussion of
the issue (Feferman 1960, pp.36-37): suppose we have two consistent sets of
axioms, A and B, both of which extend PA. Suppose further that A and B
are extensionally equivalent, but that they are axiomatized very differently
to one another (though both recursively so). As a result, these two theo-
ries have non-identical canonical consistency sentences. By Gödel’s second
theorem, A 0 ConA, so by construction B 0 ConA, and vice-versa. Given
the difference in the description of the sets of axioms, we can finally sup-
pose that ConA and ConB are not provably equivalent. In such a case, the
relation PrfA and PrfB might appear so different that the consistency sen-
tences ConA and ConB are not obviously equivalent, even if they are both
‘canonical’ in the required sense. So even if we restrict our attention to con-
sistency sentences of a canonical form, the exactly-as-evident relation is still
intensional. If T is extensionally equivalent to PA, but radically different
in presentation, the axioms of PA +ConT cannot be assumed to be exactly
as evident as those of PA. ConPA and ConT may be equivalent, but unless
we have a compelling reason to believe that fact, we are not entitled to infer
ConT from the observation that PA is sound.

So, given that the relation is exactly as evident as is intensional, Gödel’s
argument will only work if we can always recognize, for any theory T, that
T +ConT is indeed an extension of T by the addition of a canonical consis-
tency sentence for T. As we shall see, this is an assumption to which Gödel
is certainly not entitled.6

6One might object that this misrepresents Gödel’s views on the nature of absolute
provability. He ultimately came to think that a proposition is provable tout court if it
follows from set theory plus some true large cardinal assumptions (Gödel 1946, p.151).
Hence, the restriction in this paper to arithmetic and the neglecting of set theory perhaps
fails to do justice to Gödel’s thought on the matter. The reasons for restricting ourselves
to arithmetic here are as follows: firstly, it is unclear to what extent the various extensions
of ZFC by large cardinal axioms should be, or even are, regarded as knowably sound. It
is by no means clear, for example, that the Riemann Hypothesis could be settled by a
proof in some extension of ZFC by large cardinal assumptions. Hence philosophically, the
significance of the discussion is unclear if framed set-theoretically. Secondly, it is widely
acknowledged that large cardinal axioms can’t successfully frame a notion of absolute
provability that works in the desired way, since by the Levy–Solovay theorem, even under
powerful large cardinal hypotheses the size of the continuum is still sensitive to forcing
(Koellner 2010, p.202). Hence we’re better off here restricting our attention to undecidable
propositions that are arithmetical (unlike CH) and for which Gödel offers a more persuasive
argument.
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What makes Gödel’s position on consistency extensions so persuasive is
that there are abundant examples where it is clearly correct. In the first
instance, PA is sound. Since we know this, we have just as much cause to
believe in the soundness of PA + ConPA. The chain of such theories (start-
ing with PA) that stand to one another in the relation the axioms of φ are
exactly as evident as those of ψ is very long; indeed it is infinitely long. Let
T0 = PA, and Tn+1 = Tn+ConTn . For any n we can, given time and paper,
verify that the axioms of Tn+1 are exactly as evident as the axioms of Tn.
We can, in principle, verify that the axiomatizations and constructed con-
sistency sentences are correct, and then the same argument that convinced
us that PA + ConPA must be sound because PA is should also convince us
that Tn+1 is sound. Since Tn+1 ` ConTn , we have, for any n an argument
that ConTn isn’t absolutely undecidable.

2 Reflection Principles and Ordinal Notations

Gödel’s evidence argument is intimately related to the theory of reflection
principles. A reflection principle is a statement which can be iteratively
added to a theory, and the validity of which follows from the soundness of the
base theory to which the principle is added. A reflection sequence based upon
a theory T is the result of the iterated addition of some reflection principle
to T. In the case of Gödel’s argument, the relevant reflection principle (for
successor ordinals) is

Consistency Reflection: Tα+1 = Tα ∪ {ConTα}

Essentially, the evidence argument is that, where T0 = PA, the axioms of
Tα are exactly as evident as the axioms of PA, no matter the ordinal value
of α.

Gödel’s argument succeeds for at least arbitrary finite extensions of a
knowably sound theory by the iterated addition of consistency statements.
But the theory Tω, which extends every Tn in our sequence above by ConTn ,
is recursively enumerable. Hence ConTω , is true and independent of the the-
ory. The crucial question is now whether Gödel’s argument is successful in
the case of transfinite iterated addition of canonical consistency sentences.

Given the argument above that the axioms of PA are just as evident
as those of Tn, for any n, and the fact that Tω simply extends the Tns by
canonical consistency statements, let’s grant that the axioms of Tω are just
as evident as those of PA. Now Tω is incomplete, but according to Gödel’s
argument, our reasons for believing PA is sound are exactly as evident as
our reasons for believing in the soundness of Tω, and hence are exactly as
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evident as our reasons for believing in the soundness of Tω + ConTω .
At this point, the situation has changed drastically. When we’ve iterated

the addition of consistency sentences only finitely many times, we can di-
rectly write down what the theory is. For example, T2 = PA + ConPA +
ConPA+ConPA

. Evidently the process is laborious, but there’s no obstacle to
checking in principle whether such a theory is an extension by the iterated
addition of consistency sentences of PA, and hence whether Gödel’s argu-
ment applies to it. However, we cannot use such brute force methods in
representing a theory in our sequence after the addition of infinitely many
consistency sentences. We also can’t simply write down ‘Tω’ and formulate
its consistency sentence accordingly, since all the theories in our consistency
reflection sequence are couched in the language of arithmetic, and this does
not include symbols for transfinite ordinals. If we want to assert that Tω is
consistent by using a canonical consistency sentence, we need to fix a pre-
sentation of that theory in order to define a proof predicate for it. Hence the
need for a coding mechanism.

An ordinal ‘notation’ system fixes a map between the natural numbers
and the order types of recursively well-ordered subsets of N, in order to code
information about these recursive ordinals in the language of arithmetic. In
keeping with the majority of work in the field, we’ll use Kleene’s O notation
system, though the arguments of this paper will carry over just as well to an
equivalent system. In Kleene’s system, O is a subset of the natural numbers
ordered by the transitive relation <O. Where n ∈ O, the ordinal it represents
is |n|, determined as follows: 0 ∈ O and |0| = 0. If n represents α, then 2n

represents α + 1 and n <O 2n. Where {e} is the e-th partial recursive func-
tion, if {e} is total, its range is in O, and for all n, {e} (n) <O {e} (n + 1),
then 3 · 5e ∈ O, for all n, {e} (n) <O 3 · 5e, and the ordinal |3 · 5e| is the
supremum of the ordinals | {e} (n)| for all n.

It is vital to note that in the language of arithmetic, we can’t represent
the structure of the recursive ordinals (i.e. ordinals < ωCK1 ) uniquely. Each
limit ordinal < ωCK1 has infinitely many notations in O, so the order <O is
partial, and branches infinitely at all and only limit ordinals. There are thus
infinitely many totally ordered paths through O which assign a unique no-
tation to each recursive ordinal. So for any given base theory and reflection
principle, there are many different reflection sequences up to a given limit
ordinal, corresponding to different ways of coding the indices of the theories
in the sequence in order to correspond to a path within O up to that limit.7

7To clarify, this means that there are two distinct senses in which we can talk about
the index of a theory. On the one hand, we can mean by ‘the index of a theory’ the
ordinal position of that theory in a reflection sequence. On the other hand, talk of ‘the
index’ might mean the ordinal notation used to code the required ordinal information in
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Crucially, a theorem of Church and Kleene shows that there is no recur-
sive enumeration of the recursive ordinals, from which it follows that O isn’t
recursively enumerable and the property of being a member of O isn’t defin-
able by any formula in the language of arithmetic. This is a big problem for
Gödel’s argument because, unlike in the finite case, we should not suppose
that, where α is transfinite, we can effectively recognize that the αth theory
in a consistency reflection sequence is actually an extension of PA by trans-
finitely iterated consistency reflection. In consequence, we currently have no
reason suppose that the axioms of such a theory really are exactly as evident
as those of PA.8

To spell this out in a little more detail: let

ConTα =df ¬∃m PrfTα(m, p0 = 1q)

here, the formulation of the consistency sentence is itself dependent on the
predicate PrfTα , which is sensitive to exactly how the theory Tα is axioma-
tized. Given that we are working in the language of arithmetic, we cannot
define the αth theory in our reflection sequence as the αth extension of PA
by iterated consistency reflection if α is transfinite. But we need a means to
express that some of our theories are the result of transfinite iterated addition
of consistency sentences to PA, hence the need for a coding system which
allows for the representation of recursive ordinals. Even supposing that the
transfinite iterated addition of consistency sentences doesn’t spoil our ability
to perspicuously formulate the proof predicate here, it remains that Tα+1 is
only as evident as Tα if we can recognize that ConTα is true.

Given the intended generality of Gödel’s argument, our recognition of the
truth of ConTα can’t hinge on any special features that sentence may have.
Rather, our recognition of its truth must consist solely in our recognition that
it is a consistency sentence for an extension of PA by the iterated addition
of consistency sentences. This is so only if the ordinal index α is denoted
in the arithmetical presentation of the theory Tα by a notation in O of a
recursive ordinal.

Given that there is no recursive procedure for recognizing whether a num-
ber ‘denotes’ an ordinal in this fashion, we have no reason to suppose that

some presentation of the theory in the language of arithmetic. In most cases, context will
make the intended sense clear. Where both senses are relevant to a single point, letters
in vertical bars will stand for the ordinal index, and unadorned letters will stand for the
notational index.

8Though we don’t know the exact date of the relevant manuscript, Gödel’s argument
may well have been produced years before Kleene’s work on ordinal notations, so I’m not
making the anachronistic argument that Gödel was wrong to ignore these issues. Rather,
I am claiming merely that they can help us see why Gödel’s arguments break down.
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we can always recognize the truth of a sentence expressing the consistency
of a theory in the transfinite stages of our sequence, as Gödel’s argument
requires. In fact, this seems to be a good reason to suppose that our ability
to recognize the truth of the relevant sentences might give out at some point.

So Gödel’s evidence argument relies crucially on the assumption that we
can, in principle, always recognize a canonical consistency sentence of a suit-
able extension of PA for what it is. This is a substantive assumption: once
we’ve iterated the addition of consistency sentences into the transfinite, it
amounts to the claim that the idealised mathematician can always deter-
mine whether a natural number denotes an ordinal in O (or an equivalent
coding system). Furthermore we must iterate that procedure transfinitely,
since a finite version of the evidence argument fails to show that the consis-
tency sentence for Tω isn’t absolutely undecidable.

Thorough evaluation of Gödel’s assumption will have to wait until §§5-7.
For now, it’s important to note that Gödel’s argument is far from truistic.
Not only does the argument rest on a contentious assumption, significantly
more follows from it (if it is successful) that the decidability of propositions of
particular classes, such as consistency sentences, Gödel sentences, and Dio-
phantine sentences. Somewhat surprisingly, if the axioms of any member of
a reflection sequence based on PA really are exactly as evident as the ax-
ioms of PA itself, then no arithmetical proposition whatsoever is absolutely
undecidable. This follows from a result due to Feferman, and will be of great
importance to the evaluation of Gödel’s disjunction. Stating the result, how-
ever, requires some technical preliminaries.

Consistency reflection is not the only principle that can be iteratively
added to PA on the basis of its soundness. We can also formulate principles
which express not just that the preceding theory in a reflection sequence is
consistent, but also that it is sound. One such principle is Feferman reflec-
tion (a standard version of the Uniform Reflection Principle), which says
that, for any formula φ, if, of every number, a theory proves that it is φ, then
every number is φ.9 More formally:

Feferman Reflection: ∀x PrTα(φ(ẋ))→ ∀x φ(x)

where PrTα is a provability predicate for Tα coded in the standard Gödelian
fashion; and where φ(ẋ) denotes the Gödel number of the result of substitut-
ing the numeral denoting x for the first variable appearing in φ. Feferman
reflection should be understood without loss of generality as restricted to

9The arguments to follow carry over with a variety of alternative reflection principles
(see (Feferman 1962, p.274) for details), but we’ll stick to using Feferman reflection for
the sake of simplicity.
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formulae of LPA with a single variable (Feferman 1962, p.274). A Feferman
reflection sequence can then be defined over the recursive ordinals as follows:

T0 is the base theory (for example PA)

For successors, Tα+1 = Tα ∪ {∀x PrTα(φ(ẋ)) → ∀x φ(x)| φ ∈
LPA}

If β, is a limit ordinal, the axioms are chosen such that Tβ extends
Tα by Feferman reflection for each α < β (including 0).

As with consistency reflection, the members of any such sequence are the-
ories in the language of arithmetic. Hence when we formulate instances of
Feferman reflection for theories constructed by transfinite iteration of that
principle, we need a means of representing transfinite ordinals arithmetically.
As in Feferman’s original work on the subject, we’ll use Kleene’s O to do so.
A transfinite recursive progression on T, for a given reflection principle, is
the set {Tn|n ∈ O}. We can then construct a total recursive function f from
numbers to theories that, when the argument is some n ∈ O, takes as its
value the theory T|n| (under the particular description given by n).10

Feferman reflection is a principle that we should accept of theories we
believe to be sound with respect to domain N. For if a theory is sound, its
proof predicate actually represents the proof relation. So, if it proves φ of
each number, it follows by minimal semantic reflection that ∀x φ(x). So if α
is a successor ordinal then we should accept that Tα is sound if we believe
that its predecessor in the sequence is sound. This is because Tα is an exten-
sion of Tα−1 by Feferman reflection for each φ, which is soundness-preserving
with respect to the domain. If β is a limit ordinal, we cannot apply Fefer-
man reflection directly to a previous theory, but instead must formulate a
means of asserting the Feferman reflection principle of all theories earlier in
the sequence using ordinal notations. But extending some sound theories
by the assertion of their soundness will result in a sound theory, so the use
of Feferman reflection at limits stages is acceptable, providing we already
accept that certain semantic properties (in particular, the property of being
an index of a sound theory in a reflection sequence based on Feferman re-
flection) are suitable for transfinite induction over the ordinals. But given
the intimate link between the ordinals and induction, this assumption can
be readily granted.11

10I owe much here to Shapiro’s presentation of the matter (1998, p.287).
11For those who may have moderate scepticism on the matter, I should point out that

(as we will see later) we only require these properties to be suitable for induction in a
small initial segment of the recursive ordinals.



13

So any Gödelian who believes that any extension of PA by iterated con-
sistency reflection has axioms which are just as evident as those of PA should
feel similarly about members of any reflection sequence based on PA using
Feferman reflection. The soundness of PA justifies the iterated addition
of Feferman reflection just as much as consistency reflection. Hence, our
Gödelian thinks that the axioms of the αth member of any Feferman reflec-
tion sequence based on PA are exactly as evident as the axioms of PA.
Surprisingly, if every member of each such sequence really does have axioms
which are exactly as evident as those of PA, then it follows that no propo-
sitions are absolutely undecidable. The central mathematical result behind
this conclusion is the following:

Feferman’s Completeness Theorem: For any transfinite re-
cursive progression extending PA = T0, every true sentence of
number theory is provable from

⋃
n∈O:|n|<ωωω Tn

Although a number of different results go by the name of ‘Feferman’s com-
pleteness theorem’, the result so named above is a restatement of his theorem
5.13 (1962, p.308). Moreover, for any uniform reflection progression, some
particular path b in O is such that for any true arithmetical φ, there is some
n in b such that Tn ` φ and |n| < ωω

ω+1
(Franzén 2004, §14.3), meaning that

a reflection sequence up to a small ordinal proves every arithmetical truth.
Indeed, the bound can be reduced to ωω

2+1 (Franzén 2004a, p.386).
This result is certainly a striking one. Moreover, it provides for a sig-

nificant strengthening of Gödel’s evidence argument. The original version
of that argument was aimed at showing that none of the metamathematical
propositions generated by the incompleteness theorems were absolutely un-
decidable. The success of that argument hinged on our ability to recognize,
or to enumerate, notations for recursive ordinals. Feferman’s theorem shows
us that if we actually have this ability, the idealised mathematician could rec-
ognize that an arithmetically complete theory is sound by recognizing that
it is constructed from PA by the iterated addition of a soundness reflection
principle. Since such a mathematician would be equipped with a recogniz-
ably sound and arithmetically complete theory, no arithmetical proposition
whatsoever would be absolutely undecidable.

3 Anti-Mechanism

We’ve seen that the hypothesised ability to recognize or enumerate notations
for transfinite ordinals is the crucial moving part of Gödel’s argument against
the existence of absolutely undecidable arithmetical propositions. In the next
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two sections, I will argue that this hypothesised ability is also at the heart
of Gödelian anti-mechanism, and hence an assessment of whether or not the
idealised mathematician has this ability is critical for our evaluation of the
disjunctive argument as a whole.

For our purposes, mechanism is the claim that the idealised arithmeti-
cal output of the human mind is coextensive with the output of a Turing
machine. So we can take anti-mechanism to be the claim that the idealised
mathematician can prove more than can be proved by any Turing machine.
With a suitable system of Gödel numbering fixed, there is a one-to-one cor-
respondence between (the outputs of) Turing machines and (the deductive
closures of) recursively enumerable theories. Hence, anti-mechanism (in the
present context) amounts to the view that the idealised mathematician can
deploy a non-recursive procedure in the course of producing their arithmeti-
cal output.

Although he was an anti-mechanist, Gödel’s support for the view is only
cautiously hinted at in the Gibbs lecture; it was later confirmed as his own
view in (Wang 1974, p.324-326). But the most well-known argument for the
anti-mechanist disjunct is the Lucas–Penrose argument, which I’ll breifly re-
view.12

Lucas’ argument against mechanism is notable for being dialectical in
form; rather than present a knock-down argument that minds are not ma-
chines, Lucas offers an argument schema to refute the mechanist (1968,
p.156). The schema is as follows: the mechanist comes along, and puts
forward a thesis of the form ‘the human mind can be modelled by machine
M’, where a machine models a mind if and only if the arithmetical output of
the two is coextensive under suitable idealisation. Given that some human
beings are arithmetically proficient, we assume that M enumerates the Gödel
numbers of the theorems of PA, and perhaps other things too. Let TM be
the recursive theory the theorems of which are coded by M’s output. Thanks
to Gödel’s theorem, there is some sentence GM which, provided that TM is
consistent, is true and which M cannot prove (i.e. TM 6` GM). Lucas then

12For the most part, I’ll set aside Penrose’s version. This is because the aims of his
argument, insofar as it differs from Lucas’, are orthogonal to our present concern. My
aim is to address the question of whether the idealised arithmetical output of human
mathematicians can be shown to be distinct from the output of any Turing machine. On
the other hand, Penrose aims to establish that ‘[h]uman mathematicians are not using a
knowably sound algorithm in order to ascertain mathematical truth’ (Penrose 1994, p.76).
The present discussion is somewhat removed from concerns about what actual human
mathematicians are, or are not, doing. This is because the total output of all past and
present human mathematicians is finite, and hence there is certainly a Turing machine
which enumerates the Gödel numbers (under some suitable coding) of all the arithmetical
truths that have been proved by us so far.



15

takes up the potentially very tedious task of constructing GM, and proves it
(or at least claims to). Lucas and the machine can both prove ConTM

→ GM,
where ConTM

is some canonical consistency sentence for TM. Assuming that
(the theory corresponding to) the machine is consistent, by Gödel’s second
theorem the machine can’t prove ConTM

, and can get no further. But Lu-
cas, ‘standing outside the system’, as he puts it, can prove that the Gödel
sentence GM is true, since it ‘says’ that it is not a theorem of TM, which
indeed it isn’t, by the assumption of the machine’s consistency (Lucas 1961,
p.117). Since Lucas can prove something that the machine cannot, the latter
cannot model the mathematical capabilities of the former. The same goes for
any other suitable machine, including the one corresponding to TM + GM.
Whatever thesis the mechanist offers, Lucas claims that he can disprove it
via the same technique (1961, p.117).

Good (1967, p.146) first emphasised that a finite machine can be con-
structed corresponding to PAω, via the use of notations for recursive or-
dinals.13 This means that the one-upmanship must be continued into the
transfinite if Lucas is to refute the mechanist (which, for the record, Good
did not believe was possible). The crucial issue then, is whether we have
any reason to believe that Lucas can keep beating the mechanist by apply-
ing reflection principles at transfinite stages of this process. Lucas certainly
believes that he can. Before we assess this claim, it’s important to note that
if Lucas can always one-up the mechanist’s proposed machine, then he can
beat the mechanist overall. The soundness of PA implies not only the truth
of its Gödel sentence, but also the relevant instances of Feferman reflection.
Moreover, the construction of Good’s machine for PAω is still possible when
the reflection principle of concern is Feferman reflection, rather than the iter-
ated addition of Gödel sentences. So whatever Lucas could do in the original
game against the mechanist, he can do in the higher-stakes version played
using Feferman reflection. Thanks to Feferman’s theorem, we know that
there exists a branch b in O such that

⋃
n∈b:|n|<ωω2+1 Tn is complete. Call any

arithmetically complete theory constructed by transfinite reflection on PA
a Feferman arithmetic. If Lucas can one-up the mechanist at every stage of
the game played on some such b, he will certainly win; after sufficiently many
moves, Lucas will have produced a Feferman arithmetic, which none of the
mechanist’s machines will be able to do.

If Lucas can beat the machine at every stage on some suitable b, then
he has the ability to recognize that all of the theories corresponding the the
mechanist’s machines are indexed by notations for recursive ordinals. After

13Here PAω is the first member with a transfinite index of a reflection sequence based
on PA where the construction proceeds by the iterated addition of Gödel sentences.
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all, it is in recognizing that the index of the theory codes such an ordinal
that Lucas would recognize that it extends PA by the iterated addition of
a soundness-preserving principle, and hence this recognition is where Lu-
cas would find his justification for applying Feferman reflection and thereby
proving something that the machine cannot.

If Lucas can enumerate O, then he can certainly do this. And supposing
that the idealised mathematician has this ability would not, I think, make the
account any less Gödelian. Gödel himself certainly thought that we possess
certain non-recurisive abilities. Although he acknowledges that the notion
of a non-recursive procedure is far from clear, he cites ‘the process of defin-
ing recursive well-orderings of the integers’ as a known example of such a
procedure (quoted in Wang 1974, pp.325-6). Since Gödel thought that we
can, in principle, enumerate ωCK1 (the set of the order types of the recursive
well-orderings of the integers), it is consonant with his view to suppose that
we have the intimately related ability to enumerate O, especially since his
evidence argument depends on this supposition. If we can non-recursively
enumerate O, then we could construct a Feferman arithmetic; correspond-
ingly, I’ll call the view that the idealised mathematician can axiomatize a
Feferman arithmetic and deploy it in their production of proofs Gödelian
anti-mechanism.14

Before we come to the issue of our hypothesised ability to enumerate O, it
is instructive to consider whether the Gödelian anti-mechanist can beat the
mechanist using fewer resources. Lucas does offer an argument to the effect
that the anti-mechanist needn’t presuppose that the idealised mathematician
can enumerate O. As remarked above, if n ∈ O is a notation for α, then
2n ∈ O, and 2n is a notation for α + 1. So, although enumerating O is a
non-mechanical matter, calculating the next ordinal notation after being pre-
sented with some previous notation is a mechanical matter. Lucas claims,
therefore, that he doesn’t need to enumerate ordinal notations; rather, he
just needs to calculate the next ordinal notation, whenever the mechanist
presents him with a Turing machine the corresponding theory of which is
indexed by such a notation. According to Lucas, this means that whatever

14One might object that I am unfairly ascribing to Gödel the view that the idealised
mathematician can carry out a transfinite number of reasoning steps, since this appears
to be required for the construction of a Feferman arithmetic. I’m not sure if a transfinite
number of steps of reasoning really is required to execute such a construction; the issue
strikes me as decidedly murky. But in any case, Gödel himself was quite happy to entertain
the idea that a finite mind is capable of an infinite number of distinguishable mental states
(Wang 1996, p.196) and can store an infinite amount of information (Wang 1996, p.193).
Hence my proposal still represents a reasonable reconstruction of Gödel’s position from
the meagre textual evidence that is available, even if it does involve a contentious view
about the abilities of the idealised mathematician.
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machine was presented by the mechanist cannot have an arithmetical output
coextensive with his own (Lucas 1996, pp.111-112).

This argument, however, is unconvincing. Even if it is a requirement of
the dialectical scenario that the mechanist put forward as a proposed model
of the mind a machine the corresponding theory of which is actually an ex-
tension of PA by the transfinite iterated addition of a reflection principle, it
seems unreasonable to require that the mechanist be able to prove that the
their favoured machine has this property. After all, mechanism is not itself
a mathematical thesis, but a hypothesis that the human mind is limited in
various respects. So the mechanist, in the dialectical scenario, should be able
to put forward some machine, and tentatively claim that they believe it can
prove anything a human could prove. Lucas, when presented with such a
machine, can ‘out-Gödelize’ it (to borrow his term) if he can determine the
theory corresponding to the machine, verify that it is indexed by an ordinal
notation, and then apply a reflection principle to it get a stronger theory.
Verifying the index is crucial; without doing so, we have no reason to believe
that any sentence Lucas produces which the machine cannot is actually true.
So Lucas doesn’t simply need to know how to calculate powers of 2, as he
claims. Rather he needs the ability to recognize ordinal notations when pre-
sented with them, which comes to the same as the ability to enumerate O.

So much for Lucas’ argument. The failure of that argument does not,
however, show that the anti-mechanist really must presuppose that we have
the ability to enumerate O, as I’ve claimed. To see that this is so, we need to
examine one further aspect of the kinds of reflection progression that we’ve
been considering; this reveals that, without the presupposition that they can
enumerate O, the anti-mechanist is left with a disastrous epistemology of
arithmetic.

4 The Failure of Autonomy

We can distinguish amongst reflection progressions a special kind, which Fe-
ferman calls autonomous (1962, pp.280-281). An autonomous progression is
unlike the general recursive progressions previously examined, because the
definition of such a progression is based on some formula, ψ, such that if
ψ(x) is valid, then x ∈ O. In particular, for every Tn in an autonomous
progression, some earlier theory proves ψ(n) (1962, p.262). Essentially then,
autonomous progressions are those that we can recognize to be reflection
progressions using only techniques available during the construction of the
progression by a mathematician (in the more general case, we will not have
the ability to verify the indices of the theories, and hence won’t know whether
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the construction of the progression has been successful). The formula ψ, in
this scenario, functions as a kind of oracle allowing the mathematician to
verify that the progression so far is indexed by a set with the required order
properties.

However, proving Feferman’s completeness result ineliminably relies on
non-autonomous methods, as can be seen in the following way. Suppose
we have O ⊆ O, such that for every d ∈ O, there is some Ta such that
a ≤O d and Ta ` ψ(d). Then we can prove that

⋃
d∈O Td is recursively

enumerable, and hence by Gödel’s theorem does not prove every true sen-
tence of number theory (Feferman 1962, p.262). Another way of seeing this
is that if the ordinals up to ωω

ω
have notations in O, then

⋃
n∈O:|n|<ωωω Tn

is recursively axiomatizable. If a completeness theorem could be proved for
autonomous progressions, then this theory would prove all true sentences
of number theory, so it would witness the falsity of Gödel’s theorem. The
essentially non-autonomous character of the progressions required to obtain
an arithmetically complete theory is crucial to seeing why the Gödelian anti-
mechanist cannot formulate a satisfactory epistemology of arithmetic without
the presupposition of the idealised mathematician’s ability to enumerate O
(or perhaps just the ability to enumerate some branch of it suitable for the
construction of a Feferman arithmetic, though this would be rather ad hoc).

Consider the theory TA, or ‘true arithmetic’. This theory is axiom-
atized by every true sentence of the language of arithmetic, i.e. TA =
{φ | φ ∈ LPA ∧ φ is true}. TA fails as an account of idealised human proof
procedures because we can’t actually use TA to prove anything we didn’t
already know; since the theory as presented presupposes the notion of arith-
metical truth, we have to use some other means of proof to determine what
the axioms are. Even the Gödelian who thinks that the theory is exten-
sionally correct as a model for our idealised arithmetical knowledge must
recognise that it isn’t an epistemically viable arithmetical theory like PA.
We take PA to successfully model (at least part of our) arithmetical knowl-
edge because, limitations of time and paper aside, anything provable from a
canonical presentation of PA is thereby provable by us too. The axioms can
be recognized by an effective procedure, and the tractable inference rules are
ones that we can apply for ourselves. But since there is no recursive proce-
dure for determining of an arbitrary formula in the language of arithmetic
whether it is true, we cannot straightforwardly determine what the axioms
of TA are, given that those are just the truths of arithmetic.

The ineliminable use of non-autonomous methods means that any Fe-
ferman arithmetic we might construct is defective in the same way as TA.
It is difficult to see that this is so, since the presentation of a Feferman
arithmetic does not explicitly mention arithmetical truth. Rather, the arith-
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metical truths are the deductive closure of a Feferman arithmetic, but the
axioms are just those of PA plus the instances of lots of Feferman reflec-
tion schemata. The problem, put succinctly, is that making a selection of
instances of Feferman reflection to build an arithmetically complete theory
requires prior knowledge of certain arithmetical truths which are not prov-
able during the construction process. This point requires some explanation,
however.

Consider exactly why it is that the ability to construct a Feferman arith-
metic goes hand-in-hand with the idealised mathematician having the ability
to enumerate O, rather than the weaker ability to simply follow a path within
O up to ωω

2+1. After all, can’t we just start with PA, add the Feferman re-
flection principle at successor stages of the sequence, and take the union of
our previous theories at limits? If we need only the ability to follow a path
within O, the Gödelian position might seem more persuasive, given the sub-
stantial weakening of our idealised abilities.

Sadly for the Gödelian, more than this is required for the construction
of a sequence of the correct kind. There are many different paths through
O, which branches infinitely at all and only limit ordinals. So after each
limit ordinal in the construction process, for example in the construction of
stage ω + 1 in the sequence, we need to use one of infinitely many possible
means of arithmetically representing the axioms of the previous theory, in
this case Tω (Franzén 2004, §11.2). Since reflection principles are sensitive to
the presentation of a theory, there is no guarantee that any of these choices of
arithmetical representations of the ωth member of the sequence yield equiva-
lent results further along in their respective paths. As it turns out, the choice
of path is vitally important:

Feferman–Spector Theorem: There are paths Z through O
that constitute a notation for every ordinal < ωCK1 , such that⋃
n∈Z Tn is incomplete with respect to the true Π1 sentences (Fe-

ferman and Spector 1962, p.384). Moreover, there are ℵ0 such
paths (1962, p.389).

The Gödelian anti-mechanist claims that, in principle, we can axiomatize and
make use of a Feferman arithmetic. The Feferman–Spector theorem shows
that to do so, we can’t just choose any old path through O when selecting
indices for theories in the sequence. Indeed, we must pick a path with very
special properties. In order to progress along a path through O of the desired
kind, at limit stages in the reflection sequence the choice of formula defin-
ing the axioms of theories in the progression must be made very carefully
indeed. In particular, the construction must make use of highly convoluted
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‘definitions’ of axioms that are only even recognizably such if we already as-
sume that the new sentence we are trying to prove at the given stage is true
(Franzén 2004a, p.387).

The need for non-standard definitions of axioms in order to apply Fefer-
man reflection to theories corresponding to limit stages in our construction
is deeply problematic. When using these definitions, some formula is recog-
nizable as an axiom only on the assumption that a given sentence is true; the
problem is that the particular sentence in question is the very sentence we
wanted to prove at that stage. In consequence, we cannot even axiomatize
the theory without knowing in advance whether a sentence we seek to prove
from those axioms is true (exactly what the sentence is will depend on the
path through O and the limit ordinal in question).

On no plausible epistemology of arithmetic is it a basic fact that we have
knowledge of such truths independently of the axioms. Thanks to our inabil-
ity to construct a Feferman arithmetic using only resources internal to our
reflection sequences, when we attempt to construct such a sequence we find
ourselves in the following situation: for certain problematic sentences φ in
the language of arithmetic, some theory in the reflection sequence is sound
just in case φ is true. If φ really is true then we have a proof; if not then
the index of the theory fails to denote an ordinal and so the sequence fails
to make proper sense (Franzén 2004, p.213). As Shapiro puts it, we’re no
better off here than simply adding φ to PA as an axiom; if it’s true, then
we have a proof in a sound theory, otherwise we have nothing to celebrate
(Shapiro 2016, p.202).

This explains why using a Feferman arithmetic is only slightly more vi-
able than using TA to model our arithmetical powers: for some sentences
we have independent assurances of their truth (if, for instance they follow
from PA), but for others all we have is that they follow from our Feferman
arithmetic if they are true. This is precisely what the above presentation of
TA tells us about such unknown sentences. This situation prompted Turing
to claim that his Π1-completeness theorem was ‘of no value’.15 As he puts it,
by means of these progressions ‘it is possible to prove Fermat’s last theorem
(if it is true), yet the truth of the theorem would really be assumed by taking

15This result is similar to Feferman’s theorem, but is restricted to Π1 sentences and
is obtained with a lower ordinal bound. The progressions considered by Turing are also
based only on consistency reflection, rather than Feferman’s stronger principle. Proving
Turing’s result similarly makes ineliminable use of non-autonomous methods. This shows
that the arguments of the present section apply also to significantly weaker forms of anti-
mechanism which only credit the idealised mathematician with the ability to determine the
truth of all Π1 sentences. Since Penrose restricts his Gödelian argument to such sentences
(Penrose 1994, p.96), this is of some significance.
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a certain [number] as an ordinal [notation]’ (1939, §9).
Of course, if we have the power to enumerate O, then we needn’t as-

sume that some number is a notation; we could simply check this directly.
So the Gödelian is better off supposing that the idealised mathematician
has the ability to enumerate O in order to effect the construction of a Fefer-
man arithmetic. Without this presupposition, the anti-mechanist is forced to
credit the idealised mathematician with the ability to prove any arithmetical
truth by deploying a theory the axiomatization of which relies on inexplicable
prior knowledge of (certain of) its theorems. I take it that this is a position
which no serious epistemology of arithmetic can tolerate.16 So although there
is some motivation for thinking that we can apply reflection principles justifi-
ably in something like the manner Lucas has in mind (because, for example,
we know that PA is sound), the general success of anti-mechanism hinges
on exactly the same assumption as Gödel’s evidence argument, namely the
assumption that the idealised mathematician can enumerate O.

5 A New Disjunction

Surprisingly then, the key to the entire disjunctive argument seems to be
our ability to enumerate notations for recursive ordinals in the natural num-
bers. Gödel’s evidence argument succeeds only if we have the ability to
enumerate O; if we cannot enumerate O, then we don’t have the ability
to determine whether an arbitrary number denotes an ordinal, and hence
we have no guarantee that the axioms of any extension of PA by iterated
reflection are exactly as evident as those of PA. On the other hand, the
Gödelian anti-mechanist must also think that we have the ability to enumer-
ate O; otherwise the axiomatization of a Feferman arithmetic by the idealised
mathematician would be an inexplicable miracle. So the evidence argument
and anti-mechanism stand or fall together, and both rest on the presupposi-
tion that the idealised mathematician can enumerate O.

This gives us a much clearer setting in which to make an evaluation of
Gödel’s view. Rather than consider the general nature of the human mind,
or consider specific potential cases of arithmetical absolute undecidability, we
can simply examine whether the idealised mathematician can enumerate O.
Call the ability to enumerate O, under some acceptable idealisation of our

16This is not to claim that we have no knowledge of the consequences of the axioms
independently of deduction from those axioms. We might know, for example, that any
correct arithmetical axioms prove that 2 + 2 = 4. However, these very obvious truths are
not the kind of arithmetical truths required by the anti-mechanist in this context, since
such mundane propositions are provable in PA.
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actual mathematical abilities, the strong recursive ordinal recognition abil-
ity. It will be helpful to identify a related, though weaker ability: say that
we possess the weak recursive ordinal recognition ability just in case there is
some branch b in O such that for any true arithmetical φ, there is some n
in b such that Tn ` φ and for each Tn such that n ∈ b, we can recognise
that Tn is indexed by a notation for a recursive ordinal under some suitable
idealisation of our mathematical abilities.

Every arithmetical truth is absolutely provable just in case we possess the
recursive ordinal recognition ability in either the strong or the weak sense. If
we have the ability in the strong sense, then the idealised mathematician can
prove every arithmetical truth by constructing a Feferman arithmetic. If we
have the ability merely in the weak sense, then every arithmetical truth can
be proved in principle, regardless of whether the idealised mathematician can
construct an arithmetically complete theory or not. For suppose that there
is some branch b, with the desired completeness property, such that for each
n in b we can recognize under some-or-another idealisation that Tn is an
extension of PA by iterated Feferman reflection. Hence each such Tn can,
in principle, be recognized as sound, and since each each arithmetical truth
φ is provable from some such Tn, each true φ is provable by us (under some
suitable idealisation) using some recognizably sound theory.

If we have the ability in neither sense, then there are absolutely unde-
cidable arithmetical propositions: suppose that each true φ is provable by
us under some acceptable idealisation. Then for some b with the required
completeness property, all members of each Tn such that n ∈ b would be
provable too. Hence, all such Tns would be recognizable as sound. Since
these theories are sound only if their index denotes an ordinal, each theory
would be recognizably indexed by a recursive ordinal under some suitable
idealisation, and hence we would have the weak recursive ordinal recognition
ability. Contraposing, if we lack the weak ability (and a fortiori the strong
ability), there are absolutely undecidable arithmetical propositions.

Hence we can consider a new disjunction: either we possess the recursive
ordinal recognition ability, or there are absolutely undecidable arithmetical
propositions. The remainder of this paper will be devoted to arguing for
the latter disjunct. A helpful place to start is with the (small) literature
discussing whether or not the idealised mathematician can enumerate O.

In early work on the subject, Turing highlighted that non-mechanical ‘in-
genuity’ is required to recognize a number as representing an ordinal (though
not in that terminology) (Turing 1939, §11). Lucas cites this point in support
of his view that the human ability to recognise ordinal notations outstrips
that of any machine (Lucas 1996, p.111). He also cites Gödel and Wang
as rejecting mechanism because we can enumerate ordinal notations (1996,
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p.111). While the ascription of this view to Gödel seems fair, the ascription
of it to Wang is somewhat suspect: earlier in the chapter Lucas cites, Wang
claims that considerations relating to the supplementation of theories using
reflection principles ‘are of little help with regard to establishing the superi-
ority of man over machine’ (Wang 1974, p.320). Regardless, the problem is
that whether the idealised mathematician can perform some ingenious oper-
ation which no machine could ever do is precisely the point at issue in the
anti-mechanism debate. Citations from Gödel and Turing should prompt us
to take the issue seriously, but they should not on their own be taken to
settle the issue.

More substantive discussion is given Shapiro (1998, p.289), who distin-
guishes between a weak and a strong version of the claim that an idealised
human can out-perform a machine at the game of enumerating ordinal nota-
tions. The weaker claim is that given any machine that enumerates ordinal
notations, there will be some recursive ordinals it doesn’t denote that a hu-
man could produce a notation for. The stronger claim is that an idealised
mathematician can enumerate O.17

Shapiro claims that the weak version is hopelessly vague, since it involves
‘machine enumerating ordinal notations’ as a parameter. Although this is
admittedly not precise, I think that we can make enough sense of it to see
that the anti-mechanist must make a stronger claim. O is not recursively
enumerable, but for any n ∈ O, {m | m <O n} is recursively enumerable.
So, for any machine that enumerates notations, there will be some recursive
ordinals that it doesn’t denote that a machine could produce a notation for.
Hence the weak anti-mechanist thesis is too weak to distinguish humans from
machines in the required fashion.

With respect to the strong claim, that an idealised human reasoner sim-
ply could enumerate O by a non-recursive method, Shapiro has a rather
different response. He claims that this amounts to a view on which we are
arithmetically omniscient, since we could simply run through the indices of
a transfinite recursive progression on PA by Feferman reflection and come
up with an arithmetically complete theory. Shapiro concludes, I assume sar-
castically, that this is a ‘wonderful thought’ (1998, p.290).

My view is that Shapiro’s argument somewhat misses the point.18 Cru-
cially, claiming that a human reasoner could, in principle, enumerate O is
not to claim of anyone that they are arithmetically omniscient. It is rather
to claim that every arithmetical truth is provable by the idealised reasoner,

17A similiar distinction was drawn with less detail by Good (1969, p.357).
18Shapiro’s argument might be a successful ad hominem against Lucas. My point here

is that it does not present a general problem for the Gödelian view.
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and that was the view in play all along! I see no reason why the Gödelian
should be bothered by Shapiro’s response, given that the anti-mechanist view
was, for Gödel at least, presented as an alternative to the view that there are
absolutely undecidable arithmetical propositions.

A more generous reading of Shapiro’s complaint might perhaps be that
if no arithmetical proposition is absolutely undecidable, then that can’t be
explained by an appeal to an ability to enumerate notations for recursive or-
dinals. But again, I think this would be incorrect. Franzén (2004, p.191) has
proved that there is a unary primitive recursive function f from sentences
in LPA to natural numbers such that φ is true iff f(φ) ∈ O. Hence if we
had a good reason to think that we could enumerate O, that ability could
be used to explain why all arithmetical propositions are provable: for any φ,
we could determine it’s truth by applying f and checking the output against
our enumeration.

Shapiro’s criticisms miss their mark, but this doesn’t change the fact that
we still have no reason yet to believe that we have the recursive ordinal recog-
nition ability. In the next two sections, I will argue that there is no good
reason to believe that we possess the ability in either the strong or the weak
sense. I don’t have an argument that the idea that we have the recursive
ordinal recognition ability is incoherent; in fact I don’t think it’s incoherent
in the slightest. Rather, I’ll argue that the evidence as it stands shows that
we have no good reason to believe that we do have the ability, even in princi-
ple. For those of us who can’t take our possession of such an ability on faith,
the existence of an absolutely undecidable arithmetical proposition is made
enormously plausible by the evidence to be presented.

6 Rationalistic Optimism

I remarked above that Gödel never offered an argument for anti-mechanism
like Lucas and Penrose. One reason is that he took anti-mechanism to be a
consequence (via disjunctive syllogism) of rationalistic optimism, the princi-
ple that no well-defined mathematical problem is unsolvable in an ‘absolute’
sense (Shapiro 2016, p.191). A consequence of this view is that we have the
recursive ordinal recognition ability in the strong sense, but in this section
I’ll argue against the idea that we have any good reason to follow Gödel on
this point.

Rationalistic optimism represents Gödel’s mature view on the decidabil-
ity of arithmetical propositions. Narrowly speaking, it is the view that any
well-posed arithmetical proposition can be proved or can be refuted (Wang
1974, p.324-326). More broadly, it is the view that ‘for clear questions posed
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by reason, reason can find clear answers’ (Gödel 1961/?, p.318). At least with
respect to arithmetical propositions, some form of optimism seems to have
been Gödel’s view throughout the majority of his career; even in the 1930s,
when Gödel did entertain the existence of absolutely undecidable proposi-
tions, these were set-theoretic, and generally related to the continuum hy-
pothesis.19 He wasn’t, even at this time, convinced that the incompleteness
theorems suggest the existence of absolutely undecidable number-theoretic
propositions. Tieszen (2011, p.202) argues that Gödel eventually came to
take the absolute decidability of mathematical propositions (including those
of set theory) to be a ‘postulate of reason’, and several of his writings cer-
tainly support that reading. For example, his closing remarks of a paper from
the 1940s implore us not to abandon the ideas behind Leibniz’s programme
for a Characterstica Universalis (Gödel 1944, pp.140–141). In a later paper
(1961/?, p.385), he cites a broad agreement with the Kantian conception
of mathematics. Tieszen traces these remarks to assertions by Kant of the
explicit solvability of all problems in mathematics:

[T]here are sciences whose nature entails that every question oc-
curring in them must absolutely be answerable from what one
knows, because the answer must arise from the same source as
the question; and there it is in no way allowed to plead unavoid-
able ignorance, but rather a solution can be demanded (Kant
1787, A476/B504).

Additional remarks at (A480/B508) make it clear that Kant considers math-
ematics at large to be such a science.

Since rationalistic optimism credits us with the ability to prove or refute
any well-defined mathematical proposition, if it is correct then we have the
strong recursive ordinal recognition ability almost trivially. After all, for any
n, the question ‘n ∈ O?’ is meaningful. Assuming rationalistic optimism
then, we should be able to enumerate O by enumerating N and removing
those numbers to which the answer to ‘n ∈ O?’ is ‘no’.

However, rationalistic optimism on its own cannot provide an argument
for our possession of the strong recursive ordinal recognition ability. This is
because the ‘explanation’ of our ability to recognise ordinal notations pro-
ceeds in terms of a prima facie more contentious principle, namely that any
mathematical problem is solvable. To illustrate the problem, consider this
extremely unconvincing argument that all arithmetical propositions are, in
principle, decidable: all set-theoretic propositions are decidable, in princi-
ple; therefore, all arithmetical propositions are decidable, in principle. The

19For example, he claims that the absolute undecidability of CH is ‘very likely’ and
‘highly plausible’ in (193?) itself (p.175).
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problem with the argument is that its premise is much stronger than its con-
clusion, so it’s almost trivial that the conclusion follows. Indeed, the only
missing premise is that all arithmetical propositions are expressible in a set-
theoretic context. Any argument from rationalistic optimism to the recursive
ordinal recognition ability will be more similar to this unconvincing argument
than we ought to be comfortable with. If any problem is solvable, then of
course any particular problem is solvable, including that of enumerating O .

The situation would be different if we had some independent reason to
be rationalistic optimists. Gödel never published an argument for the posi-
tion, though he did communicate to Hao Wang a somewhat crypic argument
which is of some relevance. With respect to the hypothesis that there ex-
ist absolutely undecidable propositions, Gödel claims that ‘if it were true
it would mean that human reason is utterly irrational in asking questions
it cannot answer while asserting emphatically that only reason can answer
them. Human reason would then be very imperfect and, in some sense, even
inconsistent’ (Wang 1974, pp.324–5).20 Let’s call this the ‘irrationality argu-
ment’.

I hope we can all agree that Gödel’s meaning here is difficult to discern.
There are (at least) two readings of this argument that bear on the abso-
lute undecidability debate. The more modest reading pertains specifically to
potentially undecidable propositions of the kinds we’ve already considered:
consistency sentences, Gödel sentences, etc. On this reading, Gödel’s argu-
ment is that there is some kind of irrationality involved in thinking that we
could be presented with some axioms for a theory which are known to be
sound, and think that we can’t determine the truth of the canonical consis-
tency sentence or Gödel sentence for those axioms by means of mathematical
reasoning. This is a compelling reading of Gödel’s remarks, since it appeals
to the popular idea that we can, for instance, “see” that the Gödel sentence
of PA is true. Indeed, read this way the irrationality argument is quite sim-
ilar to the evidence argument. I’ll return to this version of the argument
in §8. For now, it of no concern to us because, understood as an argument
pertaining specifically to arithmetical propositions, it cannot lend any sig-
nificant support to the optimist’s strategy of inferring the decidability of all
arithmetical propositions from a more general principle about the epistemol-
ogy of mathematics as a whole.

According to a stronger, less modest, reading of the argument, Gödel
might be claiming that the mere existence of an absolutely undecidable math-

20The quotation here is not a direct quotation from Gödel, but from Wang’s paraphrase
of Gödel’s argument. The source can certainly be considered a reliable report of Gödel’s
view, but we should not make too much of the precise phrasing of this argument.
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ematical proposition of any kind is sufficient for some kind of inconsistency in
human reasoning. Such an argument must be of little appeal to philosophers
who don’t entirely share Gödel’s rationalistic leanings. After all, it relies on
a clearly non-standard notion of inconsistency or irrationality; we don’t ordi-
narily take the inability to answer a clearly posed question as a symptom of
either affliction. What the argument requires is an account of the nature of
mathematics that would make it irrational to be unable to answer a clearly-
posed question. Unfortunately, Gödel does not offer such an account, and
it is difficult to see how he could in light of his platonism. Presumably, a
realist about mathematics could no more complain that human reason would
be inconsistent if unable to answer a mathematical question than they could
so complain if human reason were unable to answer a biological or chemical
question.

So, in the end, rationalistic optimism is of no argumentative support for
the Gödelian in establishing the idealised mathematician’s possession of the
strong recursive ordinal recognition ability. Despite Gödel’s insistence that
its failure would constitute some kind of scandal to human reason, rational-
istic optimism really is just optimism, and it is hard to see how anything
other than faith could compel us to believe its truth. So Gödel’s position,
though coherent, really has little to recommend it. We’ve been given no
serious philosophical or mathematical reason to think that we can, even in
principle, enumerate O.

7 Between Mechanism and Optimism

Recall that we have the weak recursive ordinal recognition ability just in case
there is some branch b in O such that for any true arithmetical φ, there is
some n in b such that Tn ` φ and for each Tn such that n ∈ b, we can
recognise that Tn is indexed by a notation in O under some suitable ide-
alisation of our mathematical abilities. In this section, I want to discuss a
position which I’ll call the intermediate view, which attempts to motivate
the idea that we have the weak recursive ordinal recognition ability without
presupposing rationalistic optimism.

The advocate of the intermediate position does not, unlike the Gödelian,
assert that given time and paper, the idealised mind can execute a non-
recursive procedure. Furthermore, the intermediate position denies that
there is some absolutely undecidable arithmetical proposition which expresses
the consistency of our idealised arithmetical output. Since the existence of
such a proposition follows from the most straightforward expression of mech-
anism as the thesis that the idealised mathematical abilities of the human
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mind have an output coextensive with some Turing machine, the view ap-
pears to lie somewhere between mechanism and rationalistic optimism.21

The intermediate position holds that our actual mathematical abilities
have the output of some recursive procedure. Hence, idealising to the extent
that we can execute a non-recursive procedure is too far; the idealised beings
in such a scenario are no longer representative of what is humanly provable,
and hence are no longer relevant to debate about absolute undecidability.
Since we cannot, even in principle, execute a non-recursive procedure, we
cannot enumerate O. More than this, we cannot enumerate a path through
O, though presumably we can enumerate some paths within O that are non-
maximal, in the sense of not assigning a notation to every recursive ordinal.
Moreover, there are some arithmetical propositions which we cannot prove.
But the intermediate position denies that any such proposition is absolutely
unprovable.

According to the intermediate position, it is no accident that any path
we can follow within O is not a path through O, since since constructing
a maximal path through O would require the execution of a non-recursive
procedure. However, for any path within O that we can actually enumer-
ate, we could have enumerated a longer path that includes it. This is be-
cause, according to the intermediate position, any limitation on our actual
ability to recognize ordinal notations (other than limitations on executing
non-recursive procedures) is somehow “accidental”; if we can actually follow
a path within O up to, but not including n, then that isn’t because n has
some special property. If only we’d had a bit more time and paper, we could
have extended this path further to some m >O n. Hence we can recognize m
as a notation under a natural idealization of our current abilities. The claim
has some intuitive appeal; after all it is difficult to see how there could be a
path within O which we can enumerate, but which we could not extend even
in principle. What relevant explanation could we possibly give of this state
of affairs? Indeed, it seems that for any path which we can follow under some
acceptable idealisation, we could have followed a slightly longer one under
another admissible idealisation. According to the intermediate position, this
gives us good reason to think that no undecidable proposition is absolutely
so.

Here is the reasoning: suppose we accept the intermediate position’s claim
that our current arithmetical abilities have an output coextensive with some
recursively enumerable set. Then there is some undecidable true proposition
φ which is not a member of this set. Feferman’s theorem shows us that there
is some path b, such that for some n on b, Tn ` φ. We can enumerate at

21Thanks to Tim Button for pressing me on the importance of this position.
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least part of b, so under some acceptable idealisation of our abilities, we can
enumerate enough of it to recognize that Tn is indexed by an ordinal no-
tation, and hence recognize that the theory is sound and obtain a proof of
φ. The same goes for any undecidable proposition, so it follows that there
are no absolutely undecidable arithmetical propositions. If this is all correct,
then we possess the weak recursive ordinal recognition ability, despite not
possessing its strong counterpart.

The intermediate position essentially reverses the order of the quantifiers
in the rationalistic optimist’s thesis: the latter claims that, under some ide-
alisation, we can prove every arithmetical truth, while that former claims
that every arithmetical truth is provable by us under some-or-another ide-
alisation. If this is correct, then we have the recursive ordinal recognition
ability not because we can, under idealisation, recognize each of the notations
required to construct an arithmetically complete theory, but because each of
the required notations can, under some idealisation, be recognized as such
by us.

Despite the intuitive appeal of such a position, it actually rests on opti-
mism just as much as the original Gödelian position did. Suppose we grant
that for any path which we can enumerate in principle, there is some longer
path including it which we can also enumerate in principle. This does not
entail that any notation is recognizable as such by us under some idealisation
or another, since <O is only partial. All we can suppose is that for some
path through O, any notation on that path is recognizable by us under some
idealisation.

This would suggest that for certain paths through O, every theory in a
Feferman reflection progression on PA indexed by a member of these paths
is recognizable as sound. But even if that is true, it does not entail that we
have the recursive ordinal recognition ability, thanks to the Feferman–Spector
theorem, which we encountered in §4:

Feferman–Spector Theorem: There are paths Z through O
that constitute a notation for every ordinal < ωCK1 , such that⋃
n∈Z Tn is incomplete with respect to the true Π1 sentences (Fe-

ferman and Spector 1962, p.384). Moreover, there are ℵ0 such
paths (1962, p.389).

Why is this so bad for the intermediate position? Suppose we accept that
our current abilities correspond to Tn and that for some path that includes
n, any notation which lies on it is recognizable by us under some idealisa-
tion. All this means that for any ordinal less that ωCK1 , we can recognize
some notation for it. But the Feferman–Spector theorem shows that there
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are paths through O such that the theories in a Feferman reflection progres-
sion which are indexed to that path are collectively incomplete. So even if
every notation on some path through O is recognizable by us on some suit-
able idealisation, this does not entail that we have the weak recursive ordinal
recognition ability.

This is significant because it might seem plausible that we can provide a
notation for each recursive ordinal if we idealise enough. For instance, while
he doesn’t endorse the intermediate position, Penrose claims that where our
reflection sequence proceeds via the iterated addition of Gödel sentences,
we can construct a theory Tα for any α < ωCK1 (1994, p.114). I have no
argument against that suggestion. And we can certainly give a system of no-
tations for all the ordinals < ε0 (which is far greater than the ordinal bound
required to deploy Feferman’s theorem) by exploiting Cantor’s normal form
theorem. But what the Feferman–Spector theorem shows is that this is per-
fectly consistent with the existence of absolutely undecidable propositions.
Even if we have the ability to recognize a notation for each recursive ordinal
in principle, this does not mean that have the capacity to recognize the right
ordinal notations in principle.22

Of the 2ℵ0 paths through O, only ℵ0 have the desired completeness prop-
erty (Feferman and Spector 1962, p.389). Hence, the intermediate position is
only correct if, by some cosmic chance, the notations which we can recognize
under idealisation constitute one of these special paths. And there is simply
no reason to suspect that this is the case. So the intermediate position, much
like rationalistic optimism, is a bare conceptual possibility; there is no reason
to think that either is true.

8 Absolutely Undecidable Propositions

We’ve seen that two parties to the absolute undecidability debate, namely
Gödelianism optimism and the intermediate position, are conceptual possi-
bilities, but beyond this little can be said in their favour. Adopting them
requires a certain kind of faith in our arithmetical capacities that is unwar-
ranted by the evidence. It would simply be a miracle if we have the recursive
ordinal recognition ability, even if we only have it in the weak sense. If we
are unwilling to countenance such a miracle, it follows that some arithmetical
propositions are absolutely undecidable, namely those instances of Feferman
reflection corresponding to theories indexed by numbers which we cannot

22Thanks to Daniel Isaacson for highlighting the importance of this point to me. See
(Franzén 2004, §11.3 and §13.2) for the technical details of how to obtain a part of O
which functions as a canonical system of autonomous notations for ordinals below ε0.
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recognize as denoting recursive ordinals, i.e. theories that we cannot recog-
nize as sound by reflecting on the soundness of PA.

The question naturally follows: which arithmetical truths are absolutely
unprovable? Quite reasonably, one might want to see an example of such a
sentence, and perhaps if appropriate a proof of its independence from a sys-
tem that might represent our arithmetical capacities. The aim of this section
is to give a principled excuse for my lack of an example, and gesture at some
philosophical significance the necessary lack of an example might have. The
reason is intimately related to the failure of Gödel’s irrationality argument,
which we first encountered in §6.

I argued above that Gödel’s evidence argument is sound at least as far
as finite iterations of reflection principles are concerned. The problem which
comes to the fore in extending this argument is that there is no known method
for recognizing ordinal notations within a given system (e.g. Kleene’s O), and
we are obliged to use such a system since, since the theorems of PAω can be
enumerated by a Turing machine. If my case against the recursive ordinal
recognition ability is sound, it follows that the axioms of some theories in
our Feferman reflection progression on PA are not exactly as evident as the
axioms of PA, and that instances of Feferman reflection for these theories are
absolutely undecidable. But this fact means that neither I, nor anyone else,
can exhibit an absolutely unprovable arithmetical truth of the kind under
discussion.

Recall that, according the modest understanding of Gödel’s irrationality
argument, there is some kind of irrationality or inconsistency in the idea that
some axioms of a member of a reflection sequence based on PA are true, but
unprovable. After all, how could it be that we are presented with a theory
known to be sound, and yet be unable to offer a proof that the theory is con-
sistent, or that its Gödel sentence is true? Unlike the more straightforward
understanding of the irrationality argument, this involves no presupposition
of rationalistic optimism, and hence is of considerably broader interest.

But even on this more interesting reading, the argument cannot be counted
as a success. If we lack the recursive ordinal recognition ability, then there is
some true sentence in the language of arithmetic which is absolutely undecid-
able. But there cannot be a recognizable example of such a proposition that
would give rise to the irrational scenario sketched above.23 Suppose that we
were presented with an instance of Feferman reflection, that was alleged to
be absolutely undecidable. This proposition would specify some axioms for
a theory, Tn, which is some extension of PA by iterated Feferman reflection,

23Again, attention is restricted to the arithmetical case; perhaps we can recognize that
CH is absolutely undecidable, for instance.
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and assert something of that theory which follows from its soundness. If we
can tell what we’re looking at, then such a proposition could not be an exam-
ple of something absolutely undecidable: if we can recognize that Tn extends
PA in the right way, which involves recognizing that n denotes an ordinal,
then we can recognize its soundness, and hence the soundness of T2n . And
this theory trivially decides all instances of Feferman reflection for Tn in the
affirmative. In other words, if we can recognize that the sentence is the sort
of thing that might be absolutely undecidable, we can thereby recognize its
truth. On the other hand, if we can’t recognize that Tn extends PA in the
right way, then we can’t in general recognize that the theory is sound, and
hence couldn’t recognize that the undecidable sentence is indeed true given
that it’s constructed from the axioms of Tn. In such circumstances, there is
no reason to think that we have any other means of determining the truth
of the sentence. So the sentences of this kind that are true and absolutely
undecidable can’t be recognised for what they are.

The undecidability of such propositions therefore does not mean that we
can be in the ‘irrational’ position of simultaneously having a theory known
to be sound and not having a means of proving the relevant instances of Fe-
ferman reflection: if we can’t prove them it’s because we can’t recognize that
the theory is sound. This will be because we can’t recognize that it extends
PA in the right way; and in general there seems to be nothing ‘inconsistent’
or ‘irrational’ in supposing that we can’t always recognise whether a natural
number codes an ordinal or not. This is especially so given the lack of a
recursive procedure for doing this.

As I’ve explained it, the reason that there are absolutely undecidable true
propositions of arithmetic is, to speak somewhat metaphorically, because we
lose our grip on whether a set of sentences is an axiomatization of an exten-
sion of PA by iterated reflection when we cannot verify that such a theory is
indexed by a suitable notation or not. Any putative instance of an absolutely
undecidable arithmetical proposition will present a theory and a reflection
principle for it. If we can recognize that the theory is of the required kind,
then reasoning just rehearsed will show that the proposition is decidable in
some stronger theory the axioms of which are exactly as evident as those
of PA. So I can’t give a counterexample to Gödel’s rationalistic faith about
arithmetical propositions, because if a proposition is a recognizable coun-
terexample, then it is not a counterexample after all. But if my arguments
are sound, then the evidence overwhelmingly supports the existence of some
unrecognizable example of a true but absolutely undecidable arithmetical
proposition.
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Conclusion

According to Gödel’s favoured resolution of his disjunctive conclusion, there
are, in principle, no absolutely unprovable number-theoretic truths and the
mind cannot be modelled, in principle, by a Turing machine. I’ve argued in
both cases that the Gödelian position rests on a critical assumption: that
the idealised mathematician has the ability to (non-recursively) enumerate
O. Thanks to Feferman’s theorem, a weaker ability would also suffice for the
absolute decidability of all arithmetical propositions. I’ve argued that our
possession of either ability would constitute an epistemic miracle in which we
have no serious philosophical or mathematical reason to believe. From our
lack of either version of this recursive ordinal recognition ability, the existence
of some absolutely undecidable arithmetical proposition follows. Although
we can identify the broad kind to which such propositions belong, we cannot
give a recognizable example of an absolutely unprovable arithmetical truth
of this kind, even in principle. Given this, we are left with a peculiar species
of quietism about the limits of our arithmetical knowledge.

Benacerraf, in his discussion of the Lucas–Penrose argument (1967), notes
the possibility of a position (later endorsed by Smith (2013, pp.281–283)) that
might best be called ‘mechanistic quietism’. According to this position, our
arithmetical capabilities can be perfectly mimicked by a Turing machine, but
we don’t have the ability to recognize the machine when presented with it
(indeed, Smith claims that the ability to spot which machine enumerates my
idealised output would be ‘godlike’ (2013, pp.281–282)). A similar view is
sketched by Gödel himself in the Gibbs lecture (1951, pp.309–310), according
to which the mind would be unable to fully understand itself. I’m happy to
remain silent on whether this kind of mechanism is true. But regardless of
the ultimate status of mechanism, a similar form of quietism is forced upon
us by absolute undecidability: we can’t precisely delimit our ability to recog-
nise notations for recursive ordinals, because we can’t give an example of an
absolutely undecidable proposition. Moreover, this isn’t merely an epistemic
issue; rather the very idea of exhibiting such a proposition doesn’t make
sense. Even if we don’t embrace the mechanistic element of the Benacerraf–
Smith view, we should at least acquiesce in its quietism.

There is a decent positive story to tell about why our idealised arithmeti-
cal output could be represented by the union of theories in an initial segment
(or segments) of some branches of a transfinite reflection progression on PA,
based on our knowledge that PA is sound together with the observation that
PAω is recursively axiomatizable. The additional point that the union of
theories which we can recognize to be sound isn’t arithmetically complete
has been developed in this paper. With respect to arithmetical knowledge
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then, perhaps the significance of Gödel’s theorem is best expressed as follows:
the limits of our arithmetical knowledge cannot be exhibited.24

24I am very grateful to Tim Button for invaluable feedback on many different incarna-
tions of this paper, and to Owen Griffiths, Daniel Isaacson, Alex Oliver, Michael Potter,
and Robert Trueman for extensive comments which have greatly improved it. I’m also
grateful to the participants of the Oxford Graduate Class in Philosophy of Mathematics
of Trinity term 2020, including my co-host Joel David Hamkins, for helpful discussion of
this paper. Thanks also to an anonymous referee from The Review of Symolic Logic for
comments on the parts of this paper concerned with anti-mecahnism. This research was
generously funded by an Arts and Humanities Research Council Studentship.
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— (1968). “Human and Machine Logic: A Rejoinder”. In: The British Jour-
nal for the Philosophy of Science 19, 155–156.
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