TECHNIQUES IN NON-ABELIAN ADDITIVE COMBINATORICS, EXAMPLES SHEET 1

Lent Term 2016 W. T. G.

General remark: I have not redone all these questions, and therefore some of the bounds I state may be a little approximate. If you get different, but similar bounds, then don't worry!

- 1. The subset $\{0,1\}^n$ of \mathbb{F}_3^n has density $(2/3)^n$ and contains no affine line. Can you improve on this bound?
- 2. (i) For each triple of positive integers m, r and d, let $S_{m,r,d}$ be the set of all points $x = (x_1, \ldots, x_d) \in \{0, 1, \ldots, m-1\}^d$ such that $\sum_i x_i^2 = r$. For each d and m prove that there exists r such that $|S_{m,r,d}| \geq m^{d-2}/d$.
 - (ii) Prove that no $S_{m,r,d}$ contains a non-trivial triple (x,y,z) with x+z=2y.
- (iii) By considering a suitable projection of a suitable set $S_{m,r,d}$, deduce that for each n there exists a set $A \subset \{1,\ldots,n\}$ of density at least $\exp(-c\sqrt{\log n})$ (where c is some absolute constant) that contains no arithmetic progression of length 3.

[The above example was discovered by Behrend in 1947. The bound has stayed almost still since then.]

3. Let A and B be subsets of Abelian groups. We say that they are Freiman isomorphic of order k if there is a bijection $\phi: A \to B$ such that the equation

$$\phi(a_1) + \dots + \phi(a_k) = \phi(a'_1) + \dots + \phi(a'_k)$$

holds for elements of A if and only if the equation

$$a_1 + \dots + a_k = a_1' + \dots + a_k'$$

holds. Prove that if A and B are subsets of \mathbb{F}_p^n that are Freiman isomorphic of order 8, then 2A - 2A contains a subspace of dimension d if and only if 2B - 2B contains a subspace of dimension d.

4. Let A be a subset of \mathbb{F}_p^n and suppose that $|8A - 8A| \leq C|A|$. Let X be a subspace of \mathbb{F}_p^n of codimension d, chosen uniformly at random from all such subspaces, and let P_X

2

be the quotient map from \mathbb{F}_p^n to \mathbb{F}_p^n/X . Prove that as long as $p^d > C$, there is a non-zero probability that $P_X(A)$ and A are Freiman isomorphic of order 8. Use this result to prove that 2A - 2A contains a large subspace (with a meaning of "large" that you should work out for yourself).

- 5. Use the inequality $[A_1, A_2, A_3, A_4] \leq ||A_1||_{\square} ||A_2||_{\square} ||A_3||_{\square} ||A_4||_{\square}$ to prove the inequality $|\mathbb{E}_{x,y} A(x,y) u(x) v(y)| \leq ||A||_{\square} ||u||_2 ||v||_2$.
- 6. Let $A: \mathbb{C}^n \to \mathbb{C}^m$ and let $u \in \mathbb{C}^n$ be such that $||Au||_2 = ||A||_{\text{op}} ||u||_2$. Prove that if $\langle u, v \rangle = 0$, then $\langle Au, Av \rangle = 0$. Use this result to prove that A has a singular-value decomposition.
- 7. Use the Cauchy-Schwarz inequality several times to prove an inequality of the form

$$|\mathbb{E}_{x,y,z}f(x,y,z)a(x)b(y)c(z)| \leq \Phi(f)||a||_2||b||_2||c||_2$$

where Φ is a functional that you should determine. (If you get the right one, it is in fact a norm, but you do not need to prove this – though it's not a bad exercise to do so.)

8. Obtain also an inequality of the form

$$|\mathbb{E}_{x,y,z}f(x,y,z)u(x,y)v(y,z)w(x,z)| \le \Psi(f)||u||_{\infty}||v||_{\infty}||w||_{\infty},$$

where Ψ is an obvious three-dimensional generalization of the box norm.

- 9. Let A be a subset of \mathbb{F}_p^n of density α . What can you say about the dimension of the largest affine subspace that is contained in A + A + A?
- 10. Prove that the Bohr set $B(K, \epsilon) \subset \mathbb{Z}_N$ has density at least $(\epsilon/2)^{|K|}$. Prove also that it contains an arithmetic progression of length at least $(\epsilon/2)N^{1/|K|}$.
- 11. Let $A_r \subset \mathbb{F}_2^n$ be the set of all x such that $x_i = 1$ for at most r values of i. Prove that for suitably chose r (depending on n) the set A_r has density $\frac{1}{2} o(1)$ but the set $A_r A_r$ does not contain a subspace of bounded codimension.