
Pseudorandom Sets in Grassmann Graph have Near-Perfect Expansion

Subhash Khot

Courant Institute of Mathematical Sciences
New York University

New York, USA
khot@cims.nyu.edu

Dor Minzer

Department of Computer Science
Tel Aviv University

Tel Aviv, Israel
minzer.dor@gmail.com

Muli Safra

Department of Computer Science
Tel Aviv University

Tel Aviv, Israel
muli.safra@gmail.com

Abstract—We prove that pseudorandom sets in the Grass-
mann graph have near-perfect expansion. This completes the
last missing piece of the proof of the 2-to-2-Games Conjecture
(albeit with imperfect completeness).

The Grassmann graph has induced subgraphs that are
themselves isomorphic to Grassmann graphs of lower orders.
A set of vertices is called pseudorandom if its density within all
such subgraphs (of constant order) is at most slightly higher
than its density in the entire graph.

We prove that pseudorandom sets have almost no edges
within them. Namely, their edge-expansion is very close to 1.

Keywords-PCP, 2-to-2 Games, Unique Games Conjecture,
Grassmann Graph.

I. INTRODUCTION

This paper 1 completes the proof of the 2-to-2 Games

Conjecture (albeit with imperfect completeness) proposed

by Dinur, Kindler, and the authors of this paper [34], [12],

[13], along with contributions from Barak, Kothari, and

Steurer [8] and Moshkovitz and the authors of this paper

[40], [33]. The 2-to-2 Games Conjecture has several impli-

cations towards approximability of NP-hard problems (and

more widely to computational complexity, optimization, and

combinatorics). Its proof is completed by proving a certain

combinatorial hypothesis proposed in [13] regarding the

expansion properties of Grassmann graph. While the main

focus of this paper is on the combinatorial hypothesis (stated

as Theorem I.12), we present the broader context here for

reader’s benefit.

A. PCPs, Vertex Cover, Independent Set

An approximation algorithm for an NP-hard problem

is an efficient algorithm that computes a solution that is

guaranteed to be within a certain multiplicative factor of

the optimum (known as the approximation factor). It turns

out that for several NP-hard problems, even computing an

approximate solution, within a certain multiplicative factor

of the optimum, remains an NP-hard problem (known as

the hardness factor). The complementary study of approx-

imation algorithms and hardness of approximation aims

at characterizing precise approximation threshold for NP-

hard problems of interest, i.e. the threshold at which the

1A full version of this paper is available at [35].

approximation factor and the hardness factor (essentially)

match.

The hardness of approximation results build on a foun-

dational result known as the Probabilistically Checkable

Proofs (PCP) Theorem [17], [3], [2]. The theorem can

be viewed from a hardness viewpoint as well as from a

proof checking viewpoint. From the hardness viewpoint, it

states that there exists an absolute constant β < 1 such

that, given a 3SAT formula φ, it is NP-hard to distinguish

whether it is satisfiable or whether it is at most β-satisfiable

(i.e. no assignment satisfies more than β fraction of the

clauses). From the proof checking viewpoint, it states that

every NP-statement has a polynomial size proof that can

be checked efficiently by a probabilistic verifier that reads

only a constant number of bits from the proof. The verifier

is complete and sound in the sense that a correct proof of

a correct statement is accepted with probability 1 and any

proof of an incorrect statement is accepted with probability

at most, say 1
2 .

The equivalence between the hardness and the proof

checking viewpoints, though not difficult to see, has led

to many illuminating insights and strong hardness results

over the last three decades. The proof checking viewpoint

(whose roots go back to the work on interactive proofs)

played a decisive role in the discovery of the PCP Theorem.

However, for the sake of uniformity and ease of presentation,

we adopt the hardness viewpoint here. We refer the reader

to the surveys [1], [25], [49], [30] for an overview of the

extensive and influential body work on PCPs and hardness

results. While we know, by now, optimal hardness results for

a handful of problems, e.g. 3SAT, Clique, Set Cover [23],

[24], [16], for a vast majority of problems there remains a

significant gap between the best known approximation factor

and the best known hardness factor.

One such problem is Vertex Cover. Given a graph G =
(V,E), a subset C ⊆ V is called a vertex cover if for

every edge e = (u, v) ∈ E, either u or v is in C.

Finding a minimum vertex cover is a well known NP-hard

problem [27]. It admits a simple 2-approximation, namely

an efficient algorithm that outputs a cover C of size at most

twice the minimum. The algorithm picks an arbitrary edge
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e = (u, v) ∈ E, adds both u, v to C, removes all edges that

are incident on either u or v, and repeats this step. Whether

there exists an algorithm with approximation factor strictly

below 2 is among the flagship questions in approximability.

Surprisingly, there is now good reason to believe that no such

algorithm exists, i.e. it is conceivable that approximating

Vertex Cover within factor 2− ε is NP-hard!2

An independent set in a graph is complement of a vertex

cover, i.e. a subset of vertices that contains no edge inside.

Towards proving hardness results for Vertex Cover, it is more

convenient to prove hardness results for the Independent

Set problem (in the special case where the concern is

independent sets of linear size). Let 0 < s < c � 1
2 be

constants and let GapIS(c, s) be a “promise gap problem”

where an n-vertex graph is given with the promise that

either it contains an independent set of size cn or contains

no independent set of size sn and the algorithmic task

is to distinguish between the two cases. It is easy to see

that if GapIS(c, s) is NP-hard, then approximating Vertex

Cover within factor 1−s
1−c is NP-hard. Thus, to prove 2 − ε

hardness result for Vertex Cover, it is sufficient (and turns out

necessary)3 to prove hardness of GapIS(c, s) where s → 0
and c→ 1

2 .

There is a simple but nice connection between hardness

of the Independent Set problem and PCPs that is worth

pointing out. As noted in [10], the hardness of GapIS(c, s)
is equivalent to a PCP with “zero free bits”, namely a PCP

where the verifier has completeness c, soundness s, and

has exactly one accepting answer to her queries (and thus

“knows” the answer before reading the queries!). This seems

contradictory: if the verifier knows the answer(s) beforehand,

why wouldn’t she be able to construct the correct proof

by herself? The subtle point is that the PCP has imperfect

completeness (i.e. c < 1), so even for a correct proof of a

correct statement, only a fraction c of the answers that the

verifier “knows” are actually correct and the verifier cannot

tell which c fraction of the answers (among polynomially

many) are correct. Indeed, the task of determining which of

the answers are correct amounts to finding an independent

set in a related graph (hence the connection).

Håstad, building on the works of Bellare, Goldreich, and

Sudan [10] and Raz [46], proved that GapIS( 14 − ε, 1
8 + ε)

is NP-hard, implying a hardness factor 7
6 − ε ≈ 1.16 for

Vertex Cover. Dinur and Safra [15] proved that GapIS(p −
ε, 4p3 − 3p4 + ε) is NP-hard for p � 3−√5

2 , implying a

hardness factor 10
√
5 − 21 − ε ≈ 1.36 for Vertex Cover.

Their paper introduced the Biased Long Code and used, for

2Unless stated otherwise, ε > 0 will denote an arbitrarily small constant
and the statements are meant to hold for every such ε.

3One notes that if a graph contains an independent set of fractional size
c � 1

2
+ ε, then by obtaining a 2-approximation for Vertex Cover and

taking the complement, one finds an independent set of fractional size � 2ε.
Therefore, the best (c, s) hardness gap one can hope for Independent Set
is c = 1

2
− ε, s = ε.

the first time, theorems from Analysis of Boolean functions
4, and implicitly, the notion of 2-to-2 Games. Analysis of

Boolean functions has since become ubiquitous in study of

PCP constructions. The hardness result of [15] remained

the best hardness result for Vertex Cover (until the present

work).

As noted, the quest towards proving optimal hardness

results was stalled after the remarkable but relatively few

successes. The Unique Games Conjecture was introduced

in [29] as a plausible avenue to make further progress

and moreover presented a hardness result for the Min-

2SAT-Deletion problem as a demonstration. In addition,

motivated by the Dinur-Safra paper (where the 2-to-2 Games

appeared implicitly), the d-to-d Conjecture for d � 2 was

also introduced in [29], and it was shown to imply that

GapIS(1− 2−1/d − ε, ε) is NP-hard. For d = 2, this would

give a hardness factor of
√
2−ε ≈ 1.42 for Vertex Cover, an

improvement over Dinur-Safra result.5 Subsequently, in [39],

it was shown that the Unique Games Conjecture implies

NP-hardness of GapIS( 12 − ε, ε) and hence hardness of

approximating Vertex Cover within 2− ε.

B. The Unique Games Conjecture

For the purposes of this paper, it suffices to define the

Unique Games as the following computational problem.

Let F
�
2 denote the �-dimensional vector space over the

binary field F2, considered as an additive group with the

⊕ operation.

Definition I.1. An instance U of the UniqueGame[F�
2] prob-

lem consists of n variables x1, . . . , xn taking values over
(the alphabet) F�

2 and m constraints C1, . . . , Cm where each
constraint Ci is a linear equation of form xi1 ⊕ xi2 = bi
and bi ∈ F

�
2. Let OPT(U) denote the maximum fraction of

the constraints that can be satisfied by any assignment to
the instance.

The term “unique” refers to the specific nature of the

constraints: for every assignment to the variable xi1 , there

is a unique assignment to the variable xi2 that satisfies

the constraint and vice versa (the Unique Games problem

was studied earlier by Feige and Lovász in the context of

parallel repetition [18]). For constants 0 < s < c < 1,

let GapUG[F�
2](c, s) be the gap-version where the instance

U of the UniqueGame[F�
2] problem is promised to have

either OPT(U) � c or OPT(U) � s. The Unique Games

Conjecture states that6.

4Namely , Friedgut’s Junta Theorem [19] and the Russo-Margulis Lemma
[47], [43].

5For d � 3, while one does not get improvement for Vertex Cover, one
does get NP-hardness for GapIS(c, s) for a fixed c and s → 0, which in
authors’ opinion is a more fundamental issue.

6The original statement in [29] refers to more general constraints.
However it follows from [32] that the original conjecture is equivalent to
the statement here, i.e. when the constraints are linear equations over the
group F

�
2.
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Conjecture I.2. For every constant ε > 0, there exists a
sufficiently large integer � = �(ε) such that GapUG[F�

2](1−
ε, ε) is NP-hard.

The Unique Games Conjecture has since been established

as a prominent open question in theoretical computer science

(please see the surveys [50], [30], [28], [31]). The conjec-

ture has facilitated numerous connections among algorithm

design, computational complexity, geometry, and analysis.

In particular, assuming the conjecture, optimal hardness

results are known for Vertex Cover, Max Cut, Max Acyclic

Subgraph [39], [32], [21], super-constant hardness results for

Sparsest Cut [11], [41], and one can even deduce optimality

of generic approximation algorithms for the entire class of

Constraint Satisfaction Problems [44]. In spite of this rather

large body of work, the correctness of the conjecture itself

remains open.

Over the last decade, several arguments were put forward

against the Unique Games Conjecture. We sketch these

arguments here to the best of our knowledge.7

• There is no known distribution over instances of the

Unique Games problem that is plausibly hard (more

on this below). In fact, results in [5], [42] showed

that the problem is easy on “semi-random” instances

(for a rather generous interpretation of the term semi-

random), thus indicating otherwise.

• Arora-Barak-Steurer [4] presented an algorithm that

solves (1−ε)-satisfiable instances of the Unique Games

problem (i.e. finds say 1
10 -satisfying assignment) in

time 2n
ε′

where ε′ depends on ε. The algorithm was

later incorporated into the Sum-of-Squares framework

as well [9]. If the running time of the algorithm is

improved so that ε′ → 0 independently of ε, then the

Unique Games problem would not be NP-hard.8 The

improvement could arguably come from a quantitative

improvement in the connection between the number of

large eigenvalues and expansion of small sets in graphs.

• The Arora-Barak-Steuter algorithm and the Unique

Games Conjecture together imply that the Unique

Games problem has “intermediate complexity” (see

Section I-C), a behavior one might not expect for a

constraint satisfaction problem.

• No integrality gap instances are known for the Unique

Games problem for a constant number, say 10, of

rounds of the Sum-of-Squares (a.k.a. Lasserre, Par-

rilo) hierarchy of semi-definite programming relax-

ation. Stated differently: arguably, a constant number

of rounds of the Sum-of-Squares hierarchy might al-

ready qualify as an efficient algorithm for the problem,

7Since these arguments were not made by us, we are not taking
responsibility as to whether these arguments were indeed made or whether
these are/were considered pressing arguments. We present these only for
reader’s benefit.

8Under the rather standard hypothesis NP �⊆ ∩γ>0 DTIME (2n
γ

).

disproving the Unique Games Conjecture.

• Results in [7] showed that the known integrality gap

instances of the problem (that hold for a very basic SDP

relaxation) 9 do not survive a few additional rounds of

the Sum-of-Squares hierarchy. The authors argued that

there is a barrier for the “common” techniques used

to construct SDP integrality gaps (in the spirit of the

natural proofs barrier for circuit lower bounds).

Given these arguments, the situation was remedied some-

what (from the viewpoint of a believer in the Unique Games

Conjecture) in the recent works on “PCPs over reals” [37],

[36]. The authors therein construct a candidate explicit

family of mildly hard Unique Games instances (the qualifier

“candidate” acknowledges that the authors are unable to

provide a soundness analysis for the construction). The

construction is best viewed as a candidate integrality gap

for the problem GapUG[F2](1− ε, 1−K(ε) · ε)) for K(ε)
rounds of the Sum-of-Squares relaxation. Here the Unique

Games problem is over the binary alphabet and K(ε)→∞
as ε→ 0, i.e. the gap is (hypothesized to be) super-constant

in terms of the fraction of the unsatisfied constraints and

for a super-constant number of Sum-of-Squares rounds. One

notes that even though the (hypothesized) gap would be

mild, it nevertheless would be a big progress. It is known for

instance that if the Unique Games problem were shown NP-

hard with a mild gap (1− ε, 1−K(ε) · √ε), the gap could

then be boosted by parallel repetition [46], [26], [45] to the

gap (1− ε′, ε′), proving the Unique Games Conjecture in

its fullness.

The context hitherto leads finally to the present line of

work: a sequence of papers [34], [12], [13] presented an

approach towards proving the related 2-to-2 Games Con-

jecture10 (or alternately the Unique Games Conjecture with

completeness 1
2 , if reader finds it more convenient to think

about). In conjunction with a missing link provided in [8],

the approach finally reduced the 2-to-2 Games Conjecture to

a concrete combinatorial hypothesis regarding the expansion

properties of the Grassmann graph (stated as Theorem I.12).

In the present paper, we prove this combinatorial hypothesis,

thus completing the proof of the 2-to-2 Games Conjecture

(now a theorem).11 The 2-to-2 Games Theorem gives, among

other things, a strong evidence towards the Unique Games

Conjecture (in our opinion). All the arguments against the

Unique Games Conjecture that we described apply equally

well to the 2-to-2 Games Conjecture and in spite of it, the

2-to-2 Games Conjecture, at the end of the day, does happen

to be correct!

9Qualitatively speaking, there is just one example, from [41]. Lack of
qualitatively different examples might itself have been an argument against
the Unique Games Conjecture.

10Albeit with imperfect completeness; we will ignore this issue hence-
forth.

11As for proving the Unique Games Conjecture itself, in the opinion of
the first-named author, the approach in [37], [36] is a more viable approach.
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C. The 2-to-2 Games Theorem and its Significance

We now state the 2-to-2 Games Theorem formally, de-

scribe its significance, and sketch the developments that led

to it. This is followed by the description of the Grassmann

graph and its role in these developments.

Definition I.3. An instance U2↔2 of the 2-to-2 Game[F�
2]

problem consists of n variables x1, . . . , xn taking values
over (the alphabet) F�

2 and m constraints C1, . . . , Cm where
each constraint is of the form Tijxi ⊕ T ′ijxj ∈ {bij , b′ij},
Tij , T

′
ij are �× � invertible matrices, and bij , b

′
ij ∈ F

�
2. Let

OPT(U2↔2) denote the maximum fraction of the constraints
that can be satisfied by any assignment to the instance.

The term “2-to-2” refers to the specific nature of the

constraints: for every assignment to the variable xi, there are

exactly two assignments to the variable xj that satisfy the

constraint and vice versa. For constants 0 < s < c � 1, let

Gap 2-to-2[F�
2](c, s) be the gap-version where the instance

U2↔2 of the 2-to-2 Game[F�
2] problem is promised to

have either OPT(U2↔2) � c or OPT(U2↔2) � s. 12

The 2-to-2 Games Theorem is stated below along with an

immediate corollary for the hardness of the Unique Games

problem with completeness 1
2 . The latter is obtained by

writing each 2-to-2 Game constraint as a pair of Unique

Games constraints so that in the completeness case, there

is a 1
2 (1 − ε)-satisfying assignment. The completeness can

be increased artificially to precisely 1
2 by adding a small

fraction of constraints that are always satisfied.

Theorem I.4. For every constant ε > 0, there exists a
sufficiently large integer � = �(ε) such that Gap 2-to-
2[F�

2](1− ε, ε) is NP-hard.

Theorem I.5. For every constant ε > 0, there exists a suffi-
ciently large integer � = �(ε) such that Gap UG[F�

2](
1
2 , ε)

is NP-hard.

1) Implications of the 2-to-2 Games Theorem: We now

summarize the main implications of the 2-to-2 Games The-

orem (with imperfect completeness; some of these implica-

tions depend on its specific proof obtained in the present

and previous works). As before, ε > 0 denotes constant that

can be taken as arbitrarily small.

• Hardness Results

12Comments regarding the original formulation of this conjecture in [29]:
(1) It was proposed with perfect completeness, i.e. stating that Gap 2-to-
2[F�

2](1, ε) is NP-hard. However, as far as this paper is considered, we view
the issue of perfect versus imperfect completeness as being relatively minor.
(2) It was proposed with more general constraints (rather than the special
case with linear structure described herein) and with “2-to-1” constraints
(rather than with “2-to-2” constraints described herein; the conjecture was
referred to as the 2-to-1 Conjecture). Both these are non-issues however:
the current and preceding works [34], [12], [13] now prove the conjecture
with linear structure and the constraints are easily reinterpreted as being
2-to-1 constraints (hence proving the 2-to-1 Conjecture as well, which in
any case is morally equivalent to the 2-to-2 Conjecture).

The following results were already known based on

the 2-to-2 Games Conjecture (as indicated in the ref-

erences; perfect completeness in the last two results if

2-to-2 Games Conjecture holds with perfect complete-

ness). These represent a big progress, in our opinion,

on flagship problems in approximability.

– [38]: Gap Max Cut
(

1
2 +Ω(ε), 1

2 + ε
log(1/ε)

)
is

NP-hard. This is optimal up to the constant in the

Ω-notation.

– [29]: Gap Independent Set
(
1− 1√

2
− ε, ε

)
is

NP-hard and as a corollary, Vertex Cover is NP-

hard to approximate within a factor strictly less

than
√
2. Between these two implications, the “cor-

rect gap-location” (arbitrarily low soundness) for

the Independent Set problem is more fundamental.

– [14]: It is NP-hard to distinguish whether a graph

has four disjoint independent sets of (relative) size
1
4 − ε each (and hence is almost 4-colorable) or

whether there is no independent set of (relative)

size ε (and hence is not almost
(
1
ε

)
-colorable).

– [22]: It is NP-hard to properly color (using k
colors) more than a fraction 1− 1

k +O( log k
k2 ) edges

of an almost k–colorable graph. This is optimal up

to the constant in the O-notation.

• Integrality Gaps, Plausibly Hard Distributions, Cart
before the Horse
The present line of work gives a reduction from the

3Lin problem to the 2-to-2 Game problem and subse-

quently to the Unique Games problem with complete-

ness 1
2 and to the graph theoretic problems mentioned

above. Denoting any of these problems by P , the

reduction can be used

– To “translate” an integrality gap instance of the

3Lin problem (see below) to an integrality gap

instance of the problem P (the idea to use a

reduction to construct integrality gap was used

earlier in [41]).

– To “translate” a distribution over 3Lin instances

that is plausibly hard (e.g. random instances with

appropriate parameters) to a distribution over P
instances that is plausibly hard.

In both cases, we do not know an alternate construc-

tion, i.e. without having to go through a NP-hardness

reduction (and lack of any construction so far was

an argument against the Unique Games Conjecture

as discussed before). On the other hand, “logically”,

integrality gap construction (and maybe construction of

a plausibly hard distribution as well) ought to precede
an NP-hardness reduction. We find this “cart before the

horse” phenomenon quite interesting.

• Sum-of-Squares Integrality Gaps with Perfect Com-
pleteness

– If one concerns integrality gap (say up to a poly-
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nomial number of rounds of the Sum-of-Squares

relaxation), the previous result for graph coloring

holds with perfect completeness. I.e. there is a

graph along with an SDP solution such that (a)

the SDP solution pretends as if the graph is 4-

colorable whereas (b) in actuality, the graph has

no independent set of size ε.

– Integrality gap (say up to a polynomial number of

rounds of the Sum-of-Squares relaxation) for the 2-

to-2 Games problem holds with perfect complete-

ness and soundness ε.

These results are a consequence of the integrality gap

known for the 3Lin problem with perfect completeness

[20], [48]. The integrality gap instance for 3Lin can be

translated via the reduction as remarked above.

• Intermediate Complexity Theorem
Barak [6] pointed out that Theorem I.5, along with the

Arora-Barak-Steurer algorithm and the (rather standard)

hypothesis NP 	⊆ ⋂
γ>0 DTIME(2n

γ

), implies the In-

termediate Complexity Theorem:

For every ε > 0, there exist ε′ > ε′′ > 0 and integer �
such that ε′ → 0 as ε→ 0 and the promise constraint
satisfaction problem GapUG[F�

2](
1
2 , ε) on n variables

can be solved in time 2n
ε′

but not in time 2n
ε′′

.
This is perhaps surprising (and was perhaps cited

as an argument against the Unique Games Conjec-

ture). The past experience (e.g. the Dichotomy Conjec-

ture/Theorem, the Exponential Time Hypothesis, near-

linear sized PCPs etc) perhaps suggested (and if so,

incorrectly as it turns out) that time complexity of

n-variable CSPs ought to be either polynomial or

truly exponential, i.e. 2Ω(n) amounting to a brute-force

search over all assignments.

• Evidence towards the Unique Games Conjecture
GapUG( 12 , ε) is NP-hard, i.e. a weaker form of the

Unique Games Conjecture holds with completeness 1
2 .

As far as the authors know (and we have consulted the

algorithmic experts), the known algorithmic attacks on

the Unique Games problem work equally well whether

the completeness is ≈ 1 or whether it is 1
2 . Thus,

the implication that GapUG( 12 , ε) is NP-hard is a

compelling evidence, in our opinion, that the known

algorithmic attacks are (far) short of disproving the

Unique Games Conjecture.

Moreover, as remarked before, all the arguments against

the Unique Games Conjecture, sketched in Section

I-B, apply equally well to its weaker form with

completeness 1
2 . In spite of all these arguments, the

GapUG( 12 , ε) problem, at the end of the day, does

happen to be NP-hard, circumventing all the arguments

mentioned!

2) Works Leading to the 2-to-2 Games Theorem: As

noted, the 2-to-2 Games Theorem is proven in a sequence of

works [34], [12], [13] and completed in the present work. In

addition, contributions from [40], [8], [33] have been crucial

in the overall proof. We summarize these developments

below. At a high level, the proof involves the chain of

implications (all these are now theorems):

[13]

Grassmann Expansion Hypothesis���� [8]

Linearity Testing Hypothesis���� [34][12]

2 to 2 Games Conjecture.

• The Grassmann graphs and their potential application

to the 2-to-2 Game problem were proposed in [34].

The contributions therein were: (1) introducing a certain

linearity testing primitive based on the Grassmann

graph/code (2) using a certain “sub-code covering”

property of this code analogous to a similar property

of the Hadamard code, previously introduced in [40]

(3) proposing a reduction to the 2-to-2 Game problem

(4) proposing a Weak Linearity Testing Hypothesis and

showing that it implies, via the reduction, a Weak 2-

to-2 Games Conjecture. We do not elaborate on the

qualifier “weak” here. It refers to a rather awkward

variant that is nevertheless quite natural and useful as

far as application to Independent Set and Vertex Cover

is concerned, which was the main motivation in [34].

• In [12], the authors formulated a Linearity Testing Hy-

pothesis (the “right” and clean formulation in hindsight)

and showed that it implied, via a reduction that is very

similar to that in [34], the 2-to-2 Games Conjecture

(with imperfect completeness).

• In [34], [12], it was already clear that the connectiv-

ity and expansion properties of the Grassmann graph

would be crucial towards proving the Linearity Testing

Hypotheses therein. In [13], the authors proposed (let’s

call it) Grassmann Expansion Hypothesis (stated as

Theorem I.12 in the present paper), and argued that

it would at least be necessary towards proving the

Linearity Testing Hypothesis. The authors presented a

Fourier analytic framework and a preliminary set of

results (for the first and second Fourier levels) towards

proving the Grassmann Expansion Hypothesis.

• Barak, Kothari, and Steurer [8] proved that the Grass-

mann Expansion Hypothesis (almost immediately) im-

plies the Linearity Testing hypothesis. While simple,

this link is nevertheless important and was missed by

the authors of [13].

• Finally, the Grassmann Expansion Hypothesis is proved

in the present paper, stated as Theorem I.12. A similar

Johnson Expansion Hypothesis is proved in [33] and the
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technical insight therein has been useful in the present

paper.

We now discuss the Grassmann Linearity Testing Hypoth-

esis, the Grassmann Expansion Hypothesis, and indicate how

the latter implies the former. We do not attempt here an

overview of how the Linearity Testing Hypothesis is used

to analyze a PCP/reduction and prove the 2-to-2 Games

Conjecture. The reader is instead referred to the introductory

section of the paper [12].

D. The Grassmann Graph/Code/Test and Linearity Testing
Hypothesis

In the following, one thinks of the parameter � as a

sufficiently large integer and (after fixing it) the parameter

k as a sufficiently large integer.

Definition I.6. The Grassmann graph Grk,� is defined as
follows. Its vertex set consists of all �-dimensional subspaces
L of Fk

2 and (L,L′) is an edge if and only if dim(L∩L′) =
�− 1.

Associated with the Grassmann graph is the Grassmann

code that encodes linear functions f : Fk
2 → F2. The

encoding of a linear function f is given by a word/table F [·]
that assigns to each vertex L of the graph, the restriction of

f to L, i.e. F [L] = f |L. Since there are 2� linear functions

on an �-dimensional space, the alphabet for the encoding

has size 2�. The Grassmann code is equipped with a natural

testing primitive that we call the Grassmann Linearity Test:

given a word F [·] (not necessarily a codeword), the test

picks an edge (L,L′) uniformly at random from the graph

and checks that F [L]|L∩L′ = F [L′]L∩L′ , i.e. that the linear

functions F [L] and F [L′] are consistent on the common

intersection of L,L′.
It is observed immediately that the test is a “2-to-2 test”

in the sense that for every assignment/answer F [L] there are

exactly two answers to F [L′] so that the test accepts (and

vice versa). This is because a linear function on L∩L′ can

be extended to L (and similarly to L′) in exactly two ways

(and this is how the test eventually leads to hardness of 2-

to-2 Games). By design, the test has perfect completeness:

if F [·] is a codeword, then the test passes with probability

1 since F [L], F [L′] are then restrictions of the same global

linear function. The question of interest is what about the

soundness of the test? I.e. if a given word F [·] passes

the test with (small) probability � δ, what “decoding”

could we infer? Could we infer that the given word F [·]
necessarily has good consistency with some codeword (and

if so, list-decode)? Based on the past experience (e.g. the

Low Degree Test and the Blum-Luby-Rubinfeld Test that are

well-understood and are crucial building blocks of PCPs),

one is tempted to speculate that the answer is positive,

formally stated below. 13 Here δ, ε are thought of as constants

independent of the parameters k, �.

Speculation I.7. For every δ > 0, there exists ε > 0 such
that if a table F [·] passes the Grassmann Linearity Test
with probability δ, then there exists a global linear function
f : Fk

2 → F2 such that

Pr
L
[F [L] = f |L] � ε.

It turns out however that the speculation is false, the key

reason being that the Grassmann graph has small sets whose

(edge-)expansion is strictly bounded away from 1.

Definition I.8. Let G = (V,E) be an n-vertex, d-regular
graph. For a non-empty set of vertices S ⊆ V with |S| � n

2 ,
its (edge-)expansion is defined as

Φ(S) =

∣∣E(S, S)
∣∣

d · |S| ,

where E(S, S) denotes the set of edges with one endpoint
in S and the other in S = V \ S.

Alternately, Φ(S) is the probability that selecting a uni-

formly random vertex in S and moving along a uniformly

random edge incident on that vertex, one lands outside S.

We will be interested in whether a set S has expansion very

close to 1 (near-perfect expansion) or has expansion strictly

bounded away from 1.

Counter-example to Speculation I.7: Consider the follow-

ing construction (it will be clear soon what the sets Si would

be):

1) Let S1, . . . , Sm be disjoint subsets of vertices of the

Grassmann graph Grk,�, all of equal size, such that

their union constitutes a constant α fraction of vertices

of the graph.

2) The sets Si are very small. Specifically, m =
m(k, �)→∞ as k, �→∞.

3) Suppose that Φ(Si) � 1− β for every 1 � i � m for

a constant β.

4) For each 1 � i � m, select a global linear function

fi : F
k
2 → F2 at random.

5) Define F [L] = fi|L for every L ∈ Si. For L 	∈
∪m
i=1Si, F [L] is defined at random.

We show that the word/table F [·] passes the Grassmann test

with probability αβ, but has negligible consistency with any

global linear function. Firstly, since Si cover α fraction of

vertices and each Si has expansion at most 1−β, the fraction

of edges of the Grassmann graph that are inside some Si is

at least αβ. Since on each Si, the table F [·] is consistent

with the global function fi, the table passes the test for all

edges (L,L′) that are inside some Si. Secondly, since the

13Moreover, a positive answer would lead to a very straightforward
analysis of the PCP/reduction to 2-to-2 Games, avoiding most of the
complications in [34], [12].
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functions fi on different pieces Si are random and unrelated

to each other, no single global function has non-negligible

consistency with F [·]. This completes the description of the

counter-example.

How does one get around this counter-example, i.e. re-

formulate Speculation I.7 so that it is correct as well as

sufficient towards analysis of the PCP/reduction to 2-to-2
Games? With regards to the specific counter-example above,

here is a vacuous statement: if we restrict our attention to

only the subset of vertices in say S1, then F [·] indeed has

full consistency with a global linear function, namely the

function f1. Moreover, as we will see, a canonical example

of a small set with expansion strictly bounded away from 1
is S = Grk,�[A,B] where A ⊆ B ⊆ F

k
2 are subspaces with

dim(A) + codim(B) � r and

S = Grk,�[A,B] = {L | A ⊆ L ⊆ B}.
In this case, φ(S) = 1−2−r which is strictly bounded away

from 1 for small integer r (say r = 4). These observations

motivated the following Linearity Testing Hypothesis in

[12].

Hypothesis I.9. For every constant δ > 0, there exists a
constant ε > 0 and an integer r such that for all sufficiently
large integers � and (after fixing it) for all sufficiently large
integer k, the following holds. If a table F [·] passes the
Grassmann Linearity Test with probability δ, then there exist
subspaces A ⊆ B ⊆ F

k
2 with dim(A) + codim(B) � r and

a linear function f : B → F2, such that

Pr
A⊆L⊆B

[F [L] = f |L] � ε.

In words, while F [·] need not have good consistency with

a global linear function on the entire graph Grk,�, there

must be a structured subgraph Grk,�[A,B] on which it does

have good consistency with a global linear function and

moreover this subgraph is of constant “co-order”, defined

as dim(A) + codim(B). The Linearity Testing Hypothesis

above was shown to be sufficient towards analysis of the

PCP/reduction to 2-to-2 Games in [12]. Towards proving

the hypothesis itself, the authors (naturally) proposed to

study structure of sets with expansion strictly bounded away

from 1, formulated the Grassmann Expansion Hypothesis

(essentially) characterizing such sets, and then made partial

progress towards proving the Expansion Hypothesis [13].

The authors also argued that proving the Expansion Hy-

pothesis is at least necessary towards proving the Linearity

Testing Hypothesis. The missing link, namely that it is also

sufficient, was provided in [8].

E. Grassmann Expansion Hypothesis

Definition I.10. Suppose A ⊆ B ⊆ F
k
2 are subspaces.

Let dim(A) = a, codim(B) = b and think of a, b as
small constants (say a = b = 2). Then (as introduced
before) the subgraph Grk,�[A,B] is an induced subgraph

of Grk,� induced on precisely the set of vertices L such
that A ⊆ L ⊆ B. It is easily seen that Grk,�[A,B] is
an isomorphic copy of a lower order Grassmann graph
Grk−a−b,�−a. We call a + b as the co-order of Grk,�[A,B]
with respect to Grk,�.

The sets Grk,�[A,B] are natural examples of sets in Grk,�
that have expansion strictly bounded away from 1 (when a, b
are small constants). Indeed, the expansion of Grk,�[A,B],
when seen as a subset of Grk,�, has expansion precisely

1 − 2−(a+b) (up to an error O(2−�) which is thought of

as negligible and ignored for the ease of presentation). The

reasoning is as follows. For a vertex L ∈ Grk,�[A,B], its ran-

dom neighbor L′ is obtained by picking a random subspace

T ⊆ L, dim(T ) = �− 1 and a random point x ∈ F
k
2 \L and

letting L′ = T⊕Span(x). Now L′ ∈ Grk,�[A,B] if and only

if A ⊆ T and x ∈ B and these events happen independently

with probabilities 2−a and 2−b respectively (up to an error

O(2−�)). Thus a random neighbor of a random vertex in

Grk,�[A,B] is also inside it with probability 2−(a+b) and

hence its expansion is 1−2−(a+b). Furthermore, we observe

that if S ⊆ Grk,�[A,B] ⊆ Grk,� is such that

|S|
|Grk,�[A,B]| = ε,

then Φ(S) � 1 − ε · 2−(a+b). This is because (we skip the

easy proof) any set of density ε inside a Grassmann graph

has at least ε2 fraction of the edges inside it (and hence has

expansion at most 1− ε). Therefore, a random neighbor of

a random vertex in S ⊆ Grk,�[A,B] lies inside Grk,�[A,B]
with probability 2−(a+b) as seen above and then inside S
with probability at least ε, justifying the observation. We

summarize the overall observation as:

Fact I.11. (Informal): A subset of constant density inside
a constant co-order copy of Grassmann graph inside a
Grassmann graph has expansion strictly bounded away from
1.

(Formal): Let S ⊆ Grk,�[A,B] ⊆ Grk,� be such that
dim(A) = a, codim(B) = b and the density of S inside
Grk,�[A,B] is ε. Then Φ(S) � 1− ε · 2−(a+b).

The authors of [13] hypothesize, essentially, that the con-

verse of the above fact is true. Informally, their hypothesis

is that any set S in the Grassmann graph Grk,� whose

expansion is strictly bounded away from 1 has constant

density inside some copy of Grassmann graph of constant co-

order. A precise statement appears below (now as a theorem

and the main result in this paper):

Theorem I.12. For every constant 0 < α < 1, there exists a
constant ε > 0 and an integer r � 0 such that for all suffi-
ciently large integers � and (after fixing it) for all sufficiently
large integers k, the following holds. let S ⊆ Grk,� be such
that Φ(S) � α. Then there exist subspaces A ⊆ B ⊆ F

k
2
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such that dim(A) = a, codim(B) = b, a+ b � r and

|S ∩ Grk,�[A,B]|
|Grk,�[A,B]| � ε.

Following [13], Barak-Kothari-Steurer [8] showed that

Theorem I.12 (a hypothesis at the time) implies Hypoth-

esis I.9, and by the work of [34], [12] the 2-to-2 Games

Conjecture. It remained therefore to prove Theorem I.12.

Partial progress towards its proof was already made in [13]

where the authors prove the theorem when α < 7
8 , via

spectral analysis of the Grassmann graph, introduced therein

(the eigenvalues and eigenspaces of the Grassmann graph

were known before). Roughly speaking, given a set S with

expansion at most α < 1−2−(s+1), it is easily observed that

the indicator vector of the set 1S must have a significant

projection onto the eigenspace at “level” at most s (s is

a constant when α is strictly bounded away from 1). The

spectral analysis then attempts to use this projection to

deduce the desired structure of S. The approach is worked

out in [13] when s = 2, corresponding to α < 7
8 . It

already requires rather difficult and lengthy case analysis.

In principle, the same approach could be extended to higher

levels s � 3, but the number of cases to handle seems to

explode beyond control. Instead, we are able to argue in a

more systematic fashion and avoid the explosion in potential

case analysis (easier said than done of course).

We end this section with some remarks on Theorem I.12.

Firstly, the subspaces A and B therein are referred to as

“zoom-in” and “zoom-out” spaces respectively [34], [12],

[13]. This makes sense if one imagines searching for the

appropriate subgraph Grk,�[A,B] where the set S happens

to have significant density. Secondly, we note that if S has

density � ε, then the conclusion of the theorem is vacuously

true without any need for a zoom-in or a zoom-out (i.e.

a = b = 0, A = {0}, B = F
k
2), so the theorem is really about

“small” sets. Thirdly, our proof gives correct dependence of

the required zoom-in-out dimension r on the upper bound

on expansion α. For α < 1−2−(s+1), one gets a significant

projection onto the eigenspace at level at most s and then in

our proof, a combined zooim-in-out dimension of at most

r = s is needed. This is tight (i.e. a lesser zoom-in-out

dimension is not sufficient) since we know that subgraphs

Grk,�[A,B] have expansion 1 − 2−(a+b) and the combined

zoom-in-out dimension (obviously) a + b. Finally, we note

that towards proving the theorem, it will be easier to work

with the contra-positive: a set S that has very small density

inside every copy of the Grassmann graph with constant

co-order (such a set will be called pseudorandom) has near-

perfect expansion (i.e. very near 1).

The phenomena as in Theorem I.12 occurs also in the

Johnson graph and has been analyzed in [33]. In a Johnson

graph, the vertices are �-subsets of a k-set and the edges are

t-wise intersecting pairs (we are concerned with the case

when t = � �2
). Therein the notion of zoom-out and Fourier

analysis are not needed. The Johnson case can informally be

seen as a special case of the Grassmann case and the analysis

of the former in [33] has been insightful in the analysis of

the later in the current paper.

II. ACKNOWLEDGEMENT

Our most sincere thanks to Boaz Barak, Irit Dinur, Yuval

Filmus, Guy Kindler, Pravesh Kothari, Dana Moshkovitz,

Prasad Raghavendra, Ran Raz, and David Steurer for several

discussions and collaborations that led to this work.

Author Khot was supported by NSF grant CCF-1422159,

Simons Collaboration on Algorithms and Geometry, and

Simons Investigator Award. Author Minzer was supported

by Clore Fellowship, ISF grant 2013/17, BSF grant 2016414

and Blavatnik fund. Author Safra was supported by ISF grant

2013/17, BSF grant 2016414 and Blavatnik fund.

REFERENCES

[1] S. Arora and C. Lund. Approximation Algorithms for NP-hard
Problems, editor : D. Hochbaum. PWS Publishing, 1996.

[2] S. Arora, C. Lund, R. Motawani, M. Sudan, and M. Szegedy.
Proof verification and the hardness of approximation prob-
lems. Journal of the ACM, 45(3):501–555, 1998.

[3] S. Arora and S. Safra. Probabilistic checking of proofs : A
new characterization of NP. Journal of the ACM, 45(1):70–
122, 1998.

[4] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponen-
tial algorithms for unique games and related problems. J.
ACM, 62(5):42:1–42:25, 2015.

[5] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David
Steurer, Madhur Tulsiani, and Nisheeth K. Vishnoi. Unique
games on expanding constraint graphs are easy. In Proc. ACM
Symposium on the Theory of Computing, pages 21–28, 2008.

[6] Boaz Barak. The intermediate complexity conjec-
ture. Blog post, https://windowsontheory.org/2017/08/09/the-
intermediate-complexity-conjecture/.

[7] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth
Harrow, Jonathan A. Kelner, David Steurer, and Yuan Zhou.
Hypercontractivity, sum-of-squares proofs, and their applica-
tions. In Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May
19 - 22, 2012, pages 307–326, 2012.

[8] Boaz Barak, Pravesh Kothari, and David Steurer. Small-
set expansion in shortcode graph and the 2-to-1 conjecture.
ECCC Report TR18-077.

[9] Boaz Barak, Prasad Raghavendra, and David Steurer. Round-
ing semidefinite programming hierarchies via global correla-
tion. In FOCS, pages 472–481, 2011.

[10] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs
and non-approximability. Electronic Colloquium on Compu-
tational Complexity, Technical Report TR95-024, 1995.

599



[11] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and
D. Sivakumar. On the hardness of approximating multicut
and sparsest-cut. In Proc. 20th IEEE Conference on Compu-
tational Complexity, pages 144–153, 2005.

[12] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and
Muli Safra. Towards a proof of the 2-to-1 games conjec-
ture? Electronic Colloquium on Computational Complexity
(ECCC), 23:198, 2016.

[13] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and
Muli Safra. On non-optimally expanding sets in Grassmann
graphs. Electronic Colloquium on Computational Complexity
(ECCC), 24:94, 2017.

[14] Irit Dinur, Elchanan Mossel, and Oded Regev. Condi-
tional hardness for approximate coloring. SIAM J. Comput.,
39(3):843–873, 2009.

[15] Irit Dinur and Samuel Safra. On the hardness of approximat-
ing minimum vertex cover. Ann. of Math. (2), 162(1):439–
485, 2005.

[16] U. Feige. A threshold of lnn for approximating set cover.
Journal of the ACM, 45(4):634–652, 1998.

[17] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy.
Interactive proofs and the hardness of approximating cliques.
Journal of the ACM, 43(2):268–292, 1996.

[18] U. Feige and L. Lovász. Two-prover one-round proof sys-
tems, their power and their problems. In Proc. 24th Annual
ACM Symposium on Theory of Computing, pages 733–744,
1992.

[19] E. Friedgut. Boolean functions with low average sensitivity
depend on few coordinates. Combinatorica, 18(1):27–35,
1998.

[20] Dima Grigoriev. Linear lower bound on degrees of posi-
tivstellensatz calculus proofs for the parity. Theor. Comput.
Sci., 259(1-2):613–622, 2001.

[21] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad
Raghavendra. Beating the random ordering is hard: Inap-
proximability of maximum acyclic subgraph. In Proc. Annual
IEEE Symposium on Foundations of Computer Science, pages
573–582, 2008.

[22] Venkatesan Guruswami and Ali Kemal Sinop. Improved
inapproximability results for maximum k-colorable subgraph.
Theory of Computing, 9:413–435, 2013.
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