
RIOT OS: Towards an OS for the Internet of Things
Emmanuel Baccelli and Oliver Hahm

INRIA, France
Mesut Günes and Matthias Wählisch

Freie Universität Berlin, Germany
Thomas C. Schmidt

HAW Hamburg, Germany

Abstract—The Internet of Things (IoT) is characterized by
heterogeneous devices. They range from very lightweight sensors
powered by 8-bit microcontrollers (MCUs) to devices equipped
with more powerful, but energy-efficient 32-bit processors. Nei-
ther a traditional operating system (OS) currently running on
Internet hosts, nor typical OS for sensor networks are capable to
fulfill the diverse requirements of such a wide range of devices. To
leverage the IoT, redundant development should be avoided and
maintenance costs should be reduced. In this paper we revisit the
requirements for an OS in the IoT. We introduce RIOT OS, an OS
that explicitly considers devices with minimal resources but eases
development across a wide range of devices. RIOT OS allows for
standard C and C++ programming, provides multi-threading as
well as real-time capabilities, and needs only a minimum of 1.5 kB
of RAM.

I. INTRODUCTION

Billions of heterogeneous devices such as sensor nodes,
home appliances, smartphones, and vehicles are expected to
be interconnected by spontaneous wireless networks or power
line communication, thus giving birth to the IoT [1]. Such
devices, though extremely constrained in terms of computing
power, available memory, communication, and energy capaci-
ties, are however expected to fulfill the requirements of cyper-
physical systems: (i) reliability, (ii) real-time behavior, and
(iii) an adaptive communication stack to integrate the Internet
seamlessly.

An OS for IoT devices should fulfill these requirements and
run on a wide spectrum of hardware, ranging from nodes based
on low-power MCUs, to nodes powered by new generations
of energy-efficient 32-bit processors. None of the existing
OS – neither a lightweight OS targeting Wireles Sensor
Networks (WSNs) nor a full-fledged OS – is capable to fulfill
requirements so diverse. Hence, in order to avoid redundant
developments and maintenance costs, a new, unifying type of
OS is needed, which is the subject of this poster.

Problem Statement: Ideally, the capabilities of a full-
fledged OS should be available on all IoT devices. The
following will focus on the characteristics of Linux, since it is
a good example for an open source OS among the major full-
fledged OS. Compared to a typical lightweight OS targeting
WSNs, Linux is more developer-friendly: numerous available
system libraries, network protocols or algorithms, and near-
zero learning curve in the sense that developers can code in
standard C or C++. However, Linux’s minimal requirements in
terms of CPU and memory do not fit constrained IoT devices
powered by small MCUs. While efforts have attempted at
pushing down these requirements [2], we argue that Linux
has not been designed for the IoT and cannot fulfill strict

energy efficiency. For these reasons Linux cannot be expected
to become the one OS to rule them all in the IoT.

On the other hand, the trade-offs that enable a typical
lightweight OS targeting WSNs to run on the most constrained
IoT devices make it significantly less developer-friendly and its
use on more powerful IoT devices will result in a less energy-
efficient implementation, while not exploiting devices’ full
capabilities. The dominant WSN OS, Contiki and TinyOS [3],
follow an event driven design, which is useful for typical WSN
scenarios, but exhibit drawbacks for efficient and functional
networking implementations. For example, in a typical WSN
scenario it is sufficient to process the tasks sequentially in a
loop, but doing so limits the windows sizes to at most one TCP
connection, due to constrained memory. An alternative system
architecture is desirable, providing capabilities of a modern,
full-fledged OS, such as native multi-threading, hardware
abstraction, dynamic memory management. However, these
types of systems have so far been considered too complex
for IoT devices.

II. RIOT: AN OS FOR SMALLER THINGS
IN THE INTERNET

Design Aspects for an IoT OS: Fundamentally, an OS is
characterized by the following key design aspects: the structure
of the kernel, the scheduler, and the programming model.
The kernel can either (i) be built in a monolithic fashion, (ii)
follow a layered approach, or (iii) implement the microkernel
architecture. The choice of the scheduling strategy is tightly
bound to real-time support (or the lack thereof), the support
for different task priorities, or the supported degree of user
interaction. Finally, the programming model defines whether
(i) all tasks are executed within the same context and have
no segmentation of the memory address space, or (ii) every
process can run in its own thread and has its own memory
stack. The programming model is also linked to the available
programming languages for application developers.

Comparing Existing Solutions: Based on these observa-
tions, we compare Contiki, Tiny OS, and Linux, and we derive
first principles for an OS for the IoT. Contiki follows a modular
concept close to the layered approach, while Tiny OS consists
of a monolithic kernel, as Linux. The scheduling in Contiki is
purely event driven, similar to that in TinyOS, where a FIFO
strategy is used. Linux on the other hand, uses a scheduler,
which guarantees a fair distribution of processing time. The
programming models in Contiki and TinyOS are based on
the event driven model, in a way that all tasks are executed

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

INFOCOM'2013 Demo/Poster Session

2453

2

OS Min RAM Min ROM C Support C++ Support Multi-Threading MCU w/o MMU Modularity Real-Time

Contiki <2kB <30kB ◦ 8 ◦ 3 ◦ ◦
Tiny OS <1kB <4kB 8 8 ◦ 3 8 8

Linux ~1MB ~1MB 3 3 3 8 ◦ ◦
RIOT ~1.5kB ~5kB 3 3 3 3 3 3

TABLE I
KEY CHARACTERISTICS OF CONTIKI, TINYOS, LINUX, AND RIOT. (3) FULL SUPPORT, (◦) PARTIAL SUPPORT, (8) NO SUPPORT. THE TABLE COMPARES

THE OS IN MINIMUM REQUIREMENTS IN TERMS OF RAM AND ROM USAGE FOR A BASIC APPLICATION, SUPPORT FOR PROGRAMMING LANGUAGES,
MULTI-THREADING, MCUS WITHOUT MEMORY MANAGEMENT UNIT (MMU), MODULARITY, AND REAL-TIME BEHAVIOR.

within the same context, although they offer partial multi-
threading support. Contiki uses a subset of the C programing
language, where some keywords cannot be used, while TinyOS
is written in a C dialect called nesC. Linux, on the other
hand, supports real multi-threading, is written in standard C,
and offers support for a wide range of different programming
and scripting languages. Because of these design trade-offs,
TinyOS and Contiki are thus lacking several key developer-
friendly features: standard C and C++ programability, standard
multi-threading, and real-time support (see Table I). An OS
leveraging a successful, large-scale deployment of IoT devices
should support these functions. From the developer perspec-
tive, this means a powerful, hardware-independent API.

RIOT Architecture Overview: RIOT OS aims at bridg-
ing the gap we observed between OS for WSNs and tra-
ditional full-fledged OS currently running on Internet hosts.
It is based on design objectives including energy-efficiency,
small memory footprint, modularity, and uniform API access,
independent of the underlying hardware.

RIOT implements a microkernel architecture inherited from
FireKernel [4], thus supporting multi-threading with standard
API. In addition to FireKernel’s original features, RIOT adds
support for C++ – enabling powerful libraries such as the
Wiselib algorithm framework – and provides a TCP/IP net-
work stack. Advantages of the RIOT architecture thus include:
(i) high reliability and (ii) a developer-friendly API. The
modular microkernel structure of RIOT makes it robust against
bugs in single components. Failures in the device driver or
the file system, for example, will not harm the whole system.
RIOT allows developers to create as many threads as needed
and distributed systems can be easily implemented by using
the kernel message API. The amount of threads is only limited
by the available memory and stack size for each thread, while
the computational and memory overhead is minimal.

RIOT Technical Details: To fulfill strong real-time re-
quirements RIOT enforces constant periods for kernel tasks
(e.g., scheduler run, inter-process communication, timer op-
erations). An important prerequisite for guaranteed runtimes
of O(1) is the exclusive use of static memory allocation in
the kernel. Yet, dynamic memory management is provided for
applications. We achieve constant runtime of the scheduler by
using a fixed-sized circular linked list of threads. Constant
runtime of the timer operations is obtained by exploiting the
fact that MCUs typically provide multiple compare registers.

It is mandatory to maximize the duration spent in deep-

sleep modes, in order to implement energy-efficiency also for
more powerful IoT devices, RIOT thus introduces a scheduler
that works without any periodic events. Whenever there are
no pending tasks, RIOT will switch to the idle thread, which
determines the deepest possible sleep mode depending on
peripheral devices in use. Only interrupts (external or kernel-
generated) wake up the system from idle state.

Low complexity of kernel functions is a main factor for
the energy efficiency of an OS. Therefore, the duration and
occurrence of context switching have to be minimized. In
RIOT context switching is performed in two cases: (i) a
corresponding kernel operation itself is called, e.g., a mutex
locking or creation of a new thread, or (ii) an interrupt causes
a thread switch. The first case will occur rarely. For example,
every thread is usually created once. Hence, it is important
to reduce the processing time in case of a thread switch.
Therefore, RIOT’s kernel provides a minimized scheduler,
when it gets called out of an interrupt service routine. In that
case, saving the old thread’s context is not required and thus
a task switch can be performed in very few clock cycles.

III. AVAILABLE CODE & FUTURE WORK

Despite this sophisticated architecture and efficient schedul-
ing, RIOT has a low memory footprint. Available open source
RIOT code [5] requires less than 5 kByte of ROM and
less than 1.5 kByte of RAM for a basic application on
MSP430, for instance. RIOT uses a multi-threaded program-
ming model in combination with standard ANSI C code and
a common POSIX-like API for all supported hardware –
from 16-bit microcontrollers to 32-bit processors. Hence, for
projects involving heterogeneous IoT hardware, it is possible
to build the whole software system upon RIOT and easily
adopt existing libraries. Moreover, the availability of several
networking protocols including the latest standards of the IETF
for connecting constrained systems to the Internet (6LoWPAN,
RPL) make RIOT IoT-ready. On-going work includes full
POSIX compliance and porting to various IoT platforms.

REFERENCES

[1] K. Ashton, “That ’Internet of Things’ Thing,” RFID Journal, 2009.
[2] D. McCullough, “uCLinux for Linux Programmers,” in Linux Journal,

2004.
[3] M. O. Farooq and T. Kunz, “Operating systems for wireless sensor

networks: A survey,” Sensors Journal, 2011.
[4] H. Will, K. Schleiser, and J. H. Schiller, “A real-time kernel for wireless

sensor networks employed in rescue scenarios,” in IEEE LCN, 2009.
[5] “RIOT Operating System,” http://www.riot-os.org.

2454

