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0. Introduction.

In this paper we aim to study the geometry of certain 2-generator subgroups of
PSL(2,C). This area lies close to the interaction of hyperbolic geometry with algebraic
number theory and with complex dynamics.

A diophantine equation much studied by number theorists is the “Markoff equation”:
2% +y? + 2?2 = xyz. The rational integral solutions to this equation are closely related
to the Markoff and Lagrange spectra, and hence to diophantine approximation of real
numbers — see, for example, [17]. (In this context, the Markoff equation is often given as
2% + y? + 22 = 3wyz, which corresponds to solving our version of the equation over 3Z.
However, since there are there are no non-trivial solutions to x2 + y2? + 22 = xyz over Zs,
this amounts to the same thing.)

The Markoff equation is also closely related to the geometry of the modular group
PSL(2,Z): see for example, [23,40]. One way to understand this is to consider the com-
mutator subgroup, G, of PSL(2,Z). Since PSL(2,Z) = Zs x Z3, one can see that G is
a free group on two generators and of index 6 in PSL(2,7Z). If we identify PSL(2,R) as
the group of orientation preserving isometries of the hyperbolic plane, H?, then H? /G is
a punctured torus with a complete finite-area hyperbolic structure, sometimes refered to
as the “modular torus”. The Markoff equation arises as a trace identity in PSL(2,R),
and the integral solutions give the traces of simple closed curves on H?/G. The traces are
related by a simple formula to the lengths of the corresponding closed geodesics. For some
applications to the simple length spectrum of the modular torus, see for example [39] and
the references therein.

More generally, we can look at other complete finite-area hyperbolic structures on the
(topological) once punctured torus. In this case, the traces of simple closed curves arise as
solutions to the Markoff equation over the reals.

Such a hyperbolic structure is given by a representation, p, of the free group on two
generators, I' = (a, b) into PSL(2,R) with the property that the commutator [p(a), p(b)]
has trace equal to —2; (note that its sign is well-defined). More generally still, we can
consider representations of I' into PSL(2,C) having this property. This corresponds to
solving the Markoff equation over the complex numbers. This will be the main object of
study in this paper. Connections between complex Markoff triples and representations are
also explored in [26] and [14].

It is often more convenient to work with SL(2, C) rather than PSL(2, C), though the
distinction will be of little importance here — it just means being careful with regards sign
conventions etc.
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Although it will not be a direct concern of us here, it is natural to look for integer
solutions to the Markoff equation over other algebraic number fields, for example Q(v/—d).
See [41] for some discussion of this. They are also considered in [10].

Some of the ideas described in this paper are used in [6] to give a direct proof of
McShane’s identity [32] for hyperbolic punctured tori (see Theorem 3), and extended in
[7] to give similar identities for hyperbolic once-punctured torus bundles fibring over the
circle. Similar ideas were also used in [10] to give a classification of arithmetic hyperbolic
once-punctured torus bundles over the circle.

Recently, Minsky [33] has given a proof of the ending lamination conjecture for discrete
representations of the once-punctured torus group into PSL(2,C). An essential part of
the argument makes use of trees of Markoff triples. (In particular he gives an independent
proof of a variant of Theorem 1 of this paper). We suspect that the interplay between
Markoft triples and representations might shed light on other conjectures concerning the
geometry of hyperbolic 3-manifolds — as well as a provide a means of computational
exploration of specific cases.

A connection with complex dynamics arises when one asks, for example, which com-
plex solutions to the Markoff equation correspond to representations into PSL(2, C) which
are discrete and faithful. This fits into a broader category of questions, concerned with
asking when two elements A, B € PSL(2,C) generate a discrete group. One would like
some condition on the traces, for example, of A, B and [A, B]. For example, Jorgensen’s
inequality [25,2] tells us that if A and B generate a discrete non-elementary group, then
|(tr A)? — 4] + | tr[A, B] — 2| > 1. Possible ways of generalising Jorgensen’s inequality were
considered by Brooks and Matelski [11], leading them to define the connectedness locus
for quadratic maps. These ideas have more recently been taken up by Gehring and Martin
[20], and greatly extended. Since the sets of traces corresponding to discrete groups turn
out to be “fractal” in nature, one cannot hope for an elementary sharp characterisation.
Instead, one finds that, in many cases, they can be described in terms of the filled-in Julia
sets or connectedness loci corresponding to certain systems of complex polynomials [20].
Other connections with complex dynamical systems are investigated in [12,13]. See also
[27] and [28] for a discussion of discreteness of certain 2-generator groups.

The dynamical set-up described above can be interpreted in terms of the action of the
modular group, PSL(2,Z), on triples of complex numbers. (Viewing PSL(2,Z) as Zy*Zs,
this action is generated by the maps [(z,y, 2) — (y,z,zy — z)] and [(z,y, 2) — (y,2,2)].)
Note that the quantity p = 22 + y? + 22 — zyz is invariant under this action. (The case
of Markoff triples thus corresponds to p = 0.) ;From this perspective it is also interesting
viewed as a real dynamical system — restricting to triples of real numbers. In the case
where p = 0, there is not much to be said — we essentially get topological conjugates of
the standard action of PSL(2,Z) on (the upper-half space model of) the hyperbolic plane.
However, if we vary the parameter u, some interesting behaviour emerges. Some of this
can be given geometrical interpretations. It also has applications to physics, for example
to the spectrum of the discrete one-dimensional Schrodinger equation with quasiperiodic
potential. Such applications are disussed, and some aspects of the dynamics are analysed,
for example in [37] and [36].

As we have said, or aim here is to study something of Markoff’s equation over the
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complex numbers, and its relation to 3-dimensional hyperbolic geometry. In the next
section, we set out some of the results of the paper.

I am endebted to Colin Maclachlan for introducing me to the wonders of Markoff
triples. Conversations with Greg McShane and John Roberts have also been helpful. I
would like to thank Makoto Sakuma for his many useful comments on an earlier version
of this paper.

1. Outline of results.

In this section, we introduce some terminology and notation, and describe some of
our results.

By a Markoff triple we mean an ordered triple (z,y, z) of complex numbers satisfying
the Markoff equation:

22+ y? + 2% = zyz. ()

We can obviously obtain other Markoff triples by permuting the entries. Slightly less
trivially, if (x,y, z) is a Markoff triple, then so are (z,y,xy — 2), (z,zz — y, 2) and (yz —
x,y, z). On repeating such substitutions, we generate an equivalence class of Markoff triples
which has a natural “tree” structure. Such a structure will be referred to as a “Markoff
map”. We may give a formal definition of this term as follows.

Let ¥ be a binary tree (a countably infinite simplicial tree, all of whose vertices have
degree 3) properly embedded in the plane. By a complementary region of ¥, we mean
the closure of a connected component of the complement. We write V(X), E(X) and Q
for the sets of vertices, edges and complementary regions of ¥ respectively. Although we
are only interested in the combinatorial structure of this set-up, it is natural to imagine X
as being dual to the regular tessellation of the hyperbolic plane by ideal triangles. Note
that the regions of ) are in natural bijective correspondence to the ideal vertices of this
tessellation. If we choose to put one of these vertices at oo in the upper half-space model,
then we get an identification of  with the rationals Q U {oc}. In particular, we see that
Q) carries a natural dense cyclic order.

Note that any vertex v € V(3) lies in the boundary of precisely three complementary
regions, X,Y,Z € Q, so that X NY NZ = {v}. An edge of ¥ meets four complementary
regions X,Y, Z, W in such a way that e = X N'Y and so that e Z and e N W are the
endpoints of e. We shall use the notation e <+ (X,Y; Z, W) as a shorthand for the above
statement; in other words, it is intended to relate the regions X, Y, Z, W to the edge e.

Definition : A map ¢ : Q — C is a Markoff map if

(1) for all vertices v € V(X), the triple (¢(X),d(Y),#(Z)) is a Markoff triple, where
X,Y, Z € Q) are the three regions meeting v; and

(2) If e € E(X), we have
Ty =w-+z (k)

where e < (X, Y;Z, W) and x = ¢(X), y = ¢(Y), 2 = ¢(Z) and w = ¢p(W).
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The trivial Markoff map, 0, is the map which sends everything to 0.

We shall use ® to denote the set of all Markoff maps.

Note that, in fact, if the edge relation (%) is satisfied along all edges, then it suffices
that the vertex relation (%) be satisfied at a single vertex. In fact we may establish
a bijective correspondence between Markoff maps and Markoff triples, by fixing three
regions Xo, Yy, Zp € 2 which meet at some vertex vy, and associating to a Markoff map
¢ the triple (¢(Xo), ¢(Yo), #(Zp)). This process may be inverted by constructing a tree of
Markoff triples as outlined in the introduction — given a triple (z,y, 2z) set ¢(Xy) = =z,
?(Yo) = vy, ¢(Zy) = z, and extend over Q) as dictated by the edge relations. In this way
we get an identification of ® with the variety in C3 given by the Markoff equation. In
particular, ® gets a nice topology as a subset of C3.

An important example of Markoff map begins with the triple (3,3,3). In fact, this is
“essentially” the only non-trivial Markoff map whose image consists entirely of (rational)
integers (Proposition 3.19). The “Markoff numbers”, as arise in the study of the Markoff
and Lagrange spectra [17], are the numbers which occur in this image. (Strictly speaking,
we should divide everything by 3 to get the standard definition of Markoff number.) The
well-known Markoff conjecture asserts that the only coincidences of Markoff numbers oc-
curing in this picture arise from the obvious order 6 dihedral group of symmetries of the
tree (or equivalently that the greatest element of a triple of Markoff numbers determines
uniquely the other two).

Note that there is an action of the Klein-four group, Z2, on ® obtained by changing
two of the signs in a Markoff triple, for example [(z,y,z) — (—z,—y,2)]. (We get the
same action, up to automorphism of Z2, no matter at which vertex, vy € V(2), we choose
to perform this operation.) This action is free and properly discontinuous on @ \ {0}.

Before going on to describe some results about Markoff maps, let’s outline the con-
nection with group representations.

Let ' & Z x Z be a free group on two generators, which we may identify as the
fundamental group of the once-punctured torus, T. We define an equivalence relation ~
on I' by g ~ h if g is conjugate to h or to h~*. We can thus identify I'/~ with the set of
homotopy classes of closed curves on T.

Now, one can show that any (outer) automorphism of I" is induced by an homeomor-
phism of T. (This may be seen using the fact that the automorphism group of a free group
is generated by Nielsen transformations [29].) In particular, there is a well-defined subset
Qofl /~ corresponding to non-trivial non-peripheral simple closed curves on T.

Now one can clearly choose a free generating set, {a, b}, for I" so that the ~-classes
of a and b belong to Q, and so that [a,b] is a peripheral simple closed curve. ;From the
above observation about automorphisms of I' we see that this must, in fact, be true of any
free generating set. In particular the commutator of any pair of free generators belongs to
a particular ~-class in €.

It turns out that € may be “naturally” identified with Q. At least, the identification
is natural once we have decided to identify a particular element of Q) with some element
of ). There are several ways to describe this correspondence, as we mention in Section
2.2. For the moment let us just note that it has following property. If e € E(X) and
e « (X,Y;Z, W), then there is a free generating set {a,b} for I' so that the regions
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X,Y,Z, W € Q correspond respectively to the ~-classes of a, b, ab,ab=! € T.

Definition : A representation p : I' — SL(2,C) is type-preserving if tr p([a,b]) = —2,
for some (and hence any) free generating set {a, b}.

Given an type-preserving representation, we may define a Markoff map ¢ € ® by ¢(X) =
tr p(g) where g € T represents the simple closed curve corresponding to X € €. The edge
and vertex relations follow from the trace identities in SL(2, C):

trAtrB=tr AB +tr AB™!

2+ tr[A, B] = (tr A)? + (tr B)? + (tr AB)?> —tr Atr Btr AB.

Note that representations conjugate in SL(2, C) give rise to the same Markoff map. Con-
versely, given any Markoff map, we can recover the type-preserving representation p up
to conjugacy, for example using Jgrgensen’s normalisation, see Section 4. Thus we can
identify ® with the set of type-preserving representations into SL(2, C).

Demanding that tr p([a,b]) = £2 would be the same as demanding that p([a,b]) be
either parabolic or +1 (the identity matrix). It is natural also to insist that tr p([a,b]) be
negative since if it were equal to +2, then p(a) and p(b) would generate an elementary
group (see Lemma 4.1), and thus not be of much interest. In the case of the trivial Markoff
map, we get that p([a,b]) = —I. For every non-trivial Markoff map it is parabolic. This
explains the term “type-preserving” — it sends peripheral loops to parabolics.

Note that is also makes sense to speak of type-preserving representations of I' into
PSL(2,C),since the sign of the trace of a commutator is well-defined. Such representations
are in natural bijective correspondence with elements of ®/Z3, where Z3 acts as described
earlier.

We say that a Markoff map, ¢, is real if ¢(Q2) C R. If p is a representation corre-
sponding to a real map, then it can be conjugated so that its image lies in SL(2,R). We
say that p is fuchsian. Writing 7 : SL(2,C) — PSL(2, C) for the quotient map, we see
that H2 /7o p(T") gives a complete finite-area hyperbolic structure on the punctured torus,
as described in the introduction. All such structures arise in this way.

More generally, we have the notion of a “quasifuchsian” representation p : I' —
SL(2,C). This is one which is discrete and faithful, and for which 7o p(I") is geometrically
finite without accidental parabolics. We shall elaborate on this definition in Section 4.

It is natural to ask which Markoff maps correspond to quasifuchsian groups. Theorem
4 below gives one way of answering this question, though it is not very satisfactory. One
can conjecture a much simpler answer.

Let us state a few results about Markoff maps.

Given ¢ € I' and some k > 0, define Q(k) = Q4(k) C Q by

Qy(k) = {X € Q] [p(X)] < k}.
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Theorem 1 : If¢ € ® then
(1) Q4(3) is nonempty, and
(2) for any k > 2 we have that |J Q4 (k) is connected (as a subset of the plane).

It’s not hard to see that if Q4 (k) = 2 for some k£ > 0 then ¢ must be trivial. We shall see
some stronger constraints on this set in Section 5.

A natural hypothesis to put on ¢ is that ¢=1([~2,2]) = (. This means that the
corresponding representation has no elliptics or accidental parabolics. Of particular interest
are Markoff maps described by the following:

Theorem 2 : Suppose ¢ € ® is such that ¢~'([—2,2]) =0, and Q,(2) is finite (possibly
empty). Then log™ |¢| has Fibonacci growth.

Here, log™ is defined by log™ (x) = max{0,log(z)}. The term “Fibonacci growth” will be
defined in Section 2.1. For the moment, we just note that it implies that > y ¢, [#(X)|~?
converges for any § > 0. In particular, Q(k) is finite for all k£ and so ¢(£2) C C is discrete.
We shall write g C ® for the set of ¢ satisfying the hypotheses of Theorem 2. We
shall see (Theorem 3.16) that ®¢ is an open subset of ®.
For such ¢, we have the following version of McShane’s identity [32]:

Theorem 3 : If ¢ € ®g, then Y .o h(¢(X)) = 1.

Here h : C\ [-2,2] — C is defined by h(z) = (1 — /1 — 4/2?), where we adopt the
convention that the real part of a square root is always non-negative. Thus, R(h(z)) < 3.
Note that |h(z)| = O(]z|72), and so Theorem 2 tells us that the series converges absolutely.
The real case of McShane’s identity was expressed in these terms in [6]. We say something
of the geometric significance of this result in terms of quasifuchsian groups in Section 4.
There is also a version of McShane’s identity for once-punctured torus bundles fibring over
the circle [7].

We have noted that non-trivial real Markoff maps correspond to fuchsian representa-
tions. We shall see that all such representations lie in ®g. We suspect that:

Conjecture A : A Markoff map lies in ®¢ if and only if corresponds to a quasifuchsian
representation.

The “if” part of the conjecture is elementary. The “only if” part may be expressed in a
number of different ways. Note that if ¢ € ®g, it would be sufficient to show that the
corresponding representation were discrete and faithful. The fact that it is quasifuchsian
then follows (see Section 4).

One of the alternative ways of expressing Conjecture A uses the fact that quasifuchsian
space (the space of quasifuchsian representations into PSL(2, C)) is connected. Recall that
Z3 acts freely properly discontinuously on ® \ {0} and note that 0 ¢ ®¢. It is not hard
to see that ®¢ is invariant under this action. The quotient corresponds to representations
to PSL(2,C). Let @% be the connected component of ®g/Z3 C ®/Z3 containing the
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Markoff map given by the triple (3,3,3) (and hence all real Markoff maps). Let q)% cCoP
be the preimage of @% under the quotient map. Clearly <I>22 C .

Theorem 4 : Those Markoff maps which correspond to quasifuchsian groups are precisely
those which lie in CP%.

Since quasifuchsian space is contractible, it follows that QD% consists of four connected
components which are permuted under the Z3 action.

We see that Conjecture A is equivalent to asserting that <I>22 = ®, or that Dy /Z3 is
connected.

One can also express Conjecture A in purely geometric terms (Section 4). In this form
it generalises to other topological types of surfaces (Conjecture B). It also gives rise to an
apparently interesting question about representations to PSL(2,R) (Question C).

The geometry of ®¢ is also of interest. Some (rather crude) computer experiments
show it to have an apparently “fractal” boundary — as one might expect from analogous
investigations into 2-generator groups, for example [28,20,12,13].

The behaviour of maps ¢ in the complement of ®¢ also seems worthy of investigation.
Firstly, one would expect (given Conjecture A) those in the boundary of ®¢ to corre-
spond to discrete representations which are geometrically tame (in the sense of Thurston,
see [43,5]) but not geometrically finite, or which are geometrically finite with accidental
parabolics. In principle, they therefore provide an experimental testing ground for various
conjectures relating to such representations.

We show in Section 5 that ® \ ®g has non empty interior, as one might expect, and
as computer experiments apparently demonstrate. In fact, the trivial Markoff map is an
interior point.

The behaviour of individual Markoff maps lying in this interior seems difficult to
analyse. We give some partial results in Section 5, and suggest some further lines of enquiry.
One would expect such maps to correspond to non-discrete or non-faithful representations.
We develop a little the theory of realisable laminations with respect to a non-discrete
representation, and, in the case of a once-punctured torus, conjecturally relate this to the
“large scale” behaviour of Markoff maps.

2. Binary trees and simple closed curves.
2.1. Binary trees.

Recall that X is a binary tree properly embedded in the plane. We have defined V (%),
E(X) and €, respectively, as the sets of edges, vertices and complementary regions of 3.
Given e € E(X), we introduced the notation e <+ (X,Y;Z, W) to mean that e = X NY
and that e Z and e N W are the endpoints of e. We say that the regions X and Y are
adjacent to the edge e.

A directed edge, €, of ¥ can be though of as an ordered pair of adjacent vertices,
referred to as the head and tail of €. Thus, we shall speak of € as being “directed towards”
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its head. We write € «+» (X, Y;Z, W) if e « (X,Y;Z, W) and e N W is the head of €.
We write E (X) for the set of all directed edges of ¥.. We shall always use e to denote the
(unoriented) edge in E(X) underlying any & € E(X).

Given a subtree, T C ¥, we define the set C(T') C E(X) of directed edges by saying
that € € C(T) if and only if eNT consists of a single point, that point being the head of €.
If T is finite, then so is C(T). We shall say that a finite set C' of directed edges is circular
if it has the form C(T') for some finite tree 7. A trivial example of a circular set consists
of the three directed edges whose heads all lie at some given vertex of X..

Suppose € € E(E) If we remove the interior of e from X, we are left with two disjoint
subtrees, which we denote by Y% (€), so that e N X+ is the head of € and e N X~ is its
tail. Let QF = Q*(&) C Q be the set of regions whose boundaries lie in $*, and set
00 =0%e) = {X,Y} where e = X NY. We see that Q can be written as a disjoint union:
Q=000t Q. Let Q°F(&) = Q°UO*. In other words, Q°F is the set of regions which
meet XF,

More generally, suppose C = C(T) C E(X) is a circular set. Let Q0(C) = Usec 2°(e)
be the (finite) set of regions meeting 7" in at least one edge. We see that € can be written
as a disjoint union of Q°(C) and the sets Q™ (€) as € varies in C.

Given a directed edge €, we write —e for the same edge pointing in the opposite
direction, i.e. we swap head and tail. Note that Q1 (€) = Q™ (—¢) etc.

Given some v € V(X) and X €  we write d(v, X) for the distance in ¥ from v to X;
in other words, the number of edges in the shortest path joining v to X. If € € E(Z), we
define d : Q°~(€) — N by d(X) = d(v, X) where v is the head of v. Thus, d(X) = 0 if
and only if X € Q). Given any Z € Q~, there are precisely two regions X,Y € Q0
meeting Z and satisfying d(X) < d(Z) and d(Y) < d(Z). In this case X, Y and Z all meet
in a vertex. (Moreover either d(X) or d(Y') must equal d(Z) — 1, whereas the other is at
most d(Z) — 2, provided d(Z) > 2.)

This observation allows us to use definition by induction on Q9~, starting with pre-
scribed values on Q°. More formally, suppose S is a set and B : S x S — S is a binary
operation. If we start with an S-valued function, f, defined on Q°, we may extend to
amap f: Q" — S as follows. Given Z € O, let X,Y € Q% be as in the previous
paragraph, and such that the triple (X, Y, Z) is ordered consistently with the natural cyclic
ordering on 2. Now we can assume, inductively, that f(X) and f(Y) have already been
defined, and we set f(Z) = B(f(X), f(Y)). In most of our examples, B is symmetric, i.e.
B(p,q) = B(q,p), and so the orientation of X,Y, Z is irrelevant. Note, for example that
the function d itself can be defined in this manner: set S = N, B(p,q) = max{p,q} + 1
and start with d identically zero on QO.

A more interesting example, again with S = N, is obtained by setting B(p,q) = p+q,
to obtain a map Fs : Q7 — N, with Fz(X) = 1 for each X € Q°. We can extend
symmetrically to get a map F, : Q@ — N; i.e. we define F.(X) = Fz(X) for X € Q% and
F.X)=F #X) for X € Qt.

The main reason for introducing the functions F, is that they provide a means for
measuring the growth rates of functions defined on subsets of 2. The following lemma
may be proven by induction on d(X).



Markoff triples and quasifuchsian groups

Lemma 2.1.1 : Suppose € € E(X) and Q°(e) = {X1, X5}. Suppose f : Q°~ — [0, o0).
(1) Suppose f satisfies f(Z) < f(X)+ f(Y) + ¢ for some fixed constant ¢ > 0, whenever
X,Y,Z € QY= (€) are three regions meeting at a vertex, and satisfying d(X) < d(Z)
and d(Y) < d(Z). Then f(X) < (M + ¢)F.(X) — ¢ for all X € Q°(€), where M =
max{ f(X1), f(X2)}.

(2) Suppose f satisfies f(Z) > f(X)+ f(Y) — ¢ for some fixed constant 0 < ¢ < m
min{ f(X1), f(X2)}, whenever X,Y, Z are as in part (1). Then f(X) > (m — ¢)F.(X) +

for all X € Q% (&).

<>Q

Corollary 2.1.2 :  Suppose f : Q — [0, 00) satisfies an inequality of the form f(Z) <
f(X)+ f(Y) + c for some fixed constant ¢, whenever X,Y, Z € Q meet at a vertex. Given
any edge e € E(X), there is a constant K > 0, such that f(X) < KF.(X) for all X € Q.

Proof : Apply Lemma 2.1.1(1) to get upper bounds for f on Q97(¢€) and Q°F(¢) =
Q0 (—8). ¢

Clearly f = F./ satisfies the hypotheses of Corollary 2.1.2, with ¢ = 0, for any edge
¢/ € E(X). We deduce:

Proposition 2.1.3 : Given e, e’ € E(X), there is some K > 0 such that
KM F(X) < Fu(X) < KFo(X)

for all X € Q). &
This leads to the following definitions:

Definition : Suppose f: Q — [0,00), and ' C Q.
We say that f has an upper Fibonacci bound on Q' if there is some constant K > 0 such
that f(X) < KF.(X) for all X € Q.

We say that f has a lower Fibonacci bound on € if there is some constant k£ > 0 such that
f(X) > kF.(X) for all but finitely many X € Q.

We say that f has Fibonacci growth on Q' if it has both upper and lower Fibonacci bounds
on (.

If f has Fibonacci growth on all of €2, then we shall say simply that it has Fibonacci growth.

JFrom Proposition 2.1.3, we see that it doesn’t matter which edge e € E(X) we choose
for this purpose.

Note that if €’ is the union of a finite set of subsets ,...,Q,, C @/, then f has
an upper (lower) Fibonacci bound on €’ if and only if it has an upper (lower) Fibonacci
bound on each ;.

We are principally interested in lower Fibonacci bounds, which will give the conver-
gence of certain series. Let F' = F, for some edge e € E(X). If X,Y € Q meet along
some edge €', then we see (by induction) that F'(X) and F(Y) are coprime. In fact the
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path in ¥ from €’ to e can be determined from F(X) and F(Y') by a process of continued
subtraction. It is not hard to see from this that F' takes any given value n € N on precisely
2¢(n) regions of 2, where ¢ is the Euler function. Thus, for any real s > 2, we have

Z F(X>—s _ 2<(S — 1)

®

where ( is the Riemann zeta function. The right hand side is the result of summing the
Dirichlet series 2 >° | ¢(n)n—*.

Although it is amusing that one can actually write down the answer, we are only really
interested in the fact that this series converges. We deduce:

Proposition 2.1.4: If f : Q — [0, c0) has a Iower Fibonacci bound, then )y ¢, f(X)™*
converges for all s > 2. (We may have to exclude a finite subset of Q) on which f takes the
value 0.) ¢

Before moving on, let us note that ) has a natural “3-colouring”, i.e. there a partition
of Q into three disjoint subsets, {Q!, 22, 03} such that any two regions meeting along an
edge of ¥ lie in different elements of the partition. This partition is unique (up to the
permuting the “colours” 1, 2 and 3). All three colours meet at a vertex. We shall return
to this subject later.

2.2. Punctured tori.

Recall that I' = 71 (T) is the free group on two generators. As in the introduction,
we identify the set of homotopy classes of closed curves on T with I'/~, where g ~ h if g
is conjugate to h or to h~!. Given a particular free generating set, {a, b} for T, we define
the cyclic word length, W(vy) of v € I'/~ as the length of a cyclically reduced word in
a,b,a”t,b~! representing v. Such a word is unique up to cyclic permutations and formal
inverses. It has the minimal length among all words representing ~. Let QcCr /~ be the
subset of simple closed curves. An element of may be written as a (cyclically reduced)
word either in @ and b or in @ and b=!. (This follows from the fact that one can represent
such a curve as a closed geodesic on a euclidean torus punctured at one point.)

As we have mentioned there is a natural identification of Q and . There are many
ways of describing this. For example, we saw, using the upper-half space model, that 2 can
be identified with Q U {co}. An identification of Q with QU {oo} may be obtained as via
its description as the set of rational laminations on the torus. Alternatively, identify any
fixed simple closed curve with oo, and extend this identification using the natural actions
of PSL(2,Z) on the sets QU{oco} and (2, given that PSL(2,Z) is the mapping class group
of T.

A more natural way of carrying out this identifcation is via Harer’s complex [24].
(See also [9] for an account via hyberbolic geometry.) This describes a trianguation of the
Teichmiiller space of a punctured surface, in this case the hyperbolic plane. The (ideal)
vertices of this triangulation correspond, in the case of a punctured torus, to simple closed
curves.
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We can write out explicit representatives in T' of elements of corresponding to given
elements of Q as follows. Choose some € € E(X). Let e + (X1, Xy; X3, X4) (recalling
the notation introduced in Section 2.1). The elements of Q corresponding to X; and X,
are represented, respectively, by a pair of free generators, a and b for I'. Without loss of
generality, we can suppose that X3 and X, are represented by ab and ab~!'. We can now
inductively give representatives for all regions in 92°~ by a process of concatenation: In
the notation of Section 2.1, let S be the set of all words in a and b, and given wy,ws € S
define B(wj,w2) to be the concatenation of w; and wy. We may do a similar thing for
Q0 (&) = Q% (—¢) replacing b by b~!. Note that all the words arising in this way are
cyclically reduced. We deduce:

Lemma 2.2.1 : Suppose a and b are a pair of free generators for I' corresponding to
regions X1 and X5. Let e be the edge X1 N Xy. If v € § corresponds to X € (), then
W(y) = Fe(X). %

Before we leave this section, we note that the 3-colouring of € referred to at the end
of Section 2.1 corresponds to partitioning €2 by the three non-trivial Zs-homology classes
of closed curves.

3. Markoff maps.

In this we develop some basic results about Markoff maps, including proofs of Theo-
rems 1-3.

Recall the definition of a Markoff map, ¢ : 2 — C, from Section 1, and the notation
€+ (X,Y; Z, W) introduced there.

Throughout this section, we shall fix on one Markoff map, ¢, which we assume to be
non-trivial (i.e. not identically zero). We shall adopt the following

Convention : We use upper case latin letters for elements of ), and the corresponding
lower case letters for the values assigned to them by ¢; i.e. = ¢(X), y = ¢(Y) etc.

We begin by showing that ¢ has an upper Fibonacci bound. If three regions X,Y, Z €
Q) meet around some vertex, then solving the Markoff equation (x) in z, gives us z = 1 (zy+
V12y? — 4(22 + y?)). (From this we easily deduce that log™ |z| < log™ |z|+log™ |y|+log 2,
where log™ ¢ = max{0,log(}. Applying Corollary 2.1.2, we find:

Proposition 3.1 : If ¢ is a Markoff map, then log™ |¢| has an upper Fibonacci bound
on (). %

Note that, since ¢ is non-trivial, it is not possible for two adjacent regions to be
assigned the value 0. In fact it will simplify our exposition a little if we only deal with
the cases where all values are non-zero; i.e. we are effectively assuming that ¢=1(0) =
(). However, we will not use this assumption in any essential way, except where other

11
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hypotheses imply this anyway. The details of the cases where some of the values are 0 are
easily filled in.

This convention will allow us to write the vertex and edge relations, (x) and (*x), in
a form that is often convenient:

yz zx  xy
ST
ry Ty
We may use ¢ to define a map a = ay : E(X) — E(Y) which assigns to each
undirected edge, e, a particular direction or “arrow”, & = a(e), with underlying edge e.
Suppose e < (X,Y;Z, W). If |z| > |w| then we the arrow on e points from Z to W.
In other words, a(e) <> (X,Y;Z,W). Note that the statement |z| > |w| is equivalent to

R (w—Z?J) > 1. In particular, it implies that 2|z| > |zy|. In fact we have

S N Y (R
ry 2 2 g2
w oY
xy 2 x2  y?

where, as before, we adopt the convention that the real part of the square root of a complex
number is non-negative. If |z| < |w| we put an arrow on e pointing from W to Z. If it
happens that |z| = |w| then we choose «a(e) arbitrarily.

By a sink we mean a vertex v such that for each of the incident edges e, the arrow
a(e) points towards v. A source is defined similarly, with the three arrows pointing away
from v.

and

Lemma 3.2 :
(1) There are no sources.
(2) If the three regions X,Y, Z € Q intersect at a sink, then min{|z|, |y|, |z|} < 3.

(3) Suppose X,Y, Z € Q meet a vertex v € V(X), and that the arrows on the edges X NY
and X N Z both point away from v. Then |z| < 2.

Proof : In each case we assume that v € V(X) is the intersection of the regions X, Y, Z €
Q.

(1) If v were a source, then we would have 1 = R (x—zy> +R(L)+R (ﬁ) >14141=3
(2) Suppose v is a sink. Set p =R (ﬁ), g=R(L)andr =R (ﬁ) Thusp+qg+r=1,
and p,q,r < % Without loss of generality, r < ¢ < p. It follows that pqg > %, for otherwise
l=p+q+r §p+2q<p+% < 1. Thus [z]* < i < 9 and so |z| < 3 as required.

(3) In this case, |ry| < 2|z| and |zz| < 2]y| and so |z| < 2. O

12
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Proof of Theorem 1(2) : Suppose k£ > 2. Recall the definition Q(k) = {X € Q |
|p(X)| < k}. We want to show that |JQ(k) is connected.

Suppose it is not connected. Then we can find a path in ¥ which joins two distinct
components of | (k). Let 8 be such a path of minimal length. Thus g intersects | Q(k)
precisely in its two endpoints. Now [ consists of a sequence, ey, ..., ey, of edges of X. If a
region, X, contains one of these edges in its boundary, then we must have |z| > k.

Case (1) : p=1.

Let e; « (X,Y;Z,W), so that Z, W € Q(k). Then k? < |zy| < |2] + |w| < 2k,
implying that k < 2.

Case (2) : p> 1.

Let e; < (X,Y; Z, W) with Z € Q(k). Since W ¢ Q(k), we have |z| < |w|, and so the
arrow on e; points towards Z. Similarly the arrow on e, points towards the other endpoint
of 8. It follows that there must be a consecutive pair of edges e; and e; 1, such that the
arrows on them point away from their common endpoint. By Lemma 3.2(3), there is a
region X’ containing both these edges in its boundary, for which |¢(X”")| < 2, contradicting
X' ¢ Q(k).

This concludes the proof of Theorem 1(2). &

Suppose X € (). Then 0X is a bi-infinite path consisting of a sequence of edges of
the form X NY,,, where (Y},)nez is a bi-infinite sequence of complementary regions. Let
x = A+ A" where [A\| > 1. If z = 2, then the vertex relation tells us that y, 1 = vy, £ 2i,
and the edge relation tells us that the £ sign is constant in n. Similarly, if £ = —2, then
Yn+1 = —Yn £ 2¢, though this time, the + sign alternates in n. If = ¢ {—2,2} then there
are constants A, B € C with AB = x?/(xz* — 4) such that y, = A\"* + BA™". Note that
|A| =1 if and only if z € [-2,2] C R. We conclude:

Lemma 3.3 :
(1) If © ¢ [—2,2], then |y, | grows exponentially as n — oo and as n — —oo.
(2) If v € (—2,2) then |y,| remains bounded.

(3) If = 2, then there is some z € C such that either y,, = z+2ni for alln, or y,, = z—2ni
for all n.

(4) If z = —2, then there is some z € C such that either y,, = (—1)"(z + 2ni) for all n, or
Yn = (—=1)"(z — 2ni) for all n. o

Lemma 3.4 : Suppose 3 is an infinite ray in 3 consisting of a sequence, (€,)neN Of
edges of 3. Suppose that the arrow on each e,, is directed towards e,,+1. Then  meets at
least one region X for which |¢(X)| < 2.

It follows that there must, in fact, be infinitely many such regions. For some ap-
plications (such as Theorem 1(1)), we only need a weaker conclusion, (for example, that
|¢p(X)| < 3). For this one can exit from the proof at an earlier stage.
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Proof : We shall write €, = a(e,) for the edge e,, directed towards e, 1. We may partition
the set of adjacent regions (those meeting 3 in at least one edge) into three subsequences,
(X7)ien, with j € {1, 2,3}, corresponding to the 3-colouring of 2 described at the end of
Section 2.1. If €, <+ (X,Y; Z,W), then |w| < |2|, and Z and W are consecutive elements
in the same subsequence. It follows that for each j, the sequence (|z7]);en is monotonically
non-increasing.

Let us assume, for contradiction, that |xi | > 2 for all ¢ and j.

Now if € = €, for some n, and € + (X,Y; W, Z), we can suppose, without loss of
generality, that X N Z C 3, so that the arrow on the edge X N Z points away from the
vertex X NY N Z.

(From the monotonicity described above, we can find such an edge €, so that |z| <
|lw| < |z| +n for arbitrarily small n > 0. We see that |zz| < 2|y| and |zy| < |z| + |w] <
2|z| +n. Thus |z|? < 4+ 2n/|2| < 4+ 7 since |z| > 2. Tt follows that we can assume that
|| is arbitrarily close to 2.

(This is good enough for many purposes. If we want to show we can find a region so
that the norm is less than 2 then we have to plough on.)

Continuing with the same line of argument, using the monotonicity of the three se-
quences, we can now assume that in the above set-up, |z| and |w| are both arbitrarily close
to 2. Since 4 < |zy| < |z] + |w| =~ 4, we have that |z| and |y| are also close to 2. Since
X, Y and Z represent all three colours, we can henceforth assume that all numbers have
norm close to 2.

Since % + ;"—y =1, it follows that % ~ %
next edge of 3, (i.e. X N Z) we find that 2 ~ % Thus x ~ 4+2. This is true of any region
X which contains two consecutive edges e,, and e, 1 in its boundary for sufficiently large
n.

. By a similar argument, applied to the the

JFrom Lemma 3.2, and the previous discussion, we see that 8 cannot eventually lie in
the boundary of any one region. (In other words each of the three subsequences of regions
is indeed infinite.)

It follows that there must be an edge (indeed infinitely many edges), € in § with
€+ (X, Y;W,Z)sothat YNW C fand X NZ C . Thus, x ~ +2 and y ~ +2. Also
|lw| ~ |z| ~ 2. Since z + w = xy ~ +4, we see that z ~ w ~ +2. Thus the vertex relation,
2% 4+ y? + 2% = xyz, is violated.

This finally contradicts the assumption that all numbers have norm at least 2, thus
proving Lemma 3.4. &

Proof of Theorem 1(1) : If Q(2) = 0, then Lemma 3.4 tells us that there must be a
sink. We now apply Lemma 3.2(2). This proves Theorem 1(1). &

We have seen (Proposition 3.1) that log™ |¢| has an upper Fibonacci bound on Q. We
go on to consider criteria for it to have an lower Fibonacci bound on certain branches of
DI

Suppose € € E(X) is such that Q°(e)NQ(2) = 0. Since |JQ(2) is connected (Theorem
1(2)), we must have either Q(2) C Q1 (é) or 2(2) C Q(€). (Possibly Q(2) = 0.) If
Q(2) € Q(€) and Q(2) # 0, then a(e) = —€. (This follows from Lemma 3.2(3), by a
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similar argument to that for Theorem 1(2) — consider the path § joining e to the nearest
point of (JQ(2).) Taking the contrapositive, we have:

Lemma 3.5 : Suppose & € E(X) is such that a(e) = € and Q°(e) N Q(2) = 0. Then
Q=€) NQ(2) = 0. Moreover the arrow on each edge of ¥~ is directed towards e.

Proof : jFrom the preceding discussion. The last statement follows by applying Lemma

3.2(3). ¢

Corollary 3.6 : With the hypotheses of Lemma 3.5, write f(X) = log|¢(X)| for any
X € Q% (€). Let m = min{f(X) | X € Q%e)} > log2. Then f(X) > (m — log2)F.(X)
for all X € Q% (&).

Proof : Suppose X,Y,Z € Q% meet at a vertex, and d(X) < d(Z) and d(Y) < d(Z) as
in Lemma 2.1.1. Now the arrow on X NY points away from Z and so 2|z| > |zy|. Thus
f(Z)> f(X)+ f(Y) —log2. Apply Lemma 2.1.1(2).

Corollary 3.7 : IfQ(2) = 0, there is a unique sink, and log™ |¢| has Fibonacci growth.

Proof : The existence of a sink, v, comes from Lemma 3.4. Its uniqueness comes from
Lemma 3.2(3), which in this case shows that there is at most one arrow with its tail at any
given vertex. By Proposition 3.1, log™ |¢| has an upper Fibonacci bound on . To get a
lower bound, apply Corollary 3.6 to the three edges incident on v.

This proves Corollary 3.7. &

To deal with Theorem 2, we shall want to expand somewhat on Corollary 3.6, to
consider branches of ¥ where at most one region has norm greater than 2. Let us consider
the following set-up.

Suppose X €  and f is an infinite ray lying in the boundary of X consisting of a
sequence, (€;)5°,, of directed edges so that each €; is directed away from €;41. For ¢ > 1,
let v; be the vertex incident on both e; and e; 1, and let €; be the third edge incident on v;
(distinct from e; and e;_1), and directed towards v;. Thus Q°~ (&) = {Xo}UU;o, Q07 (&).
It is easy to see (using Lemma 2.1.1(2)) that a map f : Q% (y) — [0,00) has a lower
Fibonacci bound on Q°~ (&) if and only if there is some constant k > 0 such that for all
n > 1 and for all X € Q°7(€,), we have f(X) > knF- (X). As a consequence, we see:

Lemma 3.8 : Suppose Xy, €y and (€,)%2, are as described above. Suppose x¢ ¢ [—2,2],
and that Q°~(&y) N Q(2) C {Xo}. Suppose also that €, = afe,) for all n > 1 (which
is automatically satisfied if |xo| < 2). Then log™ |¢| has a lower Fibonacci bound on
QO_(€0>.

Proof : For n > 0, let e, be as described in the paragraph before Lemma 3.8, and
let Q%e,) = {Xo,Y,}. Thus Q%e,) = {Y,_1,Ys} for all n > 1. By Lemma 3.3, |y,|

grows exponentially as n — oo, and so log |y, | is bounded below by some increasing linear
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function of n, which we can take to have the form [n +— c¢n] for some ¢ > 0. The result
now follows by applying Corollary 3.6, and the discussion preceding the statement of the
lemma. &

Proof of Theorem 2 : We are assuming that ¢—1[—2,2] = () and that £(2) is finite.
By Corollary 3.7, we can suppose that €(2) # (. By Proposition 3.1, it suffices to show
that log™ |¢| has a lower Fibonacci bound on €.

Let B’ C E(X) be the (finite) set of edges, e, such that Q°(e) C Q(2). If B’ # 0, let
T C E(X) be the tree spanned by E’. Since |J2(2) is connected, it is easy to see that
each vertex of T lies in at least one region of (2). If E’ = (), then, again since |JQ(2)
is connected, it must be that €2(2) consists of a single region, X¢. In this case, take T" to
be any vertex in the boundary of Xy. Now, let C = C(T') be the circular set of directed
edges given by T'. Note that Q = [Jsc Q2°7(€).

Suppose € € C. If Q%(e) NQ(2) = 0, then the hypotheses of Corollary 3.6 are satisfied.
(Note that the head of € lies in 7', and is thus in the boundary of some region of Q(2).)
It follows that log |¢| has a lower Fibonacci bound on Q°~(&). If Q%(e) N Q(2) consists of
a single region, Xy, then the hypotheses of Lemma 3.8 are satisfied (with € = éj), and
so again, log™ |¢| has a lower Fibonacci bound on Q°7(¢). This concludes the proof of
Theorem 2. &

We write ®¢ for the set of Markoff maps satisfying the hypotheses of Theorem 2. If
¢ € ®g, then by Proposition 2.1.4, 3" v (log™ [¢(X)])~* converges for s > 2 (if we exclude
those X for which [¢(X)| < 1). In particular, we see that >y g [#(X)|™? converges for
all 8 > 0. Thus (k) is finite for all £ > 0. In other words, ¢ is at most finite-to-one and
has discrete image.

Note that the argument of Theorem 2 can be applied to a single branch of the tree .

Proposition 3.9 : Suppose € is a directed edge of ¥ such that Q~ (€) N§2(2) is finite and
Q (&) N¢~'[—2,2] = 0. Then log™ |$| has a lower Fibonacci bound on Q~(&).

Proof : Let T'C X be the (possibly infinite) tree constructed as in the proof of Theorem
2. Let T” the tree spanned by 7" N%~ and eNX~. Thus 7”7 is finite, and —e' € C(T”"). As
before, we see that log™ |$| has a lower Fibonacci bound on Q7 (€) for all € € C(T")\ {—¢}.

This proves Proposition 3.9. &

Note that (by Lemma 3.5), Proposition 3.9 applies in the case where a(e) = € and
Q% e) N Q(2) = 0. Note also that we may conclude that > xea- (o) |¢(X)|~# converges for
all 6> 0.

Elaborating on Lemma 3.2, we see that in the case when x ¢ [—2,2], so that |[A| > 1,
the sequence |y,| = |AA™ + BA™"| is monotonic for sufficiently large and sufficiently small
n. We conclude:

Lemma 3.10 : If X € Q and x = ¢(X) ¢ [—2,2], then there is a nonempty finite subarc
J(X) C 0X (i.e. J(X) is the union of finitely many edges or possibly a single vertex of
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0X ) with the property that if e is any edge in 0X not lying in J(X), then the arrow on e
points towards J(X). Moreover, we can assume that Y N X C J(X) for all Y € Q(2). <&

In the case where ¢(X) € [-2,2], we shall set J(X) = 0X. Given ¢ € ® with
Q(2) # 0, we define Ty = Uxcqa) J(X)-

Lemma 3.11 : T} is connected, and the arrow on each edge not in T points towards
To.

Proof : This is based on two observations. First, note that if 7" is some connected
component of Ty, then the arrow on every edge of C(T") points towards 77, i.e. a(e) = €
for all € € C(T"). The second observation is that if v € V(X) is a vertex not in Ty, then
there is at most one arrow leaving v; for if v were the tail of both a(e;) and «a(ez) where
e1,e2 € E(X), then by Lemma 3.2(3), e; and ey would both lie in the boundary of some
region X € €(2), and so v € J(X). The fact that Tj is connected now follows as in the
proof if Theorem 1(2), by considering an arc in 3 which meets Ty precisely in its two
endpoints. The fact that if e € E(X) does not lie in T then a(e) points to Ty follows
similarly. &

Corollary 3.12 : If ¢ € ®g, then there is a finite subtree Ty C ¥ with the property that
the arrow on each edge not in Ty points towards Ty.

Proof : If Q(2) # () then the tree Ty given by Lemma 3.10 is finite. If Q(2) = (), then
applying Corollary 3.7, we can take to Tj to be a single vertex.

This proves Corollary 3.12. &

Note that the conclusion of Corollary 3.12 may be rephrased as follows. Suppose
T C ¥ is any finite tree containing Tp, then €= «(e) for all € in the circular set C(T').

We are now in a position to give a proof of McShane’s identity for elements of ®q.
Suppose € € E(X) with e = X NY, and the head of & at e N Z. Set 1(¢) = z/xy.

Exactly as in [6], we see that if C' is a circular set of directed edges, then ) ..~ v¥(€) = 1.
Also, if € = a(e), then 1(€) = h(z,y) where h(z,y) = 1 (1 - \/1 —4 (x% + y—i)) (Recall

that the real part of a square root is non-negative.) Note that h(z,y) — h(z) as y — oo
for any fixed z.

Proof of Theorem 3 : The proof is essentially the same as that given in [6]. To make the
analysis work, we need to observe that h(z,y) = O(|z| 2 +|y|~2), h(z) = O(|x|~2) and that
> xeq |#(X)|72 converges (Theorem 2). (This replaces the fact that > .o h(¢(X)) < 3
in [6].)

We now choose an exhaustion of 3 by suitable finite subtrees T;, as in [6]. Note that,
provided T,, O T, we have Y {h(z,y) |e=XNY,é€ C(T,)} = 1. We complete the proof
as in the real case. &
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Again, there is a version of Theorem 3 applicable to a single branch of the tree .
This is quoted in [7].

Proposition 3.13 : Suppose € is a directed edge of ¥ such that Q= (€) N (2) is finite
and Q9= (&) N ¢~1[-2,2] = 0. Then,

@)= > h@X)+2 > h(e(X)).

Xe0(e) XeQ—(e)

Proof : By Proposition 3.9, we know that ZXGQ,@ |h((X)|™2 converges.

We apply the arguments of [6], this time taking an exhaustion of ¥~ by a sequence of
finite subtrees (T},)nen. We can assume that each T), meets e in its tail, so —e € C(T},).
Let C!, = C(T),,) \ {—¢€}, so that ¥ (&) = ZgGC; Y (€). Letting n — oo we replace the right
hand side by a a sum of quantities h(¢(X)) where X ranges over an appropriate subset of
regions of 2. In this sum, each region of Q7 (€) gets counted twice, while the two regions
of Q%(e) each get counted once.

This proves Proposition 3.13. &

The next objective is to show that ® is an open subset of ®. This works essentially
because one can recognise that an Markoff map belongs to ®¢ from a finite amount of
information. One way to do this is to give an explicit descriptions of trees satisfying the
conclusion of Corollary 3.12.

To begin with, let us elaborate further on Lemma 3.3. Suppose z = XA + A~! with
Al > 1, and y, = A\" + BA™" with AB = 22/(2® — 4). It is a simple exercise to
show that there is a continuous function H : C\ [-2,2] — (0, 00) such that there are
numbers ng < ny € Z so that |y,| < H(z) if and only if np < n < ny and so that |y,|
is monotonically decreasing on (—oo,ng — 1] and monotonically increasing on [n; + 1, 00).
We can assume that H(x) > 2 for all . Thus,

Lemma 3.14 :  Suppose X € Q and (Y,,)ncz is the bi-infinite sequence of regions
meeting X. If v = ¢(X) ¢ [—2,2] and r > H(z), set J.(X) = U{X NY, | |yn| <7r}. Then
J(X) = J.(X) C 90X has the property described by Lemma 3.10.

Of course, it would not be hard to write down an explicit formula which would serve
to define H(z). We shall not bother to do this here since it seems to hard to find a simple
expression which is anywhere close to optimal. Note that J,.(X) always has at least one
edge. If x € [—2, 2] we shall set H(x) = oo. Thus, if ¢(X) € [—2,2] we take J.(X) = 0X.

With a view to showing that ®¢ is open, we introduce the following, somewhat arbi-
trary construction. Given t > 0, let T'(t) = T, (t) be the union of all the arcs J(5)1+(X)
as X varies in (24 ¢). The arguments of Lemma 3.11 show that T'(¢) is connected. Also,
if T'(t) # (), then the arrow on any edge not in T'(t) points towards 7T'(t). By Theorem 1(1),
we will always have T'(t) # 0 for ¢t > 1.

Note that we can describe T'(t) directly in terms of its edges. Suppose e = X NY €
E(X). Then e is an edge of T'(¢) if and only if either |x| < 2+t and |y| < H(x) + ¢ or
ly| <2+t and |z| < H(y) + t.
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Lemma 3.15 : For any fixed t > 0, we have ¢ € @ if and only if T'(t) is finite.

Proof : If ¢ € ®¢, then each arc Jp(;)4:(X) has finitely many edges. Also (2 + 1) is
finite. We see that T'(t) is finite. Conversely, if T'(¢) is finite, then ¢~![—2,2] = ). Since
each Jp(z)++(X) has at least one edge, we see that (2 + ) is finite. Thus ¢ € ®¢. This
proves Lemma 3.15. &

This gives a finite criterion for recognising that a given Markoff map ¢ lies in ®q. If
we find a finite non-empty component of 7'(t), then we know that it must be the whole of
T'(t) and so ¢ € ®g. Such a component must exist if ¢ > 1. This is essentially the criterion
used in [10] to rule out certain Markoff triples as corresponding to double limit groups.
We need to check that this criterion is indeed an open property.

Recall how the topology on ® is defined. If X,Y,Z €  meet at some vertex of
Y, then the correspondence ¢ < (¢(X),d(Y), #(Z)) identifies ¢ as the complex variety
{(x,y,2) € C? | 2% + y? + 2% = zyz}. We take the subspace topology on ®. If X' Y’ 7'
are another three regions meeting around a vertex, then we get a different identification.
However the maps (x,y,2) <> (2,1, 2’) are polynomial. In particular, we get the same
topology on ®. Note that the variety is smooth away from 0.

Theorem 3.16 : ®( is an open subset of ®.

Proof : Fix any t; > ¢y > 1. Suppose ¢ € ®g. Now T'(¢;) is a finite subtree of 3. Clearly,
if to > t; is sufficiently large (depending on ¢), then the finite tree T'(¢3) must contain
T'(t1) in its interior, i.e. it contains T'(¢1), together with all the edges of the circular set
C(T(t1)).

Given ¢’ € @, write T"(t) for Ty (t). Now, if ¢’ is sufficiently close to ¢, then T"(to) N
T(tz) € T(t1). Also, since T'(1) is a non-empty subtree of T'(t3), it follows that 7" (¢g) N
T(t2) # 0, provided again that ¢ is sufficiently close to ¢. Since T'(to) is connected, we
must have T"(tg) C T'(t2). Thus T"(t¢) is finite, and so ¢’ € Dg,.

This proves Theorem 3.16. &

In particular, we see that ® is locally connected, and so all its connected components
are also open.

For some refinements of Theorem 3.16, see Proposition 5.8, and the related discussion.

We mentioned in Chapter 1 that ® admits a Z3-action. We choose an identifica-
tion of the non-trivial elements, g1, g2, g3 of Z3 with the colours 1,2, 3 of the 3-colouring,
{Q1, 02,03} of Q. Given ¢ € ®, we define g;¢ by (9:0)(X) = ¢(X) if X € QF and
(9:9)(X) = —¢(X) otherwise. It is easily seen that Z3 acts freely and properly discontinu-
ously on @\ {0}. Clearly, ®, is invariant under this action, and ®¢/Z3 is an open subset
of ®/Z3. Conjecture A stated in Chapter 1 is equivalent to the assertion that ®¢/Z3 is
connected. We say more about this in Chapter 4.

We finish this chapter with a brief discussion of real Markoff maps. Write ®® = {¢ ¢
O | ¢(2) C R} for the set of such maps. It is easily seen from the edge relations that
¢ € ®R if and only if z,y, 2 € R, where X,Y, Z are three regions meeting at a particular
vertex. Note that if ¢ is non-trivial, then all three of x, y and z must be non-zero. In fact,
since xyz = x2+y?+22 > 0, either all three are positive, or else one is positive and the other
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two negative. Let us suppose that all three are positive. Then xy — z = (2% + y?)/z > 0.
Similarly yz — z and zx — y are positive, so it follows inductively that ¢(X) > 0 for all
X € Q. We conclude:

Lemma 3.17 : Any non-trivial real Markoff map is equivalent under the Z3-action to
one which takes only positive real values. &

We write PRT = {¢ € & | ¢(02) C (0,00)} C OR.

Suppose (x,y, z) is a positive real Markoff triple corresponding to ¢ € ®R+. The fact
that 22 — zyz — (22 +9?) = 0 has a real root in z tells us that 72 +y~2 < 1/4. Similarly,
y =24+ 272<1/4 and 272 + 272 < 1/4. In particular, we have x,y, z > 2. Thus Q(2) =0
and so ¢ € ®g. We see that all non-trivial real Markoff maps lie in ®¢.

It is a simple excercise to verify that the space {(x,y,2) € R3 | z,y,2 > 0, 22+y?*+2% =
xyz} is diffeomorphic to R?, and properly embedded. In summary we see:

Proposition 3.18 : The space ®® has five connected components, namely the singleton
{0} together with the four images of ®R* under the Z3-action. Each of these four images
is diffeomorphic to R%. Moreover ®® C &4 U {0}. O

Finally, let us consider integer valued Markoff maps. Suppose ¢(Q2) C Z. If ¢ is non-
trivial, we may as well suppose that ¢(2) C N. We know that ¢(X) > 2 and so ¢(X) > 3
for all X € Q. Also, by Theorem 1(1), there is some Z € Q with z = ¢(Z) = 3. Choose
X € Q to minimise ¢(X) among all regions adjacent to Z. Let Y be one of the two regions
adjacent to both X and Z. We have zr <y and z < zzx —y = 3z — vy, so y < 2z. Writing
y = px with 1 < pu <2, wehave (3u—1—p?)2? =9. But 3u—1—p? > 1, and so = < 3.
Thus x = 3, and y is either 3 or 6. In the latter case, zx —y =9 — 6 = 3, so we may as
well take y = 3. We have shown:

Proposition 3.19 : If ¢ is a positive integer valued Markoff map, then we can find three
regions X,Y, Z € Q meeting at a vertex, so that ¢(X) = ¢(Y) = ¢(Z) = 3. &

This is the well-known result, due to Markoff [31], that any non-trivial integer valued
Markoff triple can be reduced to (3, 3, 3) by a sequence of operations of the form (z,y, z) —
(x,y,zy — z) and (z,y,z) — (—z,—y, z) together with permutations of x, y and z. See
[17] for more discussion of this.

4. Quasifuchsian groups.
In this chapter we relate some of the results on Markoff maps to spaces of representa-
tions. First we make a few observations about matrices in SL(2, C) all of which seem to

be well-known. We omit proofs of the first two.

Lemma 4.1 : Suppose A, B € SL(2,C). Then A and B have a common eigenvector if
and only if tr[A, B] = 2. O
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Lemma 4.2 : Suppose A, B, A", B’ € SL(2,C) satisfy tr A = tr A’, tr B = tr B’ and
tr AB = tr A’B’, then either tr[A, B] = tr[A’, B'| = 2, or there is some P € SL(2,C) such
that A' = PAP~ and B' = PBP~\. o

Lemma 4.3 : Suppose x,y, z € C, then there exist A, B € SL(2,C) such that tr A = z,
trB=y and tr AB = z.

b
a=x/2,b=a*—-1and a = y/2. We can solve for 3 and ~ from 3+~ = (2 — 2a«a)/b and
By = a? — 1. This works unless x = £2 (so that b = 0). By interchanging the roles of ,
y and z, this deals with all cases except when z,y, z € {—2,2}. In these cases we can just
write out explicit matrices (though they do not concern us here since they cannot arise
from Markoff triples). This proves Lemma 4.3. &

Proof : One way to see this would be to write A = (a Z) and B = (?; g), so that

—1
In this case, we have AB = —BA, or equivalently [A, B] = —I. We see that A and B
generate the quaternionic group of order 8. Note also that the matrices A and B can be
assumed to vary continuously in (z,y, z) in a neighbourhood of (0,0, 0).

. . 0 1 0 -1 i 0
Notethat1f$—y—z—Owegetthematrlces(Z. 0),(1 O)and (0 )

If (z,y,z) is a Markoff triple, then tr[A, B] = —2 (from the trace identity quoted
in Chapter 1). In this case we get nice alternative normalisation due to Jgrgensen [26],
namely:
A:l xz—y x/z le yz—x —y/z
z Tz Y z —yz x '

These matrices are unique up to simultaneous conjugacy, by Lemma 4.2. Note that this
particular representation blows up when z = 0. We can put this right by interchanging x,
y and z, unless x = y = z = 0. But we have already observed that the matrices can be
assumed to vary continuously up to conjugacy in a neighbourhood of (0,0, 0).

Recall that a representation p from the free group on two generators, I' = (a,b) to
SL(2,C) is called “type preserving” if tr p[a, b] = —2. The space of representations carries
a natural (algebraic) topology, which can be described, for example, as arising from the
embedding in SL(2,C) x SL(2,C) given by [p — (p(a),p(b))]. We take the quotient
topology on the space of representations up to conjugacy.

Given a Markoff triple, (z,y,2), we construct a representation p by p(a) = A and
p(b) = B using Lemma 4.3. By Lemma 4.2, p is unique up to conjugacy in SL(2,C).
In this way, we get an identification of the space ® with the space of type-preserving
representations defined up to conjugacy. ;From our earlier discussion, we see that the
topologies on these spaces agree.

In the case of the trivial Markoff map, we get a representation py, whose image in
SL(2, C) is isomorphic to the quaternionic group (and so projects in PSL(2, C) to a Klein-
four group). In particular, po([a,b]) = —I. In all other cases the image of the commutator
will be a parabolic element of PSL(2,C).
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The Z3 action on ® corresponds to multiplying one or other or both of the matrices
p(a) and p(b) by —1. Thus, the quotient ®/Z3 may be identified with the space of conjugacy
classes of type preserving representations into PSL(2, C). (Note that the sign of the trace
of commutator in PSL(2,C) is well-defined.) We identify PSL(2,C) as the group of
orientation preserving isometries of hyperbolic 3-space, H3.

We say that a non-trivial element A € SL(2, C) is elliptic if tr A € (—2,2), parabolic if
tr A € {—2,2} and loxodromic if tr A ¢ [—2,2]. We define the complex translation distance
[(A) € C/4miZ of loxodromic element by setting tr A = 2cosh(I(A4)/2) and demanding
that R(I(A)) > 0. It may be given the following geometrical interpretation. When A acts
on H3, it preserves a bi-infinite geodesic, which it translates through a distance R(I(A))
and rotates the normal bundle though an angle of J(I(A)). We call L(A) = R(I(A)) the
real translation distance A. Tt is the length of the simple closed geodesic in H3/(A).

Note that for any ¢ € C, we have |cosh(|? = cosh?(R¢) — sin?(3¢) = sinh?(R¢) +
cos?(S¢). Thus |sinh(R¢)| < |cosh (| < cosh(R¢). In particular, |tr A| < 2cosh(L(A4)/2),
and so log™ | tr A| < L(A).

Let Sy, be the (topological) surface of genus g with p punctures. We assume that the
Euler characteristic, 2 — 2g — p, is negative. Let I'y ), = m1(Sg,p). (Thus I' = I'; ; is the
free group on two generators.) Thus the set of homotopy classes of closed curves on S, ),
may be identified with I'y ,/~, where ~ identifies conjugates and conjugates of inverses.
We can define a type preserving representation p : I'y , — SL(2, C) as one which sends
peripheral elements to parabolics, and such that p(I'y ;) is non-elementary, i.e. its elements
do not have a common eigenvector. The latter clause ensures that we have agreement with
our earlier definition for I' =T'; ; (using Lemma 4.1).

TN~

Given any fixed finite generating set for I'y ,, and v € Iy ,,/~, we define W (~) to be
the length of the shortest cyclic word, in the generators and their inverses, representing
~. If we were to take a different finite generating set to get a function, W’, there would
be a constant ¢ > 1 such that ¢ 'W(y) < W'(y) < ¢cW(y) for all v € T, ,,/~. For this
reason, it will not matter to us which generating set is chosen, so we shall stay with some
particular function W. Suppose p : I' — SL(2,C) is a type preserving representation.
Note that tr(p(v)) and L(p(vy) are well defined for v € I'y ,,/~. It is easily seen that there
is some constant K, depending on p such that L(p(v)) < KW (y) for all y € T'y ,/~.

Of particular interest are quasifuchsian representations. A type preserving represen-
tation, p, is quasifuchsian if it is discrete and faithful with so that p(I'y ;) is geometrically
finite with no accidental parabolics. The last assertion means that if p(g) is parabolic,
then g is peripheral. There are many ways of characterising quasifuchsian groups, see for
example [30].

For closed surfaces (p = 0), a type preserving representation is quasifuchsian if and
only if there is some k£ > 0 such that L(p(y)) > kW (y) for all v € I'y o/~. However, this
fails for p > 0, since a closed curve may wrap itself many times around a puncture. We
content ourselves with observing:

Lemma 4.4 : Ifp:T,, — SL(2,C) is quasifuchsian, then there is some k > 0 such
that for all non-peripheral simple closed curves, v, on Sy ,, we have L(p(vy)) > kW (y). <
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In other words, we shall restrict our attention to those closed curves which are simple.

It’s not hard to see that the converse to Lemma 4.4 holds provided we assume that
p is discrete and faithful. Indeed in this case, we can weaken the hypotheses, using the
work of Bonahon (Proposition 4.5). It seems natural to ask whether the assumption of
discreteness is really essential:

Question B : Suppose p : I'y,, — SL(2,C) is a type preserving representation such
that there is a constant k > 0 so that L(p(vy)) > kW (~) for all non-peripheral simple closed
curves v on S, ,. Then, must p be discrete and faithful (and hence quasifuchsian)?

We shall see that Question B is equivalent to Conjecture A in the case of punctured tori
(Proposition 4.9).

Proposition 4.5 : Given any g,p € N, with 2 — 29 — p < 0, there is some constant
M (g,p) > 0 such that the following holds. Suppose p : I'y, — SL(2,C) is a discrete
faithful type preserving representation with no accidental parabolics, such that the set of
homotopy classes of simple closed curves, vy, on S, ), satisfying L(p(~y)) < M (g, p) is finite.
Then p is quasifuchsian.

Proof : If p is not quasifuchsian, then it follows from [5] that the quotient of H? by p(Ty )
must have at least one simply degenerate end. (Alternatively, this is known directly from
work of Thurston in the case of limits of geometrically finite groups.) Every neighbourhood
of such an end contains infinitely many pleated surfaces. Such a pleated surface carries
an intrinsic hyperbolic metric. It is easily seen that the shortest closed curves on these
surfaces cannot all lie in the same homotopy class.

This proves Proposition 4.5. &

This argument gives M(g,p) as the maximum length of a shortest closed curve on
Sy,p among all possible complete finite-area hyperbolic structures on S, ,. (Note that a
shortest closed curve is necessarily simple.)

(Note that in general, a simply degenerate end, as defined geometrically, corresponds
to some subsurface, S’, of S, , onto which the pleated surfaces can be retracted. The
boundary of S” in S, ,, consists of simple closed curves which get sent to accidental parabol-
ics. Since we are assuming that there are no accidental parabolics in our case, we see that
S" must in fact be the whole of S, ,,. In particular, all the surfaces have the same topological
type.)

In the case of once-punctured tori, this maximum is attained for the torus H?/G,
where G is the commutator subgroup of PSL(2,Z) as described in the introduction. This
gives M(1,1) = 2cosh™'(3/2) = 21og((3 + v/5)/2). It is possible to improve somewhat on
this — see Proposition 4.10.

The space of representations up to conjugacy carries a natural topology. ;From
Ahlfors-Bers deformation theory, it is well-known that the subspace of quasifuchsian rep-
resentations into PSL(2, C) is diffeomorphic to R!29712+4P — the product of two copies
of the Teichmiiller space for S, ,, (see [3] or [19]). See [34] for further discussion.

Let’s return to the particular case of punctured tori. We write ®p for the subset of ®
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corresponding to discrete faithful representations, and ®gp for the subset corresponding
to quasifuchsian representations.

;From Lemma 4.4, we see that ®gp C ®g. Also, Por/Z3 is diffeomorphic to R*. In
particular, ®op has four components permuted under the Z3-action.

Lemma 4.6 : ®gF is open in ®.

Proof : It was shown by Marden [30] that geometrically finite representations without
accidental parabolics are structurally stable among all type preserving representations of
a group into PSL(2,C). In particular (in this dimension), geometrically finite repre-
sentations form an open subset of the space of type-preserving representations given the
algebraic topology. This proves Lemma 4.6. &

(Alternatively, one could prove Lemma 4.6 using the Invariance of Domain theorem.)
Another proof of Marden’s theorem and a discussion of the higher dimensional situation
is given in [8].

A result, due, with varying degrees of generality, Chuckrow, Marden, Jorgensen and
Wielenberg (see for example [34] or [8]), tells us that the property of being discrete and
faithful is closed in the algebraic topology (provided our group is not virtually abelian).
Thus:

Lemma 4.7 : ®p is closed in ®. &

Lemma 4.8 : &5 NoPgr = 0.

Proof : Suppose a representation p corresponds to some Markoff map ¢ € ®q N IPyF.
By Lemma 4.7, p must be discrete. Since ¢ € ®¢, we have that {2(k) is finite for all £ and
so there are only finitely many homotopy classes of non-peripheral simple closed curves, -,
on the punctured torus, S 1, for which L(p(vy)) < M(1,1). By Proposition 4.5, p must be
quasifuchsian, and so ¢ € ®gp, contradicting the fact that ®gp is open (Lemma 4.6).

(In fact, one can avoid the use of Bonahon’s theorem, by using Proposition 4.9 below.)

Proof of Theorem 4 : Since ®gp is connected, we see that it must be precisely the
connected component, CD% /23, of ®g/Z3 which contains (3, 3, 3) and hence all real Markoff
maps. Thus, ®or = @F).

This proves Theorem 4. &

Recall that Conjecture A asserted that ®gp = ®g. It is thus equivalent to the
statement that ®g = @Y, i.e. that ®o/Z3 is connected.

In general, it seems difficult to verify that a particular 2-generator group has to be
discrete. Some discussion of the matter for quasifuchsian groups of punctured tori is given
in [27]. A finite sufficient condition for discreteness is described in [38]. For some further
discussion of Markoff triples and their relationship with representations, see [14] and [35].

The following relates Conjecture A to Question B.
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Proposition 4.9 : Suppose p : I' — SL(2, C) corresponds to a Markoff map in ®,.
Then there is some k > 0 such that L(p(vy)) > kW (~) for all simple closed curves, 7, on
the punctured torus.

Proof : Let ¢ € &g be the corresponding Markoff map. Recall that W () is the minimal
cyclically reduced word length with respect to some generating set. Since it doesn’t matter
which generating set we choose, we may as well take it to be a free basis. Thus Lemma
2.2.1 tells us that for the appropriate edge e € E(X), we have W(y) = F.(X) where ~
corresponds to X € Q. By Theorem 2, there is a constant k > 0 such that log™ |¢(X)| >
kF,(X) for all X € Q. Recall that ¢(X) = trp(y), so from the inequality log™ | tr A <
L(A), we see that L(p(y)) > log" [¢(X)| > kF.(X) = kW (v) as required. &

This shows that Question B reduces to Conjecture A in the case of punctured tori.
We can also weaken the hypetheses of Proposition 4.5 in this case:

Proposition 4.10 : Suppose p : I' — SL(2, C) is discrete faithful and type-preserving,
and that the set of homotopy classes of simple closed curves, 7, for which |tr p(y)| < 2 is
finite, then p is quasifuchsian.

Proof : By Theorem 2, the set of v such that |trp(y)| < k is finite for all k. Apply
Proposition 4.5 using the fact that L(p(y)) < log™ (tr p(7)). This proves Proposition 4.10.

<

JFrom the inequality |cosh (| > sinh R(, we see that if |trp(y)| < 2, then L(y) <
2sinh™'1 = 2log(1 + v/2). This means that we can replace the constant M(1,1) =
2log((3++/5)/2) in Proposition 4.5 by M(1,1) = 2log(14+/2). Since 1+v/2 < (34++/5)/2,
Proposition 4.10 is indeed a strengthening of Proposition 4.5. As already mentioned, I
suspect the assumption of discreteness is superfluous.

We should say a few words about real Markoff maps. We have already seen that the
special case of the trivial Markoff map corresponds to a representation whose image in
PSL(2,C) is a Klein-four group acting by half-turns with a fixed point in H3. In all other
cases we have:

Proposition 4.11 : A representation corresponds to a Markoff map in ®® \ {0} if and
only if it is (conjugate to) a fuchsian representation.

Recall that a “fuchsian representation” is a representation into SL(2, R) which is discrete
and faithful. Note that all fuchsian representations are quasifuchsian.

Proof : Clearly the traces of a fuchsian representation are all real. Conversely if p
corresponds to an element of ®®\ {0}, then the Jgrgensen normalisation shows that if can
be conjugated into SL(2,R). There are several ways to see discreteness. For example, we

know that (®R\ {0})/Z3 is connected and a subset of ®g/Z2 (Proposition 3.18). It follows
that R\ {0} C <I>22. By Theorem 4, p is quasifuchsian and hence discrete, as required. <

We have effectively shown that a (non-elementary) type preserving representation of
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[’ into PSL(2,R) is necessarily discrete. For other surfaces, Question B suggests the
following;:

Question C : Suppose p : I'y,, — PSL(2,R) is a non-elementary type preserving
representation such that the image of every non-peripheral simple closed curve is hyperbolic
(i.e. loxodromic). Then must p be fuchsian (i.e. discrete and faithful)?

Note that, by a theorem of Goldman [22], a type-preserving representation is fuchsian
precisely if has the correct Euler class. We have already observed that Question C is true
for punctured tori.

We next move on to give an interpretation of McShane’s identity for quasifuch-
sian groups. It will be more convenient in what follows to consider representations into
PSL(2,C) (as opposed to SL(2,C)).

Note that if ¢ > 0, then R(1/(1 +¢%)) < 1/2, and so ﬁ = h(2cosh((/2)), where

h(¢) = 3 (1 —4/1— g%) (with the usual convention that the real part of a square root is

non-negative). It follows that if A € PSL(2,C), then ﬁ = h(tr A), where [(A) is the

complex translation distance of A. (Note that both e!(4) and h(tr A) are well-defined.)
We may rephrase Theorem 3 as follows. Suppose p : I' — PSL(2, C) is a representation
corresponding to an element of ®g/Z3, then

1
Z 1+ elle() — 2

where the sum is taken over all homotopy classes of non-peripheral simple closed curves on
the punctured torus. Moreover, the convergence is absolute. In the case of quasifuchsian
groups the identity follows by analytic continuation from the fuchsian case. The above
result is possibly more general (if Conjecture A is false).

This identity has a very nice geometrical interpretation, which provided the inspiration
for the result in the fuchsian case, and is well set out in the original paper [32]. Since
the quasifuchsian case was not discussed there, we give a brief account below. To do
this we need to begin with a few observations about the symmetries of type preserving
representations.

Suppose A, B € PSL(2,C) are two matrices with tr[A, B] # 2, then there is an
involution Q € PSL(2,C) such that QAQ™! = A7t and QBQ™! = B™!. Let P = AQ
and R = QB. We have P2 = Q? = R?> = I, and A = PQ and B = QR. Also [A, B] =
ABA=1B~! = (PRQ)>.

We may regard I' = Z % Z as a normal subgroup of index 2 in Zs % Zy * Zsy, by
identifying a = pq and b = gr where p, q, r respectively generate the three factors of Zs
in Zo x Zo x Zo. 1t follows from the above discussion that any admissible representation
p: I — PSL(2,C) extends to a representation p : Zg x Zg x Zog — PSL(2,C). Thus
p(Zg * Zy % Zs) normalises p(I"). In particular the normaliser of p(I") contains a square root
of the commutator [p(a), p(b)].
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We consider PSL(2,C) as acting on the upper half-space model of H3. We thus
identify the ideal boundary of H?® with C U {oo}. If p : T — PSL(2,C) is a type-
preserving representation, we can normalise so that p([a,b]) is given by the translation
[ = (+2] on C. Thus oo is a parabolic fixed point of p(I'). ;From our earlier discussion,
we see that [( — ¢ + 1] lies in the normaliser of p(I").

First, let us recall from [32] the picture in the fuchsian case. Our description will be
fairly minimal — we refer to the original paper for elaboration. In this case we have a
representation pg : I' — PSL(2,R). We use the upper half space-model for H? with
ideal boundary R U oo and normalise pg accordingly. Thus H?/py(T) is a hyperbolic once-
punctured torus. We shall work mostly in the quotient H?/Z), where the action of Z is
generated by the translation [ — ¢ + 1]. This surface has one cuspidal end, and another
which is compactified by the “ideal circle”, Cy = R/Z.

Corresponding to each X € €, there is a unique simple closed geodesic v(X) on
H?2/p(T"). There is also a unique properly embedded bi-infinite geodesic arc, 3(X), running
from cusp to cusp, with the property that S(X) N ~v(X) = (. Among the lifts of 8(X)
to H?, we select those which have oo as an ideal endpoint. These geodesics project to
a single geodesic arc, By(X) on H?/Z, which has one end going up the cusp, and the
other endpoint, po(X) on the ideal circle Cy. Similarly, we lift 7(X) to a set of bi-infinite
geodesics in H?, and select those which are “nearest to 0o”, i.e. which can be connected to
oo by an arc which does not meet any other lift of v(X). This subset projects of a single
bi-infinite geodesic vo(X) in H?/Z. Now ~o(X) separates an open hyperbolic half-space,
H(X), from the cusp of H?/Z. Let ag(X) = Co \ H(X). Thus, ap(X) is an arc of Cy,
centred on the point py(X ), and whose endpoints coincide with those of v, (X).

Now, as X varies in €2, the arcs ap(X) are all disjoint. Their cyclic order on Cj agrees
with the natural cyclic order on 2. The complement, Ry = Co \ Uy @0(X) is a Cantor
set. Taking the total length of Cy to be 1, a computation shows that the length of the arc
ao(X) is 2/(1 4 ePo)) where I(pg(7)) is the the length of the closed geodesic v(X) on
H?/po(T"). McShane’s identity is thus equivalent to asserting that the Lebesgue measure
of the Cantor set R is 0.

In fact, Ry has Hausdorff dimension 0. This follows from the result of [4] which was
the starting point in the original proof in [32]. If we prefer, we can go backwards. Given
McShane’s identity, it follows that Ry has Lebesgue measure 0. To see that it has Hausdorff
dimension 0, we need, in addition, that the lengths of the complementary segments decay
exponentially. This follows from the fact that log™ |¢| has Fibonacci growth (Theorem 2),
given that the length of ag(X) is h(¢(X)) = O(|¢(X)|~2).

Now suppose that p : I' — PSL(2,C) is quasifuchsian, normalised as described
earlier. The limit set A of p(I") is a quasicircle passing through oco. Now, A\{oo} is invariant
under the translation [( — ¢ + 1], and so it projects to a quasicircle, C' = (A \ {o0})/Z
in the cylinder C/Z. If we fix a particular fuchsian representation py as above, we get a
natural dynamically defined identification of Cy with C'. This identification extends to a
quasiconformal homeomorphism of the cylinder C/Z.

Given any X € (), we may define, by an analogous procedure, a point p(X) € C, and
an arc o(X) C C “centred” on p(X). These may be alternatively described as the images
of po(X) and ap(X) under the above identification. Again, the arcs a(X) are all disjoint
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as X varies in €, and the complement R = C'\ |y a(X) is a Cantor set — the image
of Ry under the identification. This Cantor set also has Hausdorff dimension 0. This can
be seen, for example, from the fact that the property of having Hausdorff dimension 0 is
preserved under quasiconformal homeomorphisms [21]. (See also [1] for some refinements
of this result.)

Of course, C will not be rectifiable (unless p happens to be fuchsian). To put this right,
we replace each arc a(X) by the straight line segment, o/ (X)), with the same endpoints as
a(X), and in the same homotopy class relative to its endpoints. (By “straight” we mean
geodesic with respect to the standard euclidean structure on C.) The resulting curve
is rectifiable (though not necessarily embedded). In fact a computation shows that the
complex number represented by the segment o/(X) (i.e. the difference of its endpoints in
C) is equal to 2h(4(X)) = 2/(1 4 eP(")) where [ is complex translation distance, and +
is the curve corresponding to X. Thus, summing over all X € ), McShane’s identity tells
us that the total displacement is equal to 1, as we expect from this geometric picture.

The proof offered in [6] can also be interpreted in this picture. If the regions X,Y, Z €
2 meet at some vertex of ¥, then the complex number given by difference p(Y') — p(X),
taking proper account of the homotopy class of the arc joining p(X) to p(Y) in C, is equal
to z/xy. This explains the vertex identity, since vl =+ v = (p(Y) —p(X))+ (p(X) —
p(Z)) + (p(Z) — p(Y)) which is equal to 1, since we have wandered once around the curve
C.

The points p(X) also have interpretations as ideal vertices of certain ideal triangu-
lations of (the convex core of) the quotient manifold H3/p(T"). These triangulations are

perhaps more interesting in the case of double limit groups, and are discussed in [18] and
[7].

5. Non-discrete representations.

In this section, we shall consider Markoff maps lying in the complement, ® \ ®g. As
one might expect, these prove more difficult to analyse. We get started here with a few
results about such maps, though most are somewhat weaker than what one might hope
for, and we suggest a few directions for further inquiry. One of the basic consequences
of our analysis is that the interior of ® \ ®¢ is non-empty. In fact, 0 € int(® \ ®g) (See
Corollary 5.6).

Recall that PSL(2,Z) acts faithfully on ¥ and € and hence on ® in the obvious
way: ¥(¢)(X) = ¢(vX), where X € Q, ¢ € & and v € PSL(2,Z). Clearly, the sets ®¢,
®or, Pp and ®R are all invariant under this action. It’s easy to see (via Theorem 2, for
example) that PSL(2,Z) acts properly discontinuously on ®g. The action on @ \ @ is
much more complicated, and seems more interesting from a dynamical point of view. We
suspect that, in some sense, “most” orbits in this set are dense. What we are able to show
is quite a lot weaker. For example, the orbit of any ¢ € ® sufficiently close to 0 must
accumulate at 0. The fact that 0 € int(® \ @) is a simple consequence. Another question
of interest seems to be what subgroups of PSL(2,Z) can stabilise an element of ® \ {0}.
The only examples I know are either finite or virtually cyclic.
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We saw in Section 4, that 0®gr is a subset of the closed set ®p \ Por, and it has
recently been shown by Minsky [33] that these sets are in fact equal; i.e. that all discrete
faithful representations are limits of quasifuchsian representations. (Minsky’s result is
specific to the case of a once-punctured torus — the issue for more complicated surfaces
remains open.) (From the earlier work of Thurston, Bonahon and others [43,5], quite a
lot is known about the geometry of a representation, p, corresponding to some ¢ € 0Pgp.
For a start, ¢~ 1(—2,2) = 0, and ¢~1{—2,2} consists of at most two elements. These
correspond to “accidental parabolics” of p. The quotient, M = H?/p(T") is homeomorphic
to a punctured torus times the real line. Each of the two “ends” of M (corresponding to
the topological ends of the real line) is either simply degenerate or geometrically finite. In
the latter case the end may or may not contain an accidental parabolic. (In this respect,
the case of the once-punctured torus is special, since there is not enough room for a
single topological end to split into different geometrically finite or simply degenerate pieces
separated by accidental parabolics — as might happen for a more complicated surface.)
The group is termed “geometrically finite”, “a Bers boundary group” or “a double limit
group” according to whether neither, one or both of its ends are simply degenerate. A
quasifuchsian group is thus a geometrically finite group without any accidental parabolics.
We shall return to a discussion of these cases later.

An important class of double limit groups are those for which the corresponding
Markoff map is invariant under a cyclic subgroup of PSL(2,Z). This subgroup translates a
certain bi-infinite path in ¥. This “axis” meets infinitely many regions of €2(2). A concrete
3+\2/—_3’ 3—\2/—_3’ 3—\2/—_3).

example of such a map is that corresponding to the Markoff triple (

This is invariant under (a conjugate of) the subgroup of PSL(2,Z) generated by <2 ! )

11
Such Markoff maps are discussed in [10] and [7].

We can also explicitly describe various Markoff maps corresponding to non-discrete
representations which turn out to be of interest.

Suppose we have some X € Q with z = ¢(X) € (—2,2), so that, by definition,
¢ € @\ Qg. Let (Y,)necz be the bi-infinite sequence of regions meeting X, as in Lemma
3.3. We thus have x = A+ A"! and y,, = AN"+BA™", where |\| = 1 and AB = 22 /(2% —4).
In particular, |y,| is bounded. Given any K > 0 and any x € (—2,2), it is possible to
find such a Markoff map with |y,| > K for all n. If K is large enough, then we will have
that if e is any edge of ¥ which meets X in a single vertex, then a(e) points towards
that vertex. Provided K > 2, Lemma 3.5 then tells us that Q" (a(e)) N 2(2) = 0. (In
fact, by Proposition 3.9, log™ |¢| has a lower Fibonacci bound on Q°~(a(e)).) We see that
Q(2) = {X}. In particular, |¢| has a unique minimum at X. Note that this minimum may
be arbitrarily close to, or equal to, 0.

Another interesting class is that of what we shall call imaginary Markoff maps, ®/ C
®. We shall need to look at these in some detail, as they arise as special cases in the
proofs of later results. We may define ® as follows. Recall the 3-colouring of € described
at the end of Section 2.1. We define ®! to be the set of those ¢ € ® \ {0} such that for
some element, ' C Q, of the partition of Q by the 3 colours, we have ¢(2') C R and
o(2\ ) C iR. Note that it is sufficient to verify this at a single vertex of ¥; i.e. we
want that the corresponding Markoff triple consists of one real and two purely imaginary
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numbers.
We claim that ®/ N g = (). In fact,

Proposition 5.1 :

(1) Suppose that ¢ € ®1 and $=1(0) = (). Then the orbit of ¢ under PSL(2, Z) accumulates
at 0.

(2) There is some neighbourhood, N', of 0 in ®! such that if ¢ € NI then, again, the orbit
of ¢ accumulates at 0.

Note that some restriction on ¢ is necessary in Proposition 5.1, in addition to it lying
in ®/. As the previous example showed, it is possible to find ¢ € ® for which the |¢] is
equal to 0 at a single X € 2, but is otherwise bounded away from 0. For example, start
with the Markoff triple (0, i, iu) for sufficiently large p € [0, 00). The orbit of such a map
cannot accumulate at 0. It is not clear whether all such examples arise in this way.

Before we set about proving Proposition 5.1, let us make a few remarks about general
Markoft maps, ¢. Note that the statement that the orbit of ¢ accumulates at 0 is really
an intrinsic property of ¢. It says that we can find vertices of ¥ so that the corresponding
Markoff triple (x,y, z) is arbitrarily close to (0,0,0). Note that if x and y are both small,
then so also is z. Thus, in fact, it’s sufficient to find edges e,, such that max{|¢(X)| | X €
02%e,)} tends to 0.

There is a convenient way of representing Markoff triples, which give rise to alternative
coordinates for Q. Given a Markoff triple (x,y, z) with z,y, z # 0, set a = z/yz, b =y/zx
and ¢ = z/xy, so that a4+b+c = 1. Conversely, given a,b,c € C\{0} with a+b+c =1, we
can recover (z,y,z) up to changes of sign (i.e. up to the action of Z3) using the formulae
2?2 = 1/bc, y?> = 1/ca, 2> = 1/ab.

Suppose ¢ € @, and that the triple (z,y, z) arises at the vertex v =X NY NZ of 3.
We write k(v) = |a| + |b| + |¢| and m(v) = min{]|al, |b], |¢|}. If we move to the adjacent
vertex v/ =Y N ZNW along the edge Y N Z, then we should replace the triple (a, b, ¢)

by (1 —a, 1“_ba, 1“_ca). The only problem arises if @ = 1, in which case we can deduce that

w = ¢(W) = 0. So, for example, if we know that ¢~1(0) = (), then we can move around
all of X in this way.
Suppose that R(a) > 1/2. Then |1 — a| < |a|. Since |1 —a| < |b] + |¢|, we have

a
pl-+1d =1L al < || bl + e~ - a)

ab

l1—a

ac

+ + |al.

1—a

Thus,
ab

1—

ac

T + 1 —a| = k().

kz(v):|a|+|b|+|0|§‘ a‘-l—‘

We have equality only if || 4 |¢| = |1 — a|. Since b+ ¢ = 1 — a, this can happen only if b
is a positive real multiple of c.
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Note that to show that the orbit of ¢ accumulates at 0, it’s enough to show that
we can find v € V(X) with k(v) arbitrarily large while k(v) is bounded away from 0.
{k(v) | v € V(X)} has no upper bound.

Let’s return to the case of an imaginary Markoff map ¢ € ®'. Now we can order the
triple (a, b, ¢) so that a is the largest positive number, and c¢ is the least negative number; in
other words, |b| < a and ¢ < b (which implies ¢ < 0). In particular, a > (1+k(v))/4 > 1/2.
It follow that there is a neighbouring vertex v’ for which k(v") > k(v).

The idea for the proof of Proposition 5.1 is thus to start at some vertex vy € V(X), and
to define a path in ¥ consisting of an infinite sequence (vy,),en of vertices, so that v, is
obtained from v,, in the manner described above. More formally, we write v,, = X,,NY,,NZ,
in such a way that |b,| < a, and ¢, < b, where a, = ©,/Ynzn, bn = Yn/znT, and
Cn = Zn/TnYn- We let v,41 be the other endpoint of the edge Y,, N Z,. This gives us
an infinite sequence, provided we never run into a region in ¢~1(0). Recall that k(v,) =
|an| + |bn| + |en|, and m(v,) = min{|a,], [bal, |en]}-

Lemma 5.2 : If (v,)nenN is a sequence of vertices as described above, then k(v,) — oo
and m(vy,,) is bounded away from 0.

Proof : We know that k(v,,) is monotonically non-decreasing. Suppose, for contradiction,
that k(vy,) is bounded. It thus tends to some number k = 1 + 2h where h > 0.

Suppose first, that b,, — 0. Then a,, — 1+h and ¢,, — —h. Now ﬁ‘ — 1+% > 1.

The numbers a,41,bp+1,Cne1 are defined so that |b,11| < apy1 and cpp1 < bpgq. It
thus follows that, for all sufficiently large n, we have b,,11 = %, and so |bn41] > |bnl,
contradicting the fact that b, — 0.

It now follows that we can find some subsequence of vertices, (v, );en S0 that (an,, by, cn, i}
converges on some triple (a, b, c) with |b| < a, ¢ < b and with b # 0. Note that a # 1; oth-
erwise (since |c,| 4 |bn| is bounded below) we would find that when a,,, is sufficiently close
to 1, the quantity k(v,,+1) could be make arbitrarily large, contradicting the assumption

that k(vy,,) is bounded. Now let (a’, b, ¢’) be the triple obtained by ordering the numbers
1—a,-% } so that |b/| < &’ and ' < /. Thus, (an,+1,0n,41,Cny+1) — (a0, ).

’1—-a’ 1—a

Now k = |a| + |b| + |¢| = |a’| + |b'| 4+ |¢|, and so (from an earlier discussion) b is a positive
real multiple of ¢, i.e. b < 0. Now since a + b+ ¢ = 1, we have a > 1 and so V' > 0.
However, repeating the above argument with the subsequence (v, 1) in place of (v, ), we
deduce that b’ < 0, and so get a contradiction.

The only way out of this mess is to admit that k(v,,) — occ.

It remains to see that m(v,,) is bounded below. Now, for all sufficiently large n, we
have k(v,) > 7. Thus, a, > (1 + k(v,))/4 > 2, and |a, — 1| > 1. Now, m(v,41) >
min{|a, — 1|, m(v,)} > min{1, m(v,)}, and the result follows easily. &

Proof of Proposition 5.1 : It is sufficient to find vertices v € V(%) for which k(v) is
arbitrarily large, while m(v) remains bounded.

(1) Choose any vg € V(X). Since ¢~1(0) = 0, we construct the sequence (v,,) of Lemma
5.2.
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(2) Let v = X NY N Z be some fixed vertex of ¥. Let (z,y,z) be the Markoff triple
corresponding to ¢ € ®L.

Suppose first that x,y, z # 0. Then abc = +1/xyz, so we can suppose that k(v) > 7
(say). Thus, we may construct the sequence (v,) starting with vy = v. Since k(v,)
is monotonically non-decreasing, there is no risk that a,, is ever equal to 1 (since a, >
(14 k(vn))/4> 2.

Suppose now that x = 0. Without loss of generality, we have y = p and z = iu where
uw € R\ {0}. Let W € Q be the region meeting Y N Z in the opposite endpoint, v’ from v.
Thus w = ¢(W) = iu?. If ¢ is sufficiently close to 0, then we can suppose that |u| < 1, and
so the triple (a,b,c) at v’ is given by (u=2,1,—p~2). We can also suppose that k(v') > 7
(say), so we may construct our sequence (v,,) starting with vy = v’.

This proves Proposition 5.1. &

Corollary 5.3 : &5 N®’ =0.

Proof : Suppose ¢ € o N L. By definition, $~1(0) = 0 so the orbit of ¢ accumulates at
0. This contradicts Theorem 2. &

So far the examples of Markoff maps in ® \ ®¢ we have considered have been non-
generic. To show that int(® \ ®¢) is non-empty, we shall need a more robust criterion
for recognising that a particular map is not in ®g. The main result we are aiming at is
Theorem 5.5. Let us begin with a few general observations.

A convenient way to represent a general Markoff triple (x,y, z) with x # £2 is given
by:

x = 2cosh 8

y = 2 coth S coshy
z = 2coth B cosh( + ),

where 3, € C. Note moreover, that if z ¢ (—2,2), then 8 ¢ ‘{R. Suppose that X € 2, and
that (Y;,)nez is the bi-infinite sequence of regions adjacent to X. Assuming x ¢ [—2,2],
we write z = 2cosh 8 and y, = 2cothfBcosh(8n + 7). Since 5 ¢ iR, we can write
Bn—+~y = Bt+i, where t = n+tg, and £y, ¥ € R are fixed. Without loss of generality, we can
assume that |tg| < 1/2 (if not, relabel the sequence (Y;,) by shifting the subscripts). In the
case where |z| is small, it will be convenient to write 5 = § + (6 4+ 7/2)i, where §,0 € R are
both small. We obtain x = 2isinh(d+i60) and y,, = 2 tanh(d+1i0) cosh(5t+((0+7/2)t+1)i).

Lemma 5.4 : There exist fixed constants €yg > 0 and p < 1 such that the following holds.
Suppose ¢ € ®\ !, and that X € Q with |¢p(X)| < o and ¢(X) ¢ R. Then there is some
region Y € , adjacent to X, such that |¢(Y)| < p|é(X)| and ¢(Y) ¢ R.

Proof : Set x = 2isinh(d+1i6), with 6,0 € R small. Let (Y},) be the bi-infinite sequence of
regions meeting X . Then, in the above notation, we have y,, /= = —isech(d + i6) cosh(dt +
((0 + 7/2)t +)i), and so

lyn /2|2 = | sech(d + i0)|?(sinh® 6t + cos?((0 + 7/2)t + 1)).
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Now, we can suppose that |sech(d + i6)| is arbitrarily close to 1. Also, since |t — n| =
lto] < 1/2, we can suppose that for all n in a certain range, —ng < n < ng, we have that
sinh dt is arbitrarily small. We are free to chose ng at the outset; ng = 3 will serve for our
purposes here.

Suppose n,n’ € [—ng,ng] NZ, and t = n +tg and t' = n’ + tg. If n —n’ is even, then
the quantities cos?((0 + 7/2)t + 1) and cos?((0 + 7/2)t’ + 1) are almost equal; whereas if
n —n’ is odd, then they sum almost to 1. Thus, again without loss of generality, we can
suppose that for all even n € [—ng, ng] we have that cos?((6 +7/2) +1) is not much bigger
than 1/2. It follows that for such n, |y, /x| is not much bigger than % and so is certainly
less than p for some fixed p < 1.

It remains to worry about the possibility that for all such n, y, will be real. Suppose
then, that y_o,y0,y2 € R. jFrom the edge relations, we find that xy_; and zy; are real.
Thus 2%yo = z(y_1 +v1) = 2y_1 + 2y1 € R, so 22 € R. We can suppose that |z| < 2, so
if x € R, we see easily that ¢ = 0. Thus we can assume z € iR, so ¢ € ®'. &

Theorem 5.5 :
(1) There exists ¢g > 0 so that if ¢ € ® with inf{|¢(X)|| X € Q} < €y, then ¢ ¢ .

(2) There is a neighbourhood, N, of 0 in ® such that if ¢ € N, then the orbit of ¢ under
the action of PSL(2,Z) accumulates at 0.

Proof :

(1) By Corollary 5.3, we can suppose that ¢ ¢ ®!. Starting with any region X, € Q with
|zg| <0, Lemma 5.4 gives us a sequence of regions (X, ),en with |z, | — 0.

(2) We can suppose that N N ®Y C Ny, so that by Proposition 5.1(2), we can assume that
¢ ¢ ®!. For a fixed vertex v = X NY N Z of ¥ we have |¢p(X)|,|d(Y)],|¢(X)| < e < 2. If
z,y,z € R then ¢ would be trivial. Thus we can assume that x ¢ R. We now construct
the sequence (X,,) as in part (1), starting with Xg = X. Let e, be the edge X,, N X,,41.
Thus max{|¢(X)| | X € Q°e,)} — 0. So, as observed earlier, the orbit of ¢ accumulates
at 0. &

JFrom either part(1) or part(2) of Theorem 5.5, we get

Corollary 5.6 : 0 € int(®\ ®g). O

Of course, these results are much weaker than what one might expect to be true.
There are many questions remaining, for example: Is int(® \ ®¢) dense in ® \ ®o? Does
¢\ Og or int(P \ ) contain a dense orbit? Are all orbits meeting some neighbourhood
of 0 dense? Are “most” orbits dense, in some sense?

In addition to the dynamics on the space ®\ ®g, one might also consider the behaviour
of individual Markoff maps lying in ® \ ®g. In general, these seem difficult to analyse.
One possible direction is to study how they behave on the “circle at infinity”, as we go on
to explain.

Let 3 be the cyclically ordered Cantor set of ends of 3. Let P be the circle obtained
by collapsing each pair of adjacent “boundary points” of X°° to a point. Another way to
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describe P is to imagine ¥ as being dual to the regular tessellation of the hyperbolic plane,
H?2, by ideal triangles, as mentioned in Chapter 1. Now, P may be identified with the
ideal boundary, 9H?. We may thus think of Q as being the “rational points” of P. Note
that in this context, H? is naturally thought of as the Teichmiiller space of the punctured
torus, and so P is the projective lamination space (see for example [16]). Since a “rational
lamination” is essentially a simple closed curve, this gives us the identification of {2 and C
referred to in Chapter 1.

Given ¢ € ®, we may associate a closed subset L(¢) C P as follows. If ¢ € O, we set
L(p) =0. If ¢ ¢ P, we begin by putting an orientation on certain edges of ¥ as follows. If
e € E(X), we give e the direction €if log™ |¢| has a lower Fibonacci bound on Q7 (&). Thus,
each edge is oriented in at most one direction. Also, for each vertex v € V(X), there are
at most three possibilities. Perhaps none of the incident edges are oriented; perhaps one
incident edge points towards v while the other two are unoriented; or perhaps two edges
point towards v while the other points away. Let T C ¥ be the union of all unoriented
edges. If T' # (), then it is a tree, all of whose vertices have degree 2 or 3. Thus, T' can be
thought of as the “convex hull” of some closed subset L(¢) € $°°. Moreover all the edges
of X\ T point towards T'. If T' = (), then all edges of 3 point towards some p € X°°. In this
case set L(¢) = {p}. (It’s not hard to see from Lemma 3.3, that p cannot be a boundary
point of £*.) In each case we set L(¢) to be the projection of L(¢) to P.

There are other ways one might attempt to associate to ¢ a closed subset of P, but
L(¢) seems fairly natural. It has a number of other descriptions. For example, note
that p € P\ L(¢) if and only if either (1) p € P\ 2, and given any K > 0, there is
a neighbourhood N of p in P such that [¢(X)| > K for all X € NNQ; or (2) p € Q,
o(p) # £2, and given any K > 0, there is a neighbourhood N of p in P such that
1p(X)| > K for all X e NNQ\ {p}.

By definition, L(¢) = 0 if and only if ¢ € ®g. Note that L(0) = P. We shall see
(Proposition 5.7) that if ¢ # 0, then L(¢) has empty interior. If ¢ € 0Pgp, so that
¢ corresponds to a representation p in the boundary of quasifuchsian space, then L(¢)
consists of either one or two elements. In this case, a rational point of L(¢) corresponds
to a curve which has degenerated to an accidental parabolic. An irrational point of L(¢)
corresponds to the ending lamination of a simply degenerate end. We have also seen
examples of ¢ € int(® \ ®g) for which L(¢) consists of a single rational point. (For
example start with the Markoff triple (0, u,ip) for large enough p € R. The fact that ¢
lies in the interior of @ \ ®¢ follows from Theorem 5.5(1).) One might expect that for
generic ¢ € ® \ g, L(¢) should be a Cantor set, though I have no explict example of a
Markoft map for which this is the case. It also seems reasonable to ask to what extent
L(¢) determines ¢. For example:

Question D : If L(¢) = L(¢') and |L(¢)| > 2, then must ¢ and ¢’ be equal up to the
action of Z3?

Proposition 5.7 : If ¢ # 0, then L(¢) has empty interior.

Proof : We first observe that if X € Q, and z = ¢(X) ¢ [—2,2], then X ¢ L(¢). This
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follows easily from Lemma 3.8.

Now if J C L(¢) were some interval, then there must be three regions X,Y,Z € JNQ
which meet at some vertex of .. jFrom the above observation, we see that x,y, 2z € [—2, 2].
Since (x,y, z) is a Markoff triple, we must have z = y = z = 0, so ¢ = 0. This proves
Proposition 5.7. &

It would be interesting to understand something of the way in which L(¢) varies with
¢ e d.

Let F = F(S) be the set of all closed subsets of P. We give F the Hausdorff topology.
(By this we mean the topology induced by the Hausdorff distance on F, starting with
some metric on P. Since P is compact the topology on F thus defined is independent of
the choice of metric on P.) The set F is also carries a partial order given by set inclusion.
We can thus speak of a map to F as being “upper (or lower) semicontinuous”.

Proposition 5.8 : The map [¢p — L(¢)] : & — F is upper semicontinuous.

In other words, given any ¢ € ®, and an open set, M C P with L(¢) C M, then there
exists a neighbourhood N of ¢ in ® such that for all ¢’ € N, L(¢’) C M.

Note that this is a generalisation of Theorem 3.16 (that ®(, is open), since if ¢ € ®¢,
we can take M = (). In this case, Proposition 5.8 gives us a neighbourhood, N, of ¢ with
N C 9.

To prove Proposition 5.8, we shall need the following:

Lemma 5.9 : Suppose € € E(E) The set of ¢ in ® for which ¢ has Fibonacci growth
on 7 (€) is open in P.

Proof : This is just a refinement of the argument used to prove Theorem 3.16 (cf. Propo-
sition 3.9). Given ¢ € ®, recall the definition of T'(¢t) given before Lemma 3.15. We saw
that for all ¢ > 0, T'(¢) is a subtree of ¥. Exactly as with Lemma 3.15, we see that ¢ has
Fibonacci growth on 7 (€) if and only if 7'(¢) N3~ is finite. We now go through the proof
of Theorem 3.16, restricting the discussion to X~ and ™.

This proves Lemma 5.9. &

We shall also need the idea of the “impression” of a branch Q= (). Given € € E(X),
let 1(€) be the closure, in P of 7 (€) thought of as a subset of P. Thus I(€) is a closed
interval in P. Note that given ¢ € ®, the open set P\ L(¢) is covered by the set of
impressions, I(€), as € varies over those directed edges for which ¢ has Fibonacci growth
on 27 (€). These impressions are all disjoint from L(¢). (In fact, we could restrict to those
& € E(X) for which e N T is the head of & where T' C ¥ is the “convex hull” of L(¢) as
described in the definition of L(¢).)

Proof of Proposition 5.8 : Suppose ¢ € . Let M be an open subset of P containing
L(¢). We may cover S\ M by a finite number of impressions, I(€1),...1(€,), where ¢
has Fibonacci growth on 7 (¢€;) for each i € {1,...,n}. Now by Lemma 5.9, there is a
neighbourhood, N, of ¢ in ®, such that if ¢’ € N, then ¢’ has Fibonacci growth on Q7 (&)
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for each i € {1,...,n}. Tt follows that L(¢") does not meet any of the impressions I(€;).
Thus L(¢) € M.
This proves Proposition 5.8. &

In general, we would not expect L to be lower semicontinuous. However, we do have:
Proposition 5.10 : The map [¢ — L(¢)] : & — F is continuous at 0.

In other words, if {I1,...,I,} is a covering of P by (non-trivial) intervals, then there
is a neighbourhood, N, of 0 in ® such that for all ¢ € N, L(¢) meets each I;. Note that we
can suppose that each I; has the form I(&;) for some & € E(X). The proof of Proposition
5.10 is based on the observation that if ¢ is sufficiently close to 0, then then we can assume
that for each i, |¢(X;)| and |¢(Y;)| are arbitrarily small, where X; N'Y; = e;. For the case
¢ ¢ ®!, the idea is now to apply Lemma 5.4 (or rather a slight refinement which gives
us, instead of just one region, Y, adjacent to X, some finite number, p, of such regions,
provided that ¢(X) ¢ R, and |¢p(X)| < €y(p) for some €y (p) depending on p — the method
of proof is the same). This ensures that if |¢(X;)| and |¢(Y;)| are small enough, then ¢
cannot have Fibonacci growth on Q7 (€;) so L(¢) must meet I; = I(€;). The case where
¢ € ®! calls for Lemma 5.2 in place of Lemma 5.4, but the argument is similar. We leave
the reader to fill in the details of the proof.

We remark that there is also a sort of converse to Proposition 5.10; namely that if
L(¢) is sufficiently close to P in F, then ¢ must be close to 0. More precisely, given
any neighbourhood, N, of 0 in ®, there is a neighbourhood, M, of P in F, such that if
¢ € & and L(¢) € M then ¢ € N. The argument is roughly as follows. Fix some vertex
v=XNYNZof X, and suppose that L(¢) is close to P. Using Proposition 3.9, we can
show that every edge within a given distance of v in ¥ must be adjacent to some region
W with |¢p(W)| < 2 (since both I(€) and I(—€) can be assumed to meet L(¢)). This
implies that each of ¢(X), ¢(Y) and ¢(Z) lie close to the interval [—2,2]. Since they form
a Markoff triple, they must all in fact be close to 0. Again the details are left to the reader.

It would be nice to give a geometric interpretation to some of the results of this
section. One possible direction is to investigate the realisability of geodesic laminations.
These notions were introduced by Thurston [43]. His account has been elaborated on in
[15]. The latter will serve as a reference to the results about laminations quoted in this
section. Also the techniques developed there can be used to supply details to the arguments
outlined below. These and other published accounts I know of only consider the case of
discrete representations. We describe here how some of the theory might be developed
in general, allowing for non-discrete representations. We suggest some natural questions
arising from these considerations.

We may as well start in a general situation with an orientable surface S = S, of
genus g and p punctures. To define the various concepts, it will be useful to fix some
complete finite area hyperbolic structure on S. We thus identify S = H?/T', ,, where we
have chosen an action of I'y , = m1(S) on H2. It turns out that all the notions we define
are actually independent of this choice.
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A (geometric) lamination on S consists of a set, A, of disjoint simple geodesics on S
such that (JA C S is closed. By “simple geodesic” we understand either a simple closed
geodesic, or a bi-infinite geodesic with no self intersections. An element of A is referred to
as a leaf. The set |J A is the support of A. A minimal lamination is one which contains no
proper non-empty sublamination, and is not a bi-infinite geodesic with both ends going up
a cusp of S. A minimal lamination has compact support. It is either a single simple closed
curve or else is uncountable. In the latter case the support is locally homeomorphic to a
Cantor set times an interval. Every lamination on S consists of a finite disjoint union of
minimal sublaminations, together with a finite number of additional bi-infinite geodesics
whose ends either go up a cusp or “spiral” onto a minimal sublamination.

As suggested earlier, a the notion of a lamination turns out to be a well defined
topological concept, defined independently of any particular structure on S. (In fact, we
can think of structure we have just defined as being really the “geometric realisation” of a
particular lamination for a given hyperbolic structure. This realisation varies continuously
as we move about in Teichmiiller space.) Let G = G, , be the set of all laminations on
S. Now G carries a natural (Chabauty) topology — see [15]. It will be convenient here to
restrict attention to the set G0 = Qg’p of laminations with compact support. It will not be
hard to see how one might proceed in general.

According to Thurston [43], a “realisation” of a lamination, A, in a hyperbolic 3-
manifold, M, is essentially a mi-injective map from S to M such that each leaf of A gets
mapped locally homeomorpically onto a geodesic in M. We can thus speak of a lamination
being “realisable” with respect to a given homotopy class of m;-injective maps from S to
M. (These maps are usually taken to by “type-preserving”.) In fact, given such a class
of maps, we may as well work in the cover of M given by the subgroup of 71 (M) which
is the image of I' = m1(5). Thus, realisability is really a property of the lamination and a
representation p from I' to PSL(2, C), or equivalently to SL(2, C).

To generalise this to non-discrete lamination, we work in the universal cover. We write
S = H?/T'. A lamination A can thus be thought of as the quotient of a I'-invariant set, A,
of disjoint geodesics in H2. Now fix some representation p : I' — SL(2, C), and consider
a (continuous) I'-equivariant map R : H> — H3. Such a map will be coarsely lipschitz
when restricted to any I-invariant subset of H? which projects to a compact subset of S
(for example the support of a lamination in G°). By “coarsely lipschitz” we mean that
distances in the range are bounded by a linear function of distances in the domain.

Definition : The I'-equivariant map R : H? — H? is a realisation of the compactly
supported lamination A with respect to the representation p if there are constants k; and
ko such that for any A € A and any z,y € A\, we have d(R(z), R(y)) > kid(z,y) — ka.

Note that since R| U]N\ is coarsely lipschitz, for each leaf A € A, the map R|\ is a quasi-
geodesic in H3. In fact the maps R|\ are uniformly quasigeodesic as \ varies over each
A € A. (It is not hard to see that it is enough for R to be quasigeodesic for a finite set
of leaves consisting of some choice of leaf from each minimal sublamination together with
the set of spiralling leaves.)

Suppose F : H> — H? is another T-equivariant map. Now R||(JA and F|{JA remain
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a bounded distance apart. We see that R is a realisation of A if and only if F is.
Definition : A (compactly supported) lamination is realisable if admits a realisation.

In such a case any I'-equivariant map from H? to H3 will serve as a realisation. Also, it’s
not hard to see that whether or not a given lamination is realisable does not depend on
the hyperbolic metric on S — if we change to a different point in Teichmiiller space, then
the new metric on |J A will be quasiisometric to the old, so the property of a map being
(uniformly) quasigeodesic remains unchanged.

Defining realisations in terms of quasigeodesics, rather than geodesics, makes certain
arguments simpler and more natural (e.g. Propostion 5.11), though we shall see that the
result is the same.

Let G(H™) be the set of (unoriented) geodesics in H”, thought of as subsets of H".
Now G(H™) caries a natural topology (for example, it may be identified as a quotient of
OH" x OH™ minus the diagonal by the involution which swaps the two coordinates). Thus
if A is a lamination, then A is a a closed T-invariant subset of G(H?), and thus inherits a
topology.

Now, if R is a realisation of A, and A € A, then since R|\ is a quasigeodesic, it must
remain a bounded distance from a unique geodesic G(\) € G(H?). It’s not hard to see
that the map G : A — G(H?®) is continuous, and independent of the choice of realisation
R. Given x € X € A, let R'(x) be the nearest point on G(\) to z. Since G is continuous,
it follows that R’ : |JA — H? is also. It is clearly T-equivariant. Moreover it extends to
a D-equivariant map from H? to H?, also denoted by R’. If A € A, then R'(\) = G(\). In
other words we see that if A is realisable, then we can choose the realisation so that the
image of each leaf in A is a geodesic in H3.

With some amount of additional fussing around, one can find a realisation which sends
each leaf of A homeomorphically onto a geodesic in H3. This shows that our definition of
realisability agrees with the usual one in the case of discrete representations (see Definition
5.3.4 of [15]).

Recall that the space GY of compactly supported laminations carries a natural topol-

ogy.

Proposition 5.11 : For any representation p, the set of realisable (compactly supported)
laminations is open in G.

Proof : (Sketch) Suppose A € G is realisable. Given any constant h > 0, there is a
neighbourhood N of A in G%, such that if T € N, then every segment of a leaf of length at
most A in T lies close to a leaf of A. This follows more or less directly from the definition
of the Chabauty topology [15]. By “close” we mean close in the Hausdorff distance — so
each segment lies in a neighbourhood of radius 1, say, about the other segment. Now, if
R is a realisation of A, then for each A € T, the path R|\ must be quasigeodesic over all
segments of length at most h. We now use the well-known fact that being quasigeodesic
in a hyperbolic space is really a “local” property, in the sense that if we choose h large
enough in relation to the quasigeodesic constants, then these paths must be globally (and
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uniformly) quasigeodesic. The result now follows — taking care to choose our various
constants in the right order. O

Let’s now consider the case of a once punctured torus. We restrict attention to minimal
laminations. Now every minimal lamination (on any surface) carries a transverse measure
of full support. On a punctured torus such a measure will be unique up to a multiplicative
constant. We can thus identify the space of minimal laminations with the projective
lamination space P. Moreover the topologies agree. We can thus ask which points of P
correspond to realisable laminations. It is not hard to see that a realisable lamination
must lie in P\ L(¢), where ¢ is the Markoff map corresponding to our representation p.
It seems likely that the converse holds:

Conjecture E : L(¢) consists precisely of those laminations which are not realisable with
respect to the representation corresponding to ¢.

Returning to a general surface, S = S, ,,, the following variant of Question B (Section
4) suggests itself:

Conjecture F : An admissible representation is quasifuchsian if and only if every minimal
lamination is realisable.

It’s well known that the “only if” direction is true. The converse is also true if we restrict
attention to discrete representations. This follows since, by the work of Bonahon [5], if a
discrete representation is not quasifuchsian, then it must have an accidental parabolic or a
simply degenerate end. The simple closed curve corresponding to an accidental parabolic
is not realisable, nor is the “ending lamination” of a simply degenerate end. (Here the
term “end” is defined geometrically. In general an end will retract topologically onto some
subsurface of S whose bounding curves give rise to accidental parabolics.)

We finish this section with a hint at some tentative connections with physics. (I'm
indebted to John Roberts for introducing me to these ideas.)

Suppose we fix a point, p € P. An immediate corollary of Proposition 5.8 is that
{p€®|pe L(p)}is a closed subset of . We suggested that for a “generic” ¢ € @\ O,
one might expect L(¢) to be a Cantor set. Put together, this suggests that, if [t — ¢;] is
a “generic” one-real-parameter family of Markoff maps, then {t | p € L(¢;)} should be a
Cantor set (if it is non-empty).

This appears to be related to a conjecture concerning the spectrum of the discrete
one-dimensional quasiperiodic Schrodinger operator. A recent survey of work in this area
can be found in [42]. Basically, this is a discrete version of the usual Schrédinger operator,
which acts on the space of discrete wave functions from the integers to the reals. It depends
on a “potential” which is a map, V : Z — R. In the case of interest, V' takes only two
values, Vg, V1 € R, and is such that {V~=1(Vy), V=1(V})} is a quasiperiodic partition of the
integers, Z. One can generate such a partition by taking a line of gradient # in the euclidean
plane, R?, and reading off the successive intercepts with lines of the form {n} xR or Rx{n}
for n € Z (cf. [40]). (Phyisicists seem to be mainly interested in those sequences arising
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from lines passing through the origin, (0,0).) Given such a potential, V', the spectrum is
the set of eigenvalues or “energies”, F/, which admit a bounded eigenfunction.

There is a conjecture that this spectrum is always equal to the “dynamical spectrum”.
The latter can be interpreted in terms of Markoff maps (or generalised real versions thereof,
as discussed in the introduction, with u = 4 + (Vo — V4)2.) Note that a quasiperiodic
potential, V| determines a gradient, 6 (which can be thought of as the ratio of V;’s to
Vo’s), which in turn determines a projective lamination p € P. The potential, together
with an energy, F € R, gives rise, in a natural way to a generalised real Markoff map,
¢p (corresponding to the triple (E — Vo, E — Vi, (E — Vp)(E — Vi) — 2), as explained in
[36]). If we fix V, and vary E, we get a one parameter family [E +— ¢g] of such maps.
The dynamical spectrum is then essentially the set {E | p € L(¢g)}. A major conjecture
in this field is that this spectrum is always a Cantor set. Some analysis of this question is
given in [36]. There seem to be parallels between this work and some of the results of this
section.
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