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Introduction

Gödel’s approach to the justification of the axioms of set theory was two-
pronged. On the one hand, he thought that the standard axioms of second-
order set theory, as well as extensions thereof by certain reflection principles
(which assert that the hierarchy of sets cannot be correctly and uniquely
characterized by formulae of specified syntactic kinds), could be justified by
intuitive reflection on the content of the concept set (1964, p.268 and p.260,
fn.18 and fn.20). However, there are axiom candidates asserting the existence
of extremely large cardinal numbers, which seemingly cannot be justified this
way. Indeed, all known consistent reflection principles of the kind considered
by Gödel have at most the consistency strength of an axiom asserting the
existence of the partition cardinal (a.k.a. ‘Erdős cardinal’) κ(ω) (Koellner
2009).1 I’d like to avoid getting bogged down in technical details, but suffice
it to say that, by today’s standards, κ(ω) is not a particularly large cardi-
nal. According to Gödel, these stronger principles can instead be justified by
extrinsic, or quasi-scientific means. The justification of set theoretic axioms
by such methods will be the concern of this paper. I’ll refer to such axioms
which cannot, on the Gödelian view, be justified by appeals to intuition as
large large cardinal axioms.2

*Wadham College and Faculty of Philosophy, University of Oxford
1Let [α]<ω be the union, for all n, of the n-element subsets of α. For any limit ordinal

β, the Erdős cardinal κ(β) is the least cardinal λ with the following property: for every
f : [λ]<ω → {0, 1}, f is constant on [H]<ω for some β-sized subset H of λ. See (Jech 2003,
pp.109 and 302) for full details.

2It is important to bear in mind that such talk is loose, in an important sense. Large
cardinal axioms appear to be linearly ordered by consistency strength, but there is no
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According to Gödel, platonism about set theory is the primary founda-
tion for the use of quasi-scientific methods in justifying large large cardinal
axioms. In the case of the natural sciences, the real existence of the objects
concerned justifies the use of ‘probabilistic’ or inductive methods to reach
decisions about the nature of those objects, which would not make sense if
they were regarded as useful fictions or mental constructions. In Gödel’s
view, the same realistic attitude to the objects of set theory establishes an
analogy between mathematics and natural science which is sufficient to em-
ploy analogous methods in establishing an over-all picture of the hierarchy.

In §1, I’ll introduce a strong analogy that Gödel draws between sets and
material bodies, namely that the former are required to make sense of our
mathematical experience in the same way that the later are required to make
sense of our empirical experience. I’ll argue that no such analogy can be used
to justify a belief in large large cardinals.

In §2, I’ll introduce Russell’s regressive method, which accords well with
part of Gödel’s thinking on the justification of axioms in set theory, whereby
axioms are verified by permitting the deduction of elementary mathematical
‘data’, just as laws of nature in the sciences are justified by facilitating the
prediction of data drawn from sense experience.

In §3, I’ll examine the various options for what might constitute the
mathematical data for the purposes of Gödel’s analogy. These include the
deliverances of so-called mathematical perception, the theorems of ordinary
mathematics, and Π0

1 arithmetical consequences. I’ll argue that of these can-
didates, some selection of Π0

1 sentences offers the only plausible option. Not
all sentences of this form can act as data, but a reasonable delineation of
some privileged such sentences can be isolated (though this delineation is
perhaps not sharp).

In §4, I’ll then argue that, on this construal of the data, no large large
cardinal axiom gains any strictly regressive support by accounting for the

theorem to this effect (and there is no agreed definition of ‘large cardinal property’ which
would be required for the formulation of such a theorem). Secondly, although I’ll speak
of large large cardinals and large large cardinal axioms more-or-less interchangeably, it is
important to remember that the ordering of such axioms by consistency strength is not
identical to the ordering of the cardinals concerned by size. A cardinal κ is huge iff it is
the critical point of a non-trivial elementary embedding j from V into a transitive inner
model M containing all sequences of length j(κ) whose elements are in M (Kanamori 2009,
p.331). κ is supercompact iff for all λ ≥ κ, there is some elementary embedding j from
V to a transitive inner model M with critical point κ containing all sequences of length λ
whose elements are in M and j(κ) > λ (Kanamori 2009, p.298). If ZFC plus an axiom
for the existence of a huge cardinal is consistent, then so is ZFC plus an axiom for the
existence of a supercompact cardinal. However, if cardinals of each kind exist, then the
least supercompact cardinal is far larger than the least huge cardinal (Jech 2003, p.381).
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data. By that, I mean that no large large cardinal axiom is such that it
permits the deduction of a datum that cannot be deduced with help only
from weaker assumptions. Hence we can’t regard such posits as analogous
to laws of nature with strictly regressive support.

So the only plausible respect in which large large cardinal axioms could
possibly be justified by quasi-scientific means is by being regarded as princi-
ples which seek to maximise the theoretical virtues of set theories to which
they might be added. Though I don’t have a means of weighing and evalu-
ating the contribution of various such virtues, I’ll make the case in §5 that
under no scheme for evaluating theoretical virtues should we expect large
large cardinal axioms to perform well, if the virtues in question are broadly
scientific as Gödel suggests. Indeed, the closer the analogy between mathe-
matics and science, the less well-supported by the analogy are large cardinal
axioms, and hence the prospects for justification of these principles by ana-
logical reasoning are bleak.

1 The Material Bodies Analogy

The use of quasi-scientific methods for justifying axioms of set theory is now
commonplace in the philosophy of mathematics. Most famously, the indis-
pensability arguments of Quine (implicit in his (1951a)) and Putnam (explicit
in his (1975)) justify the truth of set-theoretic axioms by examining the role
they play in formulating adequate theories in natural science. Maddy’s later
work (e.g. (1997)) seeks to legitimise large large cardinal axioms via the em-
pirical study of the behaviour of actual set theorists. In contrast with the
Quine–Putnam approach, which attempts to found mathematical platonism
on an empirical basis, Gödel’s use of quasi-scientific methods is largely in-
ternal to mathematics. The role of large cardinals is examined in terms of
their contribution to a wider mathematical theory; little more than lip service
is paid by Gödel to the applications of such theories in the sciences. And
in contrast to Maddy’s approach, which sees the methods of set theorists
as essentially autonomous, Gödel attempts to justify set-theoretic modes of
theory choice by showing them to be analogous to sound methods found in
the natural sciences. So Gödel’s approach to the problem has not survived
the decades in its original form, despite the fact that this aspect of his philo-
sophical thought has undoubtedly had the greatest impact on later analytic
philosophy, far eclipsing the reception of his anti-mechanism, rationalistic
optimism, and conceptual platonism.

Gödel’s quasi-scientific approach does not annex mathematics to the sci-
ences, and nor does it insulate the former from the latter. Rather, it imports
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some elements of scientific methodology into mathematics, by finding a struc-
tural analogy between the two. There is not, in Gödel’s remarks, a unique
analogy to this effect, so first I’d like to disambiguate two distinct analogical
arguments presented by Gödel.

The analogical argument that is the primary concern of this chapter takes
it that large cardinal axioms play the role in a mathematical theory that
laws of nature play in a scientific theory. It is common enough to conceive of
natural-scientific propositions as being divided into two broad kinds (whether
or not we take those kinds to be disjoint or sharply delimited): the data and
the laws. On this standard conception, the data are empirical propositions
that we take to be the facts, and the laws are those propositions which are
formulated in order to predict the facts. Indeed, the prediction of the data
is the primary means of verifying these laws; whether or not they are intrin-
sically plausible, we take them to be true if they predict all the data and
don’t predict anything false. By analogy, certain large cardinal axioms are
supposed to be verified by ‘predicting’ (which is to say, deductively imply-
ing) mathematical propositions of some privileged kind identified as the data.
This is broadly the Russellian view of the matter, and we shall return to it
in due course.

Distinctly, Gödel sometimes speaks as if sets themselves, that is, the
particular objects asserted to exist by the axioms, play the role in our under-
standing of a mathematical theory that physical objects play in understand-
ing our phenomenal experience (1944, p.128). It may seem that these views
are not substantially different; perhaps it matters little to natural science, for
instance, whether we posit the existence of physical bodies or assent to the
truth of sentences asserting them to exist. I’ll argue that there is, however,
a substantial difference between the two cases when we consider large large
cardinals, and that an analogy between mathematical and physical objects
cannot justify any large large cardinal axioms.

The analogy between sets and material bodies first appears when Gödel
discusses his platonism about sets (though not large large cardinals in par-
ticular) and properties of sets. He writes:

It seems to me that the assumption of such objects is quite as
legitimate as the assumption of physical bodies, and there is quite
as much reason to believe in their existence. They are in the
same sense necessary to a satisfactory system of mathematics as
physical bodies are necessary for a satisfactory theory of our sense
perceptions (1944, p.128).

Although Gödel does not elaborate here on the sense in which he thinks
the assumption of physical bodies is necessary for a satisfactory theory of
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perception, I think it is safe to assume that it is something along the lines of
the following now-standard explanation from Russell:

[A]lthough this is not logically impossible [that there are no phys-
ical bodies], there is no reason whatsoever to suppose that it is
true; and it is, in fact, a less simple hypothesis, viewed as a means
of accounting for the facts of our own life, than the common-sense
hypothesis that there really are objects independent of us, whose
action on us causes our sensations (1912, p.10).

Russell describes the ‘simplicity’ as stemming from the fact that it would be
a ‘miracle’ (1912, p.9) if objects came and went from existence as we started
and finished perceiving them. Obviating the need to believe in this mira-
cle by positing physical bodies is described as a ‘natural’ theoretical move,
rather than an account of how we acquired our belief that there are physical
objects (1912, p.11).

Can a similar account be given of the posit that there are sets in gen-
eral, and large large cardinals in particular? In an early presentation of
the regressive method (which will shortly be examined in more detail), Rus-
sell (1907, p.573), takes it that ‘accounting for’ or ‘predicting’ the relevant
data amounts, in the case of mathematics, to proving some given privileged
propositions. In the case of large cardinals, we have it that the addition to
ZFC of an axiom stating that there is a cardinal of some particular kind
allows for the deduction of certain sentences which are not provable from
ZFC alone. Some of those sentences might plausibly count as data, while
others should not be considered as such. In particular large cardinal axioms
have set-theoretic consequences (which may or may not count as data de-
pending on the case in hand), but also arithmetical consequences which are
much more plausible candidates for data. Consider, for example, the theory
ZFC + ∃x x is measurable.3 This proves that there is an inaccessible cardi-
nal, which can hardly count as an elementary datum, but it also proves Π0

1

arithmetical sentences not provable in ZFC, for example ConZFC, which are
much more plausible candidates for mathematical data.

Suppose I posit the existence of a measurable cardinal in order to prove
some Π0

1 arithmetical sentence which I believe to be true. There is an im-
portant respect in which positing material bodies in order to systematize
our sense data differs radically from this. Consider, for example, the case of
positing a table to account for the coherence and continuity of my table-ish
experiences with respect to leaving and re-entering a particular room. In

3κ is measurable iff it is the critical point of some elementary embedding from V to a
transitive class M (Martin and Steel 1989, p.73).
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the case of the table-posit, the particular material body being posited, that
table, plays a crucial role in the systematizing of my table-ish experiences.
If ‘accounting for the facts of our own life’ (as Russell puts it) is to be made
any simpler by this posit, it is because that particular table is there. The
mere truth of the sentence ‘there are tables’ is insufficient for such purposes.
Accounting for the facts of my experience is no simpler, for instance, if there
is a table somewhere else, but that this is merely a series of sense data. In-
deed that seems to rather complicate the story if some (non-hallucinatory)
table-ish experiences are of actual tables, and some are merely of sense data.
The existential generalisation over tables does not on its own systematize our
experience, it is the particular posits of particular tables that perform such
a function on a case-by-case basis.

In the case of the measurable cardinal, however, things are not so. It is
merely the increase in the strength of our set theory that accounts for the ele-
mentary arithmetical consequences. Although it might seem natural to think
that it is the least measurable cardinal which accounts for the arithmetical
data in this scenario, in truth no particular measurable cardinal explains the
arithmetical consequences. Unlike in the case of tables, the existence of any
witness to the existential generalisation will do the job. Worse still, the role
played by even the posit of a measurable cardinal is dispensable with respect
to the elementary consequences, because it is only the consistency strength
of the assertion which matters. For example, the addition of a measurable
cardinal allows us to prove ConZFC. But positing any stronger axiom of
infinity, such as the existence of a Woodin cardinal, would do the job just
as well.4 Arguably, it would do the job better since it would prove further
Π0

1 arithmetical sentences which are not accounted for by the weaker theory
(e.g. it proves ConZFC+∃x x is measurable).

5

Something quite substantial is at stake here, because if large cardinals
really were required to make sense of mathematics in the same way that mate-
rial bodies are required to make sense of our ordinary sense experience, that
would afford to them a massive degree of quasi-scientific justification, be-
cause the existence of material bodies is a far more certain proposition than
any particular natural law in the sciences. Even well-established scientific

4A cardinal κ is Woodin iff for all f : κ → κ there is some α < κ such that
{f(β) : β < α} ⊆ α and an elementary embedding j from V into a transitive inner model
M such that α is the critical point of j and Vj(f(α)) ⊆M (Kanamori 2009, p.360).

5As long as we are considering the facts of common experience here, the argument can
even be re-run with respect to theoretical physical entities. For example, some particular
arrangement of elementary particles at a particular spatial location is required to explain
why I see a table every time I go into the room. The mere existence of some such particles
somewhere is insufficient.
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laws are at times overthrown or precisified in the face of new experimental
data, as occurred with Newtonian mechanics. Moreover, even the most well-
established scientific laws can rest uneasily with one another, as is the case
with general relativity and quantum mechanics. By contrast, our belief in
material bodies is practically certain. Most of us are inclined to agree with
Russell that we can’t prove that we are not dreaming; and yet I am more
certain, for instance, that the experience of writing this paper is veridical
than I am of any philosophical conclusion reached in it. Since elementary
mathematics is no less evident than the experiences we have in the ordinary
course of life, if large cardinals were like material bodies in this sense, then
we could be overwhelmingly confident that they exist.

This is not to say that Gödel ever seriously entertained the justification
of large large cardinal axioms in this sense; where he makes these kinds of
assertions he is speaking of sets generally. Although this of course includes
such cardinals if they exist, a more charitable reading of the passage would
interpret these remarks as directed toward the elementary parts of set the-
ory. It is an interesting question which parts of set theory, if any, can be
justified by appeal to an analogy with material bodies, though for my pur-
poses it is redundant, since Gödel takes intuitive justifications to be available
for these elementary propositions anyway.6 In any case, the material bod-
ies analogy, though not offered as a specific defence of large large cardinal
axioms, promises a huge degree of regressive support for the existence of
certain sets, so it is significant that it cannot be used to justify large large
cardinals in particular.7 Rather, a more modest quasi-scientific justification
for large large cardinal axioms must be sought, in which axioms are taken to
be analogous to scientific laws.

6Chihara (1982) takes very seriously Gödel’s claim that we have as much reason to
believe in sets as in material bodies, and rejects it wholesale. I think this conclusion is
probably correct, but Chihara gives little consideration to the possibility that we have a
good justification for the belief in sets of a similar kind to the justification our belief in
material bodies enjoys, even if the quality of the justification is not equal in both cases.
Given what Gödel says elsewhere about quasi-scientific justification, it seems probable
to me that he suffers from an uncharacteristic lapse of caution in the passage quoted by
Chihara, and that the slightly weaker position is Gödel’s own.

7Maddy (1990, p.31) takes it that the primary function of intuition in Gödel’s episte-
mology is to provide intuitive data that is accounted for by mathematical theories by way
of analogy to physical bodies. Needless to say, this assessment does not accord with the
reading of Gödel offered here.
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2 Gödel and the Regressive Method

The version of the science–mathematics analogy that Gödel draws on most
heavily has its origins in Russell’s regressive method of finding justification
for axioms. The similarity between Gödel and Russell runs deep here. Russell
had in 1907 drawn a ‘close analogy between the methods of pure mathematics
and the methods of the sciences of observation’ (1907, p.572). Here Russell
claims that mathematics, like every science, has a body of commonly ac-
cepted propositions for which broader theory is supposed to account. These
are known as ‘data’ or ‘facts’. In the empirical sciences, the facts are ac-
counted for by proposing laws of nature which collectively predict them.
Analogously, in mathematics the most elementary facts are accounted for by
proposing axioms which deductively imply them.

Gödel cites firm approval of this method, and predicts that it will be even
more successful in the future (1944, p.121), so a more thorough analysis of
Russell will assist in our evaluation of Gödel here. Of course in the 1944 arti-
cle, Gödel is discussing sets generally, not large large cardinals in particular
(as noted above in connection with his first analogy). Nonetheless, we’ll see
whether the considerations at work in the regressive method can be put to
use in justifying these axioms.

Russell sharply separates the epistemological problem, which is also the
problem of the present paper, from the psychological and historical (in some
cases pre-historical) problem of how we come to believe the propositions
identified as data. The empirical premises of a belief are those propositions
which cause us to believe the data, whereas the logical premises are logically
less complex propositions from which the data is to be deduced. Take, for
example, the proposition that 2 + 2 = 4, which ought to count as common
fact if anything does. Russell conjectures that the empirical premises of this
belief will be various beliefs acquired from everyday life, such as ancient shep-
herds repeatedly noticing that two pairs of sheep always make four sheep,
and similar. By contrast, the logical premises of this data will be formulae in
a system of mathematical logic or axiomatic arithmetic from which ‘2+2 = 4’
can be derived.

The point of interest for Russell is that, for the greater part of mathemat-
ics, the simple picture on which the empirical premises and logical premises
coincide holds good. In other words, we believe a mathematical proposition
precisely because we have a proof of it from simpler propositions which we
already accept. With respect to elementary propositions, including 2+2 = 4,
however, this is plainly a misleading picture, since the truths of elementary
arithmetic are far more evident than the axioms of any system from which
they could be derived. This leads Russell to conclude that the method of
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discovering and justifying foundational principles in mathematics is ‘substan-
tially the same as the method of discovering general laws in any other science’
(1907, p.573).

Given the similarity of methods of justification, it is unsurprising that for
Russell the degree of verification obtained by axioms in mathematics is alike
to the degree which may be claimed for the laws of physics. As he puts it
‘when the general laws are neither obvious, nor demonstrably the only possi-
ble hypotheses to account for the [data] then the general laws remain merely
probable’ (1907, p.573).

There is some lack of clarity as to which general laws can be, or should
be, justified regressively, and hence potentially without complete certainty.
In the original paper, Russell seems to think that general logical laws like
φ → φ can be justified in this way (1907, p.576). This strikes me as some-
what bizarre, since such a law seems as evident as a proposition about one’s
present sense data. Later on, however, Russell appears to shift into thinking
that the laws of logic are self-evident upon reflection, and do not require
regressive justification (Russell 1914, pp.70–71). This idea is much more
appealing, since the most obvious logical laws can then be themselves con-
sidered as data on a par with elementary mathematical propositions. But it
is still unclear where exactly to draw the boundary between generalities like
φ→ φ which may be considered part of the data, and generalities which are
designed to account for the data, like the Peano axioms. Despite this, the
proposal constitutes a radically non-traditional epistemology of axiomatic
systems, in that axioms may be afforded fallible justification in the absence
of any intuitive evidence.

Gödel’s view is in many respects similar to Russell’s. An element of
Gödel’s approach to the issue that differs from Russell’s is that he is more
concerned with the verification of axioms by the enhancement of what today
would be called ‘theoretical virtues’. In discussions of the regressive method,
Russell focuses on confirmation which flows from two sources: the obvious
truths which axioms or laws entail, and the obvious falsehoods which they do
not (1907, p.578). Where an axiom candidate is justified because it accounts
for some data which have no proof in the unsupplemented theory, I’ll call
such justification strictly regressive. But there is another respect in which
posits in science can contribute to verification of a theory beyond its obser-
vational consequences, by discriminating between the virtues of competing
empirically adequate theories.

To take a famous example, Einstein’s theory of general relativity describes
spacetime as curved. Logically speaking, we could maintain that spacetime
is actually flat, and posit compensating fields. The result is a theory which
has the same observational consequences as Einstein’s, but which preserves
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our pre-theoretic Euclidean conception of the geometry of physical space.
However, corresponding to each relativistic model there are infinitely many
distinct but empirically indistinguishable alternative Euclidean worlds. So
despite their empirical equivalence, the Euclidean alternative is not seen as a
genuine competitor to general relativity, because of the latter’s tremendous
advantage in terms of simplicity, naturalness, and other theoretical virtues
(Sklar 1992, pp.62–63).

Russell does give consideration to theoretical virtue in cases like this,
where there are multiple candidate hypotheses which can account for certain
data. For instance, in (1908, pp.242–243), he adopts the axiom of reducibil-
ity on the grounds that it does the work required of a theory of classes, but
is considerably more convenient than a theory of classes suitably modified to
avoid the paradoxes. More generally, he emphasises that axiomatic theories
which predict the data serve to organize our knowledge and make it more
manageable (1907, p.580). It is not apparent to me, however, that Russell
regarded it as possible to justify mathematical axioms solely on the grounds
that they substantially enhance virtue. He never, to my knowledge, offers an
explicit justification for adding an axiom to a theory which has no strictly
regressive support (i.e. one that is not sufficient to take account of any data
not accounted for by the unsupplemented theory), but which does substan-
tially enhance the the theoretical virtues of the unsupplemented theory. On
the other hand, Gödel’s remarks strongly suggest that he does believe such
justification to be possible (see §5). In general, Gödel places much more em-
phasis on this element of the analogy between mathematics and science than
does Russell.

We’ll postpone for now the discussion of what such theoretical virtues
might be in the mathematical case. The important point is that Gödel is
quite alive to the degree of revisionism in this epistemological picture. At the
time of writing (1964), Gödel was sceptical about mathematicians’ present
ability to verify large cardinal axioms by quasi-scientific methods, though
he does claim that in principle they could be verified ‘at least in the same
sense as any well-established physical theory’, even in cases where the axioms
entirely lack intuitive justification (1964, p.261). Gödel, much like Russell,
is clear that certain axioms may possess both intuitive and quasi-scientific
justification (1944, p.121), but the main focus is on axioms without any in-
tuitive force, such as large large cardinal principles. The verification of such
axioms is described as being ‘only probable’ (1964, p.269).

This all stands in sharp contrast to the epistemology of intuition dis-
cussed by many commentators on Gödel; although he did not take intuition
to be infallible, it seems he thought that the existence of certain large car-
dinals could be established definitively by such methods. If however, our
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mathematics were to make use of axioms possessing only quasi-scientific jus-
tification, ‘mathematics may lose a good deal of its “absolute certainty”’
(1944, p.121). Gödel’s confidence in his revisionist epistemology is such that
in the Gibbs lecture he even claims that the monopoly of deriving ‘every-
thing by cogent proofs from the definitions’ may turn out to be ‘as mistaken
in mathematics as it was in physics’ (1951, p.313).

In summary, Gödel’s introduction of quasi-scientific methods into the
theory of large cardinals constitutes a stark departure from his more tradi-
tional epistemology of arithmetic and the more basic elements of set theory.
He hopes that some justification of set theory can be offered based on two
analogies. The first is that sets help us systematize mathematical experience
just as material bodies do our sensory experience. We saw that this analogy
was ill-founded, at least in the case of large large cardinals. The second anal-
ogy is between large large cardinal axioms and scientific laws, derived from
the work of Russell. The central elements of the analogy are as follows:

1. Certain mathematical truths stand to set theory as elementary data
stand to physical theories.

2. Positing large cardinals can account for this data, similarly to how laws
of nature can account for the data of scientific theories.

3. Such posits can be justified either by being necessary for the deduction
of elementary data, or by enhancing the theoretical virtues of theory
to which they are added.

4. Consideration of such theoretical virtues can be so significant as to
admit into mathematics axioms (and hence theorems) which only have
a probable justification.

in the next three sections, I’ll clarify the central elements of this analogy:
what mathematical truths count as data? In what way can large cardinals
account for this data? How do large cardinal axioms enhance theoretical
virtue?

3 Mathematical Data

If large large cardinal axioms are to find their justification in accounting
for the mathematical data in a certain way, then some delineation of which
mathematical propositions constitute that data is plainly required. Though
such a delineation need not be made entirely precise in order to see the force
of Gödel’s analogy, we clearly need some account of what the large cardinal
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axioms are supposed to be accounting for if the analogy with the natural
sciences is to be informative at all. At the very least, some delineation of
the data is required for the account to be non-trivial; if any mathematical
truth qualified as data, then any true large cardinal axiom would be self-
certifying in a way that could not be considered scientifically respectable.
In this section, I’ll examine various possible accounts of mathematical data
that are suggested in Gödel’s writings and elsewhere, and argue that only
one of these has any hope of being plausibly seen as analogous to data in
natural science, if Gödel’s argument is to be of any use in justifying large
large cardinal axioms.

3.1 Perception and Objectual Intuition

Given the attention that has been given to Gödel’s remarks on ‘a kind of
perception’ in mathematics by later readers, we might expect that the data
to be accounted for are mathematical perceptions, and set theory is verified
to the extent that it ‘predicts’, i.e. proves, the propositions which we can
perceive to be true. On such a view, there would indeed be an overwhelming
analogy between mathematical and scientific theory, namely that both of
them are a means of systematizing and streamlining the data we experience
into a cohesive theory.8

I’ve argued elsewhere that we should understand Gödel’s remarks about
perception in mathematics as referring to Kantian or Hilbertian intuition,
and not to perception in a literal sense. Moreover, I’ve argued that intuition
of (i.e. singular objectual intuition) doesn’t play a significant role in Gödel’s
platonistic epistemology. That said, some view whereby this faculty provides
data to be accounted for regressively may still be worth considering, given
the enormous degree to which it renders science and mathematics analogous.
A clear statement of the view is given by Maddy (1990, pp.44–45). She
claims that if we are persuaded of some kind of platonism or realism, then
we should expect scientific and mathematical epistemology to be analogous.
Since some scientific beliefs are pre-theoretical and non-inferential, so too
should we expect this in mathematics. In science, these beliefs are formed by
perception, and so in mathematics they should also be formed by perception,
or something perception-like. The real problem with this view, at least with

8This is not to be confused with Quine’s view (Quine 1951a, p.45), according to which
mathematics is also an attempt to systematize and streamline the data of experience. On
Quine’s view, there is a single kind of data, which is accounted for by scientific (including
mathematical) theorizing as a whole. The view presently being considered however, posits
two kinds of data, which are accounted for by the natural sciences on the one hand, and
mathematics on the other.



13

respect to the justification of large large cardinal axioms, is that it is unstable
between the two main ways of thinking about mathematical perception: on
one account it is far too weak, and on the other it is so strong as to be trivial.

Firstly, we might imagine that deliverances of singular objectual intuition,
something like perception (but not perception itself), must be accounted for
by a mathematical theory. That is, we need to provide a formal theory T
such that φ ∈ T if the truth of φ is apparent given intuition of the objects
concerned (much as the truth of colour-ascriptions are made apparent by
looking at the relevant objects in favourable visual conditions). There are
of course questions to be raised about how such a faculty of intuition might
function, but on anything analogous to Hilbert’s view of intuition, what
is given by this faculty will be such a tiny fraction of mathematics that
no large cardinal axioms will have a role to play in accounting for it. If
for example, deliverances of intuition concerning number are captured by
primitive recursive arithmetic (i.e. quantifier-free arithmetic), then no objects
other than the natural numbers are required to explain the data.9 Of course,
set theory with a large cardinal axiom would also explain this, and would also
solve lots of open set-theoretic problems besides. But such an explanation
would surely fall foul of considerations of simplicity and economy of both
ontology and ideology.

For example, Newtonian mechanics is a simpler theory than Newtonian
mechanics plus evolution by natural selection. In a perfectly Newtonian world
with no living creatures, the supplemented theory would do all the explaining
of the base theory, and would additionally answer lots of questions about
the heritable traits of living things. But that would not make the theory
any better because, by our assumption, there is no data for the complicated
theory to account for that the basic theory could not. And similarly for large
cardinal axioms (indeed, set theory in general), if we take the data to be
limited in advance to what is given in singular objectual intuition.10

9The qualification ‘concerning number’ is required to avoid questions that could be
raised about geometric intuition, which plausibly requires resources going beyond those
available in primitive recursive arithmetic. Though there are interesting questions about
such cases, here is not the place to discuss them. Complications immediately arise con-
cerning geometrical intuition when one considers the modern conception of geometry as
lacking an intended interpretation, or the possibility that geometric intuition could be
explained as a spatio-perceptual faculty, rather than a genuinely mathematical one.

10I don’t want to commit myself to the view that singular objectual intuition is captured
by primitive recursive arithmetic. But it does seem to be a reasonable approximation (the
classic presentation of this view is (Tait 1981), though Tait rejects the Hilbertian claim
that the security of finitary arithmetic is grounded on our ability to represent its objects
in intuition). Furthermore, I expect any account of objectual mathematical intuition in
the vicinity would equally support a slightly modified argument to the same conclusion.
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Alternatively, we might follow Maddy and think that sets themselves can
be literally perceived, with no need for the surrogate faculty of intuition. This
gives a much richer relation between us and the objects of mathematics than
traditional Kantian or Hilbertian intuition, but indeed the relation is much
too rich. Since perception requires a causal connection between the perceiver
and the object of perception, the only sets we can see, according to Maddy,
are those with physical objects in their transitive closure. Moreover, any sets
with the same physical objects in their transitive closure are co-located. A
consequence of this is that for any ordinal α, there is a set of rank α where
any physical object is (Maddy 1990, p.59).

When it comes to data then, there are two options. If, for whatever
reason, we can only see sets of low rank, then it is hard to see how perception
would fare any better than objectual intuition did. On the other hand, if we
can see any set in our visual field, then there is no need for large cardinal
axioms to account for the data, since, for any true large cardinal axiom, we’d
just be able to see sets of any rank necessary to validate the axiom. I take
it that the existence of large cardinals shouldn’t be considered part of the
data that large cardinal axioms account for, so it seems that the science–
mathematics analogy cannot support large large cardinal axioms if we take
the data to be given by either singular intuition or perception of sets.

Although a proper discussion would take us too far afield, I want to make
it clear that I think objectual intuition is insufficient as a source of data
for which large large cardinal axioms specifically are required to account.
Perhaps objectual intuition is well-suited to providing regressive support for
much weaker axioms; but according to the Gödelian account, such weaker
theories can be validated by propositional intuition, hence there is no need for
such a discussion here. We’ll also discuss below the possibility that objectual
intuition can still contribute to the data, even if it is insufficient to provide
all of it.

3.2 Ordinary Mathematics

If the analogy between mathematics and natural science is to validate a large
large cardinal axiom, we need a collection of data more expansive than what
is given in intuition that does not include statements about sets of arbitrary
rank. An initially promising class that appears to fall between these two
extremes would be ‘ordinary’ mathematics. In emphasising the foundational
role of set theory, we might examine the theorems accepted by mathemati-
cians in other areas, and see how strong set theory is required to be to account
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for these theorems.11

However, as a source of data, ordinary mathematics suffers the same de-
fect as objectual intuition, because very little set theory is strictly required
to account for ordinary mathematics. Gödel’s own view in 1964 was that the
lack of observable consequences in other fields was such that ‘it is not pos-
sible to make the truth of any set-theoretical axiom reasonably probable in
this manner’ (1964, p.269). We find similar views decades later in the work
of Quine (1990, pp.94–95), asserting that the higher reaches of set theory
should indeed be pruned on account of their irrelevance (although Quine was
of course concerned with their relevance only to applied mathematics). And
decades after Quine, it is still difficult to find an example of a mathematical
result from outside set theory which requires a large cardinal axiom for its
verification. As Potter puts it ‘the overwhelming majority of 20th century
mathematics is straightforwardly representable by sets of fairly low infinite
rank, certainly less than ω + 20’ (2004, p.220). This assessment may be
unduly bleak regarding large cardinals as a whole; certainly the central im-
portance of Grothendieck universes in algebraic geometry casts some doubt
on the assessment. But even here, the cardinals involved are small by the
standards of current set theory.12 So the 21st century, at least in respect of
the application of large large cardinals, shows no sign of being any different
from its predecessor.

This is not to say that large cardinal axioms don’t have any consequences
that are of significant interest to mathematicians working outside set theory;
large cardinal axioms all have number-theoretic consequences, and can at
times be used to solve open mathematical problems (see §5 below). The
point to note for now, however, is that such consequences are not regarded
as true in advance of positing a large cardinal axiom, so cannot be seen as
data for which such an axiom might account. They could, perhaps, be seen as
analogous to the additional consequences that scientific theories have which
are not themselves data. That is, perhaps such propositions are analogous to
scientific discoveries. But such a proposition is not to be believed unless we
believe the theory of which it is a consequence, and hence it cannot play the
same role as the data do in establishing the truth of the theory. Outside of
the context of large cardinals, Russell writes that ‘the logical premises have,
as a rule, many more consequences than the empirical premises, and thus

11In proposing this conception of data, is it convenient also to relegate category theory
to the realm of extra-ordinary mathematics along with set theory, for the same kinds of
reason in each case.

12In particular, any Grothendieck universe is either ∅, Vω, or a strongly inaccessible car-
dinal. Many thanks to Daniel Isaacson for highlighting the relevance of algebraic geometry
in this context.
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lead to the discovery of many things which could not otherwise be known’
(1907, p.574). Large cardinal axioms certainly have many such consequences,
but the point is that they cannot properly be considered logical premises for
mathematics at large, since ordinary mathematics can do perfectly well with-
out them.

As with the case of objectual intuition, it may well be that a study of
ordinary mathematics would provide strong regressive support for certain
set-theoretic axioms. However, those axioms would be substantially weaker
than the large large cardinal axioms which are our present concern.13

3.3 Arithmetical Data: Primary and Secondary

Gödel’s own suggestion is that the data should come from arithmetic, ‘the
domain of the kind of elementary indisputable evidence that may be most
fittingly compared with sense perception’ (1944, p.121).14 This is a distinct
proposal from the one just discussed. After all, not all verified propositions
in ordinary mathematics are arithmetical; conversely not all verified arith-
metical propositions are found in ordinary mathematics, since many of them
are distinctly meta-mathematical.

On the face of it, arithmetic is a much more promising source of data
than singular intuition: if the data are sufficiently rich that an incomplete
theory is required to account for them, then this opens up the possibility of
formulating a sequence of increasingly powerful theories accounting for more
and more of the data, with no limit to the strengthening process. This is
exactly what the large cardinal hierarchy promises to provide.15

13It’s perhaps worth emphasising that here I’m only discussing the strictly regressive
justification of large large cardinal axioms, not the quasi-scientific justification of them
overall. At this stage, I do not consider myself to have said anything against the view that
large large cardinal axioms can be verified by evaluating their theoretical virtues, which
might include the ability of these axioms to solve open problems. This issue will be taken
up below in §5.

14It is worth clarifying that Gödel is here using the term ‘sense perception’ is a specialized
way, in the context of discussing Russell’s regressive method. Hence ‘sense perception’
should here be taken to mean a proposition functioning as data that should be deducible
from the wider explanatory theory.

15It may at first sight appear that the growth of the large cardinal hierarchy does have
a limit. We know, for example, that Reinhardt cardinals are too large to exist if the
axiom of choice is true. This is an easy consequence of Kunen’s theorem that there is no
non-trivial elementary embedding from the universe into itself, since a Reinhardt cardinal
is the critical point of just such an embedding (Kanamori 2009, pp.318–319). While such
cardinals are too large, I can’t see how this differs from the requirement that the large
cardinal axioms must be consistent. The formulation of cardinal axioms too strong for
ZFC does not imply that within the class of large cardinal axioms consistent with ZFC,
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Since there are a great many arithmetical truths yet to be formulated,
let alone believed, not all arithmetical truths can function as data. In iden-
tifying a select few of these truths as data, a promising suggestion would
be those arithmetical truths expressed by a Π0

1 sentence. On the one hand,
such sentences form a natural class of arithmetical sentences which can be
considered suitably elementary, given that they are of the form of universal
generalizations over the numbers. Secondly, Gödel’s theorems imply that any
recursively axiomatized consistent set theory will be Π0

1-incomplete, guaran-
teeing that the data are of a suitably inexhaustible kind. Finally, all large
cardinal axioms have Π0

1 arithmetical consequences, meaning that the posit-
ing of increasingly strong axioms is guaranteed to have relevance to the data.
Hence identifying the data with this class seems most likely to justify the
kind of maximalism about the height of the hierarchy that Gödel and others
hope to found in terms of the science–mathematics analogy.

Of course, ∆0
0 and Σ0

1 arithmetical sentences are just as elementary, and
may well merit consideration as data. But for the purposes of large large
cardinal axioms, such sentences won’t matter much. The ∆0

0 arithmetical
sentences are all equivalent to Σ0

1 arithmetical sentences (by prefixing redun-
dant quantifiers), and PA is complete with respect to this latter class, so we
know in advance that no consistent large cardinal axioms will settle any of
these sentences that we could not have settled without their help.

An identification of the data along these lines is made by Koellner (2009a,
p.98). He distinguishes the ‘primary’ data, which are previously verified ∆0

1

sentences, and the ‘secondary’ data, which are the Π0
1 universal generalisa-

tions of these. Koellner’s motivation for this selection is that verified ∆0
1

sentences are analogous to observation sentences in the sciences, and hence
their Π0

1 generalisations are analogous to observational generalisations in the
sciences. He claims further that ‘in mathematics the secondary data can be
definitely refuted but never definitely verified’ (2009a, p.98). This claim is
made on the basis of the analogy with physics, yet it is deeply implausible
in the case of mathematics. After all, any ∆0

0 sentence is also ∆0
1 (since it

is logically equivalent to itself prefixed with redundant quantifiers), and we
seem to able to verify all sorts of Π0

1 sentences which are universal general-
isations of ∆0

0 formulae (e.g. that every prime is odd or is identical to 2).
Given this implausibility, it is perhaps tempting to think that the data are
meant to be some restricted class of Π0

1 sentences which generalise verified ∆0
1

sentences. But Koellner’s remarks tell against this. For example, he claims
that ‘[t]wo theories are mutually interpretable if and only if they prove the
same Π0

1-sentences, that is, if and only if they agree on the secondary data’

there is a limit to the process of strengthening ZFC by successive large cardinal posits.
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(2009a, p.98). This means that there is no room for theories to agree on the
secondary data and disagree on the full class of Π0

1 sentences.
A further problem with Koellner’s suggestion, and indeed with the more

general identification of the data with the Π0
1 arithmetical data, is that we

are no more persuaded of the truth of every true Π0
1 arithmetical sentence in

advance than we are of the truth of every true arithmetical sentence. Take,
for example, the even perfect number conjecture (EPN). This states that all
numbers which are perfect (i.e. are the sum of their proper positive divisors)
are even. This conjecture is clearly Π0

1, however it is well-documented that
mathematicians are (at least collectively) ambivalent regarding the truth of
EPN (Baker 2007, p.63). So, if the conjecture is true and a theory proves it,
we should regard the proof as analogous to a surprising scientific discovery,
and not as an account of any data.

Given the faults in Koellner’s primary/secondary classification, the im-
portant question now is how to delimit in advance which true arithmetical
sentences at most as complex as Π0

1 are to be considered data. It’s entirely
possible that no sharp delimitation is possible; indeed the closer the analogy
between mathematics and the sciences, the less we should expect a sharp de-
limitation to be possible. Nonetheless, we can give a preliminary taxonomy
of the kinds of arithmetical proposition which should pass muster.

3.4 Arithmetical Data: Hard and Soft

Firstly, there are those sentences originally discussed by Russell, which gain
their status as data for broadly Millian reasons, the original example being
that two sheep and two sheep are always observed by shepherds to yield four
sheep. Since ‘2 + 2 = 4’ is ∆0

0, it is also Π0
1, and hence is of the right shape

for our data class. Moreover, we believe it to be true pre-theoretically, and
indeed with more certainty than the axioms themselves. Hence these Rus-
sellian data should be admissible for Gödel’s analogy too.

We saw above that Gödel takes a perception-like relation to hold be-
tween us and mathematical objects, most plausibly construed along Kantian
or Hilbertian lines as the singular representation of an object to a thinking
subject. If this has any significant role to play in Gödel’s philosophy, it is
in providing some of the mathematical data (though for reasons discussed
above, it cannot provide all the data). Such intuitive data, like the basic
Russellian data, will no doubt be restricted to propositions of a fairly simple
sort. Since intuitive representation is supposed to be singular, even without
a thorough account of how such intuition is supposed to work, we can tenta-
tively say that arithmetical propositions which we can verify on the basis of
this faculty should be equivalent to to a Π0

1 or Σ0
1 sentence, as required here. I
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won’t dwell on this issue, since it’s fairly clear that Gödel’s scant remarks on
singular intuition radically underdetermine the theory required to account for
them. I mention the issue only because Kantian intuition is a plausible source
of data going slightly beyond the Russellian. There might, for example,
be simple additions such as 51, 000, 000, 000, 000 + 1 = 51, 000, 000, 000, 001
which could plausibly be verified in intuition, but of which no plausible Mil-
lian account can be offered. It would be a wealthy shepherd indeed whose
work necessitated repeated exposure to concrete instances of the addition
above!

In the non-mathematical context, Russell distinguishes between hard and
soft data (1914, lecture III). The distinction is broadly psychological in na-
ture, and is not supposed to be exhaustive or exclusive. But as a heuristic
it is still helpful for our purposes to consider the degree to which data can
be classified as hard or soft. The paradigmatic hard data for Russell are
the laws of logic, Russellian mathematical data in the above sense, and facts
about one’s own sense data. We can also, for the sake of thoroughness, in-
clude propositions verifiable in intuition here. The common characteristic is
that Cartesian reflection on propositions of this kind do not induce doubt
in us as regards their truth. Soft data are, by contrast, those which are
open to at least philosophical doubt, such as the existence of material ob-
jects or other minds. Though he does not put it in quite these terms, in the
Gibbs Lecture Gödel suggests that soft data in mathematics are admissible
for quasi-scientific purposes.

In particular, he argues that a platonist should feel comfortable with the
verification of number-theoretic claims by enumerative induction (i.e. verifi-
cation of universal number-theoretic claims by verification of instances up to
large integer values). He writes:

I admit that every mathematician has an inborn abhorrence to
giving more than heuristic significance to such inductive argu-
ments. I think, however, that this is due to the very prejudice
that mathematical objects somehow have no real existence. If
mathematics describes an objective world just like physics, there
is no reason why inductive methods should not be applied in
mathematics just the same as in physics (Gödel 1951, p.313).

In trying to reconstruct a Gödelian conception of mathematical data then,
it is reasonable to suppose that Π0

1 arithmetical sentences verified in a suffi-
ciently large number of instances should be considered as soft data. Hence
if, for example, Goldbach’s conjecture were derivable from a large cardinal
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axiom, we should count that as regressive support for the axiom candidate.16

This is because most mathematicians believe the conjecture to be true de-
spite lack of a proof (Echeverria 1996, p.42). The obvious explanation as to
why mathematicians typically hold this belief is that the conjecture has been
verified in an enormous number of instances.17

Of course, there are a number of philosophical issues with soft data of this
kind. For one thing, it isn’t even known whether Goldbach’s conjecture is
independent of PA (and indeed, if it is false, its negation is provable in PA).
If it is provable in PA, then it’s possible that the proof is so complex that
nobody could feasibly carry it out. If this is the case, then a simpler proof
from a large cardinal axiom would provide justification for that axiom merely
in terms enhancement of theoretical virtue, rather than a more compelling
strictly regressive justification (we’ll return to issues around the ‘speed-up’
of proofs in §5).

Secondly, Gödel’s statement that ‘there is is no reason why inductive
methods should not be applied in mathematics’ is false. A very good such
reason was offered by Frege, namely that induction in physics is lent plau-
sibility by the fact that ceteris paribus any region of space and time can
be supposed similar in the relevant physical respects. However the same is
not true of the numbers, since the position they occupy in the number series
makes a great deal of difference to their arithmetical properties, such as their
divisors, primality, and so on (Frege 1884, pp.14–15).

I think that as far as reconstruction of Gödel goes, the results of suf-
ficiently extensive enumerative induction should be admitted as soft math-
ematical data. Philosophically, however, I think this is mistaken, a view
which appears to accord with mathematical practice. Although much work
has gone into verifying large numbers of its instances, Baker (2007, pp.69–
70) makes a compelling case that enumerative induction is not the source of
widespread belief in Goldbach’s conjecture.

Baker argues instead that the belief has its origins in Cantor’s partition
function. With a given even number ≥ 4 as its argument, the partition func-
tion takes as its value the number of ways it can be decomposed into the
sum of two primes. Though this function does not increase monotonically,
its graph, displayed below for even arguments from 4 to 100,000, is certainly

16In modern form, Goldbach’s conjecture states that any even number greater than 2 is
the sum of two primes.

17At least 2 × 1017 instances have been checked. Up to date information is available
at Tomás Oliveira e Silva’s website at ‘http://sweet.ua.pt/tos/goldbach.html’. Accessed
05/04/2019.
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suggestive.18

Baker argues that the increase in mathematicians’ confidence of the truth of
Goldbach’s conjecture coincides with investigation of the partition function,
and hence that this confidence is not based on enumerative induction alone
(which Baker takes to be illegitimate for the Fregean reason above). Rather,
the confidence comes from the apparently increasing cone-like pattern exhib-
ited by the graph of the partition function.

At this point, one might be tempted to think that enumerative induction
is after all the source of the mathematicians’ beliefs here, with a small change
in perspective: the induction is that for many even arguments from 4 onward,
the value of Cantor’s function isn’t 0, therefore Goldbach’s conjecture is true.
But this would be too quick: as Baker argues, there is more than enumera-
tive induction going on here. Given the apparently-increasing pattern of the
graph, the ‘hard’ cases for Goldbach’s conjecture should be amongst very
small numbers already tested manually. In other words, the sample cases
observed are biased against Goldbach’s conjecture, and if it were false, we
should have found the counterexample amongst the previously studied in-
stances. So mathematicians don’t need to be seen as accepting the result
of simple enumerative induction here, but rather as accepting the result of
enumerative induction over a sample biased against the conjecture. Baker
takes this to be a distinct kind of non-enumerative inductive evidence for the

18The graph is taken from Mark Herkommer’s Goldbach research site at
‘http://www.herkommer.org/goldbach/goldbach.htm’. Accessed 07/09/2018. © Copy-
right, 1998-2014 Mark Herkommer. Permission to reproduce this graph has been kindly
granted by the copyright holder.
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conjecture (2007, p.71). Therefore, even if we do not wish to countenance
soft data of the kind envisaged by Gödel, we may be inclined to think that
some Π0

1 arithmetical sentences should be admitted into our class of data on
the basis of such non-deductive plausibility considerations.

Lastly, there is a kind of data with much Gödel scholarship has been
preoccupied, namely the Π0

1 arithmetical sentences constructed in the proof
of Gödel’s theorems, like Gödel sentences, canonical consistency sentences,
and Diophantine sentences. When sentences of these kinds are constructed
effectively from an axiomatic system which we recognize to be sound, it fol-
lows immediately that they are true, and that they are not ‘accounted for’
by the corresponding axiom system in the relevant sense. However, such
sentences constructed from the axioms of a sound system which we do not
believe in advance to be sound will not pass muster. Since the justification
of such propositions is parasitic on the axiomatic system from which they
are obtained, data of this kind will be harder the higher our degree of con-
fidence in the soundness of the relevant axiom system. A proposition such
as ConPA should be regarded as data of the hardest kind, with ConZFC as
perhaps somewhat softer. Something like ConZF+∃x x is Reinhardt should not
be considered data at all.19

In summary, “ordinary” mathematics, mathematical perception, and sin-
gular intuition cannot supply a collection of data by which the analogy be-
tween mathematics and natural science could justify the positing of large
large cardinal axioms. The elementary part of mathematics which most plau-
sibly can behave as data is number theory. A restriction on which number-
theoretic sentences can be considered data is nonetheless required. Although
we cannot determine which statements precisely are data, a natural class
consists of Russellian data, together with the Π0

1 sentences generated by
Gödelian incompleteness that we have reason to believe are true. Gödel’s
writings suggest that he thought the results of certain enumerative induc-
tions should be considered as well; although I’ve expressed scepticism on the
matter, it is plausible that some Π0

1 arithmetical sentences should be consid-
ered data even in the absence of (formal or informal) proof, namely where
there are strong heuristic reasons to suspect they are true. In the next sec-
tions, we’ll examine the sense in which large large cardinals might be thought
to account for such data.

19Although the existence of Reinhardt cardinals is known to be inconsistent with ZFC, it
is unknown whether they are consistent with ZF. A recent attempt by Rupert McCallum to
prove Kunen’s inconsistency theorem without the axiom of choice (which would settle the
question negatively) almost succeeded, though not quite. The events are documented by
Joel Hamkins on his website at ‘http://jdh.hamkins.org/tag/rupert-mccallum/’. Accessed
05/04/2019.
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4 The Laws of Nature Analogy

Since large cardinals themselves are not analogous to material bodies as
Gödel initially suggested, the alternative is that the axioms which assert the
existence of such sets are analogous to ‘laws of nature’ or other theoretical
posits. One respect in which an axiom playing the role of a law can be suc-
cessful is strictly regressive, if it allows for the deduction of data which could
not be obtained by weaker principles. The other possibility is that large
cardinal axioms function as laws of nature the positing of which enhances
the theoretical virtues of set theory. This section will be concerned with
the strictly regressive justification of large large cardinal axioms, by analogy
to laws of nature. Our key question is whether large cardinal axioms can
account for any data that cannot be obtained without them, according to
the delimitation of the data given in the last section. If so, that would give
strong regressive support to the large cardinals project, since in the sciences
we certainly do accept natural laws which are posited for such reasons. How-
ever, I’ll argue that Gödel’s analogy cannot be sustained in this case.

Whether the adoption of large large cardinal axioms can account for data
not accountable for without them (or alternative axioms of similar strength)
is of course tremendously sensitive to what we take the data to consist of.
The outline of the data just given is neither sharply delimited, nor precisely
defined. But critically, the sentences expressing such propositions are all
provable in PA, or else are of a restricted kind of Π0

1 arithmetical sentences
independent of PA. So we can say something relatively precise about the
sentences expressing the data (though admittedly not as precise as in Koell-
ner’s account), and hence can say something quite definite about the role
large cardinals might play in accounting for them. As one would expect
in advance, the data are (at least in one respect) not very complicated sen-
tences, and their simple form might give us good reason to suppose that large
cardinal axioms do allow us to account for data which cannot be accounted
for in their absence. This is because the addition of any large cardinal axiom
to ZFC will reduce the degree to which it is Π0

1-incomplete, as can be seen
from the arrangement of large cardinal axioms in a hierarchy of consistency
strength.20

Indeed, we may even think that the inclusion of sentences constructed by
Gödelian methods in our selection of data guarantees that positing a large
cardinal axiom will relevantly account for some of the data, in the following
way: suppose you are persuaded that intuitive considerations justify the be-

20As in fn.1 (above), it simply appears that the large cardinal axioms are so arranged.
There is no theorem to this effect.
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lief that the theory ZFC+∃x x = κ(ω) is sound, as mentioned above. You’ll
then certainly believe that the theory is consistent, but by Gödel’s theorem
ZFC + ∃x x = κ(ω) 6` ConZFC+∃x x=κ(ω). So ConZFC+∃x x=κ(ω) is a relevant
piece of data, namely a Π0

1 arithmetical sentence that we take to be true
for Gödelian reasons. The adoption of a large cardinal axiom stronger than
one asserting the existence of κ(ω) will allow you to prove the consistency
sentence, and hence account for more data than the unsupplemented theory.

Since our newly supplemented theory accounts for more of the data, the
analogy between science and set theory justifies (albeit not with certainty)
a belief that it is sound, and hence that it is consistent. And the whole
process starts again, justifying a set theory of ever increasing strength by
extension with stronger and stronger large cardinal axioms.21 The fact that
a large cardinal axiom ‘accounts for the data’ gives us only probable reason
to believe that it’s true, so we have the expected gradual loss of certainty as
we move up the hierarchy of large cardinal axioms as well.

In my view, this is the most persuasive quasi-scientific argument for large
cardinal axioms in which those axioms are afforded strictly regressive support
(as opposed to being merely virtue-enhancing), and as a point of interpre-
tation it fits well with Gödel’s general remarks on the issue. Firstly, the
initial step of the argument requires the use of intuition to found the truth of
the axioms of some strong set theory.22 Secondly, the incompleteness theo-
rems play a crucial role in the argument, since they are required to establish
the need for a series of extensions via large cardinals, as outlined at (1964,
pp.260–261). Thirdly, there is a clear sense in which the large cardinals ‘ac-
count’ for the data, since they do so directly via increasing the deductive
strength of the base theory. Finally, the picture accords well with Gödel’s
twin claims that such axioms need no intuitive justification, and thereby in-
troduce axioms and theorems into mathematics the truth of which can only
be maintained as probable.

Compelling though it may be, this argument suffers from a serious philo-
sophical flaw. According to the picture sketched above, it looks as if we might
come close to a hierarchy of regressively justified large cardinal axioms con-
strained only by consistency. A potential problem is that the progressive
decrease in the certainty of our axioms could perhaps lead to a decrease in
regressive support such that we stop being justified in positing new cardinals

21The argument here is inspired by Gödel’s remarks (1964, p.269), though the idea there
is actually about intuitive justification, and does not mention large cardinals in particular.

22Even in papers like (1964), where the quasi-scientific programme is well underway,
Gödel maintains that intuition has an important role in founding the general platonist
interpretation of the axioms, suggesting that he does not think quasi-scientific justification
is alone sufficient for developing such a picture.



25

rather early in this process. But that is merely a possibility. In reality, there
are more substantial issues in the vicinity.

A first point to note is that, as we’ve seen, much of the mathematical data
will be consistency sentences, or sentences which are equivalent to consistency
sentences. An immediate problem that raises doubts about the need for large
cardinal hypotheses with respect to such data is related to ordinal analysis.
If the consistency sentences we can take to be data are those of sound recur-
sive theories, then the consistency sentence should be provable via Gentzen’s
method of transfinite induction up to the theory’s proof-theoretic ordinal.
Since the proof-theoretic ordinal of a theory T is the supremum of ordinals
for which there is a notation in O which T verifies is a notation, it follows
that any proof-theoretic ordinal is < ωCK1 . The initial worry then, is that
for the purposes of verifying elementary data, large cardinals are excessive;
much of the work could be done using much more conservative resources in
the large countable ordinals. That said, identifying the proof-theoretic ordi-
nal of a theory is often far from straightforward. And moreover, we admitted
that other Π0

1 arithmetical sentences besides consistency sentences might pass
muster as data, so the picture outlined above remains intact. There is, how-
ever, a much more severe problem with the proposal, to the effect that large
cardinal axioms cannot be required to account for the data as construed.

In particular, the problem is that when a large large cardinal axiom ‘ac-
counts’ for some otherwise unaccounted for piece of data, that gives us no
reason to believe that the axiom is true. The key reasons are that PA is
sound, and is complete with respect to Σ0

1 arithmetical sentences, although
this requires a little explanation. Suppose that δ is some large cardinal ax-
iom consistent with ZFC, and that φ is a Π0

1 datum such that ZFC 6` φ and
ZFC + δ ` φ. Suppose φ is false; in that case ¬φ is equivalent to a true Σ0

1

arithmetical sentence. Since PA proves all true Σ0
1 arithmetical sentences,

PA ` ¬φ. However, since ZFC extends PA, ZFC ` ¬φ. This contradicts
our assumption that δ is consistent relative to ZFC, since ZFC+δ ` (φ∧¬φ).
So (assuming ZFC is consistent), φ is true. Hence, we have accounted for a
new piece of data, namely φ, by proving that it is true. Crucially, however,
at no point was the truth of δ required. All that was used in the argument
was the assumption that δ was consistent with ZFC.

To see this, suppose that γ is some axiom candidate consistent with ZFC
such that ZFC + γ + δ ` 0 = 1. Suppose further that ψ is a Π0

1 datum such
that ZFC 6` ψ and ZFC + γ ` ψ. The same argument as before suffices to
show that ψ is true: if it is false, ¬ψ is equivalent to a true Σ0

1 arithmetical
sentence. Hence, PA ` ¬ψ, so ZFC ` ¬ψ. This contradicts our assump-
tions, hence ψ is indeed true. Now γ and δ, by construction, are not both
true. Yet the data for which these axioms were supposed to account are both
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true regardless. So the deduction of data which are not derivable in ZFC by
large cardinals axioms provides no regressive support for the truth of these
axioms; rather it at best supports the assumption of their consistency rela-
tive to ZFC.23

It seems that this observation should be of some concern to the platonist
with a substantial notion of mathematical truth going beyond mere consis-
tency. If, as I have argued we must, we restrict mathematical data to a
special class of Π0

1 arithmetical sentences, then as far as these data are con-
cerned, we seem to be in a Hilbertian scenario with respect to large cardinal
axioms, in so far as their consistency is as good as their truth. If we want to
put the large cardinals programme on solid philosophical ground, it won’t do
to think that the open series of extensions of ZFC that we ought to believe
consists simply of ZFC extended by propositions asserting the consistency
of ZFC with certain large cardinal statements. But that picture is all that
is regressively supported by the data, so the idea that the methods of theory
choice in science can be applied in set theory is placed under considerable
strain.

To put it the other way, recall that the analogy between mathematics and
natural science was founded on the view that the subject matter of math-
ematics was analogous to the subject matter of natural science, such that
some version of the methods of the latter was thereby admissible in the for-
mer. Given that the theories of natural science are certainly not confirmed
by mere consistency, the platonist’s case for large large cardinals is substan-
tially undermined. The science–mathematics analogy prevents the Gödelian
from taking up a Hilbertian conception of axioms, according to which con-
sistency and truth coincide. The argument that I’ve presented shows that
elementary mathematical data will at best support the view that large car-
dinal axioms are consistent, and not that they are true. So either the laws
of nature analogy must be abandoned, or else the platonist must admit that
it fails to justify a belief in large large cardinals.

None of this is to say that the Gödelian cannot justify the truth of large
large cardinal axioms by other quasi-scientific methods; after all they can still
argue that the truth of such an axiom can enhance the theoretical virtues of
set theory to a greater extent than can the corresponding consistency sen-
tence. But this is a much weaker kind of support far more open to doubt.
Indeed, the situation for quasi-scientific justification keeps getting worse: the
strongest form of regressive support that has been offered for large cardinal
axioms was that the existence of large cardinals was only as open to doubt

23Technical details relevant to this point are explained further in (Potter 2004, pp.217–
218).
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as the existence of medium-sized dry goods. But as we saw, that analogy
could not be sustained. Now we have seen that large cardinal axioms do not
even contribute to the adequacy of set theory with respect to its data, since
the statement that they are consistent relative to ZFC will do that just as
well. Making a case that the truth of large cardinal axioms is substantially
more virtue-enhancing than their mere consistency relative to ZFC is the
only option left for the platonist who takes Gödel’s analogy seriously.

On the other hand, the argument above is unlikely to trouble platonists
who don’t share Gödel’s view that theory confirmation within mathematics
is analogous to theory confirmation in physics. You could of course be both
a platonist and a maximalist of a less naturalistic persuasion; for instance, if
you thought that the concept set mandated the adoption of any consistent
maximising principle, large cardinal axioms included, the argument above
would be of little consequence.24 It’s clear however, that such a position can
make no room for a substantial analogy between mathematics and natural
science, since in the natural sciences there is no sense in which the consistency
of a theory amounts to its truth. In summary, the platonist who takes the
analogy between mathematics and natural science seriously cannot maintain
that large cardinal axioms function analogously to laws of nature which are
necessary to account for the data.

It is worth noting that the argument offered here is of some relevance
beyond the narrow confines of the large cardinals debate. The only plausible
candidates for mathematical data are arithmetical sentences of at most Π0

1

complexity that we have prior reason to believe are true. If I’m correct about
this, then the completeness of PA with respect to Σ0

1 arithmetical sentences
places severe constraints on the regressive justification of any axioms which
are stronger with respect to arithmetical sentences than the axioms of PA
themselves. Therefore any regressive epistemology in the vicinity should have
at most modest aspirations. The problem then, is that weaker axioms are
more likely to be persuasive candidates for self-evidence, and therefore the
significance of the regressive project as a whole is put into question by the
arguments of this section.

To sum up: if indeed we should adopt any large large cardinal axioms,
it will not be because they must be adopted to account for any of the data,

24Certain remarks of Gödel’s do at times suggest that he is tempted by such a position.
For example, footnote 23 in the 1964 version of the continuum paper cautiously suggests
that the concept set dictates a maximality principle inconsistent with V = L. If this is
correct, then mathematical intuition would verify a principle considerably stronger than
previously supposed; this is because the existence of κ(ω) is consistent with V = L (Jech
2003, p.304). The corresponding footnote in the 1947 version is number 22, which contains
no such suggestion, possibly indicating a shift in Gödel’s view over the intervening years.



28

since that data can be equally accounted for by much weaker consistency
sentences. Prima facie, the ability of a theory to account for the relevant
data in the sciences offers a strong reason for accepting it, but no such justi-
fication is available to large large cardinal axioms if we have a conception of
the data similar to which such strong axiom candidates might plausibly be
thought relevant. This not only weakens the case for adopting such axiom
candidates, but also places a good deal of strain on the overall analogy that
Gödel wishes to draw between mathematics and the natural sciences.

5 Theoretical Virtues

Things are not looking promising for the analogy between mathematics and
natural science as a means of justifying the large cardinals programme in full
generality. We’ve seen that, although a plausible delineation of the data is
possible, there is no sense in which accounting for this data can give large
large cardinal hypotheses strong regressive support. On the one hand, such
cardinals themselves are not required for the prevention of a philosophical
miracle, as material bodies plausibly are. This is because no particular cardi-
nal plays the right explanatory role; all that is required is the truth of some
existential generalisation of a certain consistency strength or greater. On
the other hand, large large cardinal axioms do not receive strictly regressive
support by accounting for the data in the relevant way, since demonstrably
only their consistency is required for this.

There is another respect in which large large cardinal axioms can be
quasi-scientifically successful, namely by enhancing the theoretical virtues of
set theories to which they are added. This aspect of the analogy is by far the
most often discussed in the literature, and appears to be the central justifi-
cation for large large cardinal axioms, as far as several mathematicians and
philosophers are concerned. The classic exposition of the view, unsurpris-
ingly, comes from Gödel:

Success here means fruitfulness in consequences, in particular in
“verifiable” consequences, i.e., consequences demonstrable with-
out the new axiom, whose proofs with the help of the new ax-
iom, however, are considerably simpler and easier to discover,
and make it possible to contract into one proof many different
proofs... A much higher degree of verification than that, how-
ever, is conceivable. There might exist axioms so abundant in
their verifiable consequences, shedding so much light on a whole
field, and yielding such powerful methods for solving problems
(and even solving them constructively, as far as that is possible)
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that, no matter whether or not they are intrinsically necessary,
they would have to be accepted at least in the same sense as any
well-established physical theory (1964, p.261).

Although Gödel thought that the verification of large cardinal axioms by such
means could only ever be probable, and that at the time of writing no propo-
sition had been so verified, the core idea of this passage has been remarkably
influential in the philosophy of mathematics. Quine (1990, pp.94–95), Maddy
(1997, p.233), Koellner (2010, p.190) and others have all adopted the idea
that a decision on the truth of at least some axiom candidates can be reached
on the basis of analysing the extent to which these axioms enhance the the-
oretical virtues of ZFC when they are added to it.

As is the case with respect to the natural sciences, it isn’t clear exactly
what properties are to count as theoretical virtues, and there are difficult
questions in the vicinity about how such virtues are to be weighted, and
how virtues collectively should fare against other criteria for theory choice.
Nonetheless, there are canonical examples of theoretical virtues in mathemat-
ics that should prove sufficient for our discussion. In the passage above, Gödel
focuses on the speed-up or contraction of existing proofs, and the solution of
open problems. Other virtues discussed include the ‘naturalness’ of an axiom
candidate (Gödel 1938, p.27), the naturalness or expectedness of its deduc-
tive consequences (Moschovakis 1980, p.610), maximisation of interpretative
power, and the ‘effective completeness’ of the supplemented theory (Koellner
2010, p.204).25 Far too many virtues have been proposed in the literature to
canvass here, however the most important examples will be explored in some
detail. I’ll examine the two central theoretical virtues mentioned by Gödel
above, and also parsimony, the virtue which takes center-stage in discussions
of scientific theories. I’ll argue that with respect to these theoretical virtues,
large large cardinal axioms should not expect a very positive evaluation.

5.1 Open Problems

The solution of open problems is a virtue of strong set theories that has re-
ceived an enormous amount of attention, from Gödel onwards. The initial
axiom candidate lauded with this virtue was V = L. Although the virtues
of several large cardinal axioms inconsistent with this principle are now well-
regarded in the literature, V = L does indeed have the virtue of solving many

25This is perhaps a theoretical virtue that has no strong analogue in the natural sciences.
A theory is said to be ‘effectively complete’ with respect to a given class of statements
if it decides every statement in the class except the undecidable statements generated by
Gödelian incompleteness.
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open problems, both within set theory and without.26 Within set theory, it
solves GCH affirmatively, as proved by Gödel. Perhaps slightly less well-
known is that V = L implies that every Whitehead group is free, solving a
famous open conjecture in algebra (Shelah 1974).

Nowadays, the focus is on the ability of large cardinal hypotheses to
solve open problems in descriptive set theory. A proliferation of results ex-
ist using large cardinals to prove that sets of reals have various separability
and measurability properties, and that particular games on sets of reals are
determined. The most famous such result is probably Martin and Steel’s
proof (Martin and Steel 1989) of the projective determinacy axiom,27 which
follows from the existence of infinitely many Woodin cardinals. There are
many other well-known examples of open problems solved by large cardinal
hypotheses, and there is no need for my purposes to report them all. It
is important to note that even where large cardinals have consequences for
more concrete areas of mathematics, the decision of open problems can only
be taken to enhance the theoretical virtue of set theory including such an
axiom. We cannot take the extension of set theory by such an axiom as
having strict regressive support on this basis, since the solved problems are
viewed as being genuinely open in advance of positing the large cardinal ax-
ioms which facilitate their solution. As remarked above, the solution to open
problems should be viewed as analogous to the making of a novel scientific
discovery: the discovery is to be trusted only if the theory from which it
follows is already believed to be sound.

This is not, of course, to say that the ability of an axiom candidate to
provide solutions to open problems should not be considered highly virtuous.
But there are a number of considerations which should make us regard this
kind of justification with some caution. In the first instance, the strength of
this kind of support is sensitive to whether the problem solved is one about
which mathematicians have a strong prior view. For example, it may be that
a large cardinal axiom which proved Goldbach’s conjecture would be very
virtuous indeed due to the widespread belief in the truth of that conjecture.
But the solutions to open problems that we see in reality are by no means

26Large large cardinal axioms become inconsistent with V = L quite rapidly. If the
Erdős cardinal κ(ω1) exists (a rather small large large cardinal), then so does 0#, the set
coding true statements about indiscernibles in L (Kanamori 2009, p.107). A theorem of
Kunen shows that if 0# exists, then there is a non-trivial elementary embedding j : L→ L
(Kanamori 2009, p.XX). Another theorem of Kunen shows that there is no such embedding
j : V → V in models of ZFC (Kanamori 2009, pp.318–319).

27This axiom, PD, states that in every two-player game of length ω with perfect infor-
mation on a projective set of reals, one of the players has a winning strategy (i.e. the game
is determined). See (Moschovakis 1980, ch.6) for the relevant details.
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so persuasive.
For example, Maddy favourably cites the result that if there is a measur-

able cardinal, then there is no projective well-ordering of the reals (Maddy
1990, p.138). She cites Martin as expressing the view that this result, and
others like it, are ‘pleasing’. But hypotheses in science are not, to my knowl-
edge, accepted on a regular basis for having pleasing consequences. Indeed
what we find pleasing is highly contingent of the history on the discipline,
not to mention personal taste: perhaps to some, the implication from V = L
that there is a relatively simple ∆1

2 well-ordering of the reals would be pleas-
ing. Indeed V = L was described by Gödel as being a very natural principle
at the time of his relative consistency proofs. Of course many open problems
are such that the mathematical community is overall undecided with respect
to their solution. The continuum hypothesis is a good example of such a
problem. The collective ambivalence of mathematicians as regards it partly
explains how it is possible that the most popular axiom candidates leave it
open, where it is settled positively by the unpopular V = L.

Secondly, it is clear that the strength of support lent to an axiom by
the solution of an open problem is related to the urgency within the math-
ematical community of solving the problem in question. And this matter is
clearly relative to the interests of the community under consideration. As
Potter highlights, (2004, p.221), the open problems solved by large cardinals
are typically set-theoretic in nature, and not part of ‘ordinary mathemat-
ics’. Examples such as V = L solving the Whitehead conjecture are not
easy to come by; in most cases, large cardinal axioms are typically used
to solve problems and conjectures raised by set theorists themselves, rather
than by practitioners in more mainstream areas of mathematics. If a large
cardinal axiom could be used to solve a live conjecture posed by a number
theorist, that should count as a greater theoretical virtue than the ability
to solve a set-theoretical problem. As of yet, no example of such a conjec-
ture has been found. The closest example of a genuinely mathematical open
problem solved using large cardinals is that of Borel determinacy, proved by
Martin (1970), under the assumption of a measurable cardinal. However,
Martin subsequently proved the Borel determinacy axiom in unaugmented
ZFC (1975), so the example should not inspire us with confidence that large
cardinal axioms are useful in the solution of problems outside of set theory.
So, for now at least, we should not in general place too great an emphasis on
the solution of open problems as a theoretical virtue of large cardinal axioms.

Moreover, there is a much deeper problem for a platonist like Gödel with
the idea that the solution of open problems can confirm a large cardinal hy-
pothesis. The reason is that, as mentioned above, this kind of support is
interest-relative, and hence the solution of open problems provides us only
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with interest-relative justification for those axioms. But for a platonist, such
interest-relative justification cannot be considered justification proper, since
the hierarchy is surely indifferent to the questions that interest us mathe-
matically.

For example, it is quite possible that there be some mathematical com-
munity, exactly similar to ours except with respect to their interests, who
place overwhelming value on the kinds of determinacy problems that appear
in descriptive set theory. Suppose such people regard the solution of deter-
minacy problems as the proper goal of all mathematical enquiry. To such a
community, the full Axiom of Determinacy, AD, would have overwhelming
theoretical virtue in respect of solving open problems.28

Actual mathematicians don’t typically consider AD to be viable, since it
contradicts the axiom of choice (Kanamori 2009, p.368). And if faced with
such a community, we could certainly try to dissuade them by highlighting
the merits of the axiom of choice, both intuitive and quasi-scientific. Indeed,
for the platonist, this would be the only honest course of action. A pluralist
might think that the imagined community have a perfectly good justification
for studying set theory with AD, and that the actual community of today
is quite right to ignore it. But for a Gödelian platonist, AD is simply a
blatant falsehood. It is not merely that for the imagined community, AD
has many virtues which (according to a choice-favouring platonist) ought
to be outweighed by other considerations. It is rather that the imagined
community has misleading interests, in that the pursuit of such interests is
counter-productive to uncovering the truth about sets. So it is hard to see
how a platonist could make sense of the idea that mathematicians in another
community have any reason to believe that AD is true, merely in light of
their mathematical interests. After all, their position is assumed to be epis-
temically similar to ours in all ways other than with respect to their interests.

Moreover, when we get past the axiom candidates which possess intuitive
support, and consider large large cardinal axioms with only quasi-scientific
justification, it is hard to know how we could verify whether or not our own
interests are misleading in this way. So I think that the platonist in par-
ticular should not take the solution of open problems too seriously when it
comes to justifying axiom candidates, especially given the narrowly focused
achievements of large large cardinal axioms in this regard to date.

28This axiom is a generalisation of PD, and states that that every two-player game of
length ω with perfect information on any set of reals is determined.
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5.2 Speed-Up Results

One theoretical virtue, mentioned by Gödel above, is the ability of more
powerful systems to speed up the proofs of theorems already provable by
weaker theories. While this virtue is discussed much less often that either
the solution of open problems (above) or parsimony (below), I have chosen to
include a discussion of it because the ability of an axiom candidate to speed-
up proofs can do much more than simply make a theory more virtuous. In
the right circumstances, the effect that speed-up has on a system can close
a genuine and pressing explanatory gap.

A classic presentation of the issues at stake can be found in (Boolos
1987). In that paper, Boolos presents an argument which is essentially a
Sorites-paradox-style inference appended with a definition of a very fast-
growing function. The number of steps of the shortest proof of this result
in first-order logic is given by an exponential stack of 64 ‘2’s, far greater
than the number of particles in the universe. Yet the proof is not difficult
in second-order logic; indeed Boolos provides this in a short appendix to the
paper. Moreover, the reasoning is obviously valid, as can be seen from its
appropriate arithmetical interpretation. The moral of the story is that, since
we should be able to prove the conclusion of the argument, given that it
obviously follows from the premises, the fact that we can’t (in the relevant
sense) give a first-order proof of it is evidence that second-order logic is logic.
After all, second-order resources are required for a feasible proof, which we
seem perfectly able to provide.

We might hope to find similar support for a large large cardinal axiom.
For this, we would need to find a genuine mathematical example of an agreed-
upon theorem, such that the formal proof is unfeasibly long without the
axiom, but is completely feasible when the axiom is used. This would offer
some powerful support for thinking that the axiom was true. If the informal
justification for the theorem is obviously valid, this demands an explanation.
In particular, if the formal proof of the theorem in our unsupplemented set
theory is so long that it would take more than a human lifetime to complete,
then the ability to follow the reasoning of that proof cannot explain our
recognition of the theorem’s validity. If a simple, feasible proof relies critically
on a large cardinal assumption, then the large cardinal assumption gains a
good degree of support from the fact that its truth is required to explain why
a piece of reasoning which we all recognize to be valid and appear to be able
to follow has these properties.

There are, however, several reasons to think that such an example will
be extremely difficult to come across for our current purposes. In the first
instance, given that we have an intuitive basis for believing in small large
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cardinals, according to Gödel, at least, the example would have to be one
where a natural mathematical theorem from outside set theory was plainly
valid, had an unfeasibly long proof without assuming the existence of a large
large cardinal, and had a feasible proof with the assumption of such a large
large cardinal. I certainly know of no example of a theorem meeting such
specific constraints.29

Another limitation on the use of speed-up results to verify the existence
of large large cardinals is that, according to the Gödelian conception of set
theory being considered, we have already benefited from a huge amount of
speed-up by using a second-order theory. Combining results from Gödel
(1936) and Buss (1994), we get the following theorem:

Speed-Up Theorem: For any function f , there are infinitely
many formulae such that for any one of them, φ, PA ` φ and
PA2 ` φ and where n is the number of lines of the PA proof, and
m is the number of lines of the PA2 proof, n > f(m).

Hence the move to a second-order theory has already vastly increased our
proof speed, at least with respect to arithmetical sentences. So, more specifi-
cally, verifying a large cardinal axiom θ via speed-up would require a formula
φ which mathematicians regard as being informally valid, has an unfeasibly
long proof in ZFC2 supplemented by any intuitively verifiable large cardinal
axioms, and has a feasibly long proof in ZFC2+θ. This is a tall order indeed,
but it is not impossible that such an example could be found. To my mind,
finding such an example would offer the strongest quasi-scientific justifica-
tion available for a large large cardinal axiom. Sadly, most of the available
research on speed-up results relates to the order of the logical apparatus of
a theory, rather than the large cardinal axioms it includes, so it is difficult
to say anything conclusive on the subject of such axioms specifically.30 For

29Tim Button has pointed out to me that in other circumstances, speed-up provided by
a large large cardinal axiom could perhaps enhance the virtue of a theory even where the
sped-up proof was not of a theorem the truth of which we were convinced of in advance.
Namely, if we could show that the large large cardinal axiom was conservative over ZFC
with respect to some class of statements, a proof of feasible length of some theorem T
belonging to this class using the large cardinal axiom should convince us that T is true.
If no feasible proof in ZFC of T can be found, then the speed-up of the proof of T could
then be counted in the axiom’s favour, as normal. This strikes me as correct, though
I am pessimistic about the prospects of finding a concrete example of the phenomenon;
especially since large large cardinal axioms tend to be radically non-conservative even over
very simple classes of statements.

30In the more general area, Potter (2004, p.235) gives a very nice example of speed-up
at work in enhancing the virtues of set-theoretic axioms: for large values of m, that the
Goodstein sequence with m as its starting value terminates is provable in PA, but the
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now, at least, we have good reason to believe that large large cardinal axioms
are not substantially supported by the speed-up of proofs they provide, and
that such support could be earned only in very exacting circumstances.

5.3 Parsimony

Another central theoretical virtue, more often discussed in connection with
the sciences than with mathematics, is parsimony, or simplicity, of both on-
tology and ideology.31 As I noted above, there is a difficult question about
how to weight the virtues against each other, but I’ll argue for a form of
pessimism about the quasi-scientific justification of large large cardinal ax-
ioms, on the basis of parsimony considerations. To be clear, I’m not going
to argue against the existence of such cardinals tout court ; rather I’m going
to argue that we have prior reason to believe that axioms positing them will
score poorly on the front of theoretical virtues, as construed by the analogy
with the natural sciences.32

The first ingredient in my argument is merely the observation that con-
siderations of both ontological and ideological parsimony play an important
role in the justification of theories in natural science. The two principles
under consideration are:

1. Ockham’s Razor: Entities are not to be multiplied beyond necessity.

2. Kant’s Razor: Principles are not to be multiplied beyond necessity.

Both of these principles are no doubt familiar, and widely deployed within
philosophy and elsewhere.33 Similar principles have been endorsed by philoso-
phers at least since Aristotle, but much more significantly they have been

proof is unfeasibly long. Since every Goodstein sequence terminates, it is obvious that the
sequence which starts with m terminates. Replacement-free first-order set theory gives
a feasible proof of Goodstein’s theorem, and a proof of it for m by universal quantifier
elimination. In this case, speed-up certainly supports the belief that certain first-order set
theoretic axioms are true.

31Although it is not often discussed in connection with large large cardinals, the idea
has been in circulation since at least (Quine 1951a, p.45).

32There is a distinct view, proposed by Maddy (1997), that mathematics has its own
autonomous theoretical virtues, and that at least certain large large cardinal axioms score
very well on this front. My argument will have nothing to say for or against such a view;
here I am just focusing on the theoretical virtues that drop out of the analogy with the
natural sciences.

33Of course, Kant didn’t invent the principle that the non-ontological aspect of a theory
should be a simple as possible. But then again, Ockham didn’t invent the corresponding
ontological principle. The formulation of Kant’s razor here is taken from remarks at
A652/B680 of the Critique of Pure Reason (1787, p.595).
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strongly endorsed within the natural sciences themselves. Galileo, in his cri-
tique of the Ptolemaic system, deployed the principle that ‘Nature does not
multiply things unnecessarily; that she makes use of the easiest and simplest
means for producing her effects; that she does nothing in vain, and the like’
(Galileo 1632, p.397). A similar principle appears under the heading of ‘Rule
I’ in Newton’s Principia (1687, p.320). More recently, the sentiment was
echoed by Einstein:

[T]he grand aim of all science. . . is to cover the greatest possible
number of empirical facts by logical deductions from the smallest
possible number of hypotheses or axioms (Einstein, in (Nash 1963,
p. 173)).

These examples are all taken from physicists, since physics is the science to
which Gödel thought mathematics most analogous. There are examples to
be found from across the range of the sciences, however.34 While a full socio-
logical or historical investigation is out of the question here, it is sufficient for
my purposes merely that theoretical and ontological simplicity are important
virtues in the natural sciences. Since that is a rather unremarkable claim,
I’ll proceed with the argument that large large cardinal axioms should au-
tomatically score poorly when evaluated with respect to parsimony (of both
relevant kinds).

Firstly, the adoption of large cardinal axioms will substantially bloat the
ontology of mathematics in a fairly straightforward way: such axioms tell us
that there are more sets than were previously thought. Indeed, large large
cardinal axioms often tell us that there will be drastically many more levels
in the hierarchy than previously thought, since a relatively common feature
of such axioms is that they imply the existence of an unbounded class of
cardinals satisfying weaker large cardinal hypotheses.

On a straightforward reading of Ockham’s principle, this observation is
sufficient to show that large large cardinal axioms will score poorly on the
front of ontological parsimony. Adding a large large cardinal axiom to ZFC
involves massively bloating the size of the ontology of the theory, and these
entities will, in a strict sense, have been multiplied ‘beyond necessity’. Af-
ter all, the arithmetical data accounted for by a large cardinal principle
will equally be accounted for by a corresponding consistency sentence. In
a more general sense, ZFC, or perhaps a tentative extension thereof, is al-
ready powerful enough to reproduce all of ‘ordinary’ (i.e. non-foundational)
classical mathematics; so even if the multiplication of entities brought about

34Baker’s article (2016) contains a veritable trove of such examples, from many sub-fields
of both philosophy and science.
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by a large cardinal axiom is in some way desirable, or virtuous, it is certainly
beyond necessity.

An immediate objection would be that Ockham’s razor, as a general prin-
ciple, is not supposed to count against theories which posit more entities (all
else being equal), rather it is supposed to count against theories which posit
more kinds of entities (all else being equal).35 An objector might claim then,
that large large cardinal axioms do not at all imply the existence of new kinds
of entities; rather they imply the existence of (many, many) more entities of
the same kind, namely sets. It would not count against a theory in physics,
the objector might say, if it entailed that there are more entities than pre-
viously supposed of a kind we already countenance, such as electrons. So
why should positing more sets count against large cardinal hypotheses in set
theory, since set theory is itself analogous to a natural science?

The problem with this suggestion is that Ockham’s razor can be rendered
trivial by permitting sufficiently wide kinds. There is clearly a good deal of
slack in the notion of a kind of entity, at least for the purposes of considering
parsimony principles, but the delineation of kinds for such purposes appears
constrained, at least in practice. Violation of Ockham’s razor played an im-
portant role in Lavoisier’s critique of phlogiston theory, for instance (Baker
2016, §1). It would have been no defence to claim that phlogiston is of a
kind we already accept, since it is a physical substance or similar. In scien-
tific cases such as this, Ockham’s razor is applied non-trivially, and so if the
science–mathematics analogy is appropriate, as Gödel argues, some parallel
restriction should also be in place when considering mathematics.

It is clear that set is too general a kind for the meaningful use of Ock-
ham’s razor as a principle of theory choice within mathematics. Indeed,
the ontology of mathematics can be given exclusively in terms of sets (or
perhaps sets with numbers as urelements, and classes as the values of higher-
order variables). Hence the admissibility of set as a kind for the purposes
of Ockham’s razor would render that principle trivial within the domain of
mathematics. That should not be an acceptable conclusion for the advocate
of the science–mathematics analogy, since the application of the principle in
the former domain is highly non-trivial.

I certainly don’t want to claim that Nature Herself divides sets up into
certain kinds, which are or are not subject to Ockham’s razor. It is more
plausible that the appropriate evaluative kinds should be based on salience
for mathematical purposes, and hence sensitive to the investigative context.
But sets come in many mathematically salient kinds. Some are ordinals, some

35This qualitative version of Ockham’s Razor was famously championed by Lewis (1973,
p.87).
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are cardinals, some are arithmetical, some analytical, some Borel, some pro-
jective, and so on. The fact that they are all sets certainly does not mean that
a large cardinal with hitherto uninstantiated properties does not constitute
a new kind of entity. Indeed, the significant increase in the strength of set
theory that is offered by large cardinal hypotheses render it all but certain
that in any investigative context, the adoption of large large cardinal axioms
will bloat the ontology of set theory beyond necessity, even if we envisage the
evaluation as being about the number of kinds of entities in the ontology.

Similar points can be made about the increase in theoretical complexity
incurred by the addition of large large cardinal axioms. As we’ve seen, such
posits are not necessary to account for the data, since it is sufficient that they
are consistent relative to ZFC. So the addition of complexity to the theory
is not automatically legitimate. And similarly to the case of Ockham’s razor,
Kant’s razor tells quite strongly against the addition of large large cardinal
axioms to set theory. On a straightforward understanding of the virtue of
ideological simplicity, ZFC will fare better than its extension by any large
cardinal principle, since those extra principles go beyond what is necessary
to account for the mathematical data.

However, it is not entirely clear when one theory is more ideologically
complex than another. Instead of looking just at the number of axioms or
schemata in a theory (as on the straightforward understanding of this virtue),
Quine (1951, p.14) considers the ‘ideology’ of a theory to be the range of ideas
expressible within the theory. This corresponds roughly to the kinds-based
understanding of Ockham’s razor, since on this understanding one theory
can contain more principles than other without having a more bloated ideol-
ogy, as long as no further ‘ideas’ are expressible in the more verbose theory.
Quine’s notion of ideology is a primarily linguistic matter, the formulation in
terms of ideas being (hopefully) eliminable (Quine 1951, p.15). Nonetheless,
there is an ambiguity here. Are we to understand parsimony as favouring
overall less expressively powerful theories, or merely theories with a smaller
number of primitive expressions?

If we understand the ‘expressible ideas’ of a theory in terms of its primi-
tive vocabulary, large large cardinal axioms will score neutrally with respect
to ideological parsimony. This is because the addition of a large cardinal
principle to set theory leaves the undefined primitives of the theory (logical
vocabulary, ‘∈’, and possibly a symbol to distinguish sets from urelements)
undisturbed.36

36If our set theory contains urelements and the empty set, the inclusion of a further
non-logical primitive is required to distinguish sets from urelements. There are several
means by which this can be achieved: a distinguished predicate for sets, a distinguished
predicate for urelements, or a singular term for the empty set. This works straightforwardly
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Things are very different, however, on the former disambiguation, ac-
cording to which the extent of the ideology of a theory corresponds to its
general expressive power. On this understanding, large large cardinal ax-
ioms will score poorly with respect to ideological simplicity. The addition of
a large cardinal principle to set theory increases the range of definable sets
lower down in the hierarchy, and correspondingly the theory will be able to
express, and prove, many more ‘ideas’ about sets than its unsupplemented
counterpart. The very reason that large cardinal axioms have Π0

1 arithmetical
consequences which are independent of ZFC is that more and more subsets
of ω are definable under stronger and stronger large cardinal assumptions. If
Quine’s notion of an ‘expressible idea’ is cashed out in terms of propositions
about definabile sets, then large cardinal axioms will be largely uneconom-
ical. It seems likely to me that this disambiguation corresponds closely to
Quine’s intentions, since he claims that the classical theory of the reals has
a denumerable ideology, and claims that investigation of primitive ideology
is a ‘subdivision’ of the overall ideological investigation (1951a, p.14). Both
comments would be misleading if his intention had been to refer to the finite
number of analytical primitives, and considered the investigation of primitive
ideology to be an improper subdivision of overall ideological investigation!

Given the lack of clarity in Quine’s suggestion, perhaps a broader no-
tion of an ideologically parsimonious theory is required. However, on any
reasonable construal of a theory’s ideology (other than as consisting of its
primitive vocabulary), large cardinals will bloat it: more properties of sets
will be instantiated, new embeddings between the universe and transitive
classes appear, new sets are definable, and so on. Given that large large car-
dinals can be used to solve set-theoretic problems not solvable in ZFC alone,
a large large cardinal axiom will always give a richer picture of the hierarchy
than is strictly required to explain the data, since the data is accounted for
by only positing the consistency of large cardinal axioms relative to ZFC,
without the need for any further increase in the power of the theory.

However exactly you construe the notions of ontology and ideology, a very
basic problem for the large cardinal advocate appears: large cardinals axioms
posit new sets (bloating its ontology), with new and remarkable properties
(bloating its ideology). So, large large cardinal axioms are always purchased
at the expense of two theoretical virtues which have historically played a cen-
tral role in scientific theory choice. A conception of set theory which places
overwhelming value on maximal ontology and richness of the structure of the

in the first two cases. In the third case, one can formally define the predicates S (‘is
a set’) and U (‘is an urelement’) stipulating that ∀x(Sx ↔ ∃y y ∈ x ∨ x = ∅) and
∀x(Ux↔ ¬∃y y ∈ x ∧ x 6= ∅).
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hierarchy needn’t be concerned by such issues at all. But on such a picture,
the theoretical virtues of set theory become more distant from those of nat-
ural science.

I don’t want to claim that there is no analogy between set theory and
natural science; any things are analogous if you squint hard enough. But nor
do I want to claim that set theory and natural science are strongly analogous.
Rather, I’m claiming that the more analogous you think the two disciplines
are, the more difficult the justification of large large cardinal axioms becomes.
And that point spells doom for Gödel’s attempt to find the justification for
large large cardinal axioms in any kind of an analogy between set theory and
natural science.

It’s important to note, however, that parsimony considerations come with
a ceteris paribus clause: the bloating of ontology and ideology only tells
against a theory if the other virtues of the theory don’t compensate. I ex-
pect that it is possible that the virtues of large cardinal axioms could be so
overwhelming as to compensate for a bad score in both kinds of parsimony.
An example of the right kind of speed-up result discussed earlier would be a
possible example of this. But in actuality there is room for much scepticism
of the theoretical virtues which are commonly ascribed to large cardinal ax-
ioms. Most importantly, the solution of open problems is not to be valued
for its own sake when the solution provided for by an axiom does not itself
enjoy extensive support from elsewhere.

I think it’s worth distinguishing the argument offered here from that pre-
sented by Quine (1990, pp.94–95). The argument there is somewhat ambigu-
ous. On the one hand, Quine suggests that ‘higher’ set theory is meaningless,
because, whatever the axioms that constitute higher set theory are supposed
to be, they never have any implications for natural science. They are treated
by us as meaningful only because to do otherwise would constitute an ‘un-
natural gerrymandering of grammar’. Another argument offered, however,
is that the questions of higher set theory are, at least in part, settled by
parsimony considerations. In particular, Quine argues that considerations of
simplicity, economy, and naturalness compel us to adopt V = L as a new
axiom, since it ‘inactivates the more gratuitous flights of higher set theory’.
I take it that this is a reference to the inconsistency of V = L with most
large large cardinal axioms, though Quine is not specific. I’m unsure how to
reconcile these two arguments, since a decision of the kind Quine envisages
seemingly involves regarding the relevant axiom candidates as meaningful.
After all, it is hard to see how one uninterpreted string of symbols can give
a more natural or economical picture of the hierarchy than another. In any
case, Quine claims that considerations of theoretical virtue tell decisively
against large large cardinal axioms.
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My argument, on the contrary, involves no such claim, and approaches
the problem from an entirely different perspective. In the first instance,
Quine subjects set theory to evaluation in terms of the theoretical virtues of
natural science and with respect to scientific applications, since presumably
his holistic naturalism implies that this is the only appropriate set of virtues
to figure in any theory choice, regardless of the subject matter. Gödel’s
analogy, on the other hand, requires only that the means of theory choice
be analogous between mathematics and science, and does not require that
the theoretical virtues of a putative axiom of set theory be considered in
relation to its application in natural science. Since I’m here in the business
of assessing Gödel’s position, my argument does not consider the virtues of
set theory as they relate to scientific applications.

Secondly, and more significantly, I have not attempted to offer an ar-
gument that V = L is true, nor have I even offered an argument that we
shouldn’t accept large large cardinal axioms in general. Rather, I have ar-
gued for the much weaker claim that, however such axioms are justified (if
at all), it does not look much like how theoretical posits are justified in nat-
ural science. The argument presented here therefore should certainly not be
confused with the one offered by Quine, despite the central role played by
considerations of economy in each.

Conclusion

I’ve argued that none of the analogies that Gödel saw between mathematics
and the natural sciences can serve as an adequate justification for large large
cardinal axioms. Three attempts were offered to provide these axioms with
a viable quasi-scientific justification, inspired by remarks made by Gödel.
None of them proved to be successful. Although this is not to say that such
arguments cannot justify the existence of any sets, such an account would
be redundant for the Gödelian platonist who thinks that the weaker axioms
follow directly from the iterative conception.

Firstly, we saw that large large cardinal axioms cannot have roughly the
status of propositions asserting the existence of ordinary material bodies.
This would afford us an enormous degree of confidence in the existence of
larger cardinals, but the account is not viable. In particular, the large car-
dinals cannot play the same kind of explanatory role that posited material
bodies do.

More promisingly, we investigated the idea that large cardinal axioms
could play the role within mathematics played by laws of nature in science,
as pioneered by Russell. The statements of scientific laws are strongly sup-
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ported because they allow us to predict the initial data, regardless of the
degree of intuitive appeal such principles may have. I argued, however, that
large cardinal axioms cannot enjoy this same kind of regressive support.

Various candidates for the mathematical data were considered. The only
viable conception of the data on offer is that propositions acting as data are
expressed by Π0

1 arithmetical sentences and are either hard data in Russell’s
sense, are generated by the Gödelian incompleteness of a theory we believe
to be sound, or perhaps are such that a strong heuristic justification can be
offered for their truth, as with Goldbach’s conjecture.

The problem for the Gödelian is that accounting for such data affords
justification only to the propositions that such large cardinal axioms are
consistent relative to ZFC, and not to the truth of the axioms themselves.
The trouble is not that we can’t prove whether such axioms are consistent;
the independence results that proliferate in modern set theory should teach
us to be less ambitious than that. Rather it is that the consistency of a large
cardinal axiom is a strictly weaker proposition than its truth, and is alone
sufficient to account for any data in the relevant sense.

Quite aside from considerations of data, I’ve argued further that the justi-
fication of large large cardinal axioms does not look much like the justification
of virtue-enhancing principles in science, since adding a large cardinal axiom
to a theory always causes significant bloating to the ontology and ideology
of a theory, a practice which is anathema to the modes of theory choice in
natural science where simplicity and parsimony are highly respected arbitra-
tors between competing empirically equivalent theories.

The problem here can be put in quite simple terms: between empirically
equivalent theories, the mode of theory choice in natural science is minimis-
ing and conservative with respect to ontology and ideology. Since large large
cardinal axioms are maximising with respect to ontology and ideology, it
follows that either the modes of theory choice in mathematics are not much
like their scientific counterparts, or that large large cardinal axioms fail to
be justified. Unlike Quine, I don’t wish to take a side on this matter; the
disjunction is sufficient to make my point, which is that this well-received
aspect of Gödel’s thought is ultimately not fit for purpose as regards large
large cardinal axioms.

Of course, I’ve not discussed a large number of other attempts to justify
the large cardinals programme. But the need to find a compelling justifica-
tion for it is of some urgency. The general programme of formulating large
cardinal axioms and investigating the consequences of their assumption is one
of the central research areas in the foundations of mathematics. It would be
a philosophical scandal if we could say no more than that this programme
involved its practitioners in mere ‘if-then-ist’ thumb-twiddling. The mathe-
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matical significance of the large cardinals enterprise demands philosophical
explanation, preferably one which justifies a contentful interpretation of the
consistency-constrained maximalism at work in current set-theoretic prac-
tice. Unfortunately, this explanation cannot be given by means of Gödel’s
analogy between mathematics and the sciences.37
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for his Centennial. Oxford University Press.

Frege, G. (1884). The Foundations of Arithmetic, trans. Austin, J. (2nd ed.)
(1959). Evanston, IL: Northwestern University Press.

Galileo, G. (1632). Dialogue Concening the Two Chief World Systems, trans.
Drake, S. (1962). Berkeley, CA: University of California Press.
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