
ABSTRACT

Title of dissertation: A COGNITIVE ROBOTIC IMITATION
LEARNING SYSTEM BASED ON
CAUSE-EFFECT REASONING

Garrett Ethan Katz
Doctor of Philosophy, 2017

Dissertation directed by: Professor James A. Reggia
Department of Computer Science

As autonomous systems become more intelligent and ubiquitous, it is increas-

ingly important that their behavior can be easily controlled and understood by

human end users. Robotic imitation learning has emerged as a useful paradigm

for meeting this challenge. However, much of the research in this area focuses on

mimicking the precise low-level motor control of a demonstrator, rather than inter-

preting the intentions of a demonstrator at a cognitive level, which limits the ability

of these systems to generalize. In particular, cause-effect reasoning is an important

component of human cognition that is under-represented in these systems.

This dissertation contributes a novel framework for cognitive-level imitation

learning that uses parsimonious cause-effect reasoning to generalize demonstrated

skills, and to justify its own actions to end users. The contributions include new

causal inference algorithms, which are shown formally to be correct and have reason-

able computational complexity characteristics. Additionally, empirical validations

both in simulation and on board a physical robot show that this approach can ef-

ficiently and often successfully infer a demonstrator’s intentions on the basis of a

single demonstration, and can generalize learned skills to a variety of new situations.

Lastly, computer experiments are used to compare several formal criteria of parsi-

mony in the context of causal intention inference, and a new criterion proposed in

this work is shown to compare favorably with more traditional ones.

In addition, this dissertation takes strides towards a purely neurocomputa-

tional implementation of this causally-driven imitation learning framework. In par-

ticular, it contributes a novel method for systematically locating fixed points in

recurrent neural networks. Fixed points are relevant to recent work on neural net-

works that can be “programmed” to exhibit cognitive-level behaviors, like those

involved in the imitation learning system developed here. As such, the fixed point

solver developed in this work is a tool that can be used to improve our engineering

and understanding of neurocomputational cognitive control in the next generation

of autonomous systems, ultimately resulting in systems that are more pliable and

transparent.

A COGNITIVE ROBOTIC IMITATION LEARNING SYSTEM
BASED ON CAUSE-EFFECT REASONING

by

Garrett Ethan Katz

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor James A. Reggia, Chair
Professor Yiannis Aloimonos
Professor Rodolphe J. Gentili
Professor Jeffrey W. Herrmann
Professor Dana S. Nau

c© Copyright by
Garrett Ethan Katz

2017

Acknowledgments

This work was supported financially by ONR award N000141310597 and a

seed grant from Lockheed Martin Corporation. Previous versions of some content

in Chapters 2, 4, 5, and 7 were published in [67–71], all papers on which I was first

author and to which I made the primary contributions.

To my classmates - Konstantinos Zampogiannis, Jason Filippou, Mahfuza

Sharmin, Michael Maynord, and Tommy Pensyl: Thank you for providing the spice

of life, getting me out of the house, and keeping me balanced. To my former room-

mates, Raegan and Kevin Conlin: thank you for so many years of warmth and

friendship. You and your family are an inspiration.

To my fellow research assistants over the years - Charmi Patel, Dale Dullnig,

Baram Sosis, Josh Langsfeld, Hyuk Oh, Isabelle Shuggi, Theresa Hauge, Gregory

Davis, and Di-Wei Huang: thank you for your fruitful collaborations and comradery.

Thanks especially to you, Di-Wei, for showing me the ropes and always bringing me

back gifts from your trips to Taiwan. It was a small thing but it said a lot.

To all of the professors at University of Maryland with whom I was a student

or a teaching assistant - Aravind Srinivasan, Howard Elman, Héctor Corrada Bravo,

Jandelyn Plane, James Reggia, David Jacobs, Yiannis Aloimonos, Michael Hicks,

Dave Levin, Dana Nau, Giovanni Forni, and David Van Horn: Thank you for sharing

your time and knowledge, and making me a better learner and teacher. Thanks

especially to Jandelyn Plane, for giving me the opportunity to be a summer course

instructor. Special thanks also to Howard Elman and Dana Nau for generously

ii

agreeing to be on my preliminary exam committee, and to Giovanni Forni, for the

insightful feedback on the content of Chapter 7. And thanks to Dana Nau, Yiannis

Aloimonos, Rodolphe Gentili, and Jeffrey Herrmann for taking an interest in my

work and agreeing to be on my dissertation committee.

Rodolphe, thank you for being so generous and hospitable, letting me use your

lab day in and day out. Thank you also for your guidance, and for always valuing

my opinion and treating me as if I were your peer - so much so that I sometimes

forgot how much farther I have to go before that point. You always suffered through

my less self-aware moments with grace.

Jim, thank you for dutifully performing the demanding and at certain times

thankless job of being my advisor. You have always been patient, encouraging,

and remarkably devoted to my well-being and success, as you are with all of your

students. You gave form to my vague notions and taught me what research was,

always steering me towards the right path. It has made all the difference.

Lastly, Al and Paul, thank you for giving me the opportunity to first do

research back at City College, and for supporting me in my move to Maryland to

pursue a doctoral degree. And to Mom, Dad, Adria, and the rest of my family:

Thank you for your unconditional love and support. Everyone should be so lucky.

iii

Table of Contents

Acknowledgements ii

List of Tables vii

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Problem Statement . 1
1.2 Objectives . 6
1.3 Overview . 7

2 Background 10
2.1 Imitation Learning . 10
2.2 Causal Inference . 15

2.2.1 Abductive Inference . 16
2.2.2 Automated Planning . 20
2.2.3 Plan Recognition . 27

2.3 Neural Network Transparency and Control 30

3 The CERIL architecture 37
3.1 A Running Example: Hard Drive Maintenance 43
3.2 Recording Demonstrations . 44
3.3 Learning New Skills by Inferring Intentions 46
3.4 Transferring Learned Skills to New Situations 52
3.5 Post-Learning Imitation and Generalization 55
3.6 Encoding Background Knowledge . 59

4 Causal Reasoning Algorithms for Inferring Intent 67
4.1 Formalizing Causal Knowledge . 68
4.2 Formalizing Parsimonious Explanation 72
4.3 Parsimonious Covering Algorithms 75
4.4 Theoretical Results . 83

iv

5 Experimental Validation 90
5.1 Overall System Performance . 91

5.1.1 Imitation Learning Trials . 91
5.1.2 Monroe Plan Corpus Experiments 98

5.2 Empirical Comparison of Parsimony Criteria 103
5.2.1 Parsimony Criteria Considered 105
5.2.2 Testing Data and Performance Metrics 107
5.2.3 Learning Novel Intention Sequences in the Monroe Domain . . 109
5.2.4 Results . 111
5.2.5 Discussion . 116

6 Causal explanation of planned actions 120
6.1 CERIL’s XAI Mechanism . 122
6.2 Causal Plan Graphs . 124
6.3 Justifying Actions with Causal Chains 129
6.4 Graphical User Interface . 133
6.5 Initial Experimental Results . 136
6.6 Discussion . 138

7 Locating Fixed Points in Neural Networks 140
7.1 Fixed Points of Neural Attractor Dynamics 141
7.2 Theoretical Groundwork . 144

7.2.1 Notation . 144
7.2.2 Directional Fibers . 144
7.2.3 A Fiber-Based Fixed Point Solver 149
7.2.4 The traverse Update Scheme 150

7.3 Application to Recurrent Neural Networks 156
7.3.1 Neural Network Model . 157
7.3.2 Applying traverse . 158
7.3.3 Topological Sensitivity of Directional Fibers 160

7.4 Computer Experiments . 163
7.4.1 Experimental Methods . 163

7.4.1.1 Sampling Distribution for W 163
7.4.1.2 Counting Unique Fixed Points 164

7.4.2 Comparison with a Baseline Solver 165
7.4.3 Comparison of Different Directional Fibers 173

7.5 Discussion . 175

8 Discussion 180
8.1 Summary . 180
8.2 Contributions . 181
8.3 Limitations and Future Work . 183

v

A Appendix 187
A.1 Dock Maintenance Causal Relations 187
A.2 Monroe County Corpus Causal Relations 191
A.3 State Reconstruction in the Monroe Corpus 195
A.4 Anomalies in the Monroe Plan Corpus 199
A.5 RNN-specific Numerical Update Scheme 200
A.6 Counting Unique Fixed Points in Finite Precision 212

Bibliography 218

vi

List of Tables

5.1 explain Performance . 96
5.2 Performance Comparison, Monroe Plan Corpus 103
5.3 Parsimony criteria comparison in the robotic domain 112
5.4 Accuracies on the original and modified corpus. 113

vii

List of Figures

2.1 Hierarchical Task Network Decomposition 24

3.1 The CERIL architecture . 39
3.2 A sample SMILE demonstration . 41
3.3 Baxter imitating a demonstration . 42
3.4 A sample assembly tree . 54
3.5 An example of assembly tree matching 56

4.1 Examples of causal relations . 70
4.2 Explaining an observed sequence. 76
4.3 Singleton Sub-Cover Generation. 79
4.4 Top-level Cover Generation. 81

5.1 Example SMILE demonstration and subsequent Baxter imitation . . 93
5.2 Snapshot of “UM” SMILE demonstration 94
5.3 Snapshot of “UM” Baxter imitation 94
5.4 Histogram of precision before and after minimum cardinality 102
5.5 Example of modified causal relation 110
5.6 Comparison of parsimony criteria on original test set 115
5.7 Comparison of parsimony criteria on modified test set 116

6.1 A screenshot of the XAI interface to CERIL 123
6.2 An abstract causal plan graph . 125
6.3 A concrete causal plan graph . 126
6.4 A detailed screenshot of the XAI interface 134
6.5 Complexity of typical causal plan graphs 136
6.6 Shortest causal chain counts in causal plan graphs 137

7.1 Effect of weight perturbations on neural network fixed points 143
7.2 An example of a directional fiber . 146
7.3 Fiber-based traversal routine. 151
7.4 Numerical step sub-routine. 151
7.5 Key quantities in Theorem 5. 154
7.6 σ(wv)− v for various w in the one-dimensional case. 158

viii

7.7 Topological sensitivity of directional fibers 161
7.8 Filtering fixed points for duplicates 165
7.9 Comparison of fixed point solver counts 168
7.10 Comparison of fixed point solver complexities 170
7.11 Scatter plot of fixed point solver complexities 170
7.12 Comparison of fixed point solver spatial distributions 172
7.13 Comparison of fixed point stabilities in one network 172
7.14 Comparison of fixed point stabilities over all networks 173
7.15 Comparison of fixed point counts with different choices of c 175

A.1 Two examples of computing δi from ε 210
A.2 Two examples of computing µ from δi(ε) 211
A.3 Relative errors at points found by fiber traversal 214
A.4 Relative errors at points found by the baseline solver 215

ix

List of Abbreviations

AI Artificial Intelligence
CPG Causal Plan Graph
FSN Minimum Forest Size
FSX Maximum Forest Size
GTN Goal-Task Network
GUI Graphical User Interface
HGN Hierarchical Goal Network
HTN Hierarchical Task Network
IFT Inverse Function Theorem
IL Imitation learning
IR Irredundancy
MC Minimum Cardinality
MD Minimum depth
MP Minimum Parameters
MPC Monroe Plan Corpus
PCT Parsimonious Covering Theory
P&T Pliability and Transparency
RNN Recurrent Neural Network
XAI Explainable Artificial Intelligence
XD Minimax depth

x

Chapter 1: Introduction

1.1 Problem Statement

Recent years have seen an explosion of interest in Artificial Intelligence (AI)

and autonomous systems. Some of the largest corporations, federal agencies, and

research institutions in the world are devoting extensive resources to these technolo-

gies. Self-driving cars, drones, humanoid robots, and other autonomous systems are

slowly pervading our streets, skies, factories, hospitals, battlefields, and homes.

This momentum notwithstanding, AI researchers and engineers know first-

hand just how over-sensationalized, fragile, and stubbornly unintelligent today’s

autonomous systems can be. Manually programming robots to exhibit any form of

autonomous behavior is a painstaking and time-consuming process, even for highly

trained roboticists. This makes it extremely difficult for end users to control or guide

the behavior of an autonomous system, at any substantial level of intelligence beyond

rote mimicry of desired movements. The issue is confounded by the increasing use

of deep neural networks for autonomous control (e.g., [77]), which are often very

opaque even to their architects - let alone end users - and designed and tuned

largely through trial and error. This can severely limit both the architect’s and the

1

end user’s ability to control, understand, predict, or trust an autonomous system’s

behavior.

The current AI focus on deep learning performance, at the expense of end user

control and understanding, has prompted vocal warnings from some prominent tech-

nologists and scientists [54,86]. These warnings sometimes fall flat, as AI historians

know that the lead time to human-level AI has been sorely underestimated in the

past [31]. Our aspiration is a world filled with human-level autonomy and beyond,

but we may not expect to be around when that world comes. This expectation

makes it easy to forget the associated risks and luxuriate in our scientific enterprise.

But we read the news, and watch the movies - and for all their hype, a small doubt

begins to tug on our assuredness that AI is so far off. If we were to come face to

face with that object of our aspiration, and lock eyes with our human-level AI: what

would we feel then?

No one can foretell with certainty the impacts of widespread intelligent auton-

omy. It could eliminate jobs, but could also create new jobs or fill labor shortages.

It could reduce accidents from human error, but could also cause new accidents

stemming from imperfect software. AI world domination or mass extinction events

lie at the more dubious and sensationalized end of the spectrum. Nevertheless, even

without a catastrophic event, there is still the profound existential risk that human

civilization might gradually evolve into one with completely inorganic constituents,

upending the distinction between natural and artificial.

True human-level AI is necessarily unpredictable, to the extent that humans

are unpredictable. Unpredictable AI is endlessly fascinating, but given the high

2

stakes, it does not belong in the upcoming generation of autonomous systems. This

dissertation is based on the premise that tomorrow’s autonomous systems should

meet at least the following criteria:

• Pliability : It should be easy for end users with no robotics training to control

and guide an autonomous system’s behavior.

• Transparency : An autonomous system’s behavior should be well understood

by the architects at a technical level, and by end users at a practical level.

These two criteria are henceforth abbreviated as P&T.

A relevant paradigm for P&T is robotic imitation learning, wherein a robot

imitates a human demonstrator and thereby acquires a new behavior. Since a human

is in the loop, guiding robotic learning, the system is highly pliable and subsequent

behavior will be relatively predictable and understandable. This can improve user

safety, as well as trust in and adoption of the robotic system. However, much of

the existing work on imitation learning focuses on sensorimotor behavior, with little

attention to cognition. This limits the ability of these systems to generalize to

new situations. Cause-effect reasoning is a particularly important cognitive faculty

that is under-represented in these systems. As such a quintessential and familiar

cognitive faculty in humans, it stands to reason that causal inference mechanisms

could significantly improve generalization ability in imitation learning systems and

simultaneously promote P&T.

Based on this hypothesis, this dissertation presents a novel cognitive robotics

system that uses Cause-Effect Reasoning for Imitation Learning, called CERIL.

3

Initialized with some prespecified causal background knowledge, CERIL can use

causal inference to interpret human demonstrations at a cognitive level and gener-

alize to new situations, much as human learners do. CERIL works by hypothesizing

plausible intentions on the part of the demonstrator, which serve as parsimonious

explanations for the actions that were observed.

As an imitation learning system, CERIL is highly pliable. It can generalize

a learned skill on the basis of just a single end user demonstration. Moreover, the

generalization can extend to situations requiring significantly different actions from

what was demonstrated, such as using different arms to reach different objects in

different locations, handing off objects between grippers, and so on. Consequently,

end users can rapidly shape a robot’s behavior at a cognitive level.

CERIL is also highly transparent, at both the technical level and the end

user level. At the technical level, CERIL’s symbolic algorithms for causal intention

inference, which were developed as part of this work, come with formally verified

correctness and complexity characteristics, so they are well understood. At the end

user level, CERIL can leverage its causal knowledge to provide intuitive human-

readable justifications for what it has planned to do at imitation time. This can

potentially make the system more understandable for non-expert human users.

CERIL’s theoretical analysis is backed by several experimental results. An

empirical validation both in simulation and on board a physical robot demonstrates

CERIL’s high success rate and capacity for generalization. Additional computer ex-

periments are used to compare several formal criteria of parsimonious explanation in

the context of intention inference, revealing their relative strengths and weaknesses.

4

In particular, it is shown that a novel parsimony criterion proposed in this work is

often favorable as compared with more traditional criteria. Lastly, computer exper-

iments are used to quantify CERIL’s ability to produce intuitive human-readable

justifications for its planned actions. In particular, it is shown that CERIL’s causal

knowledge may admit combinatorially many valid justifications for any particular

planned action, but a parsimony criterion can reduce this set of justifications to a

small, intelligible subset.

CERIL’s cognitive-level reasoning is currently implemented using symbolic

computation, which is amenable to formal analysis and promotes transparency.

However, a neural reimplementation could potentially improve CERIL’s perfor-

mance, adaptability, and capacity for learning new causal knowledge from experience

that was not provided during initialization. In particular, future versions of CERIL

could incorporate recent approaches to “programmable” neural networks, that can

encode symbolic cognitive-level processing using neural attractor dynamics [122].

However, these attractor dynamics remain poorly understood from a theoretical

perspective, rendering the resulting systems fairly opaque and unpredictable. To

maintain transparency in a neural reimplementation of CERIL, it is important that

neural attractors be better understood at a technical level. To that end, this dis-

sertation also contributes a novel mathematical method for systematically locating

neural attractors. This method constitutes an important new tool that can be used

to more effectively study neural dynamics, both in CERIL and at large.

5

1.2 Objectives

The overall goal of this work was to design an effective imitation learning

system based on cause-effect reasoning (CERIL). The guiding hypothesis was that

causal reasoning would facilitate cognitive-level generalization as well as P&T. In

that context, the following specific objectives guided this research:

1. Design causal reasoning mechanisms for robotic imitation learning.

Specifically, design a knowledge representation and set of parsimonious cause-

effect reasoning algorithms for inferring a demonstrator’s intentions that sup-

port real-valued spatial information processing, causal chaining, and temporal

ordering constraints. Conduct a formal analysis to establish their soundness,

completeness, and computational complexity guarantees.

2. Implement and empirically validate CERIL. The implementation should

incorporate the causal reasoning mechanisms from objective (1) on board a

physical robot. Empirical validation should be conducted using a suite of

assembly and maintenance tasks in a physical tabletop workspace, as well as

a battery of synthetic testing data. In addition to validating performance and

reliability, these empirical studies should also be used to inform the parsimony

criteria employed by the causal reasoning mechanisms from objective (1).

3. Extend CERIL so that it can explain its actions to an end user. In

particular, devise a procedure through which CERIL can query its underlying

causal representation to explain why it has planned any particular action. The

6

procedure should provide a small, intelligible set of possible justifications that

are compelling and intuitive to a human end user. This procedure should be

exposed through a human-friendly interface that provides 3D visualizations of

the actions, human-readable justifications for them, and a navigable graphical

representation of the planning process.

4. Develop a mathematical tool for locating attractors in recurrent

neural networks. The purpose of this tool is to aid the study of attractor

dynamics in programmable neural networks. These attractor dynamics are

relevant to a neural reimplementation of CERIL, so a deeper understanding of

them is important for transparency. The tool should have a solid theoretical

basis, and be verified in practice through empirical computer experiments.

1.3 Overview

The rest of this dissertation is organized as follows.

Chapter 2 surveys background work relevant to this dissertation. First, Sec-

tion 2.1 covers work on sensorimotor- and cognitive-level imitation learning. Next,

Section 2.2 covers work on causal inference that forms the basis for CERIL’s reason-

ing algorithms, including abductive inference of potential causes (e.g., intentions)

from observed effects (e.g., demonstrated actions), and automated planning based

on causal relationships between robotic actions and the environment. Finally, Sec-

tion 2.3 briefly reviews some work on neurocomputational autonomous control and

neural attractor dynamics.

7

Chapter 3 presents the overall architecture of CERIL at a conceptual level,

and introduces some concrete running examples. This chapter describes in concrete

terms every stage of CERIL’s imitation learning process as well as the causal back-

ground knowledge required by CERIL to operate. This chapter does not include

any results but explains in detail how CERIL works and sets the stage for Chapters

4-7.

Chapter 4 details the results of objective 1. It presents a formal model of

causal knowledge that is sufficient for intention inference in the context of robotic

imitation learning, including temporal ordering constraints, causal chaining, and

real-valued spatial information. It formally defines the intention inference problem

and presents algorithms for solving it. Lastly, it proves theorems that guarantee

the soundness and completeness of these algorithms, as well as characterizing their

computational complexity.

Chapter 5 details the results of objective 2. It describes empirical results con-

firming that the causal inference algorithms are correct and efficient in practice. It

also validates the end-to-end imitation learning pipeline on board a physical robot,

showing that CERIL can generalize a variety of skills to new situations from single

demonstrations, with a high success rate. Lastly, it compares several possible par-

simony criteria for assessing the plausibility of inferred intentions. Which criterion

is used can affect which intentions CERIL hypothesizes and tries to imitate. The

empirical comparison shows that some traditional criteria are less appropriate in the

context of intention inference, whereas a new criterion proposed in this dissertation

is often more appropriate.

8

Chapter 6 details the results of objective 3. It presents a procedure with

which CERIL can query its causal knowledge in order to justify its planned actions

to an end user. Some preliminary experimental results show that this procedure

can effectively reduce a combinatorially large set of possible justifications down to

a small, intelligible subset that is suitable for human end users.

Chapter 7 describes the results of objective 4. A new method for systematically

locating neural attractors is presented. Some theoretical properties of the method

are proven. Empirical computer experiments show in practice that the method is

competitive and complementary to existing approaches. This method constitutes a

new tool that can be used in studies of programmable neural attractor dynamics

that are relevant to neural implementations of systems like CERIL.

Finally, Chapter 8 concludes with a discussion of the limitations and contri-

butions of this dissertation, as well as directions for future work.

9

Chapter 2: Background

This chapter reviews some past research that is relevant to the work in this

dissertation. Section 2.1 surveys past approaches to imitation learning. Section

2.2 focuses on three important topics in AI that are all associated with cause-effect

reasoning: abductive inference, automated planning, and plan recognition. Section

2.3 briefly summarizes some relevant past work on sensorimotor and cognitive con-

trol with neural networks and highlights common sources of limited reliability and

transparency.

2.1 Imitation Learning

Over the past several decades, the commercial use of robots has become in-

creasingly wide-spread [80]. But in most industrial applications, robots are manually

programmed by human experts to execute highly specialized, repetitive tasks. Man-

ually programming contemporary robotic systems is time consuming, difficult, and

expensive, requiring a trained roboticist to make changes for even slightly altered

tasks. A potential alternative is to replace manual programming with imitation

learning (IL), in which a robotic system learns a task by watching a human perform

the task, and then attempts to imitate what was observed [17]. IL holds the promise

10

of highly pliable intelligent agents that can be taught by human domain experts and

other end users, who have little or no expertise in robotics and computer program-

ming. IL also has the potential to produce artificial collaborators that are safer,

more trust-worthy, and more usable, aiding and protecting human operators in dif-

ficult or dangerous situations, but at the same time keeping a responsible human in

the loop to guide behavior.

Empirical work from cognitive science and neuroscience conducted on humans

and monkeys reveals that imitation learning is an important component of our own

motor repertoire [83]. In particular, humans have neural mechanisms (the mirror

neuron system) that likely facilitate decoding of intentions and understanding of

actions previously observed in order to infer a forthcoming new goal [65]. In other

words, human imitation learning involves an understanding of the intentions of a

demonstrator, in addition to their observed actions [11, 43, 53]. We refer to the

understanding of a demonstrator’s intentions as “high-level” or “cognitive-level”

imitation learning.

Much past work on robotic IL has focused on low-level sensorimotor learning

in robots, where the objective is to closely mimic the precise motor trajectories and

dynamics relevant to a given skill [1, 10, 12, 16, 34, 41, 139]. For example, Fitzgerald

et al. use “kinesthetic teaching” for two-dimensional block rearrangement tasks, in

which humans demonstrate by physically guiding the robot arm to a target location

[41]. They compare two different representations for new skills - one that uses a full

trajectory, and one that uses a finite set of points along the trajectory most relevant

to the skill. Wu et al. place fiducial markers on objects and on the hand of a human

11

demonstrator, and use standard visual processing and motion tracking methods to

record the relevant trajectories [139]. Their one-shot learning framework can repeat

these actions when the manipulated objects are in new locations, by using thin plate

spline warping to map the demonstrated trajectory onto the new scene. Barros et

al. train a teleoperated humanoid robot to walk, using joysticks designed for human

feet that can transmit the forces experienced on the robot’s feet in real time [12].

Methods in this category are very important and have led to impressive results,

but are typically limited to a single class of relatively simple low-level tasks not

requiring interactions of sensorimotor processes with high-level planning, reasoning

and control. As such, they are not human-competitive on complex tasks that require

a sequence of structured actions. Further, procedures learned via robot imitation

are often quite brittle and do not generalize well to situations that are not in the

training set, in part because most past imitation learning systems have focused on

copying demonstrated actions verbatim rather than trying to “understand” the goals

and intentions of the human demonstrator [24].

There is some past work on imitation learning at a higher cognitive level, al-

though it is often restricted to simple, simulated, and/or highly constrained task

scenarios, or requires many demonstrations for learning. There have been two

prominent branches of research in this area. One branch works within the frame-

work of reinforcement learning, using environments with simple state representations

such as cells in discrete two-dimensional grids, or low-dimensional real-valued vec-

tors (e.g., a 〈position, velocity〉 pair describing motion along a single coordinate

axis) [28,45,79,133]. For example, Verma and Rao approached goal imitation from

12

the perspective of reinforcement learning and graphical models [133]. Rather than

exploring the entire search space to learn optimal action policies, exploration is

focused on the regions of the search space corresponding to high-reward action se-

quences that are demonstrated by a teacher. The technique requires a discrete, finite

set of states, and represents goals as elements in that set - for example, in the exper-

imental evaluation, states were locations in a discretized two-dimensional grid, and

goals were target locations. This approach was later extended to include hierarchi-

cal actions [45], and recently a similar technique using graphical models was trained

by leveraging crowd-sourcing to generate a large number of demonstrations [27].

However all experimental evaluations were confined to discretized two-dimensional

worlds. There has also been some work on neural models of goal-directed imitation

learning, but focused on low-level goals such as the target position of a reaching

movement [94].

The other branch uses symbolic representations of goals with internal struc-

ture [25,35,66,142–144]. For example, Chella et al. devised a framework for convert-

ing raw sensor data into structured symbolic representations, which was tested on a

physical robot [24]. However, their methods still assume a highly constrained task

scenario, involving the rearrangement of convex blocks in a two-dimensional plane.

Another example is the work of Jansen and Belpaeme, which includes a symbolic

approach to inferring a demonstrator’s intentions, although they also restrict their

attention to simple two-dimensional environments [66]. Their inference mechanism

focuses on the final changes to symbolic object properties and relationships in the

last step of a demonstration to form plausible hypotheses about the teacher’s intent.

13

However, their system operates solely on discrete symbolic representations, not ad-

dressing the problem of real-world continuous valued sensorimotor data, and requires

on the order of hundreds of demonstrations for convergence (synthetic demonstra-

tion data was generated by a computer program). More recently, Mohseni-Kabir

et al. developed a framework in which humans can use natural language to explain

high-level tasks to a robot, such as removing tires from a car [85]. Specifically, the

human explains a high-level task (e.g., “remove the tire”) as a sequence of lower-

level tasks that have already been taught (e.g., “grab tire, pull off tire, put down

tire”). Their system represents tasks with the “Hierarchical Task Network” for-

malism, which is described in more detail in Section 2.2.2. However, the hierarchy

is designed manually by a user through a voice recognition interface, not inferred

from a demonstration; and the question of generalization to new situations was not

addressed.

In contrast, Yang et al. [142] also devised a cognitive representation based on

hierarchical structure, but it was able to automatically interpret human demonstra-

tions, rather than relying on manual construction of the hierarchy by the user. Their

system was applied in more realistic and unconstrained scenarios such as household

kitchen work. Subsequently it was extended to include a symbolic model of spatial

object relationships [144] and to learn from unconstrained cooking videos on the

web [143]. The underlying hierarchical structure of actions was based on an analogy

with natural language. Demonstrations were treated as “sentences” that could be

generated by a context-free grammar, and the demonstrations were parsed according

to this grammar in order to form a representation with tree structure. Using that

14

tree structure, combined with some semantic background knowledge, the system

was able to infer “hidden” consequences of some actions that were not explicitly

listed in the machine representation of the demonstration.

CERIL builds on ideas in this past work, especially the use of hierarchical

representations as in [85,143]. However, CERIL is differentiated from these past ap-

proaches in its emphasis on cause-effect reasoning. As explained later, this enables

generalization to new situations that require significantly different low-level plans,

on the basis of a single demonstration, in contrast with this past work. Moreover,

CERIL comes with strong formal guarantees, and is shown empirically to be capable

of handling less constrained task scenarios than most past work, involving bimanual

manipulation of non-convex, composite objects in three dimensions, not only in sim-

ulation but also the physical world. This was verified with systematic experiments

that quantified the success rate of the end-to-end IL process on a physical robot,

which was not always done in past work. Lastly, the CERIL architecture supports

a mechanism with which it can justify the actions that it plans before imitating, a

feature not available in most past IL work. This leads to improved transparency for

end users.

2.2 Causal Inference

There are three prominent topics in AI that involve cause-effect reasoning and

are relevant to this dissertation. The first, described further in Sect. 2.2.1, is abduc-

tive inference. In CERIL, abductive inference is used to interpret demonstrations

15

and infer the higher-level intentions of a demonstrator. The second, described fur-

ther in Sect. 2.2.2, is automated planning. In CERIL, automated planning is used

by the robot to plan new actions for new situations that carry out the demonstrator’s

intentions. The third, described further in Sect. 2.2.3, is plan recognition. CERIL’s

use of abductive inference to interpret demonstrations is related to plan recognition,

but is different from past work on that topic in several ways, as explained below.

2.2.1 Abductive Inference

Abductive inference, commonly known as “inference to the best explanation,”

is the process by which one uses cause-effect knowledge to form plausible hypothe-

ses that explain the available evidence [95]. Familiar examples include a detective

finding clues and solving a mystery, or a medical doctor examining a patient and

making a diagnosis.

As compared with deductive inference, abduction is much less developed in

AI. However, in the past several decades, some computational models of abduction

have been proposed. Most of these models rely on symbolic representations and

often employ concepts from deductive logic and automated theorem proving. The

core idea behind these models is as follows. An observation is modeled by a logical

proposition p. To explain the observation, the abductive inference system must

provide a logical proof whose conclusion is p. The system has background knowledge

in the form of several available axioms that can be used to construct the explanatory

proof. Various criteria are used to evaluate an explanatory proof as “good” or

16

“bad.” For example, Poole used the criteria that good explanations should not be

presumptive (should not imply other explanations) and should be minimal (should

not contain redundant antecedents) [100]. In “cost-based abduction”, each axiom

has an associated cost when used in a proof, and finding a good explanation is

construed as finding a low-cost proof [23]. Mitchell et al. used similar proof-based

representations in their work on “explanation-based generalization” [84]. In this

context, the objective is to explain why (i.e., prove that) a particular instance (e.g.,

a yellow mug on the table) is an example of some concept (e.g., the concept of a

cup), based on some predefined background knowledge, and use that explanation to

classify other instances of the same concept.

Another prominent approach to abductive inference is parsimonious covering

theory (PCT) [98]. In the most basic formalism, the objective is to explain one

or more observed “manifestations” in terms of the “disorders” which cause them.

Manifestations and disorders are modeled as vertices of a bipartite graph. Links

in the graph capture causal relationships about which disorders can be used to

explain which manifestations. Using M to denote the set of manifestations and D

to denote the set of disorders, PCT defines a function causes(m) which returns

a subset of D, containing every disorder d with a causal link to the manifestation

m ∈ M . In a particular inference problem instance, one is given a subset of M ,

representing the observed manifestations, and a valid explanation is a subset of D,

called a cover. A cover is defined by the property that every observed manifestation

is linked to at least one disorder in the cover by the edges of the graph. In other

words, for every observed manifestation m, a valid cover must contain at least one

17

d in causes(m). “Good” explanations are covers that satisfy some criterion of

parsimony: for example, having small cardinality, or being irredundant (containing

no proper subset that also covers the observations). The best criterion may be

application dependent, and various criteria have been compared empirically in the

context of diagnosing brain damage [130].

There are many extensions to the basic form of parsimonious covering theory.

Maximum likelihood can be used as a parsimony criterion, by assigning edges weights

that measure the “causal probability” that a disorder actually causes a manifestation

(which is distinct from the more familiar notion of conditional probability) [97].

Causal graphs with more than two layers allow for causal chaining, in which the

manifestations (effects) at one layer are also the disorders (causes) for the next

layer [96]. Temporal information can be incorporated as well, by allowing individual

disorders to explain entire sequences of manifestations subject to partial ordering

constraints [135].

In the context of cognitive robotics, inferences involving spatial information

are essential, but there is no unified theory concerning the incorporation of spatial

information into abduction. There are several approaches specialized for certain

applications, but often at geospatial scales that have limited relevance to robots.

Shakarian and Subrahmanian have devised methods for “geospatial abduction prob-

lems”: a class of problems involving discretized two-dimensional space, in which

observed events at one set of locations must be explained in terms of hypothesized

agents based at another set of locations [112]. Couclelis studied how we might ex-

plain man-made structures in urban or natural landscapes in terms of their intended

18

purpose [30]. An exception is the work of Shanahan, who considered the case of a

mobile vacuuming robot, which needs to explain noisy sensor data in terms of a

hypothesized model of the environment [113]. He devised a collection of deductive

axioms which use two-dimensional geometric primitives to describe spatial relations

between the robot and its environment, which can be supplied to a logic-based

abduction system that uses the automated theorem prover approach.

Hierarchical causal structure has also seen somewhat piecemeal treatment in

the literature. Citro et al. developed a system for neurological diagnosis which

combines logic-based abduction with hierarchical spatial structure, in which a man-

ifestation is explained by satisfying a logical clause involving brain regions, and a

database of nested cubes relates volumes in space to corresponding brain regions [29].

Mozetic presents a logic-based method for handling general hierarchies which can

but need not be spatial [87]. Each level of the hierarchy defines a logical model

which maps hypotheses to observations they can explain. Logical predicates are

also used to define how low-level hypotheses and observations can be abstracted to

higher-level counterparts. The procedure operates by climbing from detailed ob-

servations to abstracted observations, reasoning backwards at the higher levels to

abstracted hypotheses, and finally descending the hierarchy to obtain concrete hy-

potheses. However, this approach assumes that all information is encoded in logical

form, and lacks a notion of an embodied agent that can interact with the world to

bring about its goals.

19

2.2.2 Automated Planning

The field of automated planning, which centers on computational models of

goal-directed reasoning, has been active for several decades. A thorough review is

given by Ghallab, Nau, and Traverso [49]. As with abduction, there have been a

variety of models, but the majority share a common basis which relies on top-down

symbolic processing and is described here. In any particular application, a full

symbolic description of the planning problem is typically provided in a knowledge

base referred to as a domain, and the human who populates that knowledge base

is referred to as a domain author. A classical planning domain specifies a finite set

of possible states of the environment, which are symbolic descriptions of the world.

Typically each state is represented as a list of logical propositions asserting object

properties and relationships, such as (on, block-A, block-B). In the following,

s will be used to denote an arbitrary state. The domain also specifies a collection

of operators, which represent choices the planner can make to transition from one

state to another. Each operator accepts a list of parameters which determine exactly

how the state will change. For example, an operator pick-up might accept a single

parameter block specifying which block is picked up. Formally, each operator o is

a function

o : S ×X∗ → S ∪ {Failure}

where X∗ is the set of all finite lists of parameter values. The output value represents

the new state after the operator is applied, except in the case of Failure, which

indicates that a given operator and parameter binding is not a valid option in the

20

current state. For example, picking up a wall, or picking up a block that has another

block on top of it, may be invalid options that return Failure.

Any grounded operator, in which each parameter is bound to a specific value,

is referred to as an action. In other words, each possible parameter binding for one

operator represents a different action. Formally, each action is a function a : S →

S ∪ {Failure}. The postconditions of an action refer to the resulting propositions

that become true in state after the action is performed. The preconditions of an

action refer to propositions in the current state which must obtain before the action

can be used. Alternatively, an action’s preconditions can be equated with the subset

of states in which the action is valid.

Given a planning domain, the classical planning problem consists of an initial

state, s0, and a set of goal states, g. A solution (i.e., a plan) is any sequence of actions

that ultimately transitions s0 to some state in g, without any violated preconditions

along the way.

Historically, action pre- and postconditions have been represented with logical

formulae, similarly to states, and automated theorem proving techniques are used

to compute new states when actions are performed. A seminal example in this vein

was the STRIPS planner [39]. An alternative representation is used by PyHop1,

a more recent planner written in the Python programming language. In PyHop,

states are represented with arbitrary Python data structures, and operators are

represented with arbitrary Python functions. Each operator function accepts the

1https://bitbucket.org/dananau/pyhop

21

current state as input in addition to other parameters, and returns the new state

as output (or an indication of failure when the operator is not a valid option in the

current state).2 PyHop is agnostic to the inner workings of state data structures

and operator functions and treats them as black boxes: domain authors are free to

encode states, actions, preconditions, and so on with generic programming language

constructs available in Python, and need not use logic-based representations or

automated theorem proving techniques.

The computational complexity is known for several variants of the classical

planning problem and is generally worse than polynomial time [37]. To make auto-

mated planning more practical, one strategy is to let the human domain expert give

additional guidance to the planning process, based on their knowledge of the do-

main. A popular formalism for this is the “Hierarchical Task Network” (HTN) [88].

HTNs introduce tasks, which generalize the notion of actions. A domain author

defines a number of tasks and arranges them in a hierarchy, where tasks lower in

the hierarchy can be combined into useful recipes for accomplishing tasks higher in

the hierarchy. For example, the task of “traveling to the Bellagio hotel” might be

accomplished through a sequence of three sub-tasks: “riding the metro to Dulles

airport”, “flying to Las Vegas”, and “riding a cab to the Bellagio”. The domain

author might also include an alternative recipe: “renting an RV”, and “driving to

the Bellagio”.

Formally, an HTN domain includes a number of tasks of the form t〈x1, x2, ...〉,

2Unless it is a non-primitive operator, as described below.

22

where t is a unique name for the task, and x1, x2... are parameters such as hotels

or manipulable objects. Each task is associated with several alternative recipes, or

methods, which can be applied to accomplish the task. Some methods are primitive

operators : like operators in classical planning, they are transition functions that map

the current state (and zero or more parameters) onto a new state, or an indication of

failure. However, other non-primitive methods higher in the hierarchy are different:

instead of producing a new state, they produce a sequence of sub-tasks, each with

their own associated methods. This induces a recursive decomposition of tasks

into sub-tasks into sub-sub-tasks, until ultimately primitive operators are reached.

Tasks with more than one method allow for branching and backtracking during the

decomposition process. If a decomposition branch produces a successful sequence

of primitive operators, that sequence is considered to be a solution to the planning

problem.

The HTN planning process is illustrated in Figure 2.1. For the sake of example

the figure assumes a total ordering on the tasks at each level, although that is not

required in the most general HTN variants. The planner is given a list of high-level

tasks that must be accomplished, which it processes sequentially. If the current

task is primitive, it is applied to update the current state. Otherwise, the planning

algorithm branches to search each alternative method available for the current task.

In each branch, the current method is decomposed into its constituent sub-tasks, and

the algorithm is called on the sub-tasks recursively. If at any point the algorithm

attempts to apply an action or method whose preconditions are not satisfied, it

receives an indication of failure, and back-tracks to try a different branch. When

23

Application

Branching

Decomposition

1

2

3
4

5

6

7

Figure 2.1: Hierarchical Task Network Decomposition. Parameterized tasks are

indicated by the expression t〈x1, x2, ...〉. This notation is only schematic; multiple

occurrences of this expression in the figure are not necessarily the same task. The

three labeled axes correspond to the main dimensions of the search algorithm: Tasks

are recursively decomposed until primitive operators are reached, those operators are

applied to update the state, and if failure is reached, the algorithm backtracks and

tries a new branch. Each branch corresponds to a different method relevant to

the parent task. Numbered circles indicate the sequence of steps performed by the

algorithm. States are indicated by “S1”...“S4” in the boxes at bottom - note that

the algorithm reverts to initial state S1 when trying the second branch, but the new

branch may lead to new states.

24

all top-level tasks have been successfully decomposed, the algorithm terminates,

returning as its solution the sequence of successful actions obtained at the bottom of

the decomposition. If all available branches ultimately fail, the algorithm terminates

with no solution.

HTNs provide a convenient framework for domain experts to guide the plan-

ning process. This is a significant advantage when dealing with robots, which gen-

erally lack the large body of background knowledge that humans acquire over years

of development and often take for granted. On the other hand, the HTN framework

places a significant burden on the domain author. Defining a suitable task hierarchy

is a manual process which can require significant time, effort, and ingenuity. Since

the domain author is responsible for constructing the task hierarchy, most of the

reasoning takes place in the domain author rather than the automated planning

process. This is particularly true when using representations like PyHop’s in which

states and operators are treated as black boxes whose inner logic is not interpretable

to the planning algorithm. Moreover, the notion of a task is not included in the

classical planning formalism, and as such, task representations are generally unin-

telligible to classical planners. So classical planning cannot be invoked as a fallback

option in situations where HTN planning failed due to human errors or omissions

mid-way up the task hierarchy.

To mitigate these issues, Shivashankar et al. recently introduced an analog of

HTNs called Hierarchical Goal Networks (HGNs) [114–116]. The main differences

are that while HTN methods return sub-tasks, HGN methods return sub-goals, and

while HTN methods accept the current state as input, HGN methods accept both

25

the current state and the next sub-goal as input. Each sub-goal is a goal in the

classical planning sense, i.e., a set of target states, represented by explicit logical

propositions describing desired object properties and relationships. As a result,

HGNs can leverage useful recipes when they are provided by a human, but fall

back on classical planning techniques when no recipes are available. HGN methods

induce a recursive decomposition of goals into sub-goals, until there are no more

methods relevant to pairs of consecutive sub-goals at the bottom of the hierarchy.

At this point, classical planning is used to bridge the consecutive sub-goals with

primitive action sequences. The concatenation of these action sequences is the

solution returned by the HGN algorithm.

Even more recently, Alford et al. introduced “Goal-Task Networks” (GTNs),

which allow for a heterogeneous mix of formal tasks and goals within a single domain

[5]. This can potentially enable the best of both worlds, allowing a domain author

to mix task and goal methods depending on which is a more natural representation

for any particular piece of background knowledge. The GTN problem has been

formally defined and analyzed, but a concrete algorithm for solving it has not yet

been proposed or validated.

Most work in automated planning, hierarchical or classical, focuses on an

offline reasoning process and treats actions as atomic concepts, thereby failing to

capture some of the complexities involved in real-world robotics. Recently Nau

et al. have highlighted and elaborated on this issue [89]. The authors distinguish

between descriptive action models, which capture what an action does (i.e., pre- and

post-conditions in STRIPS-like classical planning), and operational action models,

26

which capture how an action is done (i.e., arbitrary computer programs in PyHop-

like hierarchical planning, for operations like motor planning and feedback control

on a robot). They present a preliminary framework, termed “Refinement Acting

Engine” (RAE), which seeks to unify these two action models. RAEs bear some

similarity to hierarchical planners, in that methods authored by domain experts

are used to refine high-level, abstract activities into low-level, concrete operations.

However, RAE methods permit complex code bodies, in which each line can either

generate sub-tasks as part of the planning process or issue commands as part of the

acting process. The two processes are blended using a multi-threaded, stack-based

architecture.

2.2.3 Plan Recognition

Plan recognition is the problem of inferring an agent’s goals and intentions,

after observing the agent carry out a plan of action [72]. Plan recognition can

be viewed as a form of cause-effect reasoning, and as such a number of abduc-

tive inference models have been proposed for it, including methods based on logic,

parsing, set-covering, and probabilistic reasoning, as well as hybrids and heuris-

tics [13, 22, 46, 67, 82, 118, 134]. Plan recognition has been applied in areas such as

story understanding and natural language human-computer discourse [21]. On the

other hand, the utility of plan recognition for human-robot interaction, and in par-

ticular robotic imitation learning, has been largely unexplored [15,17]. As intelligent

robots become a reality of everyday life, it is increasingly important that robots can

27

interpret the intentions and desires of the humans with whom they interact, so that

they can behave accordingly.

Outside the realm of IL, there are many methods for plan recognition. Singla

and Mooney augmented Markov Logic Networks (MLNs) to perform abductive infer-

ence, and used their abductive MLN technique to infer high level plans from observed

action sequences [118]. A major benefit of their approach is that MLNs can combine

probabilistic inference with first order logic. However, it must be trained through

supervised learning on a large data set of plans, and inference is computationally

expensive. Meadows et al. used a logic programming approach to perform plan

understanding, which they defined as inferring intermediate layers of a hierarchical

plan in addition to the top-level task [82]. Their method constructs explanations

in a bottom-up manner from an observed action sequence, and degrades gracefully

when some actions in the sequence are hidden. However, their approach has no for-

mal guarantees, and sometimes fails to recover the correct explanation even when

the full action sequence is observed. Both of these approaches were applied to plan

recognition in simulated domains and it is not clear whether they would be sufficient

for real-world imitation learning and execution on board a physical robot.

Saffar et al. approached the problem with a brain-inspired strategy, by map-

ping an HTN onto an activation-spreading network [110]. Network nodes were in

one-to-one correspondence with HTN operators, and synaptic connections corre-

sponded with parent-child task relationships. Additional connections were used to

encode ordering constraints between the sub-tasks for a particular parent task, and

additional nodes were used to supply contextual information. Observed low-level

28

actions would stimulate the corresponding network nodes, whose activity would

spread to their parents, ultimately activating top-level tasks that were plausible

explanations. This process could rapidly activate plausible high-level parent tasks,

even before the full sub-task sequence was observed, and in real time. This method

was successfully applied in conjunction with a visual processing system that worked

on real-world image data as input. However, the inferred top-level tasks were never

decomposed to form motor directives for a robot, and the method only applies to

restricted HTN domains where a given method always returns the same sub-tasks

regardless of current state (i.e., no branching and backtracking). Moreover, even

though the approach is brain-inspired, the representation is still local and idealized

since nodes are in one-to-one correspondence with planning operators. It is unclear

how well this methodology would apply to real-world imitation learning where the

inferred intentions must be ultimately decomposed into motor directives suitable for

a physical robot, especially in a way that generalizes to new situations.

Li et al. reinterpreted HTNs as context free grammars, and applied grammar

induction to interpret a training set of observed low-level actions [78]. Unlike the

foregoing methods, their procedure does not require a predefined knowledge base of

tasks, but instead constructs this knowledge base autonomously. In other words,

it is an inductive rather than abductive inference mechanism. On one hand, this

approach greatly relieves the burden on the domain author. On the other hand,

the autonomously constructed tasks may not have intuitive meanings to human

domain experts. Moreover, this approach was tested using computer experiments

and not applied to robotics, so it is unclear how well this approach would translate to

29

real-world imitation learning, in which explicitly providing a certain level of detailed

human domain knowledge goes a long way in making the many challenges of robotics

more tractable.

In contrast with this past work, the CERIL architecture proposed here ap-

proaches plan recognition from the perspective of real-world imitation learning on

board a physical robot. It extends PCT for plan recognition, rather than using auto-

mated theorem proving approaches, which are often more computationally expensive

and in some ways more cumbersome to implement and maintain. Put differently, it

uses an operational rather than descriptive encoding, which is more appropriate for

the complexities of robot control. Lastly, it provides formal guarantees that all and

only the valid explanations for an observed action sequence are actually inferred.

2.3 Neural Network Transparency and Control

Although CERIL is currently implemented with symbolic computation, neural

networks are emerging as indispensable tools for maximally performant autonomous

control. However, neural networks generally suffer from limited transparency both

to experts and end users. To reconcile these conflicting aims of performance and

transparency, it is important to improve our understanding of how neural networks

operate - not only for a neural reimplementation of CERIL’s causal inference mech-

anisms, but also for any other neurocomputational autonomous system. This dis-

sertation contributes to this effort in Chapter 7. Accordingly, this section provides

a brief summary of past work in neurocomputational control of sensorimotor and

30

cognitive processes, and how it relates to the P&T criteria.

Neural networks are simplified models of the brain that are simulated on a

computer and harnessed to perform useful computations. By carefully optimizing

the parameters of a neural network model, it can be “trained” to exhibit desired

patterns of activity. For example, if an activity pattern encodes an array of pixel

values, a neural network can learn to generate images. If an activity pattern encodes

an array of joint velocities, it can be used for robotic motor control.

In recent years, large neural networks (so-called “deep learning”) have come to

the forefront of sensorimotor processing in artificial systems. For example, Levine

et al. presented a striking use of neural computation [76]. Their end-to-end neural

architecture maps raw input pixels directly to raw output torques at each joint.

The network has been trained to deftly execute action policies related to tool use,

such as placing a clothes hanger on a rod, screwing caps on bottles, or fitting the

claw of a hammer under a nail. Similar approaches have used intensive training

with physical robots to produced highly performant neural models specialized for

various purposes, such as grasping a wide variety of objects [77], or predicting the

expected visual field after a planned object interaction [40]. Gentili et al. developed

effective strategies for general and robust motor control of upper extremities using

more biologically plausible architectures, that explicitly model specific brain regions

and draw on theories of motor control in humans [47,48]. This work was extended to

model brain regions implicated in spatial transformations and low-level sensorimotor

imitation learning [92, 93]. Similar theories of human motor control were also used

in a neural model based on limit cycles in self-organizing maps [63].

31

Historically, neural networks have been much more effective for sensorimotor

control than cognitive control. Computational models of cognitive processing have

most commonly been implemented using traditional, top-down symbolic program-

ming paradigms, in which systems are explicitly programmed to manage working

memory, bind variables, perform logical goal-directed reasoning, and make execu-

tive decisions. Well-known examples of general-purpose cognitive systems include

the ACT-R and SOAR architectures [8, 75]. The cognitive control mechanisms in

these systems are largely based around “production rules,” a collection of logical if-

then statements which define how the system should respond in any given situation.

Examples of more specific cognitive functions come from AI planning and abduc-

tion, as already described in Sections 2.2.1 and 2.2.2, as well as AI theorem provers,

natural language processing systems, and so on. Building neural systems capable of

similar cognitive functions has proven to be very challenging. Existing approaches

tend to require manual hard-wiring of the network to mimic a specific symbolic

functionality, or to solve a highly specialized problem (e.g., [32,117,127,128]). One

exception is Neto et al.’s high-level language and “compiler” that, given any particu-

lar program, can automatically construct a network that is hard-wired to implement

that program [91]. However, any such network can only perform the program from

which it was compiled - a new program requires an entirely new problem-specific

network. Better understanding the relationships between neural substrate, cogni-

tive processing, and symbolic computation remains an active and important research

direction [38,99,108].

In the past few years, deep learning researchers have proposed a number of

32

“programmable” neural network models for cognitive-level computation. Common

themes in this work are: (1) a coupling of neural components with non-neural ex-

ternal resources, (2) program induction from large training sets of input-output

examples, and (3) learning via gradient-based optimization. One of the first such

models was the “Neural Turing Machine” (NTM) which has since been expanded

to the “Differentiable Neural Computer” [51, 52]. The basic model couples a non-

neural, persistent memory store with a neural Long-Short-Term-Memory (LSTM)

controller [55]. An output layer of the controller modulates a soft attention mecha-

nism that accesses memory according to differentiable formulas, making the entire

system amenable to gradient-based learning. The model can successfully learn pro-

cedural skills such as recalling/sorting an input sequence. In particular, it can

generalize to new sequences with lengths greater than what was presented during

training. Subsequent work expanded on the NTM by combining neural controllers

with other non-neural resources, such as arithmetic and logic modules [90], topic-

knowledge databases [3], binary search trees [9], and program stacks [105].

While impressive, this past work suffers from limited P&T. Most deep archi-

tectures are designed iteratively through a combination of intuition and trial and

error. They are treated essentially like black boxes during training, using gradient-

based optimization that must be carefully monitored, and using large data sets that

must be prepared beforehand, and therefore have limited pliability for end users.

Once training is complete, it can be difficult to understand what has been learned

and how the network produces accurate output, hindering transparency. It can also

be difficult to guarantee desired behavior on new data outside of the training set,

33

hindering trustworthiness and user adoption.

Another recent and more biologically plausible approach to neurocomputa-

tional cognitive control is Sylvester’s GALIS framework [121]. A central theme of

this approach is that neural-based working memory can learn and store “programs”

in the form of itinerant attractor dynamics [60]. This is a form of dynamics in

which the neural state trajectory moves along an “itinerary” of nearly fixed points,

settling at one before proceeding to the next. Each waypoint represents a single

instruction within a sequential program. The programs are not hard-wired into the

architecture, but are learned by adjusting the synaptic weights and can be “over-

written” when a new task is at hand. The GALIS framework has been applied

successfully to several cognitive psychology tasks, including the n-back task, and a

well known card-matching game [122, 123]. The system was evaluated in simulated

environments using idealized sensory input and motor output.

An important quality of GALIS that distinguishes it from deep architectures is

its emphasis on neural attractor dynamics. Neural attractors have been recognized

as highly relevant to many neurocomputational phenomena, ranging from low-level

motor control and tool use (e.g., [2, 136]) to high-level cognitive functions such as

problem solving and decision making (e.g., [101, 103, 132]). A critical advantage of

this dynamical systems perspective is that there is a large body of foundational

mathematics available which can be used to improve our understanding of neural

networks, although that understanding is still far from complete.

On the other hand, reliability can be an issue for the dynamical systems ap-

proach. Hopfield showed that through Hebbian learning, networks can emerge that

34

possess attractor dynamics relevant to a desired neural computation [58]. However,

the resulting networks often possess many additional “spurious” attractors that were

not present during training, and whose locations are not known a priori [20]. Lim-

ited memory capacity can also result in the networks failing to learn attractors that

were presented during training. In relation to GALIS, this means that program

encodings may be partially corrupted, resulting in behavior that deviates from the

expectation of the programmer. These issues compromise the predictability and

trustworthiness of GALIS and other neural systems.

Our limited ability to guarantee desired neural attractor dynamics stems from

their limited transparency. In general, some of the most basic questions that char-

acterize any dynamical system - such as how to compute the location of every fixed

point - remain poorly understood and very difficult to answer in the case of neu-

ral networks. This is notwithstanding many impressive mathematical analyses in

the literature. Numerous empirical and theoretical studies have provided a solid

understanding of the local and global stability of fixed points (surveyed in [146]),

as well as their arrangement in neural phase space, given certain conditions on the

connection weights such as symmetry (e.g., [4,7]), but not a method for ascertaining

the precise locations of every fixed point for arbitrary connection weights. Zeng and

Wang derived remarkably fine-grained theoretical results: Given an arbitrary weight

matrix, their analysis partitions the phase space into exponentially many regions,

and for each region, provides sufficient conditions under which a unique locally or

globally stable attractor is present [145]. However, short of a brute force approach

that checks each region, which is infeasible on large networks, it is not obvious how

35

to efficiently and precisely locate the attractors that are actually present, avoiding

regions where they are absent.

In practice, fixed point attractors are often found by repeated local optimiza-

tion from random initial points (e.g., [120]). This method can find many fixed points,

but is not guaranteed to find them all. To our knowledge, there is no efficient pro-

cedure that precisely locates every fixed point of recurrent neural networks with

arbitrary connectivity. The closest works we have seen are generic global solvers

for arbitrary dynamical systems that use bisection-based branch-and-bound search

([73, 138]), which may not scale to large recurrent neural networks.

The fixed point locations in any dynamical system are one of the most funda-

mental pieces of information and often a necessary first step towards understanding

the system’s dynamics. Therefore, developing new methods for neural fixed point

location is an important research endeavor for improving transparency in neural

network controllers for autonomous systems. In turn, an improved understanding

of system dynamics can lead to better methods for verification, resulting in more

reliable and predictable systems. This dissertation contributes a new fixed point

location method in Chapter 7. This will facilitate future work on CERIL to in-

corporate neural networks in the causal inference mechanisms while maintaining

acceptable P&T.

36

Chapter 3: The CERIL architecture

The main contributions of this dissertation include formal algorithms for cause-

effect reasoning during imitation learning, as well as theoretical and empirical results

that characterize those algorithms’ properties and performance. CERIL is made

possible by these algorithms and validated by these results, which are presented in

subsequent chapters. However, in order to properly present these contributions, it

will be helpful to first provide a conceptual overview of how CERIL works during

imitation learning. The intent is to first show in an intuitive fashion what CERIL

does to motivate and introduce the basic concepts before covering the technical de-

tails. To that end, this chapter presents the CERIL architecture at a conceptual

level and introduces a running example that will be referenced throughout the re-

mainder of the dissertation. Subsequent chapters provide more detail on the core

components of CERIL as well as the theoretical and empirical results.

The goal of CERIL is to support cognitive-level imitation learning, capable of

generalizing on the basis of a single demonstration, much as people do. The guiding

hypothesis is that cause-effect reasoning is an effective vehicle to accomplish this

goal. Based on this idea, I developed the framework pictured in Fig. 3.1, and

described in the following. I developed new algorithms to support this framework,

37

established formal correctness and complexity characteristics, and conducted an

empirical validation using a battery of experiments [67–69]. This chapter gives

an overview of the causal knowledge incorporated in CERIL and of how CERIL

functions. The algorithms are detailed in Chapter 4. The experiments use our own

robotic testing environment as well as a 3rd party dataset known as the Monroe

County Corpus, covered in more detail in Chapter 5.

A central innovation of the CERIL architecture is the integration of two causal

inference paradigms: abductive inference and automated planning. Abductive rea-

soning is used to infer the intentions of a demonstrator (Fig. 3.1, A). These same

intentions can then be imitated in new situations (Fig. 3.1, B). Automated planning

is used in those new situations to carry out the same intentions, but with potentially

different actions as needed (Fig. 3.1, C). In this way CERIL is able to generalize

learned skills to situations that are different from what was observed in a demon-

stration. A notable aspect of CERIL is the hierarchical arrangement of intentions

and actions: any given intention can cause CERIL to carry out a sequence of sub-

intentions, each of which can cause its own sequence of sub-sub-intentions, and so

on until observable actions are performed. Throughout the following we refer to

actions as the “lowest level” of the hierarchy, with intentions at the “higher levels”

of the hierarchy. Actions are indicated schematically in Fig. 3.1 with nodes labeled

“Act”, and intentions with nodes labeled “Intent.” This hierarchy is elucidated in

concrete terms below.

The CERIL framework requires substantial background knowledge about the

environment, actions, and intentions to be provided up front. The upshot is that it

38

Figure 3.1: The CERIL architecture. Abductive inference is used to infer the

intentions of a demonstrator (A). The same intentions can then be imitated in new

situations (B). Automated planning is used to carry out those intentions in the

new situation, using potentially different actions if needed (C). Solid black arrows

represent causal relationships. More detail is provided in the text.

39

can generalize on the basis of just a single demonstration, resulting in a highly pliable

system. Moreover, CERIL can leverage the rich causal background knowledge to

justify planned actions to an end user, thereby promoting transparency, as detailed

in Chapter 6.

CERIL also relies on peripheral components that are not part of the archi-

tecture proper. First, CERIL presupposes some external apparatus for recording

human demonstrations and converting them to a machine-readable representation.

For the purposes of this dissertation, demonstrations were recorded with SMILE,1

a virtual environment developed at the University of Maryland in which a human

user can click and drag objects and export a text-based event record of their ac-

tions [61,62]. A screenshot from SMILE can be seen in Fig. 3.1 (lower left). Several

screenshots from a sample demonstration in SMILE are also shown in Fig. 3.2.

Second, CERIL presupposes the existence of external low-level sensorimotor

controllers for the target autonomous platform. These controllers must be capable of

converting raw sensory data into a machine-readable representation of the environ-

ment, and of successfully executing motor directives (e.g., computing and moving to

the joint angles needed to pose a physical gripper at a position requested by CERIL).

For the purposes of this dissertation, the physical platform was Baxter from Rethink

RoboticsTM, an upper-torso humanoid robot with two 7-degree-of-freedom arms and

a head-mounted Microsoft KinectTM. A photograph of Baxter can be seen in Fig.

3.1 (lower right). Several snapshots of Baxter imitating a demonstration are also

1Thanks to Di-Wei Huang for developing SMILE. SMILE is available for download at https:

//github.com/dwhuang/SMILE.

40

 https://github.com/dwhuang/SMILE
 https://github.com/dwhuang/SMILE

Figure 3.2: Screenshots from a SMILE demonstration. The dock is opened (top

left), a red toggle is pressed (top middle), and the adjacent faulty drive is removed

(top right). Then, a spare drive on top of the dock is picked up (bottom left), it is

inserted in the empty slot (bottom middle), and the dock is closed (bottom right).

41

Figure 3.3: Baxter imitates the demonstration pictured in Fig. 3.2. The same

intentions are carried out, but with some notable examples of generalization. A

different LED is red (top middle), so a different drive is removed (top right). In

addition, due to the physical constraints of Baxter’s embodiment, the spare drive

is picked up by the left gripper but inserted by the right gripper, using a hand-off

that was not included in the demonstration (bottom left).

shown in Fig. 3.3. Motion planning used an extension2 of the bio-inspired DIRECT

model for inverse kinematics [47]. Visual sensory processing used home-grown tech-

niques that are not as sophisticated as the state of the art but proved sufficient for

the purposes of this work.

2Thanks to Gregory Davis for his work implementing this extension.

42

3.1 A Running Example: Hard Drive Maintenance

To understand how CERIL works in a more detailed and concrete fashion,

consider the following learning scenario called the “hard drive docking station” as a

running example. A robot must learn procedures for maintaining a docking station

for several hard drives that are subject to hardware faults (pictured in Fig. 3.1, bot-

tom left and right, and Figs. 3.2 and 3.3). Each drive slot is linked to an LED fault

indicator and a switch that must be toggled before inserting or removing drives. The

goal is to replicate a teacher’s intentions, based on just one demonstration, in new

situations that require different motor plans. For example, if the teacher discards a

faulty drive and replaces it with a spare, so must the robot, even when a different slot

is faulty and the spare is somewhere else. Due to the robot’s physical constraints,

it may need to use different motor actions than those used by the demonstrator,

such as using a different arm for certain steps, handing off objects between grippers,

or temporarily putting down one object to perform another manipulation that only

one arm can reach. Physical experiments were conducted using a mock-up docking

station that was constructed for our lab (Fig. 3.1, lower right, and Fig. 3.3).3 The

dock has faux 3D-printed “hard drives” and an Arduino controller for the LEDs and

toggle switches. In our full set of experiments we also worked with two additional

scenarios. First, we used a toy block scenario where the teacher stacks blocks in var-

ious patterns such as letters, and the robot must replicate those patterns even when

extraneous blocks are present and the important blocks are in completely different

3Thanks to Ethan Reggia for building the physical docking station.

43

initial positions. Second, we used a pipe and valve scenario where an LED pressure

gauge indicates the status of a pipe and the robot has to manipulate or maintain

pressure valves. Applying the CERIL framework in these settings involves the steps

described in the following sections. Sections 3.2-3.5 describe the typical operation of

CERIL whenever a demonstration is imitated. CERIL also relies on a set of back-

ground knowledge that must be provided once up front before any demonstrations

can be imitated. Section 3.6 describes the background knowledge required.

3.2 Recording Demonstrations

The first step in the imitation learning process is to record a demonstration.

To capture human demonstrations, we use SMILE, a virtual environment shown

in Fig. 3.1 (bottom left) and Fig. 3.2. SMILE is a graphical computer program

with intuitive GUI controls in which users can manipulate 3D objects located on

a tabletop and record their actions. Objects are grasped and moved by clicking

and dragging. Radio buttons are used to indicate which hand should perform the

manipulation. Push buttons are used to start or stop a recording, and to undo

recent actions.

The recording is output in both video format and a machine-readable (text-

based) event transcript, describing which objects were grasped, with which hands,

and real-time changes in object positions and orientations. SMILE supports several

built-in shapes, an XML schema for composing shapes to define more complex ob-

jects, and also raw STL files for describing arbitrary face-vertex geometry. Aside

44

from the existence of a left and right hand, SMILE contains no model of the user’s

embodiment (e.g., kinematic chains or joint angles), and no indication of the user’s

overarching intentions that lead them to grasp, move, and release various objects

in various positions. Instead, objects are manipulated through mouse clicks, drag-

and-drops, and keystrokes. As a result, SMILE bypasses the substantial image pro-

cessing challenges of human motion capture, as well as the challenges of viewpoint

transformation (including orientation, distance, and anthropometry) [92,93].

SMILE’s event record includes entries such as grasp and release, which might

be viewed as primitive from a demonstrator’s perspective. The former specifies

which object was grasped, and both specify which hand performed the action. How-

ever, this level of detail is not primitive from a robotics perspective. In particular,

a geometric transformation may be needed to compute the ideal placement of the

gripper relative to the object that is being grasped, or relative to the destination

where the object is being released. In turn, an inverse kinematics solver may be

needed to compute the ideal trajectory of joint angles that results in the correct

position for the gripper, while avoiding obstacles in the environment. In general,

the lack of embodiment in SMILE means that some events viewed as primitive from

SMILE’s perspective will most naturally map onto intentions in CERIL’s knowledge

base that are low but not lowest in the hierarchy, and therefore not actions, strictly

speaking. This is indicated in Fig. 3.1 by showing a slightly deeper hierarchy on the

top right than on the top left. In other words, some of the bottom-most nodes on

the top-left will be low-level intentions recorded in SMILE, not lowest-level robotic

actions, but we abuse notation and label them all “Act” in the figure for sake of

45

simplicity in presentation.

The resulting demonstration is presented to CERIL as a sequence whose en-

tries are either actions or low-level intentions, including labels for what was done

(e.g., grasp) and also parameters such as which hand was used and which object

was manipulated (e.g. right-gripper, drive-1). We refer to the number of ac-

tions/intentions in this sequence as the length of the demonstration.

3.3 Learning New Skills by Inferring Intentions

Once CERIL receives a new demonstration from SMILE, it uses abductive

inference to infer the high-level intentions of the demonstrator (Fig. 3.1, A). The

inference process draws on detailed background knowledge about the various in-

tentions available and their causal relationships (described further in Section 3.6).

The result of the inference is one or more explanations for the demonstration. Each

explanation is a sequence of high-level intentions that could account for the actions

that were observed in the demonstration. These explanations serve as CERIL’s

internal representation of learned behaviors.

For example, one of the simplest skills taught to CERIL was how to discard a

drive next to a red LED. The demonstration was the following length-10 sequence

of events:

move-arm-and-grasp(right-hand, dock-drawer)

move-grasped-object(right-hand, dock-drawer, table)

release(right-hand)

press-dock-switch(left-hand, dock-switch-1, off)

move-arm-and-grasp(left-hand, drive-1)

move-grasped-object(left-hand, drive-1, discard-bin)

46

release(left-hand)

move-arm-and-grasp(right-hand, dock-drawer)

move-grasped-object-right-hand, dock-drawer, table)

release(right-hand)

Note that although SMILE contains no model of a robot’s kinematic chains, it

does have radio buttons to indicate which hand is used, from which the parame-

ters above are populated. The low-level intention move-arm-and-grasp is primitive

from SMILE’s perspective but not from the robot’s. It is added to SMILE’s event

record whenever an object is clicked, whereas during robot planning (Section 3.5) it

decomposes into lower-level operators with the necessary gripper pose relative to the

object and ultimately the necessary joint trajectories. For move-grasped-object,

the second parameter is the object being moved and the third is a destination to

which it is moved. There are also real-valued matrix parameters indicating the rela-

tive geometric transformations between target object positions and the destinations

where they are placed, omitted above for simplicity.

Based on this demonstration, CERIL inferred two possible top-level intention

sequences for the skill. First:

open(dock-drawer)

set-dock-switch(dock-switch-1, off)

discard-object(drive-1)

close(dock-drawer)

and second:

open(dock-drawer)

set-dock-switch(dock-switch-1, off)

47

move-to-free-spot(drive-1, discard-bin)

close(dock-drawer)

In this case, both explanations amount to the same behavior, but are technically

distinct since discard-object and move-to-free-spot were encoded as distinct

top-level intentions in CERIL’s knowledge base. The discard-object intention

always targets the discard bin, whereas move-to-free-spot can also target other

surfaces such as the top of the dock case or the tabletop. Each top-level intention

in each sequence can explain a sub-sequence of the demonstration, through a chain

of causal relationships present in the knowledge base.

The abductive inference mechanism used here is this dissertation’s novel ex-

tension of PCT, detailed in Chapter 4. The main entrypoint to this mechanism is

an algorithm called explain, which takes a demonstration sequence as input and

returns zero or more high-level intention sequences as output. Each sequence in the

output represents another viable explanation for the input. An important advan-

tage of using PCT is that various parsimony criteria can be used to filter the full

set of explanations down to a plausible subset. As detailed in Chapter 5, there were

many cases where the full set of valid explanations was combinatorially large, with

cardinalities in the thousands or more. Filtering by the right parsimony criterion

resulted in cardinalities on the order of 1 or 2, as in the example above.

If the user provides a label for a skill that they demonstrate (e.g.,

discard-bad-drive), then the skill can be added to the knowledge base as a new

intention that was not initially provided by the domain author. This is relatively

48

straightforward as long as one settles for a descriptive rather than operational rep-

resentation of the new intention (the previously existing knowledge can still be

operational). Specifically, the new label serves as the name of a new HTN task, and

each inferred intention sequence serves as another HTN method for the new task.

The parameters for the new task can be taken as the concatenation of parameters

from each intention in the inferred sequence, and the values for those parameters can

be propagated during planning or abduction with simple copies. Only one demon-

stration is needed to learn the new task, but if subsequent demonstrations for the

same task label are recorded later, the new sequences inferred by explain can be

added as new HTN methods for the existing task.

Consequently, every time a new demonstration is interpreted, the inferred

intention sequences are added to a growing library of learned skills, and the robot can

be asked to imitate any of them at any time. So the system can be (re)programmed

to perform different imitation tasks after others have already been learned, without

losing any learned knowledge that has been acquired previously. These learned

skills also become available as new intentions that were not originally codified by

the domain author. This means that in future demonstrations, the new intentions

can be used as components of an explanation. In other words, intentions that were

originally top-level can become mid-level as even higher-level intentions are learned

from demonstration and the causal knowledge grows over time.

As a concrete example and proof of concept for this process, CERIL was first

presented the following demonstration (states and some parameters omitted for

simplicity):

49

press-dock-switch(right, dock-switch-3, off)

move-arm-and-grasp(right, drive-3)

move-grasped-object(right, discard-bin)

release(right)

and inferred the following top-level intention sequence:

set-dock-switch(dock-switch-3, off)

discard-object(drive-3)

This “skill” was labeled discard-bad-drive and added to the knowledge base

as a new task, with the intention sequence above as an associated task method.

Then, CERIL was presented with the following new demonstration:

move-arm-and-grasp(right, dock-drawer)

move-grasped-object(right, table)

release(right)

press-dock-switch(right, dock-switch-2, off)

move-arm-and-grasp(right, drive-2)

move-grasped-object(right, discard-bin)

release(right)

press-dock-switch(right, dock-switch-1, off)

move-arm-and-grasp(right, drive-1)

move-grasped-object(right, discard-bin)

release(right)

move-arm-and-grasp(right, dock-drawer)

move-grasped-object(right, dock-case)

release(right)

and inferred the following intention sequence:

open(dock-drawer)

discard-bad-drive(drive-2)

discard-bad-drive(drive-1)

close(dock-drawer)

As seen in this example, the newly added task was recruited (twice) as part of

CERIL’s interpretation of the second demonstration. Again, some parameters are

50

omitted for simplicity: in particular, the full parameter list for discard-bad-drive

was the concatenation of all parameters from CERIL’s interpretation of the first

demonstration.

It is important to note that each high-level intention originally provided by the

domain author, such as set-dock-switch or discard-object, is rather general, but

not general enough that a single high-level intention can explain an entire demon-

stration. The typical demonstration can only be explained by a novel sequence of

high-level intentions, which is not pre-defined in the knowledge base, and must be

constructed through causal reasoning. As such, despite the wealth of background

knowledge available to the system, there is still non-trivial cause-effect reasoning

that must take place in the autonomous system which was not already hand-coded

by the domain author. This non-trivial reasoning problem can be also be under-

stood with an analogy to parsing ambiguous grammars. The domain knowledge is

analogous to an ambiguous grammar and vocabulary, demonstrations are analogous

to previously unseen sentences, and explain is analogous to a parser, which still

must perform the non-trivial work of parsing a new ambiguous sentence that was

not built in to the grammar. Certainly, one could author a domain in which sin-

gle pre-defined root intentions explain entire demonstrations. We elected not to do

so in this work, in order to show that learning and generalization can be achieved

by constructing new explanations through automated causal inference rather than

recognizing existing explanations that were hand-coded in an exhaustive knowledge

base.

51

3.4 Transferring Learned Skills to New Situations

After CERIL has learned a new skill from a demonstration, in the form of

one or more high-level intention sequences, it is ready to imitate in a new situation

(Fig. 3.1, B). However, there is often a non-trivial correspondence problem to be

solved between the state that was observed in the demonstration, and the state that

is observed at imitation time. For example, suppose that there is a single drive

present in the demonstration called drive-1. At imitation time, CERIL observes

a scene in the physical world with two unlabeled drives. Which one should play

the role of drive-1, and which is extraneous? We could depend on the end user

to annotate objects in every new scene, but that would be tedious and error-prone,

reducing the human-friendliness of the system. Instead, it would be preferable for

CERIL to automatically find correspondences between the objects it observes at

imitation time and demonstration time. For example, if drive-1 was next to a

red LED in the demonstration, and a new drive (let us call it drive-A) is next

to a red LED at imitation time, perhaps drive-A should correspond to drive-1.

Once this correspondence is found, it can be put into effect by substituting every

occurrence of drive-1 with drive-A in any given high-level intention sequence for

the learned skill. Then the right intentions will be applied to the right objects in

the new situation.

In sum, CERIL needs to solve a correspondence problem and then use the

correspondences to perform variable binding and ground the intention parameters

with objects in the new situation. We can allow that different numbers of objects

52

may be present, as long as each object manipulated in the demonstration has a

counterpart in the new situation. For example, the robot should not be expected to

imitate a demonstration of replacing a faulty drive with a spare drive in a situation

where no spare drives are present.

The correspondence matching procedure devised in this work is based on the

premise that object colors, shapes, and in/on/part-whole relationships are more

important than spatial positions (this could, of course, be changed). The idea

is that the robot should be able to generalize to new situations where the initial

object positions are completely different than those observed in the demonstration.

For example, the fact that drive-1 is in a closer or farther slot is probably less

important than the fact that drive-1 is in slot-2, slot-2 and led-2 are both

part of dock-module-2, and led-2 is red. These colors, shapes, and in/on/part-

whole relationships are available from the state representation that was designed

for the dock domain. In particular, the in/on/part-whole relationships are encoded

in an “assembly tree” data structure that captures these relationships,4 pictured

in Fig. 3.4. For example, drive-1 would be a child of the slot-2 node while

inserted there, and slot-2, led-2, and dock-switch-2 would be the children of

the dock-module-2 node in the assembly tree.

In order to process this assembly tree data structure, the matching procedure

is designed recursively. Each level of recursion compares a demonstration sub-tree

with a real-world sub-tree. At the deepest level, the leaves are compared based on

4This assembly tree is unrelated to the intention hierarchy.

53

Figure 3.4: A sample tree structure for the dock assembly. Circles indicate the

leaves of the tree, which are the underlying shapes (cylinders, rectangular prisms,

etc.) combined to form the assembly. Dashed lines indicate sub-assemblies which

can be removed - for example, a drive in a slot (lower dashed line), or a drive resting

on top of the dock case (dashed line on the left).

54

shape and color and a quantitative similarity measure is passed up the recursion. At

the shallower levels, each child of the current demonstration tree node is recursively

compared with each child of the current real-world tree node. The similarity mea-

sures recursively computed for each child pairing are used as weights for a weighted

bipartite matching, which produces the optimal pairing of demonstration children

with real-world children. The summed similarities across this optimal pairing are

then passed up the recursion.

This strategy is illustrated in Fig. 3.5. By design, the results of this procedure

are such that in the dock example they will match dock modules that are similar

with respect to LED colors and slot occupancies, but potentially dissimilar with

respect to their spatial position on the dock drawer. For example, suppose that in

the demonstration, slot-1(demo) is occupied and led-1(demo) is red, and in the new

scene, slots 2(new) & 3(new) are occupied but only led-3(new) is red. Slots and LEDs

1(demo) & 3(new) will be matched, rather than 1(demo) & 2(new), since the configuration

of colors, shapes, and part-whole relationships is better preserved. The matching

only compares the initial state in the demonstration with the initial state during

imitation, but in future work more sophisticated matching that accounts for the

entire demonstration may be possible.

3.5 Post-Learning Imitation and Generalization

Once matching is complete, variable substitution is used to update parameters

in the high-level intention sequence so that object identifiers from the demonstration

55

Figure 3.5: An example match produced by the assembly matching algorithm.

Solid lines indicate the tree structures of each assembly. Dashed lines indicate

possible pairings that preserve tree structure. Bold dashed lines provide an example

of bipartite matches found at each level. At the bottom layer, only children with the

same assembly type can be paired (e.g., an LED cannot be matched with a toggle).

But in the middle, where all assembly types are DockModules, many pairings are

possible. The pairing which results in highest color and shape similarity in the

leaves is chosen, even if it permutes the order of the children. This may happen

if, for example, one LED is red in the demo but a different LED is red in the new

initial state.

56

are replaced with the matched identifiers in the real world. HTN planning is then

used in a top-down manner to plan a sequence of low-level motor commands that

carry out these learned intentions (Fig. 3.1, C). If more than one intention sequence

was inferred by explain as a valid explanation for the demonstration, the sequences

can be tried in an arbitrary order until planning succeeds, much like the backtracking

that is already built in to the HTN planning algorithm.

As elaborated next in Section 3.6, an intention might cause different sub-

intention sequences depending on the parameters and current state of the environ-

ment - for example, the intention to toggle a dock switch may cause the sub-intention

to put down a grasped object, if in the current state the implicated gripper is not

already free to press the switch. These different causal branches represent alter-

nate strategies for carrying out the parent intention, some of which may be more

or less appropriate depending on the current state of the environment, and some of

which may be quite different from the strategy that was actually used by the human

demonstrator. The HTN planner can search each branch, simulating the effects of

that branch on the environment, and backtrack when necessary to avoid branches

that fail. Consequently, the resulting actions planned for the new situation may

differ significantly from the observed actions in the demonstration, as indicated by

the distinct intention trees on the left and right of Fig. 3.1. Moreover, as described

earlier, the lowest-level HTN operators can invoke motion planning routines, which

convert target gripper positions into joint angles that avoid obstacles and respect

the physical constraints of the robot. As a result, the causal hierarchy can extend

deeper than the actions recorded in SMILE, producing concrete motor plans suitable

57

for physical robot execution (illustrated schematically in Fig. 3.1 by the deeper tree

on the right-hand side).

As a detailed example, the most complicated skill that CERIL learned was

to swap the positions of two drives, one next to a red LED and the other next

to a green LED. In this example, the demonstrator swapped two hard drives by

removing one with the left hand radio button selected, the other with the right

hand radio button selected, and then inserting them back in opposite slots, one

with each hand. However, the slots are difficult for the robot to reach with its left

hand due to physical embodiment constraints. When the HTN planner searches a

branch that uses the left arm, motion planning fails and the search must backtrack.

An alternate search branch succeeds where the right gripper first removes one drive,

then hands it to the left which stages it on top of the dock, then moves the second

drive to the slot that initially contained the first drive, and finally receives the first

drive back from the left and inserts it in the slot that initially contained the second

drive. The resulting plan of robotic actions is significantly different from what was

demonstrated. In other words, the system successfully generalizes a learned skill on

the basis of a single demonstration.

CERIL’s capacity for generalization boils down to the synergistic combination

of abductive inference, object matching, and planning (arrows A, B, and C in Fig.

3.1). Object matching ensures that intentions are applied to the correct objects. Ab-

ductive inference ensures that the most general and plausible intentions are applied,

and planning ensures that they are applied in a way that respects the embodiment

of the robot, rather than the human demonstration. Causal intention inference is a

58

crucial component because it identifies intentions that are as high-level as possible

given the pre-defined background knowledge. Higher-level intentions are better for

generalization because they expose more branches for the HTN planner, resulting

in more opportunities for success. In sum, cause-effect inference of parsimonious

explanations is central to generalization after learning from a single demonstration.

3.6 Encoding Background Knowledge

The imitation learning pipeline described in Sections 3.2-3.5 relies heavily on

a compendium of background knowledge. Before CERIL can engage in imitation

learning, this incurs a one-time up-front cost: A domain author must first encode

their background knowledge in a machine representation that CERIL understands.

There are three important categories of background knowledge, as follows.

First is a detailed model of the environment, including possible objects and

their relationships. For example, the author will define the relevant geometry (e.g.,

vertices, edges, face normals) of a hard drive, as well as the available grasp poses

(e.g., the spatial transformations from the hard drive coordinate frame to a coordi-

nate frame 3 inches above where the gripper should be moved before grasping), and

then similarly for toggle switches, dock drawers, and so on. Then the author will

define various object relationships that are possible, such as hard drives being in

slots, on tables, in discard bins, or on top of dock cabinets. Finally the author will

define a data structure representing the full state of the environment at any given

time, including all objects present and which relationships obtain. As described

59

earlier in Section 3.4, the state representation devised in this work was based on

“assembly trees” that capture in/on/part-whole relationships in assemblies of ob-

jects,5 as pictured in Fig. 3.4. The dock is a root of an assembly, the cabinet and

drawer are children of the dock, toggle switches and slots are children of the cabinet,

drives are children of the slots while they are inserted, and so on. Each parent-child

relationship is annotated with the precise spatial transformation that determines

the relative positions of parent and child. By composing relative transformations,

absolute positions can be retrieved when the robot needs to reach a part of an as-

sembly (e.g., a drive in a slot), and child positions can be updated recursively when

the robot manipulates a part (e.g., if a drive is inserted and the robot opens the dock

drawer, the drive position must be automatically updated in CERIL’s state repre-

sentation so that its expected position is carried along with the dock drawer). States

are depicted in Fig. 3.1 as small 3D block graphics at the bottom of the intention

hierarchies. Since SMILE supports arbitrary STL face-vertex data and customizable

assemblies of primitive shapes, the object designs provided to CERIL by the domain

author can also be imported into SMILE with relatively little additional effort. The

state representation also included some more traditional descriptive encodings where

convenient (e.g., logical predicates asserting what, if anything, is presently gripped

by each gripper; whether each slot is occupied; whether each LED is red, green, or

off, etc.).

Next, the domain author defines the available low-level actions that CERIL

5Assembly trees are unrelated to the intention trees pictured in Fig. 3.1.

60

can perform to change the state of the environment. Actions are indicated in Fig.

3.1 by boxes labeled “Act”. The current version of CERIL uses an operational

encoding of actions, wherein each action is implemented as a generic computer

program and need not conform to a predefined or constrained representation (such as

lists of logical predicates that become false or true). This operational encoding was

authored using a combination of Python and MatlabTM. The inputs to each action

are the current state followed by zero or more additional parameters. The output is

the new state expected after the action is performed, or an indication of failure if the

action is not a valid option in the current state. For example, one of the actions in

the dock domain is grasp. The inputs are the current state, an identifier for which

arm is doing the gripping (e.g., left-gripper), and an identifier for the object being

gripped (e.g., drive-1). If the specified arm is already gripping something else, the

output is Failure. Otherwise, the output is a new state data structure reflecting

the change (e.g., where the relationship (gripping, left, nothing) becomes false

and the relationship (gripping, left, drive-1) becomes true). Another action is

change-joints, one of whose inputs are the new joint angles for an arm. The output

of this action is a new state in which the joint angles are updated, and any object

marked as gripped also has its position updated accordingly. The need to update

gripped object positions with geometric computations highlights the advantages of

using an operational, rather than descriptive, action representation.

Finally, the author defines the available higher-level intentions that CERIL can

carry out. CERIL carries out an intention by queuing a sequence of sub-intentions,

some of which may be low-level actions. Intentions are depicted in Fig. 3.1 with

61

boxes labeled “Intent”. From the point of view of intention inference, we can think

of a parent intention as causing its child intentions. These causal relationships are

indicated in Fig. 3.1 as solid black arrows from causes to their effects. Parent-

child intention relationships are also encoded operationally. The causal knowledge

is encoded twice, once for each causal direction:

• Causes to effects : Each intention is represented as a generic Matlab function.

As with actions, the input is the current state and zero or more additional

parameters, and the output is Failure when the intention is not a valid option.

However, unlike actions, a successful output is not a new state but instead

a sequence of sub-intentions to be queued. The contents of this sequence

can be dependent on the function inputs, so that the same parent intention

may decompose into different sub-intentions depending on the situation. This

representation is equivalent to a “task” in the context of HTN planning, with

each decomposition branch corresponding to a “task method,” and is used

during CERIL’s planning process.

As a concrete example, consider the press-dock-switch intention, whose in-

puts are the current state, an arm to use (e.g., left-gripper), an identifier for

the toggle to be pressed (e.g., dock-switch-1), and the desired setting (e.g.,

off). It returns Failure if the desired arm is already gripping an object. Oth-

erwise it returns the sequence of sub-intentions move-arms,close-gripper,

move-arms. The first sub-intention positions the gripper above the toggle, the

second closes the two gripper fingers so that it is easier to physically push

62

the toggle switch, and the third lowers the grippers to perform the actual

toggle press. The sub-intention sequence also includes the appropriate param-

eter values for each sub-intention, omitted above for simplicity. For example,

the parameters for move-arms include spatial transformation matrices describ-

ing the target gripper positions. This spatial information must be computed

based on the position of the toggle switch in the current state. The need

for these computations highlights the utility of using an operational repre-

sentation, since they are most naturally expressed in computer code. Other

technical details are also omitted, such as additional move-arms waypoints to

reduce the chance of obstacle collisions.

A higher level intention in the dock domain is set-dock-switch, which does

not specify a gripper, but internally selects the gripper that can more easily

reach the toggle switch. If the selected gripper is not currently grasping any-

thing, this intention causes a sub-intention sequence with a single element:

press-dock-switch, with parameter values propagated accordingly. How-

ever, if the gripper is not empty, it causes the sub-intention sequence

free-gripper,press-dock-switch,restore-gripper

in which the first intention will temporarily put down the gripped object so

that the gripper is available to press the toggle, and the third intention will

restore the previously gripped object to the gripper. This is an example of

how higher level intentions can be composed of lower-level intentions. The sub-

intention free-gripper is also another example of the benefits of operational

63

representation: In order to physically put down an object in the real world, a

free location needs to be computed in which the object will not collide with

any other objects in the environment. This is a complicated computational

geometry problem that would be very difficult to express without a generic

programming language such as Python or Matlab. In the dock domain this

problem was solved with a randomized search that checks many candidate

positions until it finds one where no collision is detected.

The highest-level intentions pre-defined in the dock domain knowledge base

dock manipulations such as open-dock and set-dock-switch, as well as a

generic get-object-A-to-object-B intention, which may cause various sub-

intentions such as temporarily emptying grippers and handing off objects be-

tween grippers, all depending on the intention parameters and the current

state of the environment.

• Effects to Causes : The same set of knowledge described above also needs to

be encoded in a form suitable for intention inference. In this case, reasoning

proceeds in the opposite direction: given a set of observed effects, CERIL

must hypothesize potential causes. In other words, given any sequence of sub-

intentions, CERIL must be able to query its background knowledge to identify

all of the possible parent intentions that could have caused that sequence (if

any). This knowledge is also encoded operationally, as a generic function in the

Python language. The inputs to the function are a sequence of sub-intentions

(including parameter values and intermediate states), and the output is a set

64

of possible parent intentions, any one of which could have caused the provided

input. In the context of PCT, this plays the role of the causes function.

For example, if causes is provided the input sequence

free-gripper,press-dock-switch,restore-gripper

then the parent intention set-dock-switch (with parameter values bound

appropriately) will be a member of the output set, since it is one of the inten-

tions that could have caused the input. In general, the output set may have

cardinality zero, if there is no such parent intention, or it may have cardinality

greater than 1, if there is more than one such parent intention. For example,

suppose the sequence

move-arms, release

moves the left arm to the dock cabinet and releases drive-1 there (with pa-

rameters and intermediate states omitted for simplicity). This could have been

caused by an intention move-to(drive-1,dock-cabinet), if getting drive-1

to dock-cabinet is an important part of the final state. Or, it could have

also been caused by the intention free-gripper, if putting down drive-1

was only the means to an end of pressing a toggle switch.

This example also illustrates why it may be important to include intermediate

states in the input to causes. The implementation may need to query the

state to see what is gripped (e.g., drive-1) as it may not be explicit in the

parameter values of the sub-intentions (e.g., release(left-gripper)). It also

may need to inspect the spatial positions of objects in order to compute spatial

65

position parameters in the parent intention (e.g., the position of drive-1 after

the release determines a target spatial position that is supplied as a parameter

to the parent move-to intention).

The need to encode the same causal knowledge twice is an example of the

disadvantage of operational encoding. Automatically inverting a computer function

in a generic programming language is a complex problem in program analysis that

will generally be infeasible. Therefore CERIL must rely on the domain author’s

expertise and have them implement the inverse themselves. If the knowledge were

encoded descriptively, this inversion might be more tractable (e.g., using automated

theorem proving techniques). Nevertheless, as explained above, there are good rea-

sons for allowing operational representations and incurring this cost. Codifying the

background knowledge is a significant undertaking, but it need only be done once.

After it is finished, CERIL is ready to imitate any number of demonstrations. The

full set of causal knowledge that was authored for CERIL in this work is detailed in

Appendix A.1.

66

Chapter 4: Causal Reasoning Algorithms for Inferring Intent

Chapter 3 presented the CERIL architecture with an example of the full imi-

tation learning workflow at a conceptual level. An important step in this process is

abductive inference of the demonstrator’s high-level intentions, as described in Sect.

3.3. This step uses a novel extension of PCT to support intention inference. In

particular, to my knowledge, this is the first extension of PCT that simultaneously

supports ordered effects (A causes B, then C, then D) and causal chaining (A causes

B, B causes C). In addition, it is distinguished from past work by its operational

representation of causal knowledge. All of these extensions to PCT were necessary

to properly represent and reason about intentions in the context of robotic imitation

learning. A core contribution of this dissertation is the development of algorithms

to support these extensions, as well as the theoretical analysis that verifies their

soundness, completeness, and computational complexity characteristics [69]. These

formal verifications make CERIL well understood at a technical level, thereby pro-

moting transparency and trustworthiness. This chapter presents those algorithms

and theoretical results in detail.

67

4.1 Formalizing Causal Knowledge

The formal knowledge representation, algorithms, and proofs rely heavily on

a notation for ordered sequences. An ordered sequence of N elements from a set

V is denoted 〈vi〉Ni=1 = 〈v1, v2, ..., vN〉, where each vi ∈ V . We denote the set of all

such sequences using the Kleene star: V ∗. For brevity, arbitrary sequences may be

written with subscripts and superscripts omitted, as in 〈v〉, as long as we have not

already used the token v in the current context to refer to an individual element

of V .1 When subscripts and superscripts are omitted, the length of an arbitrary

sequence 〈v〉 is denoted |〈v〉|. To denote a sequence of sequences, each member

sequence is written with a parenthesized superscript: e.g., 〈v〉(1), 〈v〉(2),

Henceforth let V be any (potentially infinite) set whose elements represent

anything that can be a cause or effect. In our context, elements of V correspond to

actions and intentions, such as opening the dock or grasping a hard drive. Formally,

in CERIL each element v ∈ V is a tuple of the form (t, s, 〈x〉), where t is a label

for the intention or action (e.g., grasp), s is the current state of the environment

immediately before t is carried out, and 〈x〉 is a sequence of parameter values with

which t is carried out (e.g., 〈drive-1,left-gripper〉). However, all of the algo-

rithms in this chapter are agnostic to the internal structure of any particular v and

could potentially be used in other application areas.

A causal relation over V is a set C ⊆ V × V ∗. An element (u, 〈v〉) ∈ C sig-

1E.g., the statement “Given v ∈ V , consider 〈v〉 ...” refers to a length 1 sequence consisting of

v, not an arbitrary sequence.

68

nifies that u can cause the sequence 〈v〉. This means that u may cause 〈v〉, not

that it must. However when u actually does cause 〈v〉 it must cause the full se-

quence in order. In CERIL, elements of C represent a parent intention causing a

sequence of sub-intentions (downward arrows in Fig. 3.1). For example, u might

represent getting drive-1 to right-gripper, with two associated causal relation-

ships in C: (u, 〈v〉(1)) and (u, 〈v〉(2)). The first effect 〈v〉(1) might be a singleton

sequence with one sub-intention such as picking up drive-1 with right-gripper.

Meanwhile 〈v〉(2) might be a sequence with two intentions: first picking up drive-1

with left-gripper, and then handing off from left-gripper to right-gripper.

The u parent intention may cause 〈v〉(1), or it may cause 〈v〉(2). But when it causes

〈v〉(2), both sub-intentions (the pick-up and the hand-off) must be caused, in order.

In simple examples C can be depicted graphically by drawing elements of V

as circles, with vertical arcs connecting causes with effects, and horizontal arrows

through vertical arcs to indicate ordering constraints. Several examples shown in

Fig. 4.1 are referenced throughout the following. Note that C may be many-to-

many: the same u might cause any of several different 〈v〉’s and vice versa. For

example, in Fig. 4.1(a), 〈v1, v2〉 can be caused by either u1 or u2. And u2 can cause

either 〈v1, v2〉 or 〈v3, v4〉.

Sequence membership is written with ∈, as in v2 ∈ 〈v1, v2, v3〉. Given any

sequence

〈(u1, 〈v〉(1)), (u2, 〈v〉(2)), ..., (u`, 〈v〉(`))〉 ∈ C∗,

if ul+1 ∈ 〈v〉(l) for all l from 1 to ` − 1, then we refer to the sequence as a causal

69

Figure 4.1: Examples of causal relations. Nodes represent elements of V , verti-

cal arrows represent causal relationships, and horizontal arrows represent ordering

constraints. See text for further details.

70

chain with depth `. We restrict our attention to causal relations with no “loops”: for

any causal chain with depth `, we assume u1 6∈ 〈v〉(`). An example of a causal chain is

shown in Fig. 4.1(b) with the chain in bold: 〈(u1, 〈u2, u5〉), (u2, 〈u6, u3〉), (u3, 〈u4, u7〉)〉.

Concretely, getting drive-1 to right-gripper might cause a pick-up (among other

things), which in turn might cause a gripper to close (among other things). This is

a causal chain with depth 2 (because there are 2 causal links).

A covering tree is an ordered tree in which every ordered parent-child relation-

ship, (u, 〈v〉), is a member of C. In Fig. 3.1, each top-level intention is the root of

the covering tree below it. The root of any covering tree is called a singleton cover of

the ordered leaves in the tree. In Fig. 4.1(d), u2 is a singleton cover of 〈w2, w4, w5〉,

and u3 is a singleton cover of 〈w6, w7, w8〉. The respective covering trees are shown

in bold-face. The root is thought of as “covering” its descendants because it can

account for them in an explanation.

Consider I covering trees: u1 is a singleton cover of 〈w〉(1), ... ui is a singleton

cover of 〈w〉(i), ... uI is a singleton cover of 〈w〉(I). We call the sequence 〈ui〉Ii=1 a

cover of 〈w〉 = 〈w〉(1) ⊕ ... ⊕ 〈w〉(I), where ⊕ denotes sequence concatenation. In

other words, a cover is formed by (the roots of) an ordered forest of cover trees.

Each ui is referred to as a singleton sub-cover of 〈w〉(i). In Fig. 4.1(d), 〈u2, u3〉 is

a cover of 〈w2, w4, w5, w6, w7, w8〉, and u2 is the singleton sub-cover of 〈w2, w4, w5〉.

Note that a singleton cover is simply a cover with a single element.

Let 〈u〉 be a cover of 〈w〉. If an associated covering forest has depth at most `,

then 〈u〉 is also called an `-cover of 〈w〉. Any 〈w〉 is considered a 0-cover, or trivial

cover, of itself.

71

The contiguous subsequence relation is writtenv, as in 〈v2, v3〉 v 〈v1, v2, v3, v4〉.

Given any 〈w〉 ∈ V ∗, suppose there is a non-empty subsequence 〈v〉 v 〈w〉 and a

u ∈ V such that (u, 〈v〉) ∈ C. In other words, suppose part of 〈w〉 can be caused

by some u. Then 〈w〉 is referred to as mid-level. Otherwise, 〈w〉 is referred to as

top-level. In Fig. 4.1(e), 〈v1, v3〉 is a mid-level cover for 〈w1, w2, w3, w4〉 because the

(full) subsequence 〈v1, v3〉 can be caused by u1. In contrast, there are four distinct

top-level covers of 〈w1, w2, w3, w4〉: 〈u1〉, 〈u2〉, 〈v1, v4〉, and 〈v2, v3〉. Fig. 4.1(e) also

shows that the roots of a top-level cover are not necessarily top-level nodes: while

v1 is part of a sequence caused by u1, and v4 is part of a sequence caused by u2,

there is no node that can cause the singleton sequence 〈v1〉, the singleton sequence

〈v4〉, or the sequence 〈v1, v4〉. So 〈v1, v4〉 is a top-level cover.

4.2 Formalizing Parsimonious Explanation

Any cover is considered to be a valid explanation, but it may not be a good

explanation. In PCT, “good” explanations are identified by choosing a suitable

parsimony criterion and discarding all valid explanations that do not satisfy that

criterion. Two formal parsimony criteria previously used in PCT are minimum

cardinality and irredundancy, although these do not involve temporal ordering in

the original formulation [98]. In our context, 〈u〉 is a minimum cardinality cover

of 〈w〉 if there is no other 〈v〉 with fewer elements that also covers 〈w〉. 〈u〉 is an

irredundant cover of 〈w〉 if there is no proper subsequence 〈v〉 of 〈u〉 (contiguous or

not) that also covers 〈w〉. Either criteria can be imposed depending on the problem

72

domain, and only parsimonious covers are considered to be acceptable explanations.

However, if minimum cardinality is imposed, irredundancy is automatically imposed

as well, since a redundant cover has higher cardinality than the same cover with the

redundant elements removed.

From the standpoint of imitation learning, the chief concern is identifying in-

tentions that are as general as possible, so CERIL always imposes another parsimony

criterion: 〈u〉 is considered a parsimonious cover of 〈w〉 only if it is a top-level cover

of 〈w〉. We can impose additional criteria such as minimum cardinality (and hence

also irredundancy) in addition to top-level-ness if necessary to further reduce the set

of valid explanations. Even if minimum cardinality is not imposed, top-level covers

will generally satisfy the irredundancy criterion, since removing some roots from a

covering forest will result in uncovered leaves.2 Top-level-ness and irredundancy are

also similar in spirit, since both emphasize covers that have been maximally sim-

plified by local modifications: redundant covers are made irredundant by removing

a subset; mid-level covers are made top-level by replacing a subsequence with its

cause.

A causal problem domain (or simply “domain”) is a pair D = (V,C) where C

is a causal relation over the set V . A causal inference problem is a pair (D, 〈v〉),

where D is a domain and 〈v〉 ∈ V ∗ is an observed sequence to be explained (〈v〉

corresponds to an observed demonstration in imitation learning). The problem’s

2There are contrived exceptions: In Fig. 4.1(c), 〈u1, u2〉 covers 〈v1, v2〉, but is redundant, since

〈u1〉 also covers 〈v1, v2〉. Causal relations like this do not occur in our imitation learning domain

and are rare in the Monroe Plan Corpus (Chapter 5), so we consider them pathological in practice.

73

solution is the set of all parsimonious covers of 〈v〉. For the purposes of this work,

top-level-ness is always imposed; additional criteria can be imposed on the solution

as a post-processing step.

Several domain-specific constants are useful for quantifying the size of a do-

main:3

• M , the length of the longest sequence that can be caused by any u ∈ V

(i.e., M = sup(u,〈v〉)∈C |〈v〉|). M = 3 in Fig. 4.1(d), and M = 2 in Fig.

4.1(a),(b),(c), and (e). This refers to the length of an ordered effect sequence

(i.e., “horizontally”), not a causal chain (i.e., “vertically”).

• U , the largest possible number of distinct singleton covers of the same 〈v〉,

taken over all 〈v〉 ∈ V ∗. That is,

U = sup
〈v〉∈V ∗

|{u ∈ V | 〈u〉 covers 〈v〉}|.

In Fig. 4.1(d), 〈w6, w7〉 has two distinct singleton covers: u2 and v3. All other

possible node sequences have 2, 1, or 0 distinct singleton covers, so U = 2.

• L, the depth of the deepest causal chain (i.e., L = supγ∈Γ |γ|, where Γ ⊂ C∗ is

the set of all causal chains). L = 1 in Fig. 4.1(a) and (c), L = 2 in Fig. 4.1(d)

and (e), and L = 3 in Fig. 4.1(b).

Although we allow V (and hence C) to be infinitely large, we restrict our attention

to domains where the constants M , U , and L are all finite.

3In the following, sup refers to the mathematical supremum; i.e., the least upper bound of some

quantity over a given set. When the sets are finite, the supremum is equivalent to the maximum.

74

4.3 Parsimonious Covering Algorithms

The main technical contribution of this chapter is a set of algorithms that

solve the Parsimonious Covering problem as defined above and are both provably

correct and effective. Specifically, given the background knowledge stored in C, and

an observed sequence of effects (e.g., a sequence of actions), the algorithms compute

every parsimonious explanation (e.g., sequences of inferred intentions). In Fig. 3.1,

these algorithms correspond to block arrow A, in which the top-level intentions are

inferred based on actions recorded in SMILE. The algorithms are provably sound:

any 〈u〉 computed by the algorithms is guaranteed to be a true top-level cover of 〈w〉.

They are also provably complete: any true top-level cover 〈u〉 of 〈w〉 is guaranteed

to be found by the algorithms. The algorithm outputs can be filtered for additional

criteria like minimum cardinality as a post-processing step. The computational

complexity of the algorithms can also be derived in terms of the bound M defined

above, and they are essentially fixed-parameter tractable with some caveats detailed

below. The important point is that they can be expected to run in a reasonable

time frame on the vast majority of problem instances, as borne out by experiments

in Chapter 5. The algorithms are presented here; the theorems and proofs are

presented in Section 4.4.

Given a causal inference problem, the solution (i.e., the set of all top-level

covers) is computed by an algorithm called explain (Fig. 4.2), which operates

in two phases detailed below. The main inputs to explain are the background

knowledge contained in C, and the sequence of observations 〈w〉 ∈ V ∗. In CERIL,

75

1: procedure explain(causes,M ,〈wn〉Nn=1)

2: g ← ssCovers(causes, M , 〈wn〉Nn=1) . Phase 1: Singleton sub-covers

3: tlcovs← {}

4: for t ∈ tlCovers(g, N , M ,〈〉,〈0〉) do . Phase 2: Top-level covers

5: tlcovs← tlcovs ∪ {t}

6: end for

7: return tlcovs

8: end procedure

Figure 4.2: Explaining an observed sequence.

〈w〉 is an observed demonstration. The causal background knowledge is represented

operationally in explain using a PCT causes function, formally defined as follows:

causes(〈v〉) def
= {u ∈ V | (u, 〈v〉) ∈ C}.

In other words, causes returns all singleton 1-covers of its input. causes is repre-

sented operationally and the domain author is responsible for correctly implementing

it. It constitutes the interface between explain and the causal knowledge base, and

explain treats causes as a black box. M , the bound defined in Section 4.2, is also

expected as input since it can not be automatically determined from an operational

encoding.

In implementing causes, the domain author only needs to enumerate the

direct causal associations (u, 〈v〉) that make up C. explain automates the work

of composing causal associations over multiple layers of causation and multiple se-

quences of effects, much like a parsing algorithm composes individual grammatical

76

rules. In other words, the domain author is only responsible for specifying the im-

mediate parent-child relationships that are allowed, not for anticipating any of the

multi-layer trees that might need to be constructed to form a covering forest. For

example, in the upper left of Fig. 3.1, the domain author must specify that the first

two actions on the left can be caused by the mid-level intention directly above them,

and that the first two mid-level intentions on left can be caused by the intention

above them, and so on, but need not specify that the full sequence of 6 low-level

actions can be indirectly caused by the full sequence of the 2 top-level intentions.

As such, explain is a generic, domain-independent algorithm, that can find parsi-

monious, high-level covers for long, low-level sequences that need not be anticipated

by the domain author or explicitly built in to the background knowledge.

Given a causal inference problem, the solution (i.e., the set of all top-level cov-

ers) is computed by explain (Fig. 4.2) in two phases. The first phase uses dynamic

programming to compute every singleton cover of every contiguous subsequence of

the observations. The second phase generates every top-level cover by carefully com-

bining singleton sub-covers from the first phase, pruning out the combinations that

are not top-level. The first phase relies on the externally provided causes function,

which is explain’s interface to the causal knowledge base.

explain combines the two phases to produce the final set of top-level covers

for an observed sequence. The output of explain is tlcovs, the set of all top-level

covers. tlcovs can be pruned by additional parsimony criteria as a post-processing

step. explain invokes sub-routines ssCovers to perform the first phase and tl-

Covers to perform the second phase (described below). tlCovers is treated as

77

an iterator construct, so that in rare cases when |tlcovs| is very large, it can be

terminated early or pruned by additional parsimony criteria online.

The algorithm ssCovers (Fig. 4.3) takes the same inputs as explain: the

causes function (which encodes the domain), the bound M defined above, and

the observed sequence 〈wn〉Nn=1. A dynamic programming table g is populated in

an incremental, bottom-up fashion. The table entry g`j,k accumulates the singleton

`-covers (i.e., those whose covering trees have depth at most `) of the observed

subsequence from index j to k, namely, 〈wn〉kn=j+1 . Along with each singleton cover

u, its immediate children 〈v〉 in the covering tree are also stored for use in tlCovers

(described later). Each outer iteration of ssCovers (lines 5-18) populates the `-

covers during the `th iteration, using the (` − 1)-covers that were found in the

previous iteration. Every g0
j,k is initialized with the trivial singleton covers, one for

each wk (lines 2-4). Line 6 initializes the `-covers for the current iteration with those

from the previous, since any (`− 1)-cover is also an `-cover.4 Lines 7-13 check every

subsequence 〈u〉 of every cover found so far to see if it has a higher-level cause ũ. Line

7 limits the search to 〈u〉 of length m ≤ M , since by definition no effect sequence

longer than M is present in C. Every such 〈u〉 will partition a subsequence of the

original 〈wn〉Nn=1 into m disjoint, contiguous, consecutive subsequences, each of which

are the leaves of the ith covering tree rooted in ui. That is, ui covers 〈wn〉kiki−1+1,

with 0 ≤ k0 < ... < km ≤ N . Line 8 enumerates every way 〈wn〉Nn=1 might be so

partitioned. Each such 〈u〉 is then enumerated on line 9, based on the fact that if ui

4This is because, by definition, an (` − 1)-cover has depth at most (` − 1). Therefore it has

depth at most `. So it is also an `-cover. However the converse is not true.

78

1: procedure ssCovers(causes, M , 〈wn〉Nn=1)

2: for 0 ≤ j < k ≤ N do . Initialize g0

3: g0
j,k ← {(wk, 〈〉)} if j + 1 = k else ∅ end if

4: end for

5: for ` ∈ 〈1, 2, ...〉 do . Populate g bottom-up

6: g`j,k ← g`−1
j,k for 0 ≤ j < k ≤ N . Initialize g` to g`−1

7: for m ∈ 〈1, 2, ...,M〉 do . Every (`− 1)-cover of every 〈ŵ〉 v 〈w〉

8: for 0 ≤ k0 < ... < km ≤ N do

9: for 〈u〉 ∈ {〈ui〉mi=1 | ∀i ∃〈v〉 (ui, 〈v〉) ∈ g`−1
ki−1,ki

} do

10: g`k0,km ← g`k0,km ∪ {(ũ, 〈u〉) | ũ ∈ causes(〈u〉)}

11: end for

12: end for

13: end for

14: if g`j,k = g`−1
j,k for 0 ≤ j < k ≤ N then . No new covers found, terminate

15: g ← {g`j,k | 0 ≤ j < k ≤ N}

16: return g

17: end if

18: end for

19: end procedure

Figure 4.3: Singleton Sub-Cover Generation.

79

has already been found to cover 〈wn〉kiki−1+1, then it will be contained5 in g`−1
ki−1,ki

. The

set on this line draws each ui from g`−1
ki−1,ki

, which contains all singleton (`−1)-covers

for the ith subsequence of 〈wn〉Nn=1 in the current partition. If the current 〈u〉 has

any causes, they each constitute a new `-cover of 〈wn〉kmn=k0+1 and are added to g`k0,km

(line 10). When the current iteration of the outer loop has identified no new covers,

the algorithm can be terminated. The current g` includes all singleton sub-covers

from the previous iterations, so it is renamed g and returned (lines 14-17).

The second phase is performed by tlCovers (Fig. 4.4), which generates every

top-level cover using the output g of ssCovers. Instead of a return statement,

tlCovers uses yield statements6 which suspend its execution and pass the current

top-level cover to its “caller” (typically a for-loop, as in algorithm explain). When

the caller requests the next top-level cover, execution resumes where tlCovers

left off and continues until yield is encountered again. The yield keyword makes

tlCovers an iterable construct that a for-loop can invoke to receive parsimonious

covers one at a time.

tlCovers is also recursive. It takes as input g (as computed by ssCovers),

N (the length of the observed sequence), the bound M as defined above, and two

“accumulators” 〈ui〉Ii=1 and 〈ki〉Ii=0: The current top-level cover is accumulated in

〈ui〉Ii=1, and the indices at which it partitions 〈wn〉Nn=1 are accumulated in 〈ki〉Ii=0.

5Technically, we cannot write ui ∈ g`−1
ki−1,ki

, since each cell in g actually contains pairs (u, 〈v〉).

At this stage, we only need one such pair containing ui, hence the 〈v〉 is existentially quantified in

the set on line 9.

6The yield construct here is borrowed from Python.

80

1: procedure tlCovers(g,N ,M ,〈ui〉Ii=1,〈ki〉Ii=0)

2: if kI = N then yield (〈ui〉Ii=1,〈ki〉Ii=0) . Accumulator covers full input

3: else . Accumulator covers leading input subsequence, continue covering

4: for kI+1 ∈ {kI + 1, ..., N} do . Every possible partition point

5: for (uI+1, 〈v〉) ∈ gkI ,kI+1
do

6: if ∃m < M ∃ũ (ũ, 〈uI+1−m, ..., uI+1〉) ∈ gkI−m,kI+1
then

7: continue . Skip current uI+1 if result is mid-level

8: end if

9: for (〈û〉, 〈k̂〉) ∈ tlCovers(g,N,M, 〈ui〉I+1
i=1 , 〈ki〉I+1

i=0) do

10: yield (〈û〉, 〈k̂〉) . Recursively cover rest of input sequence

11: end for

12: end for

13: end for

14: end if

15: end procedure

Figure 4.4: Top-level Cover Generation.

81

These are called “accumulators” because they accumulate a return value over the

course of recursion. They are empty at the shallowest layer of the recursion, they

contain a leading portion of a top-level cover mid-way down the recursion, and

they contain a full top-level cover at the deepest layers of the recursion, at which

point the full top-level cover is passed back up the recursive stack via the yield

statements. The algorithm is initiated at the top-level of the recursion by calling

tlCovers(g,N ,M ,〈〉,〈0〉) in a for-loop, as in explain.

The algorithm starts with the base case by checking whether a cover for the

full 〈wn〉Nn=1 has been accumulated, in which case the final partition point kI will be

N , the full sequence length (line 2). If so, it yields the accumulated cover (line 2).

Otherwise, only a leading subsequence of 〈wn〉Nn=1 has been covered so far, and the

algorithm enumerates all options for the next partition point in the tail (line 4). For

each option kI+1, it enumerates all singleton covers uI+1 that could be appended

to the cover accumulated so far (line 5). For each singleton, it checks whether

appending would result in a cover that is mid-level, with some higher-level cause ũ

(line 6). If so, the current singleton is skipped (line 7). Otherwise, it is added to the

accumulator, and the algorithm is called recursively (line 9) to finish accumulating.

Each top-level cover that results is yielded to the caller one by one (line 10).

The first iterates yielded by tlCovers are those where the leading covering

trees have the fewest leaves and the trailing covering trees have the most. This is

an arbitrary byproduct of the loop order on line 4, since the next kI+1 is searched

from head to tail. If ordering were important, it could be modified, although it was

not explored further in this work. For example, if kI+1 started at b(kI +N)/2c and

82

worked outwards, the first iterates of tlCovers would tend to have leaves more

uniformly distributed among the covering trees.

4.4 Theoretical Results

Here we prove that Algorithm explain is correct and establish its computa-

tional complexity characteristics. N , M , U , and L are as defined in Sect. 4.1.

Theorem 1 shows that ssCovers is sound and complete: after the algorithm

terminates, each entry in the dynamic programming table g`j,k contains all and only

the singleton `-covers of 〈wn〉kn=j+1.

Theorem 1. Let g be the return value of ssCovers(causes,M, 〈wn〉Nn=1), and let

〈wn〉kn=j+1 be any subsequence of 〈wn〉Nn=1. For every (u, 〈v〉) ∈ gj,k, the singleton 〈u〉

covers 〈wn〉kn=j+1 (soundness). For every singleton cover 〈u〉 of 〈wn〉kn=j+1, (u, 〈v〉) ∈

gj,k for some 〈v〉 (completeness).

Proof. The proof is by induction on `. After line 4, each g0
j,k contains all and only

the 0-covers of 〈wn〉kn=j+1, namely, the trivial covers where each wk covers itself.

Now assume the inductive hypothesis: on the `th iteration of lines 5-18, every g`−1
j,k

contains all and only the (`− 1)-covers of 〈wn〉kn=j+1.

For soundness, consider (u, 〈v〉) ∈ g`j,k. If it was acquired via line 6, it was

already in g`−1
j,k and covers 〈wn〉kn=j+1 by the inductive hypothesis. Otherwise, it

was added on line 10 when k0 = j and km = k, in which case (u, 〈v〉) is in C by

the definition of causes. Moreover, 〈v〉 is in the set on line 9. Therefore each vi

is stored in some g`−1
ki−1,ki

, and is a singleton cover by the inductive hypothesis. So

83

all parent-child relationships in the sub-trees rooted at each vi are in C as well.

Therefore the tree formed by making 〈v〉 the ordered children of u is also a covering

tree, and consequently u is a singleton cover of 〈wn〉kn=j+1.

For completeness, suppose that ũ is a singleton `-cover of some subsequence

〈wn〉kn=j+1. Fix an associated covering tree and let 〈ui〉m̃i=1 be the ordered children

of ũ in the tree. By definition, each ui is the root of a sub-tree with depth at most

` − 1, and 〈wn〉kn=j is the concatenation of the ordered leaves of each sub-tree. Let

k̃i−1 + 1 and k̃i be the starting and ending indices of the leaves of the ith sub-tree.

By the inductive hypothesis, each ui is stored in g`−1
ki−1,ki

. Therefore 〈ui〉m̃i=1 will be

included in the set on line 9 when m = m̃ and each ki = k̃i. Since (ũ, 〈ui〉m̃i=1) is a

parent-child relationship in the covering tree, it is also in C, and by the definition

of causes, it will be added to g`k0,km = g`j,k on line 10.

To bound the computational complexity of ssCovers, we first establish a

lemma that bounds the number of singleton covers in each g`j,k.

Lemma 1. The cardinality of any g`j,k is at most O(MUM+1NM−1).

Proof. There are
∑M

m=1

(
k−j−1
m−1

)
partitions of the form j = k0 < ... < km = k

splitting 〈wn〉kn=j+1 into m subsequences.
∑M

m=1

(
k−j−1
m−1

)
is O(

∑M
m=1

(
N−1
m−1

)
), which

simplifies7 to O(MNM−1). For every such partition, each of the m subsequences has

at most U singleton covers, so there are at most Um associated covers. Therefore

there are O(MUMNM−1) possible covers 〈v〉 of 〈wn〉kn=j+1. Each element of g`j,k

pairs one of at most U singleton covers u with one of these 〈v〉. Therefore |g`j,k| is

7 The term
(
A
B

)
is O(AB) since it has a numerator with B factors, each at most A.

84

O(MUM+1NM−1).

The upper bound in Lemma 1 is rather loose. It counts every possible pairing

of u’s with 〈v〉’s, ignoring whether each (u, 〈v〉) is actually in C, resulting in a

significant overestimate. Equipped with Lemma 1, we can prove that the runtime

of ssCovers is polynomial in N .

Theorem 2. The worst case complexity of ssCovers(causes,M, 〈wn〉Nn=1) is poly-

nomial in N .

Proof. Lines 2-4 take O(N2) steps since j and k range from 0 to N . Line 10

takes time constant in N to compute causes. The cardinality of the resulting

set is O(U) so the union operation takes time O(U) using an efficient (e.g., hash-

based) set implementation for each g`j,k. The cardinality of the set on line 9 is

O((MUM+1NM−1)M) = O(MMUM2+MNM2−M), since each ui is chosen from one

of at most M sets g`−1
ki−1,ki

, and each g`−1
ki−1,ki

contains O(MUM+1NM−1) options for

ui by Lemma 1. Line 8 iterates over
(
N+1
M+1

)
partitions which simplifies to O(NM+1).

Line 6 copies O(N2) sets each of size at most O(MUM+1NM−1), again by Lemma

1. Therefore the total complexity of lines 6-17 is

O(MUM+1NM+1 +MM+1UM2+MNM2+1(U +X)),

where X is the complexity of causes. Although line 5 has no termination condition,

all singleton covers have depth at most L, where L is the bound on causal chain depth

defined previously, assumed to be finite.Since correctness was shown in Theorem 1

by induction on `, the termination check on line 14 will be satisfied after at most L

85

iterations. Therefore the total complexity of the algorithm is

O(L(MUM+1NM+3 +MM+1UM2+MNM2+1(U +X))).

The exponential dependence on M2 is a theoretical concern but we do not

consider it a serious defect in practice. The main reason is that our empirical run

times are very reasonable even on fairly long demonstrations (see Sect. 5.1). In

addition, we believe that in practice M is typically rather small. It is at most 6 in

our own robotics domain and the unrelated Monroe Plan Corpus (see Chapter 5),

and most child sequences have length closer to 2 or 3.

Next, we prove that the second phase of causal inference is also correct. Note

that top-level-ness is our primary parsimony criteria, and implies irredundancy ex-

cept in rare pathological cases. As such, Theorem 3 shows that tlCovers yields

all and only the parsimonious covers of an observed sequence.8

Theorem 3. Let g be the return value of ssCovers(causes,M, 〈wn〉Nn=1). Iteration

over tlCovers(g,N,M, 〈〉, 〈0〉) yields all (completeness) and only (soundness) the

top-level covers of 〈wn〉Nn=1.

Proof. For completeness, suppose 〈ui〉Ĩi=1 is a top-level cover of 〈wn〉Nn=1. We can

show that 〈ui〉Ĩi=1 is yielded by a reverse induction on I ranging from Ĩ to 0. Let

0 = k̃0 < ... < k̃Ĩ = N be the partition of 〈wn〉Nn=1 induced by 〈ui〉Ĩi=1, i.e., ui covers

8Before pruning with additional parsimony criteria such as minimum cardinality, which can be

done in linear time.

86

〈wn〉k̃in=k̃i−1+1
. For the base case, when I = Ĩ, the call tlCovers(g,N,M, 〈ui〉Ii=1, 〈k̃i〉Ii=1)

will execute line 2 since k̃Ĩ = N . For the inductive case, suppose that

tlCovers(g,N,M, 〈ui〉I+1
i=1 , 〈k̃i〉I+1

i=1) yields 〈ui〉Ĩi=1; we must show the same for

tlCovers(g,N,M, 〈ui〉Ii=1, 〈k̃i〉Ii=1). During this call, the iteration on line 4 will

eventually reach kI+1 = k̃I+1 since k̃I+1 ∈ {k̃I + 1, ..., N}. Since uI+1 is a singleton

cover of 〈wn〉k̃I+1

n=k̃I+1
, it is stored in gk̃I+1,k̃I+1

and will be included in the iteration on

line 5. Since 〈ui〉Ĩi=1 is top-level, the check on line 6 will fail. Therefore the iteration

on line 9 will be reached, and by the inductive hypothesis, it will yield 〈ui〉Ĩi=1, which

gets passed up the recursion. Running the induction through to I = 0, we have that

tlCovers(g,N,M, 〈〉, 〈0〉) yields 〈ui〉Ĩi=1.

For soundness, let 〈ui〉Ĩi=1 be any iterate yielded by tlCovers(g,N,M, 〈〉, 〈0〉).

We must show that it is a top-level cover. Each ui was accumulated at some recursion

depth as some iterate uI+1 in line 5. Since uI+1 is drawn from gkI ,kI+1
, it is a singleton

cover of 〈wn〉kI+1

n=kI+1, and therefore 〈ui〉Ĩi=1 is a cover for the full 〈wn〉Nn=1. If it were

mid-level and not top-level, there would be some subsequence 〈ui〉I+1
i=I−m v 〈ui〉Ĩi=1

for some m < M and I < Ĩ that could be covered by some higher-level cause ũ.

But then the check on line 6 would be true at recursion depth I, so 〈ui〉I+1
i=1 would

have never been passed to the recursive call on line 9, and 〈ui〉Ĩi=1 would have never

been yielded. Therefore 〈ui〉Ĩi=1 must be top-level.

Having shown correctness, it remains to characterize the complexity of tl-

Covers.

Theorem 4. The worst-case complexity of tlCovers(g,N,M, 〈〉, 〈0〉) is polyno-

87

mial in N and T , where T is the number of top-level covers.

Proof. The recursive execution trace of tlCovers(g,N,M, 〈〉, 〈0〉) can be viewed

as a tree, where each node corresponds to some 〈ui〉I+1
i=1 that gets checked on line 6,

and if it passes the check, gets passed to the recursive call on line 9. Note there is

no connection between this recursion tree and the notion of a covering tree. The

depth in this tree is equal to the depth in the recursion. The node for any 〈ui〉I+1
i=1 is

a child of the node for 〈ui〉Ii=1, and the root is associated with 〈〉. Line 6 compares a

length-O(M) sequence against each of O(MUM+1NM−1) elements in each of M sets

gkI−m,kI+1
by Lemma 1, so the worst-case run time of the algorithm is proportional

to the size of the tree times M3UM+1NM−1.

The leaves of the tree can be split into two groups. The “good” leaves are

top-level covers of the full 〈wn〉Nn=1, which get yielded and passed up the recursion

on line 2. The “bad” leaves are mid-level covers of leading subsequences of 〈wn〉Nn=1,

which fail the check on line 6 and prevent a recursive call. Likewise, the nodes of the

tree can be split into two groups: the “good” nodes are those from which good leaves

are reachable, and the “bad” nodes are the rest. It follows that all descendants of a

bad node are also bad.

There are T good leaves, and each is reachable from at most N nodes along

the path from the root, since the length of a cover is never more than the length of

the covered sequence. So there are O(TN) good nodes. Lines 4 and 5 enumerate

O(MUM+1NM) iterates by Lemma 1, so each good node has O(MUM+1NM) bad

children, and each bad child is the root of a sub-tree containing only bad nodes.

88

Moreover, every bad node is in some such sub-tree. The depth of these sub-trees

is at most M , since line 6 identifies any mid-level cover within M recursive steps.

The branching factor of the sub-trees is again O(MUM+1NM), so the size of the

sub-tree is O(MMUM2+MNM2
). Therefore there are at most O(TMMUM2+MNM2

)

bad nodes. The total size of the entire tree is the sum of good and bad node counts,

so the total complexity of the algorithm is

O(M3UM+1NM−1(TN + TMMUM2+MNM2
)).

Another theoretical concern is that the number of top-level covers T is not

independent from the length of the demonstration sequence N , and may have ex-

ponential dependence on N , thereby concealing a worse-than-polynomial run time.

Indeed, our empirical results do show that in complex domains, T can be very large

in some cases (Sect. 5.1.2). However, T was rarely large enough that explain

ran for an impractical amount of time, and the size of the output |tlcovs| could be

mitigated by pruning with additional parsimony criteria.

Lastly, an important corollary of the results in this section is that, if causes

formally inverts the HTN planning operators, then explain formally inverts the

HTN planning algorithm. To our knowledge, this is the first provably correct inver-

sion of HTN planning.

89

Chapter 5: Experimental Validation

The previous chapter presented the algorithms used by CERIL for intention

inference and derived their formal properties. However, theory does not always

translate to practice. This chapter presents physical and simulation experiments

that empirically validate CERIL as a performant, pliable system for cognitive-level

imitation learning in practice. The physical experiments were conducted using a

Baxter robot with the disk drive dock and other objects we fabricated for test-

ing. These experiments focused primarily on the overall imitation learning pipeline.

The simulation experiments focused primarily on CERIL’s abductive inference algo-

rithms in particular. In addition to using demonstration data from our own assembly

and maintenance domain, the simulation experiments used a large 3rd-party dataset

called the Monroe Plan Corpus (described below), which is a standard benchmark

in the field of plan recognition. Sect. 5.1 presents these results.

In addition to assessing performance, an empirical study was conducted to

compare different parsimony criteria. These experiments showed that the number of

parsimonious explanations for a demonstration was highly sensitive to the parsimony

criterion applied. Furthermore, some criteria that are preferred in other application

areas such as medical diagnosis proved sub-optimal for intention inference, and a

90

new criterion introduced here proved particularly advantageous in certain regards.

These results are presented in Sect. 5.2.

5.1 Overall System Performance

5.1.1 Imitation Learning Trials

With regards to robot imitation learning and execution as a whole, this work

focused on two questions: How quickly can a robot interpret and imitate a demon-

stration? How often and at what points in the process does it fail? These questions

were answered with a series of imitation learning trials using the dock maintenance

scenario and a toy block stacking scenario. The tasks used in these trials are inten-

tionally simple, intended solely to establish that explain can work effectively in a

real-world robotics application.

First, for the dock maintenance scenario, in each trial, the Baxter robot inter-

preted a demonstration of a maintenance skill, and then imitated that skill in a new

situation, where the initial configuration of drives, slots, and LED indicators was

different than what had been observed in the demonstration. Each trial was timed,

and successes and failures were recorded.

More specifically, four different skills were taught to the robot:

• Discarding a faulty drive (i.e., a drive next to a red LED)

• Discarding a faulty drive and replacing it with a spare drive on top of the dock

• Discarding a faulty drive and replacing it with a functional drive (i.e., a drive

91

next to a green LED)

• Swapping the slot positions of a faulty drive and a functional drive.

Each skill was demonstrated twice in SMILE, using different initial states for the

dock each time, and in some cases different action sequences, to introduce more vari-

ety into our testing set. explain was used to infer intentions in each demonstration

(i.e., learning was always done with a single demonstration). Finally, the robot was

asked to imitate each demonstration 4 times, again using different initial physical

dock states each time. The result is 8 distinct demonstrations total and 32 imitation

trials total (8 demonstrations for learning × 4 new initial states per demonstration

for imitation). In every demonstration and trial, the initial dock states were auto-

matically and randomly generated, varying the number and position of spare drives,

which slots were occupied, and which LEDs were red. Fig. 5.1 depicts a SMILE

demonstration and the robot imitating it.

Second, in the toy block scenario, blocks were stacked to form letters of the

English alphabet. Three demonstrations were recorded in SMILE: (1) Forming “IL,”

(2) forming “AI,” and (3) forming “UM.” Again, the robot was asked to imitate

each demonstration 4 times, using different random initial block placements each

time. The result is 12 additional trials. Snapshots of a SMILE demonstration and

subsequent imitation for the “UM” block stacking skill are shown in Figs. 5.2 and

5.3

In both dock and block trials, every trial is independent from the others: The

robot does not use other demonstrations or previous trials to improve its perfor-

92

Figure 5.1: Screenshots from a task demonstration in SMILE (top row) and the

corresponding subsequent robotic imitation of the task (bottom row). Time flows

from left to right. During imitation, a different LED is red corresponding to a dif-

ferent drive that should be replaced than the one observed in SMILE, and the robot

correctly generalizes to this situation. Also, among other instances of bimanual

coordination, the robot generalizes by performing a hand-off required by its embod-

iment that was not demonstrated in SMILE (bottom row, third panel from left).

93

Figure 5.2: A snapshot of the “UM” block stacking demonstration recorded in

SMILE.

Figure 5.3: A snapshot of the “UM” block stacking skill imitated by a Baxter

robot using CERIL.

94

mance, it always imitates “from scratch” using only the human authored domain

knowledge and a single demonstration. Multiple trials for each demonstration were

used solely to increase the sample size for the experiment.

Related work by colleagues at the University of Maryland verified that these

skills are reasonable targets to be learned from a single demonstration. In that work,

a small sample of human participants (n = 5) performed similar dock maintenance

and block stacking tasks.1 It was found that about 85% of the time they would

correctly perform each task after observing only a single demonstration of it [69].

The first step of robotic imitation is interpretation of the demonstration through

causal inference (arrow A in Fig. 3.1). This step is performed by explain. Table

5.1 shows the results of running explain on every demonstration. N is the size

of the input, i.e., the number of discrete steps (grasps, releases, toggle switches)

recorded in the SMILE event transcript. Runtime is the running time in seconds of

explain.2 TL indicates the total number of top-level covers found.3 MC indicates

the number of minimal cardinality top-level covers found.

On every demonstration, explain terminated in under 1 second (Table 5.1),

so time complexity was very reasonable in practice, at least for the simple tasks

that we used here. This is especially acceptable given that intention inference is

1Thanks to Theresa Hauge and Rodolphe Gentili for designing and administering these exper-

iments with human participants.

2Run times were measured on one 2.4GHz Intel Core i7 CPU.

3As mentioned in Chapter 4, top-level covers will generally also be irredundant, except in rare

pathological cases like that shown in Fig. 4.1(c).

95

Table 5.1: explain Performance

Demonstration N Runtime TL MC
Remove red drive (1) 7 0.011992 4 2
Remove red drive (2) 10 0.012352 4 2
Replace red with green (1) 15 0.032965 8 2
Replace red with green (2) 15 0.033109 8 2
Replace red with spare (1) 14 0.032204 8 2
Replace red with spare (2) 14 0.032235 8 2
Swap red with green (1) 16 0.025078 2 1
Swap red with green (2) 16 0.025020 2 1
Toy Blocks (IL) 24 0.124730 256 1
Toy Blocks (AI) 30 0.281449 1024 1
Toy Blocks (UM) 39 0.971143 8192 1

only required once per demonstration, and then immediately allows generalization

to a variety of new situations. We also found that while the number of top-level

covers can become rather large, pruning by minimum cardinality was sufficient to

nearly uniquely determine a suitable cover.4

After explain processed each demonstration, an arbitrary minimum cardi-

nality top-level cover was selected as the robot’s representation of the learned skill.

This cover was then used for imitation (i.e., object matching, HTN planning, and

physical robot execution) in the new initial conditions for the current trial. Manual

inspection confirmed that in all dock and block trials, the robot was generating a

suitable, correct plan of low-level actions to execute. The plan was correct in that,

barring sensorimotor errors such as failed grasps, the planned actions would accom-

plish the skill that had been demonstrated. Sample videos of SMILE demonstrations

4In the cases where there were two minimum cardinality covers, the difference was inconsequen-

tial: see the example in Sect. 3.3.

96

and the corresponding robotic executions of learned skills can be found online.5

Although the plans were correct, the physical robot failed mid-way through

plan execution in 3 of the 32 dock maintenance trials (∼9%) due to sensorimotor

errors. In one failed trial, a drive was poorly aligned with a slot, and became

stuck halfway down during insertion. In another, a drive was dropped during a

hand-off, and in the third, a drive on top of the dock was knocked over during an

arm motion. These issues are due to a combination of the simplistic sensorimotor

processing routines and limited accuracy in Baxter’s motor control as compared

to more expensive robots (although people can make these sorts of errors too).

Regardless, the key result is that the cognitive-level learning process and subsequent

imitation plans were correct in 100% of the trials. Since sensorimotor processing is

not the primary focus in this work, the execution fail rate of the physical robot is

arguably not a significant objection to the CERIL framework (although efforts are

ongoing to improve the sensorimotor processing).

In the block stacking trials, since each letter is made of three to eight blocks (as

shown in Figs. 5.2 and 5.3), these demonstrations tend to involve more steps than

dock maintenance and took longer for explain to process. The increased number

of steps also results in combinatorially more top-level covers, as evident in Table

5.1. Nevertheless, minimum cardinality was an effective parsimony criterion for

mitigating this effect. Also, although block stacking is conceptually simpler than

dock maintenance, it poses a greater sensorimotor challenge, because the blocks

5See https://www.cs.umd.edu/~reggia/supplement/index.html

97

https://www.cs.umd.edu/~reggia/supplement/index.html

are smaller than the drives and leave less room for error in visual processing and

motor control. Stacking multiple blocks is also more difficult since small noise in the

placement of a bottom block makes successful placement of the blocks above less

likely. Lastly, the increased number of actions required to complete the task presents

more opportunities for sensorimotor errors. We found that across all block stacking

trials, 97% of the individual pick and place block movements were successful, 87%

of the individual letters were successfully constructed, and 75% of the trials were

successfully completed in full. Again, these were errors during physical execution,

not errors in the plans that CERIL produced for imitation, which were always valid

plans for successfully imitating the skill.

5.1.2 Monroe Plan Corpus Experiments

A more extensive battery of experiments6 was conducted on the much more

complex Monroe Plan Corpus (MPC), a well-known benchmark from the field of

plan recognition [18], to systematically assess the performance of explain. These

experiments focused on several questions: Are the theoretical results in Chapter

4 consistent with empirical evidence in a larger, more complex problem domain?

What is the empirical average case complexity of explain? Is explain effective

on problem domains designed by other third party domain authors who were not

involved in this work? These experiments did not involve the use of a physical

robot, planning, or execution; they only measure the performance of explain during

6The remaining experiments reported below were all run on a workstation with twelve 3.5GHz

Intel Xeon CPU cores and 32GB of RAM, taking approximately three days in total.

98

intention learning.

The MPC is based on an HTN planning domain for emergency response in

Monroe County, New York. Top-level goals, such as clearing a car wreck or repair-

ing a power line, are accomplished through sequences of lower-level tasks such as

navigating a snow plow or calling a power company. The corpus consists of 5000

planning examples, each of which is the HTN plan tree for a randomly chosen top-

level goal in a randomly generated initial state. We refer to the top-level goal in each

example as the “original” or “ground-truth” top-level goal. The low-level actions

in each plan tree served as the input “demonstration” to explain (the ground-

truth top-level goal and intermediate tree nodes were withheld). The ground-truth

top-level goal served as the target output that explain was expected to compute.

In order to use explain on this corpus, it was necessary to implement a

causes function. The implementation I produced in this work is conceptually equiv-

alent to the original HTN planning domain written by the third party author of the

MPC, with case-by-case logic for each planning operator, the only difference being

that causes (i.e., parent tasks) are computed from their effects (i.e., child tasks) and

not vice versa. A listing of the full set of causal relations is available in Appendix

A.2.

Another issue is that the MPC does not retain the initial or intermediate states

present when the example was generated. Only the planned tasks and actions are

included, without any state information. However, the formalization of intentions as

described in Sect. 4.1 expects state information to be included, because some causes

cannot be uniquely determined without it. The MPC is no exception. For exam-

99

ple, there is a task (clean-up-hazard ?from ?to) where variables ?from and ?to

are locations specifying a road with hazardous conditions. This task may cause a

single action (!call fema). Since the parent parameters do not occur in the child,

they cannot be inferred solely from the !call action. One possible work-around

is to enumerate every possible ?from, ?to pair in the domain, and return every

possible pairing in the output of causes. This will lead to the correct explana-

tion but also many other explanations, reducing the precision of explain. This is

compounded combinatorially when several such instances occur in sequence. In con-

trast, inspecting the state can reveal which road was hazardous, enabling causes

to only return the correct parent and no others. Fortunately, since the MPC uses

a descriptive encoding, it is possible to partially reconstruct the states using an au-

tomated procedure which cross-references the planning operator descriptions in the

domain definition (detailed in Appendix A.3). This procedure was applied as a pre-

processing step to every example in the corpus. Each partially reconstructed state

was paired with its corresponding low-level action, according to the formalization

described in Sect. 4.1, before being passed as input to explain.

explain was tested on each and every example in the corpus as follows. The

ground truth top-level goal (and plan tree) were withheld, and explain was only

provided with the low-level state and action sequence as input. The output of

explain, tlcovs, was a set of top-level covers for the actions. To gauge correctness,

the experiment checked whether tlcovs included the ground-truth top-level goal. To

gauge precision, the experiment counted how many other top-level covers were also

included.

100

Running times of explain on each test example were also recorded. If ex-

plain was still running after 10 minutes, it was terminated early. This occurred

in 162 of the 5000 examples (3.2%), which are excluded from the results reported

below. Manual inspection revealed that these long-running cases occurred when par-

tially reconstructed states still did not possess adequate information to significantly

narrow down possible parent parameters, leading to the combinatorial explosion

described above in the most extreme cases. Aside from this small portion of the

dataset, run time was generally quite reasonable: On the 4838 examples allowed to

run to completion, explain required an average of 20 seconds. It was found that

tlcovs included the original top-level goal in 4796 testing examples out of the 4838

that did not time out (∼99.1% correct).7

On the other hand, tlcovs was very imprecise, often containing more than

1000 possible explanations. Again, the combinatorial explosion of top-level covers

occurred because some MPC plan operators are designed such that many different

parameterizations of a parent task can cause the same child task, as mentioned.

When this occurs multiple times in a sequence, the number of valid covers at the

7Given the theoretical results in Chapter 4, if causes is implemented correctly, then tlcovs

should really include the ground-truth 100% of the time. Manual inspection of a sample of failures

suggests that the error is in fact in the MPC itself, and not in the implementation of causes.

In some of the original plan trees, the parameters of some child tasks are inconsistent with their

parents and would not accomplish the goal (see Appendix A.4). Unfortunately this data set is

no longer supported, and since the repair of such errors in this dissertation might be viewed as

introducing a post hoc bias, we can simply note here that the 99.1% success rate should be viewed

as a lower bound on true performance, which may even be somewhat better than reported.

101

1 32 1024 32768 1048576
of covers found

0

500

1000

1500

2000

2500

3000

3500

4000

#
 o

f
te

st
in

g
 e

x
a
m

p
le

s

top-level covers
MC top-level covers

Figure 5.4: Histogram comparing the precision of tlcovs before and after pruning

based on minimum cardinality.

next layer up grows exponentially. By pruning tlcovs with the additional parsimony

criterion of minimum cardinality, precision was substantially improved: in 3898

examples of the 4838 that ran to completion (∼80%), there was only one minimum

cardinality top-level cover (the ground-truth one); in 4354 examples (∼90%), there

were at most 12. This improvement is illustrated in Fig. 5.4.

Pruning tlcovs by minimum cardinality did not come with any price to correct-

ness either: this is because every example in the corpus is generated from a single

top-level task. Since all ground-truth top-level covers are singletons, it is necessarily

true that they will be included in the minimum cardinality subsets of tlcovs. By the

same reasoning, all ground-truth top-level covers will necessarily be included in the

irredundant subset of tlcovs. Moreover, minimum cardinality covers are necessarily

irredundant. So, despite the importance of irredundancy in previous work on PCT,

102

there was no perceived need to prune by irredundancy in these experiments.

Table 5.2 is included as a point of reference, which lists performance metrics

for past work using the MPC. However, a direct comparison is difficult since past

work used different experimental setups and metrics. The accuracy metric reported

by Raghavan and Mooney [104] gives partial credit for predictions when not all

parameters are correct. The method of Tecuci and Porter [126] only measures cor-

rectness of top-level task schema (i.e., task names but not parameter values). The

same is true for the metric reported by Blaylock and Allen [19]; in cases where the

schema were correct, on average only 41.4% of the parameters were also correctly

identified. On the other hand, these metrics were all calculated with methods that

make ≤ 4 predictions per example, so in many cases they are substantially more

precise than the PCT approach used in this work.

Table 5.2: Performance Comparison, Monroe Plan Corpus

Method Performance
explain 99.1%
Raghavan and Mooney [104] 98.9%
Tecuci and Porter [126] 99.8%
Blaylock and Allen [19] 97.4%

5.2 Empirical Comparison of Parsimony Criteria

The limited precision of explain reported above stems from the fact that in

any causal reasoning problem, there may be more than one valid explanation for

the observed evidence. Some of these explanations are better than others, but the

formal criterion for “goodness” that is most appropriate is often unknown a priori

103

and potentially domain-specific. The intention inference problem is no exception,

since depending on the current world state, the same high-level intentions/goals may

cause different action sequences. Similarly, different high-level intentions/goals can

potentially cause the same action sequence. This ambiguity can lead to a plethora of

valid explanations and makes the intention inference problem non-trivial, even when

actions and world states are perfectly observable and causal relations are provided as

background knowledge. It has long been recognized that when applying abductive

inference systems to new problem domains, it is important to conduct a systematic

comparison of various technical criteria of plausibility to determine which is optimal

[98, 130]. However, in the experiments of Sect. 5.1, the causal reasoning system

was only tested using one of the simplest such criteria (i.e., minimum cardinality),

without considering other more nuanced alternatives from the literature, or new

previously unconsidered alternatives.

This section describes a systematic comparison conducted as part of this dis-

sertation work, which empirically compares several alternative technical notions of

plausibility, old and new, in the context of intention inference [68]. PCT is par-

ticularly advantageous here as the framework for these experiments, since it casts

plausibility in terms of parsimony, which allows one to easily shift between differ-

ent criteria for exactly what makes an explanation parsimonious. The comparison

conducted here uses both the robotic imitation learning domain and the third party

Monroe County Corpus. It was found that the choice of criterion can have a sig-

nificant impact on performance, but when the optimal criterion is employed, PCT

104

is quite effective8. In particular, while there are good theoretical reasons for basing

explanation construction primarily on the form of parsimony known as irredun-

dancy [98], it was found that in the case of intention inference, criteria other than

irredundancy are almost as accurate and qualitatively more precise. The optimal

criteria also depends on whether plans are always caused by a single top-level in-

tention or might be caused by a top-level sequence of intentions. Most significantly,

it was found that a previously unconsidered criteria, defined below, is competitive

with and often superior to other previously considered criteria from the literature.

5.2.1 Parsimony Criteria Considered

The following criteria were compared in this experiment, some of which were

used in past work on PCT:

• minimum cardinality (MC): The cardinality of a cover 〈u〉 is simply the number

of elements in the sequence.

• irredundancy (IR): A cover 〈u〉 of 〈w〉 is irredundant if no proper subsequence

of 〈u〉 is also a cover of 〈w〉.

• maximum depth (MD): A causal chain is a path from a root to a leaf. The

8In PCT, the optimality of a particular explanation is based on a parsimony criterion. But the

optimality of a criterion itself is not measured by how parsimonious it is (which would be circular)

- it is measured with independent metrics such as accuracy (i.e., how often the parsimonious

explanations, according to this criterion, match a known ground truth) or specificity (i.e. how

many valid parsimonious explanations there are).

105

covers with the deepest causal chains are considered most parsimonious. The

idea is that the roots of deeper chains encode more information (i.e., a larger

covering tree) per root node.

• minimax depth (XD): For each cover we can measure its shallowest causal

chain. Then we can compare this to the shallowest causal chains of other

covers. The covers whose shallowest causal chains are deepest overall are

considered most parsimonious.

• minimum parameters (MP): For each cover we can count the number of dis-

tinct parameter values that occur. The covers with the fewest distinct param-

eter values are considered most parsimonious. For example, in the Monroe

County Corpus, the cover

(get-to wcrew1 mendon),(clear-road-wreck hamlin rochester)

has four distinct parameter values (wcrew1, mendon, hamlin, and rochester),

whereas the cover

(get-to wcrew1 mendon),(clear-road-wreck mendon rochester)

only has three (wcrew1, mendon, and rochester), so the latter is more parsi-

monious. This criterion favors more cohesive explanations, as can be seen in

the foregoing example: getting the work crew to mendon is related to clearing

a road wreck near mendon, whereas it would be unrelated to clearing a road

wreck near hamlin.

106

• maximum forest size (FSX): For each cover, we count all nodes in the covering

forest. The idea is that covers with the maximal node count encode more

information (i.e., more non-root nodes) in the same number of roots.

• minimum forest size (FSN): Instead of maximal forest size, minimal forest

size is considered the most parsimonious, in the sense that the total number

of causal links contributing to the explanation is smallest.

In all experiments, any given criterion from the list above was always applied to the

set of top-level covers returned by explain.

Minimum cardinality and irredundancy have been widely used in past abduc-

tive AI systems. Some automated planning research has considered minimum forest

size, but only as related to planning from high-level tasks to low-level actions - not in

the opposite direction as is done here [129]. To my knowledge, the other alternative

criteria - in particular, minimum parameters - are new and explored here for the

first time. Regardless of which criterion is adopted, PCT may still return more than

one valid, parsimonious explanation for a given plan, rather than a single “optimal”

interpretation, so an empirical comparison is needed.

5.2.2 Testing Data and Performance Metrics

The parsimony comparison experiments used the same two domains from Sec-

tion 5.1: the robotic imitation learning domain developed as part of this work [67,69],

and the third-party Monroe County Corpus, a well-known benchmark for plan recog-

nition [18]. As described in previous sections, the robotic domain models a tabletop

107

workspace environment. Demonstrated skills involve stacking toy blocks and main-

taining a hard-drive dock. This domain includes low-level observable actions such

as grasping and releasing objects, and higher-level intentions/goals such as opening

drawers, toggling switches, handing objects between grippers, and so on. Causal in-

terpretation of observed demonstrations produces novel top-level intention sequences

that were not pre-specified in the knowledge base, constituting a newly learned skill.

The modest set of test data contains eleven examples of observed demonstrations:

eight for various dock maintenance skills, and three for stacking various block con-

figurations. As described in Sect. 5.1.2, the Monroe domain models an emergency

response team based in Monroe County in upstate New York. For example, the

intention to clear a car wreck might cause a sequence of sub-intentions such as

getting patients into an ambulance and getting the ambulance to a hospital. The

sub-intention of getting patients into an ambulance might cause its own sequence,

such as getting an EMT into the ambulance and driving the ambulance to the scene.

The corpus contains a knowledge base defining all of these causal relationships, and

5000 automatically generated plans (i.e., sequences of observed actions).

In both datasets, every observed plan is annotated with the ground truth top-

level intentions from which it was generated, which can be used for quantitative

comparison. To evaluate a given criterion, the ground truth top-level goals were

withheld, and explain was invoked on the observed actions. The parsimonious

covers found by explain were then compared with the ground-truths. Two perfor-

mance metrics were used to evaluate each criterion. The first metric was accuracy :

how often do the “parsimonious” covers of an observed plan, according to that crite-

108

rion, include the ground truth explanation? The second metric was specificity : how

many parsimonious covers are found in all? Many more may be found than just the

single ground truth. A perfectly accurate and specific criterion should compute a

single top-level cover, namely the ground truth one, and no others.

For each criterion, explain was invoked on every observed plan in each

dataset, and the performance metrics for that criterion were calculated. In the

large majority of cases, an individual plan was processed in a matter of seconds, al-

though as mentioned earlier, on 162 (3.2%) of the 5000 plans in the Monroe corpus,

explain was still running after 10 minutes and was terminated early. These plans

were excluded from computation of the performance metrics.

5.2.3 Learning Novel Intention Sequences in the Monroe Domain

In the original Monroe corpus, each plan was generated from a ground truth

consisting of just a single top-level intention. In other words, the ground truth

“sequence” 〈u〉 covering a given plan only has a single entry u1. This limits the

relevance of the dataset to real world scenarios where an agent may have multiple

top-level intentions. Particularly, in robotic imitation learning, it is preferable if

the robot can learn novel sequences of intentions from demonstrations, so that the

useful sequences do not all have to be anticipated and hand-coded beforehand in

an exhaustive knowledge base. In other words, intention inference should be a

constructive process that leads to structured explanations, rather than a pattern

classification task.

109

Figure 5.5: An example of a modified causal relation after stripping top-level

causes from the knowledge base, as was done for the Monroe county corpus. Bold-

faced nodes indicate a covering tree for a particular observed plan; dashed lines

indicate causal relationships stripped from the knowledge base.

To provide more challenging problems along these lines, a modified variant of

the Monroe domain was produced by stripping the top-most singleton intentions

from the knowledge base. This transformation is illustrated in Fig. 5.5. The dashed

nodes and edges depict top-level causes (u1, u2, and u3) defined in the original

knowledge base but removed in the modified one. The bold-faced nodes and edges

represent a covering tree for a particular observed plan (〈w2, w3, w4, w5〉). Whereas

the singleton u2 was a top-level cover for this plan using the original causal relation,

when using the modified causal relation, this plan can only be covered by a top-

level sequence (namely, 〈v1, v2〉). All performance assessments described above were

repeated on this more challenging modified corpus.

However, since the original ground-truth covers have been removed from the

causal relation, this methodology raises the question of what should be considered

110

the new “ground-truth” covers against which accuracy can be measured. Since full

plan trees are provided for each plan in the original corpus, a default “ground-

truth” could be the child sequence immediately below the original root. In Fig. 5.5,

this would be the sequence 〈v2, v3〉. Unfortunately, this new “ground-truth” is not

guaranteed to be top-level in the modified causal relation. A counter-example is

evident in Figure 5.5: 〈v2, v3〉 has at least one higher-level cover (〈v1, v2〉), and in

larger examples, it may have many. In cases like this, which were found to be quite

common, there is no single incontrovertible ground truth against which to measure

accuracy. Consequently, the parsimony comparisons on the modified dataset were

restricted to the plans where this issue did not arise.

5.2.4 Results

In the robotic domain, the parsimonious covers always included the ground

truth (100% accuracy), except for the forest size-based criteria: FSN was only 45%

accurate, and FSX was in fact 0% accurate.9 On the other hand, several criteria

were quite nonspecific, returning a large number of parsimonious covers in addition

to the ground truth. Table 5.3 shows the specificity results on each plan in the

9This is because the knowledge base includes a top-level move-to(object, destination) in-

tention, which accepts grippers as final destinations. So any top-level cover containing

move-to(object, destination) remains valid when the occurrence is replaced with move-to(object,

gripper),move-to(gripper destination. The ground truths generally conformed to the former possi-

bility, while the FSX covers conformed to the latter possibility, since there were more nodes in the

covering forest.

111

dataset. Each column shows the total number of top-level covers retained after

pruning by the respective criterion (abbreviations are as defined above). The 11

plans are ordered according to increasing length (i.e., the number of actions in the

observed sequence). It was found that only MC and MP remain highly specific when

the plan length and total number of top-level covers gets large. FSN and FSX are

omitted because they were so inaccurate.

Table 5.3: Number of covers found by each criterion on each demonstration in the
robotic domain.

Demo TL MC IR MD XD MP
Remove red drive (1) 4 2 4 2 4 1
Remove red drive (2) 4 2 4 2 4 1
Replace red with green (1) 8 2 8 4 8 1
Replace red with green (2) 8 2 8 4 8 1
Replace red with spare (1) 8 2 8 4 8 1
Replace red with spare (2) 8 2 8 4 8 1
Swap red with green (1) 2 1 2 2 2 1
Swap red with green (2) 2 1 2 2 2 1
Toy Blocks (IL) 256 1 256 256 256 1
Toy Blocks (AI) 1024 1 1024 1024 1024 1
Toy Blocks (UM) 8192 1 8192 8192 8192 1

For the original Monroe domain (without top-level intentions stripped from

the knowledge base), accuracy of each criterion is shown in the second column of

Table 5.4. In addition to the 162 timeouts, there was the small number of plans

(42) in which the top-level covers found by explain failed to include the ground-

truth, even before filtering by any criteria. However, as mentioned earlier, there is

evidence that the error might in fact be in the corpus itself rather than explain

(see Appendix A.4). Accuracy measurements were restricted to the remaining 4796

plans in the corpus.

112

Table 5.4: Accuracies on the original and modified corpus.

Criterion Accuracy (original) Accuracy (modified)
MC 4796 of 4796 (100.0%) 2859 of 2861 (99.9%)
IR 3397 of 3397 (100.0%) 2470 of 2470 (100.0%)
MD 4796 of 4796 (100.0%) 2856 of 2861 (99.8%)
XD 4796 of 4796 (100.0%) 2861 of 2861 (100.0%)
MP 4464 of 4796 (93.1%) 2724 of 2861 (95.2%)
FSN 1105 of 4796 (23.0%) 634 of 2861 (22.2%)
FSX 2087 of 4796 (43.5%) 2363 of 2861 (82.6%)

For most criteria, the set of all top-level covers found for a given plan can be

filtered in linear time. The extremal value (minimum cardinality, maximum depth,

etc.) can be found in one pass through the covers, and then the most parsimonious

ones can be extracted in a second pass. However, filtering by irredundancy is more

subtle. We performed irredundancy pruning based on the following proposition:

Given two top-level covers t1 and t2, if t1 is a sub-sequence of t2, then t2 is redundant.

This idea can be used to filter out redundant top-level covers in quadratic time,

which proved impractical in some cases. Using another time-out of 5 minutes, the

irredundancy filter ran to completion on 3397 of these, so irredundancy metrics are

computed relative to this subset.

We found that minimum cardinality, irredundancy, and depth-based criteria

were all perfectly accurate: if the ground truth was included in the full set of top-

level covers for a plan, it was retained after filtering by any of these criteria. The

minimum parameters criterion was good but not perfect, while forest size-based

criteria again performed poorly. These results are fairly unsurprising, given that

every ground-truth is a singleton sequence, as described earlier.

More interesting is the comparison of specificity for each criteria, shown in

113

Figure 5.6. Most criteria could be grossly nonspecific in the worst case, retaining

thousands of covers or more. This could be attributed to a combinatorial explosion

in the number of possible parameterizations of the various intentions. As mentioned

previously, the Monroe knowledge base is designed in such a way that many different

parameterizations of a parent intention can cause the same child intentions. For

example, recall that the intention (clear-road-hazard ?from ?to) causes the action

(call fema). There is a quadratic number of possible assignments of ?from and ?to

to locations in Monroe County, which would all qualify as valid covers for (call

fema). When this occurs multiple times in a sequence, the number of valid covers

at the next layer up grows exponentially. In contrast, as mentioned in the previous

section, the minimum cardinality criterion was quite effective at mitigating this

effect. In 3898 of the 4838 plans that did not time out (80.6%), it was maximally

specific (the ground-truth interpretation was the sole minimum cardinality cover);

in 4354 plans (90%), there were at most twelve minimum cardinality covers.

Finally, experimental results are reported on the modified Monroe dataset, in

which the top-most intentions were stripped from the knowledge base. As described

above, the issue arises in many plans that no unambiguous ground truth is available.

Specifically, this was found to occur in 2139 of the 5000 modified plans, which were

thus excluded from the accuracy comparison. Specificity was still measured on all

4842 modified plans that did not time out.

Accuracy on the remaining 2861 plans is shown in Table 5.4; as in the original

corpus, all criteria except those based on forest size are highly accurate. As before,

the IR filter timed out on some examples, so metrics for IR were only calculated on

114

| 100 -101 | 101 -102 | 102 -103 | 103 -104 | 104 -105 | >105 |
of covers found

0

1000

2000

3000

4000

5000

#
 o

f t
im

es
 in

 c
or

pu
s

MC
IR
MD
XD
MP

Figure 5.6: Distribution of the number of parsimonious covers found for plans in

the original corpus.

the 2470 plans where it ran to completion.

Specificity histograms for each criteria on the modified corpus are shown in

Figure 5.7. In contrast with the original corpus, it was found that like most other

criteria, minimum cardinality become much less specific when inferring intention

sequences, with counts over 100 covers for 42.3% of the plans, and some counts in

the thousands in the worst cases, although this was still favorable compared with

IR. On the other hand, MP proved quite specific on the modified corpus: it was

maximally specific in 2756 of 4842 plans (56.9%), and in 4375 of the plans (90.4%),

there were at most 16 MP covers found. As can be seen in Table 5.4, the improved

specificity did come with some cost to accuracy.

115

| 100 -101 | 101 -102 | 102 -103 | 103 -104 | 104 -105 | >105 |
of covers found

0

1000

2000

3000

4000

5000

#
 o

f t
im

es
 in

 c
or

pu
s

MC
IR
MD
XD
MP

Figure 5.7: Distribution of the number of parsimonious covers found for plans in

the modified corpus.

5.2.5 Discussion

The PCT approach to intention inference used in this work comes with strong

formal guarantees of soundness, concreteness, and complexity characteristics (Chap-

ter 4), but at the cost of assuming detailed background knowledge of the demonstra-

tor, and perfect observability of their low-level actions. However, meeting the perfect

observability requirement becomes entirely reasonable and realistic in practice once

a virtual demonstration environment like SMILE is adopted [64]. Moreover, no more

background knowledge is required than already needed by HTNs and other similar

hierarchical planning formalisms.

This section has presented a systematic comparison of several relevant parsi-

mony criteria, using multiple data sets for testing. In so doing, the original Monroe

116

domain has been augmented to test plan recognition when observed actions can

only be explained by a sequence of top-level intentions/goals, rather than a single

top-level intention. This situation may be more relevant for certain applications,

such as robotic imitation learning.

The results suggest that in the context of intention inference, irredundancy is

very accurate, but perhaps only because it is so nonspecific. When plans can always

be explained by a single top-level intention/goal, minimum cardinality is equally

accurate and qualitatively more specific. In the modified Monroe domain, minimum

cardinality remains highly accurate, but becomes too nonspecific for practical use

in about one fourth of the test cases. Since the new Minimum Parameters criterion

proposed here remains highly specific even in these cases, it may sometimes be a

preferable criterion, in spite of the 5% accuracy reduction. We can surmise that

minimizing the number of distinct parameter values in a sequence can mitigate the

combinatorial explosion described earlier, since covers with unrelated parameters in

the constituent intentions will be filtered out. These results are in contrast with

other work on abductive inference outside the context of intention inference, where

irredundancy is theoretically the gold standard, although there have been many

applications where it also produces too many covers to be useful. For example,

minimum cardinality was also found to be a preferable criterion to irredundancy in

a medical diagnosis application [130].

Even the best criteria identified in this work still suffer from some nonspeci-

ficity in the worst case. Finding better criteria for intention inference is an important

future research direction. One possibility is to combine the promising criteria - for

117

example, prune first by MP, and then by MC. The incorporation of probabilistic

methodology is another promising strategy. In fact, PCT has been extended to

incorporate probability theory in the past, and a theoretical analysis led to conclu-

sions about whether a given criterion would tend to include the most likely expla-

nation [98]. For example, it was shown that the minimum cardinality covers would

tend to include the most likely explanation as long as (a) the prior probabilities of

the possible causes were small and roughly equal, and (b) the probabilities that any

given u causes any given 〈v〉 are relatively large. One might argue that in intention

inference, a large number of possible parameterizations makes the probability of any

particular grounded intention rather low, satisfying (a), and that if any particular

grounded intention u causes one of at most a small handful of possible sub-intention

sequences 〈v〉, the causal probability of each is relatively high, satisfying (b). On

the other hand, the probabilistic causal model previously developed for PCT only

treated the special case where the causal relation is bipartite (i.e., all causal chains

have length 1), and there are no ordering constraints, so it is unclear to what extent

those results carry over to intention inference.

At any rate, evaluating probability-based criteria requires that the prior and

causal probabilities are already known before the likelihood of any cover can be com-

puted. Although the Monroe corpus does provide prior probabilities for top-level

intentions with ungrounded parameters, the parameter distributions and causal prob-

abilities appear difficult to ascertain, in this and possibly other planning domains.

Fortunately, much work on HTN planning and plan recognition has produced meth-

ods for the inductive problem of learning causal relations, and estimating their prob-

118

ability distributions, on the basis of large training sets, in contrast to the abductive

problem considered here, namely, constructing an explanation for a particular prob-

lem instance when the causal relation is already fully known. Future work should

leverage these inductive methods in combination with the probabilistic causal model

of PCT, suitably extended to handle causal chaining and ordering constraints.

Lastly, the results in this section may be sensitive to the particular HTN

encoding, as authored by a human, of the given domains. Different encodings of

the same domains might produce different results. Future work should include

experiments that characterize and quantify this sensitivity.

119

Chapter 6: Causal explanation of planned actions

A major source of opacity in many autonomous systems is their inability to

explain their actions to humans in an intuitive way. Lack of transparency in au-

tonomous systems can foster mistrust by humans and limit user adoption. This

issue has driven research interest in so-called “Explainable AI” (XAI) [36].

A promising strategy that has been used for XAI endows the autonomous sys-

tem with a question answering ability, with which it can justify its actions when

prompted by a human user. The question-answering ability is sometimes coupled

with a graphical interface that includes visualizations of the autonomous system’s

operating environment. However, past approaches have relied on elaborate logic pro-

grams for representing knowledge or hand-coded databases of questions and domain-

specific answering procedures (e.g., [33, 131,137]).

A key element of CERIL is its use of parsimony criteria to identify good

explanations for a demonstrator’s actions. The results in Chapter 5 suggest that

CERIL’s emphasis on parsimonious causal reasoning may capture an important and

general functional aspect of human cognition. On that basis, we might hypothesize

that the same principles used to explain a demonstrator’s actions could also be

used by CERIL to explain its own actions to a human end user, thereby promoting

120

transparency.

The present chapter explores this hypothesis by extending CERIL to include

a question-answering mechanism, based on the causal plan graphs (CPGs, detailed

below) generated during its planning process. The CPGs model the causal rela-

tionships between CERIL’s various intentions and goals that ultimately cause it to

perform the actions that are executed. The extension proposed here uses CPGs to

generate convincing and parsimonious explanations for what CERIL plans to do, in

the form of causal chains. Compared with past approaches, this results in a simpler

graph-based and domain-independent methodology for XAI. The utility of causal

chains has been recognized before, in applications such as automated medical di-

agnosis [96, 102], but not in the context of robotic action justification. Inspired by

these previous works, this chapter explores new ways to leverage causal chaining for

the purposes of XAI.

Properly testing the hypothesis that parsimony principles used here actually

produce compelling answers will ultimately require careful end user studies. How-

ever, the raw CPGs generated by CERIL on real-world examples are complex enough

that there is significant information overload and an unwieldy number of valid ex-

planations for any particular action. Before experiments with human participants

can be performed, a non-trivial causal reasoning mechanism is needed that filters

the possible explanations to a plausible, reasonably sized subset, and presents the

information in a manageable way. This chapter presents such a mechanism and

describes its operating principles. It also includes some initial empirical results to

characterize the reduction in complexity in some real-world test cases.

121

6.1 CERIL’s XAI Mechanism

Fig. 6.1 shows a typical screenshot of the target output for CERIL’s XAI

mechanism. CERIL has observed a demonstrator remove a hard drive next to a

red LED and then insert a spare drive in its place. Based on that demonstration,

CERIL has used its PCT algorithms to infer plausible intentions that could explain

the observed actions. Finally, CERIL has planned new actions to carry out these

intentions in a new situation, using its HTN planner. For simplicity, the actions and

intentions in the hierarchy are collectively referred to as “aims.”

The XAI interface shown in Fig. 6.1 allows users to navigate through all of

CERIL’s planned aims. To orient users, 3D visualizations of the expected envi-

ronment immediately before and after the current aim are shown. It is assumed

that users want a justification for the current aim, which is displayed as a question.

Possible end goals that could account for the current aim can be selected from a

drop-down menu. As shown in Fig. 6.1, an answer is provided in the form of a

causal chain that was constructed by the underlying causal inference mechanism

and explains how the current aim ultimately enables the currently selected end goal

to be achieved. The following sections describe this justification mechanism in more

detail.1

1A video screencast of the interface being used is available at https://youtu.be/KpgLvCWwdNg

(for best viewing set quality to 720p).

122

https://youtu.be/KpgLvCWwdNg

Figure 6.1: A typical screenshot of the XAI interface. In this example, CERIL has

planned to imitate a demonstration in which a faulty drive (“drive 2”) is replaced

with a spare (“drive 5”).

123

6.2 Causal Plan Graphs

CERIL’s XAI mechanism is based on a domain-independent data structure

proposed here called a “causal plan graph” (CPG). A CPG is a generic execution

trace of a hierarchical planning algorithm, containing the trees of aims and sub-aims

that ultimately produce the plan (i.e., low-level robot-executable action sequence)

followed by the robot. It also contains the initial, intermediate, and final states of

the environment that the robot expects before and after every action is performed.

Each action and state are associated with a discrete “time-step” over the course of

plan execution. The state at any given time-step is represented in the CPG as a

list of first-order logic predicates. Each predicate represents a fact that the planner

intends to make true at that point in time. Figs. 6.2 and 6.3 show examples of

CPGs.

CPGs are similar to Goal Graphs [57], but they include higher-level aims

in addition to the bottom level actions. They are also reminiscent of plan-space

planners that use “causal links” between pairs of actions [124], although CPGs use

a different notion of causal links as elaborated in the following. Most hierarchical

planners, including Hierarchical Task Networks (HTNs), Hierarchical Goal Networks

(HGNs), and Goal Task Networks (GTNs), construct a CPG (at least implicitly)

over the course of their search procedure [5, 50, 116]. Implementations of these

planning formalisms can be augmented in reasonably straightforward ways to return

a CPG explicitly if they do not do so already.

More formally, a CPG is a graph with two types of nodes: aims and predicates.

124

Figure 6.2: A generic CPG. Circular nodes are aims and square nodes are pred-

icates (facts that CERIL intends to make true). Aims and sub-aims are grouped

into trees; predicates are grouped into states at a given point in time (e.g., dashed

rounded rectangle). Time proceeds from left to right. Although actions precede

their postconditions, the intention to make those postconditions true is what causes

the intention to perform those actions. Therefore arrows denoting causal intention

relationships point backwards in time. A causal chain is shown in bold. The labels

A through F are referenced in the text.

125

Figure 6.3: Another more concrete example of a portion of a CPG in the dock

maintenance domain. The intention for drive-1 to be in the right-hand causes

the get-to aim, which in turn causes the grasp sub-action. The intention to grasp

between times T and T + 1 causes the ancillary goal that the right-hand be empty

at time T , so that it is available for the grasp.

Aims represent the intentions, sub-intentions, and ultimately low-level actions that

were queued by the planning algorithm while it searched for a viable plan. The

generic term “aim” is meant to include task methods in the case of HTNs, goal

methods in the case of HGNs, or a heterogeneous mix of both in the case of GTNs.2

The sequence of top-level aims constitutes the inputs provided to the planning algo-

rithm; the sequence of bottom-level aims constitutes the plan that is output by the

algorithm. In CERIL, the top-level aims were previously inferred from a demon-

stration.

Predicates represent the facts expected to be true in a particular state over

the course of the plan. Predicates can become false (deleted), become true (added),

2For the technical distinction between task and goal methods, see Chapter 2 or [5, 50,116].

126

or remain true from one state to the next depending on which action is performed.

The predicates in the final state are referred to as terminals. In Fig. 6.2, nodes A,

D, and E are aims, and nodes B, C, and F are predicates. Node F is a terminal.

It is important to note that predicates are viewed as facts that the planner

intends to make true. Although an action may cause a predicate to become true,

the intention to make the predicate true is what causes the intention to perform the

action. The latter is what gets captured by the CPG. As a result, causal links appear

to flow backwards in time; this is somewhat counterintuitive, but not paradoxical

when nodes represent intentions. In keeping with these semantics, a CPG has four

types of causal links, as follows. The first type was used previously by CERIL to

interpret a demonstration and infer the top-level intentions. The other three are

new and extend CERIL’s causal reasoning abilities.

• Aim links (aim → aim). Each parent aim has a causal link to its immediate

child aims, since the system’s intention to carry out the parent aim causes its

intention to carry out the child aims. The link from E to D in Fig. 6.2 is an

example of an aim link.

• Precondition links (aim → predicate). Each aim has a link to its precon-

ditions, which are the predicates that are required to be true in the state

immediately prior in order for the aim to be an admissible option for the plan-

ner. These links indicate that the system’s intention to carry out the current

aim caused its intention to make the relevant preconditions true. The link

from D to C in Fig. 6.2 is an example of a precondition link.

127

• Postcondition links (predicate → aim). Each aim has a link from its post-

conditions, which are the predicates that become true in the state immediately

after the aim is carried out. Normally we think of an aim as causing its post-

conditions, but for the purposes of action justification, the causal relation runs

in reverse: the intent to make those postconditions true causes the intent to

carry out the preceding aims. The links from B to A and from F to E in Fig.

6.2 are examples of postcondition links.

• Persistence links (predicate → predicate). Each predicate that persists dur-

ing a bottom-level aim (i.e., doesn’t change truth value) retains a link from

its corresponding node immediately after the aim to its corresponding node

immediately prior. This captures the idea that if the system intends for a

predicate p to be true at time T + 1, and p is not made true by the action

between time T and T + 1, then the system should also intend for p to al-

ready be true at time T . The link from C to B in Fig. 6.2 is an example of a

persistence link.

Postcondition and persistence links do not need to be explicitly included in the CPG

returned by the planning algorithm; they can be added as a post-processing step by

comparing the sets of predicates at time steps T and T+1, which we can denote P (T)

and P (T+1). Post-conditions can be calculated from the set difference P (T+1)−P (T).

Persistence links can be calculated from the set intersection P (T+1) ∩ P (T).

Persistence links are related to the frame problem [109], but since they can be

calculated a posteriori with a set intersection, CPGs are agnostic to how the frame

128

problem is solved by any particular domain-specific knowledge base. Postconditions

are explicitly modeled in goal-centric planners such as HGNs and GTNs, but often

implicit in task-centric HTNs. So when HTNs are used (as in CERIL’s current

implementation), postconditions must also be determined with this post-processing

step.

6.3 Justifying Actions with Causal Chains

Consider the CPG shown in Fig. 6.2 and suppose that a human user wanted

the autonomous system to explain why it planned the aim labeled A. There are

several ways the CPG might be used to accomplish this. One possibility is to show

the entire CPG to the user as in Fig. 6.2 and let them inspect on their own to make

sense of the relevant causal relationships. However, in practice it was found that

typical CPGs can be quite large, resulting in information overload that is barely

intelligible even to the designers of the autonomous control system.

Another possibility is for the system to covertly traverse the CPG in the back-

ground and locate the terminals in the final state that could have eventually caused

A. One such predicate is the node labeled F . The bold links show a causal chain

connecting F to A (in general, there may be more than one). To minimize infor-

mation overload, the system could omit the causal chain and simply provide F as a

justification. However, this may be unsatisfactory to a human user: it indicates what

the system wanted to accomplish, but not why in particular A was an important

part of the plan, as opposed to some other aim instead of A. For example, in Fig.

129

6.1, the end goal “dock led 2 is green” by itself is not a particularly illuminating

answer to the question “why did you pickup drive 2 with right hand?” In contrast,

the intermediate causal chain displayed to the user explains how picking up drive 2

out of the slot was a necessary step in order to make room for the spare drive and

ultimately restore the LED to a non-faulty state.

On the other hand, there may be several terminal predicates that indirectly

cause any particular action, and there may be many causal chains from each such

terminal to that particular action, so some filtering is necessary to extract the most

useful causal chains and discard the rest. Some filtering can also be applied to

individual causal chains to suppress uninformative or redundant nodes. For example,

in Fig. 6.2, if nodes E and F had redundant human-readable representations, the

system could keep E but exclude F when converting the causal chain to a natural

language answer (e.g., see step (5) below).

Empirical data from human subjects is needed to determine what makes a

causal chain more or less useful. A basic experiment would involve humans ranking

multiple causal chains, but to conduct this experiment in the first place, the plethora

of causal chains must be reduced to a smaller, intelligible subset. We can accomplish

this reduction by applying parsimony criteria to filter the set of causal chains. As

a starting point, causal chain length can serve as the primary parsimony criterion

for extracting a minimal intelligible subset. The shortest causal chains between any

particular aim and terminal are considered most human-friendly and displayed to

the user. All other causal chains are discarded. To compute all pairwise shortest

paths between aims and terminals, a Floyd-Warshall-style dynamic programming

130

algorithm is used [42]. Some care is taken in heuristically assigning costs to each link

before computing causal chain “lengths” (i.e., net costs). Pre- and post-processing

stages are also used to further promote the principle of parsimonious explanation.

Specifically, the parsimony filtering involves the following steps:

1. Prune the CPG by removing the aim sub-trees where sub-symbolic changes

occur (such as robot arm motions), but no changes occur at the predicate

level. Sub-symbolic changes would make the explanations less parsimonious

without adding human-friendly information.

2. Use set operations as described earlier to add persistence links and postcon-

dition links to the CPG if they are not already present. The additional links

provide more opportunity for parsimonious (i.e. shorter) causal chains.

3. Assign a cost of 1 to each link, with the following exceptions:

• Persistence links have a cost of 0. This is because they are redundant and

can be collapsed into a single entry of a human-readable answer without

reducing its information content or increasing its complexity.

• Precondition links from a predicate p to an aim a have a cost of 1 −

(1/2)d(a), where d(a) is the depth of aim a below the top level. All things

equal this favors causal chains that pass through higher-level aims in the

CPG. This is essentially a heuristic which produces reasonable results on

our test domain, but may not generalize well to other domains. A more

interesting possibility is that end user feedback could be combined with

131

reinforcement learning to adjust link costs automatically.

Using these costs, compute all-pairs shortest paths.

4. At each aim in the CPG, enumerate each connected terminal and separately

cache the shortest causal chains from each one. Caching the chains makes the

user interface more responsive, and grouping the shortest chains by terminal

facilitates the “end goal” drop-down menu with which the user can explore

different candidate explanations. Keeping separate explanations for separate

terminals also fosters parsimony because it avoids trying to explain too much

at once.

5. Convert each shortest causal chain to a human-readable format, using a per-

node “toString” function supplied by a domain author, with the following

adjustments:

• When the chain includes contiguous repetitions of a persistent predicate,

only include the first occurrence of the predicate in the human-readable

output.

• When an aim node is followed by a namesake postcondition, omit the

postcondition from the human-readable output. For example, the aim

“put drive 1 at slot 1” has postconditions “drive 1 at slot 1” and “right

gripping nothing”. The first postcondition is considered a namesake and

is essentially redundant in a human-readable answer, but the second is

not. So only the first would be omitted from a human-readable answer.

132

Since this redundancy is generally not automatically detectable from the

machine representation, it is screened by a “namesake function” that

must also be supplied by the domain author.

Clearly, both adjustments promote parsimony without discarding any relevant

information.

6.4 Graphical User Interface

Similarly to some other XAI approaches, a graphical user interface (GUI) is

employed to facilitate end user interaction with the system. The GUI has been

implemented as a Matlab application, pictured in Fig. 6.4. In this example, the

robot was shown a demonstration where a cartridge next to a red LED (drive-1)

had its position swapped with a cartridge next to a green led (drive-3). The

robot planned an action sequence to carry out this skill in a new situation, and

the resulting CPG was loaded into the GUI so that the planned actions could be

justified to an end user. In this snapshot, the robot is justifying why at one point

it moves drive-1 to the right gripper. The answer explains how this was necessary

to make drive-1’s old slot available for drive-3 to be moved there, which in turn

makes drive-3’s old slot available for drive-1, enabling the swap.

The GUI is initialized with the CPG and from then on maintains a notion of

the “current aim” that is being inspected and justified. The system assumes the user

is asking why the current aim was planned (A). The user can qualify their question

relative to one of the causally connected terminals in a drop-down menu (B). The

133

A B

C
D

E
F

G

H

I

J

Figure 6.4: Screenshot of the action justification GUI. Labels (A) through (J) are

described in the text.

134

system answers the user’s question with one of the causal chains that connects the

current aim to the currently selected terminal (C). When there is more than one

shortest chain connecting the current aim and terminal, the user can click the control

buttons on the right (D) to cycle through the answers and up- or down-vote each

one. This voting system serves as a hook that can be used later to inform more

sophisticated criteria for filtering the causal chains.

The current aim is visualized by showing 3D views of the states immediately

before and after (E and F) the current aim is carried out. To change the current aim,

the user can click the navigation control buttons (G) to step forwards or backwards

in time, or shift to higher or lower levels of the CPG.

For advanced users, the full CPG can be revealed (H) with a toggle button in

the upper left (I). The CPG can be zoomed and panned with the built-in Matlab

figure controls (J). Each aim node can be clicked to collapse/expand the child aims

and also select it as the current aim to be justified. In response all visuals and text

on the right of the GUI update accordingly. Likewise, user interactions on the right

of the GUI affect where the CPG on the left is centered, which aims are expanded,

and which chain is bold. For the most effective use of space, the CPG layout in

the GUI has time advancing top to bottom, with high-level aims on the left and

low-level actions/states on the right, in contrast to Fig. 6.2. This viewing option

can be useful for detailed inspection of the CPG, but is also clearly susceptible to

information overload, motivating the use of the simpler and more human-friendly

elements on the right of the GUI.

135

0 5 10

Depth

0

10

20

30

#
 C

P
G

s
 i
n

 c
o

rp
u

s

0 5 10

Depth

0

10

20

30

#
 C

P
G

s
 i
n

 c
o

rp
u

s
0 100 200

Leaf count

0

10

20

30
Pre Pruning

0 100 200

Leaf count

0

10

20

30
Post Pruning

0 100 200 300 400

Node count

0

10

20

30

0 100 200 300 400

Node count

0

10

20

30

Figure 6.5: Histograms showing the depths, leaf counts, and node counts across

the 32 CPGs in the test corpus, before and after pruning.

6.5 Initial Experimental Results

Initial empirical experiments quantified the complexity of the CPGs in real-

world examples and measured the reduction in causal chain counts after filtering for

shortest paths. These experiments used the dock maintenance test corpus, which

consists of 32 imitation trials, each with its own CPG.

The first experiment quantified the reduction in CPG complexity resulting

from pruning sub-symbolic aims (e.g., robot arm motions) as described in step (1)

above. Reduction in complexity was measured by the depth of the aim trees, the

number of leaf aims, and the total number of all aim nodes. Fig. 6.5 shows the

results before and after pruning. Even after pruning, the CPGs remained fairly

large and unwieldy from the perspective of an end user, with 16 to 50 aim nodes.

The next experiment used the pruned CPGs to compare the causal chain

136

2 0 2 2 2 4 2 6 2 8 2 10 2 12

chains

0

20

40

60

#
 a

im
-t

e
rm

in
a

l
p

a
ir
s

Smallest CPG

Shortest

All

2 0 2 4 2 8 2 12 2 16 2 20

chains

0

100

200

300

#
 a

im
-t

e
rm

in
a

l
p

a
ir
s

Largest CPG

Shortest

All

Figure 6.6: Histograms of causal chain counts before (white) and after (black)

shortest path filtering. Distributions of causal chain counts are computed across all

〈aim, terminal〉 pairs in the CPGs.

counts at each aim node both before and after filtering for shortest paths. Since the

CPGs are typically highly connected, there can be combinatorially many distinct

paths between any two nodes. Therefore restricting to the shortest paths is very

important for reducing the number of justifications to a reasonable amount. Fig. 6.6

verifies this empirically on two CPGs: one of the smallest and one of the largest in

the dock corpus. When non-shortest paths are included, the number of causal chains

is easily 1000 or more in the worst case.3 Whereas the number of shortest paths

to any aim is always between 1 and 3.4 This highlights the importance of using

3The total number of paths to a node can be calculated efficiently without explicitly computing

the paths themselves, which quickly becomes intractable on modestly sized CPGs. The path

count to any given node is the sum of path counts to each of its incoming neighbors, which is a

straightforward addition to the standard Floyd-Warshall approach.

4When there is more than one shortest chain between a particular aim-terminal pair, additional

criteria will be needed to choose between them. Currently the chains are listed in arbitrary order,

but as mentioned above, more sophisticated criteria can be developed using end user feedback.

137

an efficient all shortest paths algorithm like Floyd-Warshall, which can compute the

shortest paths without enumerating all of them. It also parallels the previous results

concerning parsimonious explanation of a demonstrator’s actions in Chapter 5. This

supports the hypothesis that parsimony can serve as a general unifying principle for

cause-effect reasoning in AI.

6.6 Discussion

This chapter has presented a new method for XAI based on parsimonious

causal inference. The method leverages causal plan graphs, which are domain-

independent data structures that capture causal relationships between an autonomous

system’s intentions, goals, and actions. A procedure based on all-pairs shortest paths

can extract a small, intelligible subset of parsimonious causal chains that justify any

given aim invoked during a hierarchical planning process. Manual inspection verifies

that the resulting justifications are reasonably compelling and intuitive for a human

end user. Quantitative empirical experiments also verify that in at least one domain,

the justification procedure successfully filters an otherwise combinatorially large set

of answers to a small intelligible subset. These results suggest that parsimony holds

promise as a useful, general principle for causally-driven XAI.

Future work should check these results on other problem domains and with

other hierarchical planners. Future work should also conduct end user studies with

human participants who use and evaluate this XAI mechanism. The contribution of

the present chapter is to provide a platform that makes those experiments possible,

138

paving the way for an improved understanding of human XAI users that can inform

the next generation of transparent XAI systems.

139

Chapter 7: Locating Fixed Points in Neural Networks

An important future research direction to improve the performance and adapt-

ability of the robotic imitation learner used in this work is to re-implement the core

causal reasoning components used in CERIL with state-of-the-art neural computa-

tion. This work is already in progress at the sensorimotor level, where the inverse

kinematics are computed with brain-inspired methods [47]. On the other hand, there

are several opportunities for neural computation in the cognitive-level causal infer-

ence, which is currently symbolic. For example, deep learning may be a promising

strategy for learning new causal knowledge from experience rather than a human-

authored domain, and cognitive architectures like GALIS may be a promising strat-

egy for implementing the causal inference algorithms [122]. However, deep networks

are sometimes unpredictable and almost always opaque, hindering transparency and

trustworthiness. GALIS also suffers from unreliability and unpredictability when the

number of attractors required to encode desired instruction sequences approaches or

exceeds the capacity of the underlying networks. This leads to trained networks that

possess undesirable spurious attractors or lack desired attractors from the training

data. It is often very difficult at present to analyze and understand the behavior of

complex dynamical systems of this sort.

140

Consequently, an important first step towards a neural, P&T implementation

of CERIL is to improve the transparency and reliability of neural networks. In

particular, it would be especially useful to have a mathematically well-understood

method that can verify whether desired attractor dynamics are present and unde-

sired dynamics are absent in a trained network. To this end, I developed a new

method, described in the following, for systematically locating fixed points in re-

current neural networks [70, 71]. This chapter presents the mathematical analysis

of the approach and describes computer experiments that show that it consistently

locates many fixed points in many networks with arbitrary sizes and unconstrained

connection weights. Comparison with a traditional method shows that this strategy

is competitive and complementary, often finding larger and distinct sets of fixed

points. This work provides a theoretical basis for further analysis and suggests next

steps for developing the method into a more powerful solver.

7.1 Fixed Points of Neural Attractor Dynamics

One of the most basic properties of any dynamical system is the location

of its fixed points. However, in non-linear, high-dimensional dynamical systems,

such as recurrent neural networks (RNNs), ascertaining this information can be

very challenging. Fixed points of RNNs can represent many things, including stored

content-addressable memories [58], solutions to combinatorial optimization problems

such as the Traveling Salesperson Problem [59], and unstable waypoints of non-

fixed dynamics [103]. Consequently, a global fixed point solver has the potential to

141

improve our understanding and engineering of RNNs in all of these use cases. In

addition, such a solver could provide information useful in comparing the effects of

different learning rules, and might reveal new strategies for solving other non-linear

systems of equations in general.

Attractive and unstable fixed points are both highly relevant to many neu-

rocomputational phenomena, ranging from low-level motor control and tool use

(e.g., [2, 136]) to high-level cognitive functions such as problem solving and deci-

sion making (e.g., [103, 122, 132]). Fixed points are also related to waypoints along

non-fixed attractors under slight perturbations to the network weights (see Fig. 7.1).

As mentioned in Chapter 2, despite some remarkable past work, there remains

no efficient procedure that precisely locates every fixed point of RNNs with arbitrary

connectivity. Since global fixed point location remains an important open problem,

it is worth developing new solvers that, if not global themselves, are complementary

to existing solvers and provide new perspective on the global problem. This chapter

presents a novel strategy for locating fixed points in a broad class of dynamical

systems, including RNNs with arbitrary size and no symmetry constraint on the

weights. First the approach is presented in general terms, and then it is applied to

RNNs. Next, it is shown empirically that the method consistently locates many fixed

points in many randomly sampled networks. Comparison with an existing method

shows that this strategy is both competitive and complementary, often locating

different and larger sets of fixed points. Finally, future directions for improving the

solver’s performance are discussed.

While the approach presented here is not a global solver, it does present a new

142

−1.0 −0.5 0.0 0.5 1.0
v1

−1.0

−0.5

0.0

0.5

1.0

v2

−1.0 −0.5 0.0 0.5 1.0
v1

−1.0

−0.5

0.0

0.5

1.0

v2

Figure 7.1: Phase spaces, trajectories, and nullclines for a pair of two-neuron

networks with nearly identical connection weights (the precise network model used

here is defined in Sect. 7.3.1). Each coordinate axis corresponds to the activity

of each neural unit, denoted v1 and v2. The nullclines where the network update

leaves v1 fixed or v2 fixed are indicated by solid or dashed curves, respectively. The

intersections of the nullclines are fixed points. Solid gray circles show successive

points along an arbitrarily chosen trajectory, with lighter shades further back in

time. Under a small perturbation to the connection weights, the fixed points of the

original system (left) degenerate into waypoints along a non-fixed attractor in the

perturbed system (right).

strategy towards the eventual goal of developing a global solver, and derives some

preliminary theoretical groundwork. Whether or not this strategy can ultimately

succeed depends on several theoretical questions that as yet remain open. In addition

to proposing and evaluating the method, one of the main contributions here is to

pose and discuss these open questions and suggest future directions for improving

the solver’s performance.

143

7.2 Theoretical Groundwork

7.2.1 Notation

In this chapter, N denotes the natural numbers and R denotes the reals. N ∈ N

denotes the dimensionality of a dynamical system and 0 ∈ RN denotes a column

vector containing all zeros. For any matrix M , Mi,j denotes the (i, j)th entry, and

Mi,: denotes the ith row. The D prefix denotes multivariate differentiation. For

example, if f : RN → RN is a differentiable function, then Df is its Jacobian, i.e.,

(Df(v))i,j = dfi(v)/dvj for v ∈ RN . Commas and semicolons inside square brackets

denote horizontal or vertical concatenation, respectively, of matrices and vectors.

For example, [A,B] is the horizontal concatenation of A and B. The vector and

induced matrix 2-norm are denoted || · ||2.

7.2.2 Directional Fibers

The fixed point solver proposed here is based on mathematical objects in-

troduced in this work called directional fibers. To my knowledge, the concept of

directional fibers is new, and their utility for locating fixed points has not been rec-

ognized previously, either in RNNs or other dynamical systems. Whereas a standard

mathematical fiber is the inverse image of some constant point, a directional fiber

is the inverse image of some constant direction. This concept is well defined for any

function whose codomain is a vector space. Directional fibers have several math-

ematical properties useful for locating fixed points, described below. This section

144

presents directional fibers in general terms; Sect. 7.3 shows how the method can be

applied to RNNs.

Definition 1. Given f : RN → RN , and c ∈ RN − {0}, the directional fiber of c

under f , denoted by γ(c), is defined as:

γ(c) def
= {v ∈ RN : f(v) is parallel to c}. (7.1)

Consider a discrete-time dynamical system with states in RN , and state tran-

sitions given by

∆v = f(v), (7.2)

where v ∈ RN is the current state, and f : RN → RN is a function that specifies

∆v, the change in state after one dynamical update. Given a direction vector c, the

directional fiber γ(c) is the set of all states where the dynamical update moves in

the direction of ±c. Fig. 7.2 shows an example.1

If f(v) is parallel to c, then f(v) = αc for some α ∈ R, and it is convenient to

make α explicit. Let F (c) : RN × R→ RN be the function defined as:

F (c)(v, α)
def
= f(v)− αc. (7.3)

Then the directional fiber is equivalent to the following set:

Γ(c) def
= {(v, α) ∈ RN × R : F (c)(v, α) = 0}. (7.4)

1Directional fibers may also be understood in relation to nullclines. If a point updates in the

direction of c, then it is stationary along any direction orthogonal to c. So directional fibers can

be thought of as intersections of N − 1 nullclines in a rotated coordinate system.

145

−1.0 −0.5 0.0 0.5 1.0

v1

−1.0

−0.5

0.0

0.5

1.0

v2

Figure 7.2: The phase space for an arbitrary two-neuron network, with an arbitrary

directional fiber superimposed. The network model is defined in Sect. 7.3.1. Light

gray arrows indicate f(v) at regularly spaced points v ∈ R2. Solid black circles

indicate fixed points. The black curve is a directional fiber: the set of all v that

update along the same constant direction ±c. The direction ±c is emphasized by

additional arrows showing f(v) at regularly spaced points along the fiber, colored

black and scaled by a factor of 2.

It will sometimes be convenient to write (v, α) ∈ RN × R as a point x ∈ RN+1.

If f is differentiable and Df satisfies certain rank conditions, detailed below,

it turns out that a typical directional fiber is a one-dimensional manifold containing

every fixed point. The practical significance of this property is that a directional

fiber can be numerically traversed to locate fixed points. More formally, we have

the following definition and propositions. The main mathematical tools used in

the proofs are Sard’s Theorem [111] and the Inverse Function Theorem (IFT) [74].

146

Differentiability of f (and hence of F (c), for every c) is assumed throughout.

Definition 2. A direction vector c is regular if DF (c) is full rank at every x ∈ Γ(c).

Otherwise, c is critical.

Proposition 1. If Df is full rank at every fixed point, then the set of critical c has

Lebesgue measure 0 in RN .

Proof of Proposition 1. Consider the function h : RN×R→ RN defined by h(v, β) =

βf(v). Then Dh = [βDf, f]. Let H = {h(v, β) : rank(Dh(v, β)) < N}. By Sard’s

Theorem, H has Lebesgue measure 0 in RN .

Let c be any critical direction. Then by definition, there is some (v, α) ∈

Γ(c) such that rank(DF (c)(v, α)) < N . Since DF (c) = [Df,−c], this implies that

rank(Df(v)) < N as well. If α were 0, then f(v) would be 0, since F (c)(v, α) =

f(v) − αc = 0 for all (v, α) ∈ Γ(c). But then Df would be less than full rank

at a fixed point, contradicting the antecedent of the proposition. So, given that

α 6= 0, we can rearrange f(v) − αc = 0 to write c = f(v)/α = h(v, 1/α). So

DF (c)(v, α) = [Df(v),−f(v)/α], which has the same rank as any matrix obtained

by non-zero rescaling of its columns, including Dh(v, 1/α) = [(1/α)Df(v), f(v)].

Therefore Dh(v, 1/α) has rank less than N , and so c = h(v, 1/α) is in H. Hence

the set of critical directions is a subset of a zero measure set, and so also zero

measure.

Proposition 2. For any regular c, Γ(c) is a one-dimensional manifold.

Proof of Proposition 2. Given that c is regular, DF (c)(x(0)) is full rank at any x(0) ∈

Γ(c), and since F (c) maps RN+1 to RN , the full rank DF (c)(x(0)) must have a one-

147

dimensional null space. Let z be a unit vector spanning that null space and define

a function G : RN+1 → RN+1 by

G(x) = [F (c)(x); zT (x− x(0))].

Since z spans the null space of DF (c)(x(0)) and has unit length, the Jacobian

DG(x(0)) = [DF (c)(x(0)); zT]

is invertible and z is also the (N + 1)th column of (DG(x(0)))−1. By the IFT, G

is a homeomorphism between a neighborhood U of x(0) and a neighborhood V of

G(x(0)). In particular, for x ∈ U ∩ Γ(c), F (c)(x) vanishes and G(x) ∈ V has the

form [0; zT (x− x(0))], and hence U ∩ Γ(c) is homeomorphic to R. Therefore Γ(c) is

locally one-dimensional around x(0), and effectively parameterized by the (N + 1)th

coordinate ofG(x). The tangent to Γ(c) at x(0) is the derivative ofG−1 with respect to

this parameter, which by the IFT is precisely the (N + 1)th column of (DG(x(0)))−1,

namely z. Given that c is regular, DF (c) is full rank at every such x(0) ∈ Γ(c), and

so Γ(c) is globally a one-dimensional manifold.

Proposition 3. Any directional fiber contains every fixed point: Fixed points occur

precisely when α = 0.

Proof of Proposition 3. Given any c, and any fixed point v, we have F (c)(v, 0) =

f(v)− 0c = 0− 0 = 0, so (v, 0) ∈ Γ(c).

In summary, on the assumption thatDf is full rank at every fixed point, almost

any directional fiber can be numerically traversed to locate fixed points. Given that

148

this assumption was never falsified by the empirical experiments in Section 7.4, one

might reasonably conjecture that this assumption holds for almost every RNN in

the family studied here, with respect to some reasonably defined measure. This

conjecture remains an open question, although recent results may be relevant [119].

As a caveat, even if the set of RNNs where this assumption fails has measure zero,

it still includes some important special cases such as networks with line attractors,

which necessarily contain fixed points where Df is not full rank [14].

Although a regular directional fiber is a one-dimensional manifold containing

every fixed point, it is not necessarily path connected. Therefore, whether or not

every fixed point can be located by traversing a single fiber is an open question and

depends on the method for choosing c. It is entirely possible that sometimes no

choice of c will result in a fully connected fiber, and determining when this occurs

may be intractable or undecidable. For the RNNs studied here, these questions

remain open, but Section 7.3.3 elaborates on the issue and Section 7.4.3 provides

relevant experimental results.

7.2.3 A Fiber-Based Fixed Point Solver

This section presents the method for locating fixed points. The key idea is to

choose a suitable directional fiber and numerically traverse it, adding fixed points to

a running list as they are encountered. Choosing a suitable fiber, deriving a reliable

numerical update scheme, and identifying starting and stopping conditions are all

system-dependent problems, covered in Section 7.3 for the case of RNNs.

149

The traversal process is codified in algorithm traverse (Fig. 7.3), which

operates as follows. Line 1 initializes the traversal at a valid starting point (v, α) ∈

Γ(c). Line 2 initializes V ∗, a running list that starts out empty and accumulates

fixed points over the course of traversal. At each iteration, line 4 invokes a numerical

update scheme to compute a discrete step from the current point (v, α) to the next

point (ṽ, α̃) along the fiber. The dedicated sub-routine for this numerical update,

called take-step (line 4), is described in more detail in Sect. 7.2.4. After the

update, lines 5-8 check whether α has changed sign, in which case it has crossed

0 and the update is passing through a new fixed point, by Prop. 3. The precise

location of the new fixed point, denoted v∗, is found via local optimization seeded

with v on line 6 before it is added to the running list V ∗ on line 7. Finally, the current

point is updated to the new position before the next iteration (line 9). Traversal

continues until a stopping condition is satisfied on lines 10-12.

7.2.4 The traverse Update Scheme

Numerical steps along Γ(c) use the unit tangent vector at the current point

(v, α), denoted by z. The proof of Prop. 2 shows that z is the unique (up to sign)

unit vector satisfying

DF (c)(v, α)z = 0. (7.5)

In other words, the tangent spans the null space of DF (c), which is one-dimensional

as long as DF (c) is full rank. Eq. 7.5 can be solved for z with standard linear algebra

routines.

150

traverse(f, c)

1: Initialize (v, α) ∈ Γ(c) with starting condition

2: V ∗ ← {}

3: loop

4: (ṽ, α̃)← take-step(f, c, (v, α))

5: if sign(α̃) 6= sign(α) then

6: Solve f(v∗) = 0 for v∗ seeded with v

7: V ∗ ← V ∗ ∪ {v∗}

8: end if

9: (v, α)← (ṽ, α̃)

10: if stopping condition is satisfied then

11: return V ∗

12: end if

13: end loop

Figure 7.3: Fiber-based traversal routine.

take-step(f, c, (v, α))

1: Compute a suitable step size θ∗

2: Solve Eq. 7.6 for x(θ∗) = (ṽ, α̃), seeded with x(0) = (v, α)

3: return (ṽ, α̃)

Figure 7.4: Numerical step sub-routine.

151

While Eq. 7.5 can be used to compute a tangent vector, it does not prescribe

exactly how that tangent vector should be used. One possibility is to use a numerical

integration scheme such as the Euler or Runge-Kutta methods, but the computed

path may diverge from the true mathematical fiber over time. Since we have not

only the tangent vector, but also the implicit equation F (c)(v, α) = 0 which defines

Γ(c), we can go further. Using θ∗ to denote the current step-size, and x(0) and x(θ∗)

to denote (v, α) and (ṽ, α̃), respectively, we can solve

G(x(θ∗)) = [0; θ∗] (7.6)

for x(θ∗), seeded with x(0), where G : RN+1 → RN+1 is defined by

G(x)
def
= [F (c)(x); zT (x− x(0))]. (7.7)

Eq. 7.6 simultaneously maintains F (c)(x(θ∗)) = 0, which keeps x(θ∗) in Γ(c), and

enforces zT (x(θ∗)− x(0)) = θ∗, which moves the traversal forward by a distance of θ∗

in the tangent direction. This update scheme is a variant of numerical path following,

for which other methods exist [6], but it has several novel aspects discussed in Sect.

7.5.

The step size must be derived with care. If too large, the traversal can “leap”

to a remote point on Γ(c) or inadvertently reverse direction. If small enough, one can

guarantee that x(θ∗) converges to the same point that would have resulted from the

mathematically ideal traversal: that is, the traversal where x(0) flows continuously

along Γ(c), by a distance of θ∗, in the direction of z. However, if θ∗ is too small,

the traversal can be very slow, so θ∗ should be maximized as much as possible

while maintaining correctness. This may require leveraging particular properties of

152

the dynamical system at hand, which is done here for the specific case of RNNs.

Theorem 5 and its proof sketch below outline the general derivation strategy. The

theoretical and implementation details of the RNN-specific derivation are available

in Appendix A.5.

Fig. 7.5 depicts the key quantities referenced by Theorem 5. Each x(θ) solving

G(x(θ)) = [0; θ] is a point in Γ(c) that lies a distance of θ from x(0) in the direction

of the tangent z. The fact that the map θ 7→ x(θ) is a continuous bijection for all

θ ∈ [0, θ∗] guarantees that the same x(θ) would result from the mathematically ideal

traversal. It also guarantees that the transported tangent direction at x(θ) must have

non-negative dot-product with z, which can be used to avoid inadvertently reversing

direction. θ∗ is the largest step-size for which Theorem 5 makes these guarantees.

This is the step-size used in the take-step sub-routine. The step-size is adaptive,

since it depends on the current point x(0).

Theorem 5. Given any regular c and any x(0) ∈ Γ(c), one can construct a neigh-

borhood U∗ around x(0) and a θ∗ > 0, such that for each θ ∈ [0, θ∗], there is a

unique x(θ) ∈ U∗ solving G(x(θ)) = [0; θ], and Newton’s method will converge to x(θ)

when seeded with x(0). Furthermore, the resulting bijection θ 7→ x(θ) is continuous

on [0, θ∗].

Proof of Theorem 5 (sketch). Define a norm || · || that will facilitate tight bounds,

and given some θ, let x(n) denote the nth Newton iterate. Combining formulas for

Newton iterations and Taylor’s theorem, derive a recurrence relation of the form

−DG(x(n))(x(n+1) − x(n)) = R(n−1)(x(n) − x(n−1)), (7.8)

153

Figure 7.5: Key quantities in Theorem 5. x(0) is the current point on the fiber

Γ(c). z is the tangent vector, which is orthogonal to the rows of DF (c)(x(0)) (in

higher dimensions there are multiple row vectors). Steps in U are certified, θ∗ is the

maximal such step size, and x(θ∗) is the new point after the step.

where R(n−1)(·) is a second-order Taylor remainder. Taking norms on both sides of

(A.31), obtain a bound of the form

||x(n+1) − x(n)|| ≤ ρ(n)||x(n) − x(n−1)||2, (7.9)

where ρ(n) is an expression whose contents depend on the particulars of ||·||, DG(x(n))

and R(n−1)(·). One can check that x(1) − x(0) = θz, which relates the recurrence to

θ in the base case. If all the ρ(n) can be bounded by a single ρ, then iterating (7.9)

from this base case gives

||x(n+1) − x(n)|| ≤ (ρθ||z||)2n/ρ. (7.10)

If, in addition,

ρθ||z|| < 1, (7.11)

154

then (7.10) will imply that x(n) is a Cauchy sequence and hence convergent, and will

also allow us to bound x(n) near x(0) as follows:

||x(n) − x(0)|| ≤
∑n−1

k=0 ||x(k+1) − x(k)|| (7.12)

≤ 1
ρ

∑n−1
k=0(ρθ||z||)2k (7.13)

≤ 1
ρ

∑n
k=1(ρθ||z||)k

(7.14)

≤ 1
ρ

(
ρθ||z||

1−ρθ||z||

)
, (7.15)

where (7.12) follows from the triangle inequality, (7.13) follows by substituting

(7.10), (7.14) follows readily from (7.13), and (7.15) follows from the formula for

geometric series.

Now consider any δ > 0, which determines a neighborhood U = {x : ||x −

x(0)|| < δ}. For x ∈ U , since x is bounded near x(0), DG(x) is bounded near

DG(x(0)). If δ is not too large, DG(x) can also be kept full rank, since it will be

near DG(x(0)), which is evaluated at a point on Γ(c) and hence full rank. Using

these bounds on DG(x), one can determine a single ρ that bounds any ρ(n) for

which x(n−1) and x(n) fall inside U . With this ρ fixed, consider any θ that satisfies

(7.11) as well as

1
ρ

(
ρθ||z||

1−ρθ||z||

)
< δ. (7.16)

Using (7.12-7.16), show by mathematical induction that x(n) ∈ U and ρ(n) < ρ for

all iterates, so that (7.10) is always satisfied and the x(n) do indeed converge. Let

x(θ) denote their limit. To show that x(θ) does in fact solve G(x(θ)) = [0; θ], take

155

norms in the Newton iteration formula to get

||[0; θ]−G(x(n))|| ≤ ||DG(x(n))|| · ||x(n+1) − x(n)||. (7.17)

Given full rank DG in U , we have ||DG(x(n))|| > 0, while ||x(n+1)−x(n)|| approaches

0. So G(x(n)) approaches [0; θ].

Finally, consider all such δ, each of which determines a corresponding U , ρ

and θ. If the expressions for ρ and θ in terms of δ are continuous, then the maximal

θ can be taken as θ∗, and the corresponding neighborhood as U∗. It remains to

show that for any θ ∈ [0, θ∗], x(θ) is unique in U∗, and a continuous function of θ.

Consider θ1, θ2 ∈ [0, θ∗], and use Taylor’s theorem, the full rank of DG in U∗, and

the fact that ||G(x(θ1))−G(x(θ2))||2 = |θ1 − θ2| to obtain

|θ1 − θ2| ≥ λ||x(θ1) − x(θ2)||2, (7.18)

where λ is a non-zero lower bound on the least singular value of DG. (7.18) shows

that θ 7→ x(θ) is continuous, and that if x(θ1) 6= x(θ2), then θ1 6= θ2.

7.3 Application to Recurrent Neural Networks

This section describes how directional fibers can be applied to find fixed points

of RNNs. Fixed points of RNNs can represent many things, but of particular rele-

vance in this work is their utility as waypoints along itinerant attractor sequences.

Using ideas from the GALIS framework, such attractor sequences can be used to

“program” neural networks with cognitive-level behaviors. This makes them par-

ticularly relevant to a GALIS-based neural reimplementation of CERIL. The fixed

156

point solver described here is a tool that can be used to improve our technical un-

derstanding of neural attractor dynamics, thereby promoting transparency in neural

implementations of CERIL and other systems.

7.3.1 Neural Network Model

As a starting point, this work is focused on a discrete-time, continuous-valued

neural network model with no external stimuli. The update rule for a network with

N units is:

v 7→ σ(Wv), (7.19)

where v ∈ RN is a column vector of real-valued neural activations, W ∈ RN×N is

a matrix of connection weights, and σ is the hyperbolic tangent function, applied

coordinate-wise. Hence, for any given W , the function f is given by

f(v) = σ(Wv)− v. (7.20)

An ideal solver should locate every v satisfying f(v) = 0. The following

example characterizes the complexity of this problem. Suppose W is diagonal.

Then f(v) = 0 reduces to N independent one-dimensional problems of the form

σ(Wi,ivi) − vi = 0. If Wi,i > 1, then this equation has three solutions, which is

apparent from plotting σ(Wi,ivi) − vi as a function of vi (Fig. 7.6). Therefore the

full system has 3N solutions. Consequently, any solver that enumerates every fixed

point has worst-case complexity at least exponential in N . However, we can still

ask that a good solver have low work complexity, defined as the time spent per fixed

157

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

v

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

σ
(w

v)
−
v

w=5

w=1

w=0. 5

w= − 1

Figure 7.6: σ(wv)− v for various w in the one-dimensional case.

point found. Section 7.4 characterizes the empirical work complexity of the solver

both when the number of fixed points found is small and when it is large.

7.3.2 Applying traverse

To use traverse with f as in Eq. 7.20, Df must be full rank at every fixed

point, as required by Props. 1 and 2. While this property has not been formally

verified in general, it was apparently satisfied by every randomly sampled W in

the experiments of Sect. 7.4 below. The RNN-specific derivation of Theorem 5 in

Appendix A.5 also requires that W be invertible, but there are no other structural

constraints (such as symmetry).

In addition to a suitable step-size, traverse also requires RNN-specific start-

ing and stopping conditions. For the starting condition, note that F (c)(0, 0) =

σ(W0)− 0− 0c = 0, so the origin is always a valid initial point, for any W and c.

For the stopping condition, we can prove the following:

158

Proposition 4. Given fixed W , suppose that c is regular and that Wi,:c 6= 0 for all

i. For any (v, α) ∈ Γ(c), with tangent vector z = (v̇, α̇), if

|α| >
σ−1

(√
1−min

{
1, 1
||W ||2

})
+
∑

j |Wi,j|

|Wi,:c|
(7.21)

for all i, then α̇ 6= 0.

Proof of Proposition 4. Let (v, α) ∈ Γ(c) satisfy Eq. 7.21. Writing DF (c) more ex-

plicitly in Eq. 7.5, we have

ΣWv̇ − v̇ − α̇c = 0, (7.22)

where Σ is diagonal with Σi,i = σ′(Wi,:v) and σ′ denotes the derivative of σ with

respect to its argument. If α̇ = 0, then (7.22) implies that ||ΣWv̇||2 = ||v̇||2. So

||ΣWv̇||2 < ||v̇||2 implies α̇ 6= 0. (7.23)

By properties of || · ||2, the antecedent of (7.23) is true whenever

max
i
σ′(Wi,:v) < 1/||W ||2 (7.24)

is true. So it remains to show that Eq. 7.21 in Prop. 4 implies (7.24). Since

(v, α) ∈ Γ(c), for each i we have:

vi = σ(Wi,:v)− αci (7.25)

|Wi,:v| ≥
∣∣∣|αWi,:c| − |Wi,:σ(Wv)|

∣∣∣ (7.26)

σ′(Wi,:v) ≤ σ′(|αWi,:c| −
∑

j|Wi,j|), (7.27)

where (7.25) follows by rearranging F (c)(v, α) = 0, (7.26) follows by multiplying

both sides of (7.25) by W and using properties of | · |, and (7.27) follows by applying

159

σ′ to both sides of (7.26) and using properties of σ. So (7.24) is satisfied if

σ′(|αWi,:c| −
∑

j|Wi,j|) ≤ min{1, 1/||W ||2} (7.28)

for all i. Using the fact that σ′ = 1−σ2 and isolating |α| in (7.28) shows that (7.28)

is equivalent to Eq. 7.21.

The significance of Prop. 4 is that, as long as α̇ 6= 0, α can not reverse

direction. In particular, once |α| satisfies (7.21), α cannot return to 0, so no more

fixed points will be encountered. Prop. 4 indicates at least one constraint on c:

it must be chosen so that Wi,:c 6= 0 for each i. Since c is chosen randomly in the

experiments here, this will be true with probability 1.

Although the range of σ is (−1, 1), f is well-defined for any v ∈ RN , so

directional fibers can leave and return to (−1, 1)N several times during traversal.

However, since σ(Wv) ∈ (−1, 1)N , any v solving f(v) = 0 must be in (−1, 1)N .

So there is no risk of encountering “fixed points” outside of the neural state space.

Additionally, since σ is an odd function, directional fibers are always symmetric

about 0. In particular, −v is a fixed point whenever v is. So traversal need only

proceed in one direction from 0, and the negations of each fixed point found can be

added afterward.

7.3.3 Topological Sensitivity of Directional Fibers

By Prop. 3, any directional fiber contains every fixed point. However, the

main hurdle faced by this approach is that for some choices of c, the fiber Γ(c) is

not necessarily connected. Traversal of one connected component will fail to identify

160

Figure 7.7: Topology of Γ(c) changes when c passes through a critical direction.

Here an arbitrary 3-unit network is used for illustrative purposes. Left: The space

of all choices of c, normalized to unit length (S2 denotes the unit sphere). The

shaded circles varying from light to dark gray in the upper right indicate a particular

sequence of c’s that cross over the critical set. Right: The corresponding γ(c) for

several c’s in that sequence, in the same shade of gray, superimposed on the neural

phase space. Additional details provided in the text.

fixed points contained in another connected component. This effect is illustrated

in Fig. 7.7. As c is varied through a critical direction, the topology of Γ(c) can

change: closed loops can form that are disconnected from the component of Γ(c) that

contains the origin. Any fixed points on these closed loops will never be encountered

by traverse when these c are used.

In effect, the set of all possible choices of c can be viewed as the unit hy-

161

persphere SN−1, and the critical directions partition the sphere into disjoint open

sets where c is regular. Let us refer to these disjoint open sets as the regular re-

gions. This is illustrated in Fig. 7.7. On the left of the figure, the dashed lines are

bad choices where Wi,:c = 0 for some i (i.e., where the stopping condition (7.21)

is undefined). The solid black curves are critical directions - bad choices for which

DF (c) is singular at some x ∈ Γ(c). The critical sets were approximated using brute

force methods on a finely sampled grid, which is not feasible in general, but possible

in this low-dimensional example. The critical sets have zero measure, as expected

from Prop. 1. The shaded circles varying from light to dark gray in the upper right

indicate a particular sequence of c’s that cross over the critical set. On the right of

the figure, the corresponding γ(c) for several c’s in that sequence, in the same shade

of gray, are superimposed on the neural phase space. As c crosses over the critical

set, two closed loops disconnect from the main body of the directional fiber. Solid

black circles indicate fixed points of the network, which are at risk of being isolated

on disconnected components of γ(c) for some choices of c.

In sum, choices of c in different regular regions can induce different topologies

for Γ(c). If there is always one regular region in which Γ(c) is fully connected, and if

there is an efficient algorithm that is always guaranteed to compute some c within

this region, then the combination of this hypothetical algorithm with traverse

would constitute a provably correct, global fixed point solver. Even if a result this

strong cannot be obtained, it still may be possible that a small subset of regular

regions can be identified, such that repeating traverse on a choice of c from each

one, and taking the union of fixed points found by each repetition, can be guaranteed

162

to locate most of the fixed points of the network. It may even be possible that a

single random choice of c will always locate a relatively large subset of fixed points

with relatively high probability. The question of how and whether these possibilities

can actually be realized in practice is an open problem for future study. Sect. 7.4.3

provides a preliminary experiment that sheds some light on this question.

7.4 Computer Experiments

A reference version of traverse was implemented for RNNs and subjected

to a battery of computer experiments to gauge its efficacy.2 In the first set of ex-

periments, the approach is compared with the commonly used baseline of repeating

local optimization on a large number of randomly sampled seeds. The second set of

experiments compares the output of traverse using different choices of c.

7.4.1 Experimental Methods

7.4.1.1 Sampling Distribution for W

All experiments were performed on several randomly sampled networks, with

network size N between 2 and 1024. At each N , several W ’s were randomly sampled:

50 at each N ∈ {2, 4, 7, 10, 13, 16}, 10 at each N ∈ {24, 32, 48, 64}, and 5 at each

N ∈ {128, 256, 512, 1024}. Each W was constructed as follows: First, an N × N

matrix V was randomly sampled with uniform i.i.d. entries in the interval (−1, 1).

2The Python code for traverse, the computer experiments, and the figures are open-source

and freely available at https://www.github.com/garrettkatz/rnn-fxpts.

163

https://www.github.com/garrettkatz/rnn-fxpts

Next, W was calculated with the formula W = σ−1(V)V −1. Substituting this

formula for W into Eq. 7.19 shows that each column of V is a fixed point of the

resulting network. This property was useful for comparing the output of different

solvers with a set of fixed points that was known a priori. In the following these

are referred to as the “known fixed points.” Typically these networks possess many

other initially unknown fixed points, in addition to those known by construction.

7.4.1.2 Counting Unique Fixed Points

To accurately compare the outputs of the solvers, it is important to accurately

count the number of unique fixed points found by each. Determining whether a

point should be considered fixed, and whether two fixed points should be considered

distinct, are non-trivial problems in finite-precision arithmetic. The computed values

of f(v) at “fixed points” were generally a few multiples of machine precision and

rarely identically 0. Likewise, any pair of “identical” fixed points were generally a

few multiples of machine precision apart, and rarely identically equal.

Using an error analysis of f(v) in finite-precision arithmetic, a test was devised

that could decide either “no” or “maybe” as to whether a true fixed point existed

within machine precision of a floating-point approximation. As such, strictly speak-

ing, the fixed point counts reported here are upper bounds on the true counts.

However, empirical evidence suggests that these bounds are tight. The details of

this test and empirical evidence of its accuracy are provided in Appendix A.6.

Given two points v(1) and v(2) both classified as fixed, they were marked as

164

2-59 2-53 2-47 2-41 2-35 2-29 2-23 2-17 2-11 2-5 21

maxi|v
(1)
i - v(2)

i |

20

26

212

218

224

#
 o

f
p
a
ir

s

Figure 7.8: Pair-wise distances between fixed points before filtering for duplicates.

Distances are computed within a large sample of pairs across all networks and solvers

tested. v(1) and v(2) denote any such pair of fixed points.

duplicates if maxi|v(1)
i − v

(2)
i | < 2−21. While simple, this method proved reliable,

as confirmed empirically by computing pair-wise distances within the sets of points

found by each solver on each network tested, before filtering for duplicates. Fig.

7.8 shows a histogram of these pair-wise distances,3 aggregated across all solvers

and all networks. 2−21 clearly separates by a large margin those distances that are

near machine precision from those that are not. Several thousand pairs also had

distances ∼ 2−1024 (data not shown), when both v(1) and v(2) were within machine

precision of 0.

7.4.2 Comparison with a Baseline Solver

The common approach of solving f(v) = 0 with repeated, randomly initialized

local optimization was used as a baseline for comparison with traverse. The

first baseline implementation sampled the initial points uniformly, and then solved

3When a solver returned more than 1000 points, pair-wise distances were computed within a

random 1000-point subset.

165

f(v) = 0 with Newton’s method. However, on all but the smallest networks, almost

every initial point converged to the trivial solution v = 0. In response, the final

baseline implementation used here adopted the more sophisticated technique used

by Sussillo and Barak [120]. Their technique starts by running the network dynamics

and randomly sampling initial points along the observed trajectories. Each sample is

then used as an initial point for an independent run of a local optimization routine,

with 1
2
||f(v)||22 as the objective function.4 This objective function attains a minimum

value of 0 at any fixed point v. It can also attain non-zero local minima at so-called

“slow points” that are not fixed.5 The optimization routine used is the trust-region

Newton conjugate gradient method, provided with the Jacobian and the Gauss-

Newton approximation to the Hessian. This technique is referred to as “the baseline

method” for the remainder of this chapter.

The comparative study was conducted as follows. For each network in the

test data, traverse was first run with a random choice of c. The choice of c was

sampled with i.i.d Gaussian entries and then normalized to unit length, which results

in a uniform distribution over the surface of the unit hypersphere. traverse was

allowed to run either until the stopping condition was met or a maximum number

4Strictly speaking, Sussillo and Barak used a continuous-time network model, so they applied

the minimization to the analogous continuous-time differential rather than a discrete-time differ-

ence.

5Slow points have proved useful in identifying non-fixed dynamical features such as line attrac-

tors [81]. Points along a directional fiber where |α| achieves a non-zero local minimum can be

viewed as candidate slow points, so the method may also prove relevant in this regard. Exploring

this possibility is an important future research direction.

166

of steps had been taken,6 so that the run would terminate in a reasonable time

frame. Next, the baseline method was applied to the same network. It was allowed

to continue sampling and optimizing random points until the same amount of time

had elapsed as had been spent by traverse. T is used to denote the set of fixed

points found by traverse, and B is used to denote the set found by the baseline.

For each v ∈ B, its negative −v was also added to B, for fair comparison with

traverse which does the same. B was then post-processed by removing any slow

points that were not fixed, and any fixed points that were duplicates.7 Next, several

set operations were performed on the processed outputs:

• |T ∩B|, to count the fixed points found by both methods;

• |T ∪B|, to count the fixed points found by either method;

• |T − B| and |B − T |, to count the fixed points found by one method but not

the other.

Fig. 7.9 shows the results. On average, for N ≤ 16, |B−T | was somewhat larger than

|T −B|, indicating that the baseline was finding more fixed points. However, as N

grew, |T −B| was often significantly larger than |B−T |, indicating that traverse

was finding more fixed points. In addition, |T ∩ B| approached 1, indicating that

the fixed points found by each method were largely disjoint save for one common

element, which turned out to be the trivial fixed point 0. Both methods found

6220 steps for N ≤ 256, 217 or 215 for N = 512 or 1024, respectively.

7T does not include any duplicates or slow points by design, but was post-processed similarly

as a sanity check.

167

21 22 23 24 25 26 27 28 29 210

N

0

21

23

25

27

29

211

213

#
 o

f
fi
x
e
d
 p

o
in

ts

T - B

B - T

Known

T B

T B

Figure 7.9: Fixed points found by traverse as compared with the baseline. The

x-axis indicates network size N and the y-axis indicates set cardinalities, both on

a log-scale. T and B denote the sets of fixed points found by traverse and the

baseline, respectively. Each datapoint in the plot is the average cardinality of one

set (either |T ∩B|, |T ∪B|, |T −B|, or |B − T | as indicated), where the average is

taken over all networks of a given size. Standard deviations of these cardinalities at

each N are shown with error bars. The dashed line indicates the number of known

fixed points at each N .

similar portions of the known fixed points, ranging from ∼100% at N = 2 to ∼0%

at N ≥ 32.

For N ≥ 32, traverse consistently reached the maximum step count and

terminated early. This effect was exaggerated after N = 256 when the step limit was

reduced. The upward trend in fixed points found might have continued if traverse

had run to completion, but this was not tested further due to computational cost.

Both methods use many repetitions of matrix operations that are expensive for

large N , and the trials for N = 1024 ran for several days. However, traverse

often had lower work complexity, as shown in Figs. 7.10 and 7.11. In particular,

168

Fig. 7.11 shows that when run to completion, traverse (and the baseline) had

runtime roughly proportional to fixed point counts, whether few or many total fixed

points were found. On the other hand, for larger N , early termination renders the

runtime roughly constant, so in this case both methods must be scaled up further

before any conclusions can be made about absolute work complexities. Even so, the

relative work complexity of traverse appears favorable at this scale, at least when

run time must be limited. The space requirements of traverse are also lower, since

it records each unique point at most once as it proceeds along the fiber. In contrast,

before post-processing, the baseline had found many duplicates of the same fixed

points (when different seeds converged to the same local optimum), and also many

non-fixed slow points. The baseline typically stored ∼2-4 times as many points

as traverse before post-processing. While this could have been counteracted by

screening each candidate point online, rather than post-processing at the end, this

would require additional time, and the baseline would find fewer total fixed points

in the same timeframe. Since this approach could have been viewed as biasing the

results towards traverse, it was not pursued here.

The disjointedness of T and B at larger N raises the question of whether each

is an essentially random subset of the network’s fixed points, or if their respective

distributions in phase space differ in some more ordered way. This question was

studied by calculating the average distance around the mean, and the average dis-

tance to the nearest corner of the state space (−1, 1)N , across all points in T and

in B. Fig. 7.12 shows the results. For N ≥ 32, the baseline points were often far-

ther from the means and closer to the corners. One might expect that this greater

169

21 22 23 24 25 26 27

N

2-13

2-9

2-5

2-1

23

27

M
in

u
te

s
 p

e
r

fi
x
e
d
 p

o
in

t
fo

u
n
d

B

T

28 29 210

N

20

22

24

26

28

210

212

214

Figure 7.10: Comparison of work complexity (time spent per fixed point found,

including post-processing) for each solver. Each datapoint is the average taken over

all networks of a given size. Standard deviations are shown with error bars. Two

y-axis scales are used for improved legibility.

2-2 20 22 24 26 28 210 212 214

Number of fixed points found

2-10

2-5

20

25

210

215

R
u
n
 t

im
e
 o

f
s
o
lv

e
r

(m
in

u
te

s
)

N=8

N=16

N=32
N=64

N=128

N=256
N=1024

Traverse

Baseline

Figure 7.11: Scatter plot of absolute run times and fixed point counts. Each

datapoint shows the run time and number of fixed points found by one solver on

one network. Data across several network sizes N are shown, with different N

labeled and shown in alternating shades of gray.

proximity to the corners is correlated with stability, which was checked using the

eigenvalues of Dm at each fixed point found, where m(v) = σ(Wv) is the update

mapping. Eigenvalues with magnitude less than one (resp., greater than one) in-

170

dicate stable (resp., unstable) directions. Fixed points where all eigenvalues have

magnitude less than one are therefore stable. As expected, the fixed points with

larger norms tended to be more stable, as shown for an example network in Fig.

7.13. Fig. 7.14 shows the general trend over all networks as a function of N . Both

stable and unstable points are located by both methods. However, as N increases,

both methods tend to find more unstable points than stable ones, and traverse

tends to find as many or more unstable points than the baseline. It is possible that

the differences for N ≥ 32 are not intrinsic properties of directional fibers, but rather

due to the fact that traverse was starting from 0 and consistently terminating

early on these trials before reaching the outer extremities of the fiber. Although

this might be viewed as an artifact, it is also an important practical consideration:

If traverse tends to locate more unstable points more quickly than the baseline,

it may be particularly useful in applications where the non-fixed dynamics are of

primary concern.8

8After the publication of [71] a methodological flaw was discovered in the stability anaysis. In

particular, [71] used the eigenvalues of Df , which is the derivative of the difference function, rather

than Dm, which is the derivative of the update mapping. The former is incorrect: it will sometimes

falsely classify unstable points as “stable” and vice versa. The latter is correct; it is used here

and in the most recent version of the code repository. Consequently the quantitative results as

shown in Figs. 7.13 and 7.14 are slightly different from [71]. However, as it happens, there is no

substantial qualitative difference in the results as a whole, and the same conclusions still hold.

171

21 22 23 24 25 26 27

N

0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 d

is
ta

n
c
e
s ||T - mean(T)||

||B - mean(B)||

||T - sign(T)||

||B - sign(B)||

28 29 210

N

−5

0

5

10

15

20

25

Figure 7.12: Statistics on the spatial distributions of fixed points found by tra-

verse (“T”) and the baseline (“B”). Each datapoint is the average taken over all

fixed points found for all networks of a given size. Standard deviations are shown

with error bars. Two y-axis scales are used for improved legibility.

0 1 2 3 4 5

Norm

1.0

1.5

2.0

2.5

M
a
x
.

e
ig

.
m

a
g
n
it

u
d
e

B

T

0 1 2 3 4 5

Norm

21

23

25

27

29

211

#
 o

f
fi
x
e
d
 p

o
in

ts

B st

T st

B un

T un

Figure 7.13: Stability of fixed points found in one sample network. Left: Each

datapoint corresponds to a fixed point found by traverse (“T”) or the baseline

(“B”). The maximum eigenvalue magnitude of Dm at that point is plotted vs. the

point’s norm, where m(v) = σ(Wv) is the update mapping. A maximum eigenvalue

magnitude less than 1 indicates a stable point. Right: A histogram of the same

data, showing the distribution of norms within the stable (“st”) and unstable (“un”)

sets.

172

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

N

0

2
1

2
3

2
5

2
7

2
9

2
11

#
 o

f
fi
x
e
d
 p

o
in

ts

T st

B st

T un

B un

Figure 7.14: Counts of stable (“st”) and unstable (“un”) fixed points found by

traverse (“T”) and the baseline (“B”), averaged over all networks of a given size.

Standard deviations are shown with error bars.

7.4.3 Comparison of Different Directional Fibers

The next experiment concerned the problem of choosing c. It was designed

to test the hypothesis that for almost any network, there is a single choice of c

with which traverse can locate all or at least most fixed points. For each network

tested, many choices of c were generated (as detailed below), denoted c1, ..., ck, ..., cK ,

and traverse was invoked on each one. Let T (W, c) denote the set of fixed points

found when using a direction c on a given set of network weights W . The union

∪kT (W, ck) can be viewed as a first approximation to the full set of all fixed points of

the network. If the hypothesis is true, we might expect to observe a single ck whose

individual T (W, ck) contains all or most points in the entire union ∪kT (W, ck). Of

course this experiment is by no means conclusive, since not every possible c can be

checked, and ∪kT (W, ck) is only a first approximation to the full set of fixed points.

The goal was solely to collect some relevant preliminary results.

173

The choices of ck used in this experiment were motivated by Eq. 7.21, which

requires that Wi,:c 6= 0 for each i. Visual inspection of low-dimensional examples,

as in Fig. 7.7, suggest that the c satisfying Wi,:c = 0 may be loosely correlated

with the critical directions. As such, the regions of the sphere where all Wi,:c 6= 0

may be considered as rough proxies for the regular regions. There are 2N such

regions; one for each possible choice of sign(Wc) ∈ {−1, 1}N . Let sk ∈ {−1, 1}N

denote the kth possibility. A corresponding ck can be found by solving the linear

system Wck = sk. In practice we can add small random noise to ensure that

ck is in general position and hence most likely a regular direction. Each ck was

computed in this way for each W that was tested, and then traverse was used

to compute the corresponding T (W, ck). To assess the results, we can compute the

following statistics for each W , shown in Fig. 7.15: mink|T (W, ck)|, meank|T (W, ck)|,

maxk|T (W, ck)|, and | ∪k T (W, ck)|. In the figure k is suppressed for legibility. For

this experiment N was capped at 10, since N = 10 already results in 210 possible

ck, each of which must be used for another run of traverse.

As shown, even the worst choices of ck (corresponding to mink |T (W, ck)|) typi-

cally found more fixed points than were known by construction of W , and the single

best choice of ck (corresponding to maxk |T (W, ck)|) consistently located a large

portion of the entire union. Even on average, most individual choices of ck (cor-

responding to meank|T (W, ck)|) were able to independently locate a non-negligible

portion of the entire union. These results suggest that even choosing c at random

can lead to reasonable performance of traverse, and for almost any network, there

may be a single nearly optimal choice of c. On the other hand, as yet there is no

174

0 2 4 6 8 10

N

21

22

23

24

25

26

27

28

29

#
 o

f
fi
x
e
d
 p

o
in

ts

avgW| cT(W, c)|

avgWmaxc|T(W, c)|

avgWavgc|T(W, c)|

avgWminc|T(W, c)|

Figure 7.15: Statistics on the number of fixed points found by traverse, using

different choices of c. T (W, c) denotes the set of points found when using direction

c on network weights W . Multiple c were tested with each W , and multiple W were

tested at each network size N . Statistics on T (W, c) were calculated across all c for a

fixed W . Then averages and standard deviations of those statistics were calculated

across all W for a fixed N . Those averages are plotted in the figure with standard

deviations indicated by error bars. The dashed line indicates the number of fixed

points known by construction.

discernible pattern governing which choice of sk produced the best ck on any given

network. So, short of enumerating every sk (which is infeasible for large N), it

remains unknown how to identify the optimal c for any particular weight matrix W .

7.5 Discussion

This chapter has presented a new, general strategy for locating fixed points,

based on directional fibers, and has shown how the strategy may be applied to

RNNs. Compared with a traditional fixed point solver, using local search from

175

random seeds, this strategy often finds more fixed points, particularly on larger

networks. The points found also tend to have different distributions in phase space,

making the approach complementary to the baseline. Furthermore, the method has

lower space requirements, returning points that are already guaranteed to be fixed

and unique, as opposed to the baseline which may find many duplicated points.

Since traverse follows an implicitly defined curve, it is an example of nu-

merical path following [6]. However, whereas the standard formulation of numerical

path following involves a “predictor” step followed by a “corrector” step at every

update, the update in this work is formalized using a single step comprised of the

numerical solution of Eq. 7.6. Moreover, in addition to a robust stopping condition,

this work provides a recipe for maximizing step size which formally guarantees that

the numerical traversal matches the mathematically ideal traversal up to machine

precision. Lastly, to my knowledge, the notion of directional fibers in particular as

the paths to be followed is new. Numerical path following has been used for fixed

point location before, but in a rather different way via homotopy continuation [26].

In these methods, a separate path is traced for each fixed point, and each such path

originates from a known fixed point in a simpler dynamical system that is contin-

uously transformed into the target dynamical system. In contrast, traverse uses

a single path defined within the state space of the target dynamical system (i.e., a

directional fiber), and which passes through multiple fixed points.

The main open questions in this approach are how and when a suitable di-

rectional fiber can be identified. However, the computer experiments show that the

method locates a substantial number of fixed points even with random choices of

176

c. The experiments also provide preliminary empirical evidence that for many net-

works, there may exist a single nearly optimal choice of c that locates most fixed

points. However, the question remains of how to instantiate this c in practice. This

open problem is ripe for further theoretical and empirical investigation, which is the

subject of future work. One avenue worth investigating is a combination of the base-

line and traverse: since the points found by each are largely complementary, it

appears likely that baseline points often lie on disconnected components of the fiber,

and can be used to initialize subsequent runs of traverse along those disconnected

components.

In addition to locating many fixed points, other criteria for choosing c should

also be considered. Different c in the same regular region may find the same fixed

points, but in very different running time, depending on the shapes of the corre-

sponding fibers: If one fiber has sharper “bends”, it may require smaller step sizes

and hence more steps. Therefore the choice of c can also impact the work complexity

of traverse.

Aside from choosing c, various other issues in the current work should be

addressed. To begin with, the open question of whether almost every W satisfies

Prop. 1 should be answered. In addition, the application of traverse to RNNs

should be extended to handle networks with external input, and tested using other

generative processes for W that are more representative of the networks used in

modern machine learning. This includes W that are singular, sparse, larger, and/or

trained (as in [120]).

The method also relies on a finite-precision error analysis for accurately count-

177

ing unique fixed points, which appears effective in practice but lacks full mathe-

matical rigor. Aside from their bisection-based algorithms, existing rigorous global

solvers also use provably correct data types that fully account for round-off er-

rors [73,138]. Incorporating these data types into the implementation of traverse

could resolve the issue.

Future work could also explore the applicability of directional fibers in other

non-neural dynamical systems, although system-specific starting conditions, stop-

ping conditions, and step sizes would have to be derived. In addition, finding zeros

of a gradient can be viewed as finding fixed points of a vector field. So directional

fibers may have relevance to (potentially non-convex) numerical optimization. Re-

latedly, the prospects of traverse for NP-hard optimization are intriguing but

uncertain, and hinge on a better understanding of directional fibers, both in terms

of correctness (i.e., connectedness) and complexity (i.e., amenability to fast traver-

sal).

Lastly, future studies can put traverse to work in order to further deepen

our understanding and engineering of fixed and non-fixed network dynamics. For ex-

ample, although we contrast traverse with the baseline method as implemented

by Sussillo and Barak, it was only a small part of their work [120]. Once the

fixed points were located, they used an additional analysis, based on linearization

around those fixed points, to form compelling explanations for how the networks be-

haved and how they accomplished the tasks for which they were trained. Repeating

this analysis on fixed points located by traverse could yield additional insights.

These insights would deepen our understanding of neural attractor dynamics, and in

178

turn could render the GALIS approach more transparent at a technical level [122].

Considering that GALIS is a promising approach for programming neural networks

with cognitive-level behavior, this could ultimately lead to greater transparency and

trustworthiness in a GALIS-based neural reimplementation of CERIL (and other

systems).

179

Chapter 8: Discussion

8.1 Summary

As autonomous systems steadily become more intelligent and ubiquitous in

every day life, it is increasingly important to ensure that these systems are pliable,

transparent, and trustworthy for end users. The issue is compounded by wide-spread

use of large and complex neural networks for autonomous control, which are very

difficult to train and understand for non-experts.

Robotic imitation learning has emerged as an increasingly effective paradigm

for pliable autonomy that can be shaped, understood, and trusted by end users.

However, much past work on imitation learning has focused on sensorimotor-level

behavior. At this level, the robot attempts to closely mimic the motor output of the

demonstrator, limiting the robot’s ability to generalize. Some past work has modeled

various aspects of cognitive-level imitation learning, but cause-effect reasoning is a

core aspect of human cognition but is under-represented in these systems.

This dissertation explored the hypothesis that cause-effect reasoning could be

an effective platform for pliable and transparent cognitive-level imitation learning,

and could facilitate generalization from just a single demonstration, much as people

180

do. That hypothesis was borne out by CERIL, the imitation learning framework

developed in this dissertation. CERIL only requires one demonstration to success-

fully learn and generalize a skill. The learning mechanism is based on novel causal

reasoning algorithms with strong formal guarantees. It has been empirically vali-

dated on a physical robot using a suite of assembly and maintenance tasks, including

complex manipulations of non-convex assemblies in 3D. Lastly, CERIL can justify

planned actions to a human end user. All of these characteristics promote pliability

and transparency (P&T).

CERIL is currently implemented with symbolic computation, which facilitates

P&T, but has limited capacity for learning and adaptability as compared with neu-

rocomputational techniques. Conversely, because large and complex neural networks

remain poorly understood and difficult to train, their benefits are generally accom-

panied by reduced P&T. As such, it is important to reconcile neural computation

with P&T in CERIL and other autonomous systems. Work has already started on

exploring whether CERIL can be translated to a purely neurocomputational sys-

tem. In that context, this dissertation also puts forth a novel mathematical tool

for analyzing neural network dynamics and improving their transparency. This is

an important step towards the eventual goal of reimplementing CERIL with purely

neural techniques while retaining P&T.

8.2 Contributions

The specific contributions of this dissertation are as follows.

181

• The first contribution is a novel architecture (CERIL) for imitation learning

that combines abductive inference with hierarchical planning. As both can

be viewed as forms of cause-effect reasoning, which is a quintessential cog-

nitive faculty in humans, CERIL can be considered as a human-like model

of cognitive-level imitation learning. This integration of two causal inference

frameworks has the synergistic effect of enabling generalization from just a

single demonstration, much as people do. CERIL is validated by empirical

studies conducted in this work.

• The second contribution is an extension of Parsimonious Covering Theory

(PCT) to simultaneously accommodate real-valued spatial information, causal

chaining, and temporal ordering constraints. This extension comes with strong

formal correctness and complexity guarantees, which are proven by theoretical

analyses in this work. This extension extends the reach of PCT from fields

such as medical diagnosis, fault localization, and semantic web technology to

also apply in the field of imitation learning. In the context of automated

planning, this extension amounts to a provably correct inversion of the HTN

planning algorithm.

• The third contribution is the introduction of new parsimony criteria for PCT,

specifically the “minimum parameters” (MP) criterion, and the first compar-

ison of various parsimony criteria in the context of plan recognition. The

results of empirical studies conducted in this work show that, for intention

inference during imitation learning, the MP criterion is often more effective

182

than other criteria in certain regards, and some traditionally favored criteria

can be disadvantageous.

• The fourth contribution is an XAI mechanism based on causal knowledge

through which autonomous agents can justify their planned actions to a human

end user. This mechanism has been packaged in a feature-rich graphical user

interface, which can serve as an experimental scaffold for controlled studies of

trustworthy autonomy with human participants.

• The final contribution is a step towards a transparent, purely neurocompu-

tational implementation of CERIL. In particular, this work provides a new

method for fixed point location in recurrent neural networks (and other dy-

namical systems), based on directional fiber traversal. Locating these fixed

points is important for better understanding neural attractor dynamics, which

in turn are relevant to GALIS-based architectures that can be “programmed”

with cognitive-level behaviors, such as the behaviors exhibited by CERIL.

Some theoretical properties of the method have been established, and empir-

ical computer studies show that the method is competitive with and comple-

mentary to existing techniques.

8.3 Limitations and Future Work

Despite its successes, the current implementation of CERIL has a number

of significant limitations. The first limitation is the heavy reliance on substantial

background knowledge. Before CERIL can begin imitating, a human domain expert

183

is responsible for encoding its knowledge of the domain. This includes detailed

models of the actions that can be performed and their effect on the environment.

It also includes the database of causal knowledge relating intentions to the sub-

intentions they can cause. This knowledge is represented by CERIL as largely

unconstrained data structures and computer code, which affords greater flexibility,

but requires significant time and effort on the part of one or more domain authors

who are well versed both in the domain itself and in computer programming. Once

this step is complete, CERIL is ready to imitate and learn from end users without

programming or robotics expertise, but it is still a large capital expenditure.

In future work, this expense should be offset by enabling CERIL to acquire

this knowledge from experience. The sensory changes that CERIL observes after

executing motor commands can serve as training data for supervised and/or rein-

forcement learning processes, through which CERIL could learn to predict the effects

of its actions on the environment. In addition, the actions observed in demonstra-

tions could serve as training data for induction of new intentions to complement

the current abductive inference process (e.g., using methodology from [56] or [141]).

Reimplementation of CERIL with neural computation would also open new avenues

for learning new domain knowledge before, during, and after imitation.

Another issue in the current implementation is CERIL is the limited use of

descriptive machine representations (e.g., precondition and postcondition lists) dur-

ing planning, as compared to operational representations (e.g., computer programs).

CERIL’s action justification method makes use of descriptive representations, but

these are identified after planning is complete and not yet used during the planning

184

process itself. While operational representations afford more flexibility during plan-

ing, they limit CERIL’s ability to introspect its own causal knowledge, so that more

knowledge remains implicit in the head of the domain author rather than explicitly

available to CERIL. In future work, shifting to the Goal-Task Network planning

formalism would allow CERIL to plan with descriptive and operational knowledge

simultaneously, achieving the best of both worlds.

CERIL’s PCT algorithms for intention inference also have several limitations

that could be improved in future work. As mentioned in Chapter 5, incorporating

causal probabilities would be a significant improvement to expressive power and open

up new opportunities for machine learning in CERIL. The causal semantics could

also be relaxed to allow partial ordering, optional effects (i.e., not every sub-intention

in a child sequence need always occur) and shared causes (i.e., two parent intentions

causing the same child within the same covering graph). While CERIL’s abductive

inference algorithms draw heavily on PCT, they are not strictly compatible with the

original formulation, in that problem instances of the original formulation are not

subsumed as special cases. This would be remedied by the foregoing improvements.

As also mentioned in Chapter 5, a limitation in the experimental methods is that the

comparison of parsimony criteria could be sensitive to the domain encoding. Future

work should repeat the experiments on more domains written by other authors.

To fully test the hypothesis that CERIL promotes P&T, it is essential in future

work to conduct experiments with human participants who rate their experience

using the system. These experiments should target the imitation learning system

as a whole to gauge how easy it is for non-roboticists to teach the robot new skills.

185

They should also target CERIL’s XAI interface to gauge how convincing or helpful

the answers are to human end users. The results of these experiments could inform

the continued design of the system and suggest new ways to improve P&T in CERIL.

Lastly, to improve CERIL’s adaptability and learning in the messy real world,

a promising strategy is to incorporate neural computation in the causal reasoning

mechanisms (e.g., building on methodologies from GALIS [122]). Not only could this

improve system performance, but it could also provide new insight into the neural

basis of cognition and potentially even machine consciousness [106–108]. In order to

maintain transparency in a neural re-implementation of CERIL, it is necessary to

improve our fundamental understanding of neural networks and neural dynamics.

To this end, future work should tackle the lingering open questions surrounding

directional fiber traversal as posed in Chapter 7, and should apply the technique to

more effectively verify and predict neural network behavior after training. If success-

ful, this work would constitute an important step towards improved transparency

in the upcoming generation of neurocomputational autonomous systems.

186

Appendix A: Appendix

A.1 Dock Maintenance Causal Relations

Below in teletype font are the core causal intention relations defined in the dock

maintenance knowledge base, tailored to the Baxter robot. Each causal relationship

is written with a “→” symbol. In some cases, the same cause can have multiple

possible effect sequences. Three asterisks “∗∗∗” are used to indicate the “intentions”

that are considered directly observable as actions in the SMILE event transcript.

The relations are ordered roughly from lowest-level (observable actions) to highest-

level (top-level causes).

Causal relation:

plan-arm-motion(end-effector-targets) -->

arm-trajectory(joint-angles)

move-arm-and-grasp(arm, object)*** -->

plan-arm-motion(end-effector-targets), close-gripper(arm)

move-grasped-object(arm, destination)*** -->

plan-arm-motion(end-effector-targets)

move-grasped-object(arm, destination)*** -->

plan-arm-motion(end-effector-targets), insert(arm, destination)

put-down-grasped-object(arm, destination)*** -->

move-grasped-object(arm, destination), open-gripper(arm)

parallel-hand-off(target-arm) -->

187

plan-arm-motion(end-effector-targets), trade-grippers(target-arm)

perpendicular-hand-off(target-arm) -->

plan-arm-motion(end-effector-targets), trade-grippers(target-arm)

drive-hand-off(target-arm) -->

plan-arm-motion(end-effector-targets), trade-grippers(target-arm),

plan-arm-motion(end-effector-targets), trade-grippers(source-arm),

plan-arm-motion(end-effector-targets), trade-grippers(target-arm)

hand-off(target-arm) -->

parallel-hand-off(target-arm)

hand-off(target-arm) -->

perpendicular-hand-off(target-arm)

hand-off(target-arm) -->

drive-hand-off(target-arm)

move-unobstructed-object(object, destination-or-arm) -->

move-arm-and-grasp(arm, object), hand-off(target-arm),

put-down-grasped-object(target-arm, destination)

move-unobstructed-object(object, destination-or-arm) -->

move-arm-and-grasp(arm, object), hand-off(target-arm)

move-unobstructed-object(object, destination-or-arm) -->

move-arm-and-grasp(arm, object),

put-down-grasped-object(target-arm, destination)

move-unobstructed-object(object, destination-or-arm) -->

move-arm-and-grasp(arm, object)

move-unobstructed-object(object, destination-or-arm) -->

hand-off(target-arm),

put-down-grasped-object(target-arm, destination)

move-unobstructed-object(object, destination-or-arm) -->

hand-off(target-arm)

move-unobstructed-object(object, destination-or-arm) -->

put-down-grasped-object(target-arm, destination)

free-gripper(arm, surface) -->

put-down-grasped-object(arm, surface)

restore-gripper(arm, object) -->

move-arm-and-grasp(arm, object)

move-object(object, destination) -->

move-unobstructed-object(object, destination)

move-object(object, destination) -->

free-gripper(arm, surface),

move-unobstructed-object(object, destination)

move-object(object, destination) -->

free-gripper(arm, surface),

188

free-gripper(other-arm, surface),

move-unobstructed-object(object, destination)

move-object-to-free-spot(object) -->

move-object(object, free-spot)

discard-object(object) -->

move-object(object, discard-bin)

open(dock-drawer)*** -->

plan-arm-motion(end-effector-targets), close-gripper(arm),

plan-arm-motion(end-effector-targets), open-gripper(arm)

close(dock-drawer)*** -->

plan-arm-motion(end-effector-targets), close-gripper(arm),

plan-arm-motion(end-effector-targets), open-gripper(arm)

press-dock-switch(arm,dock-switch,switch-state)*** -->

plan-arm-motion(end-effector-targets), close-gripper(arm),

plan-arm-motion(end-effector-targets), open-gripper(arm)

set-dock-switch(dock-switch,switch-state) -->

press-dock-switch(arm,dock-switch,switch-state)

set-dock-switch(dock-switch,switch-state) -->

free-gripper(arm,dock-case),

press-dock-switch(arm,dock-switch,switch-state)

restore-gripper(arm,object)

This list of causal relations is meant to paint a concrete picture of how much

knowledge is built in to our system, but the following details are omitted from the

list for clarity of presentation. The → symbol masks certain non-trivial operations

necessitated by physical robot execution, as follows:

The plan-arm-motion relation invokes a motion planner to convert end-effector

targets in 3D space to joint angle trajectories that avoid obstacle collisions. Grasp-

ing and putting down objects must incorporate geometric transformations describing

the grasped object pose relative to the end-effector and relative to the destination,

and must test for collisions when selecting which grasp pose to use for the manip-

189

ulated object. Drive hand-offs require three trades between grippers, during which

the drive is gripped on its side, since the robot’s arms are too thick for both grippers

to be simultaneously positioned near the handle.

move-grasped-object includes a special branch for inserting drives into slots,

since it is a fine motor skill that requires a special motor planning and execution

routine. This distinction is not made in SMILE output.

move-unobstructed-object moves an object to either another destination

object or to one of the arms. It assumes that one or both grippers are free as

necessary and may or may not perform hand-offs depending on which arms can

reach the source and destination positions.

move-object clears any grippers as necessary so that the unobstructed move-

ment can be achieved. This requires identification of a free spot in the environment

where currently gripped objects can be placed down so that the grippers are clear,

which is accomplished using an evolutionary strategy in which every member of

the evolving population is a candidate free spot. Candidates that are near to or

overlapping with other objects are less fit.

In sum, parameters to the parents cannot simply be propagated to the chil-

dren; the full causal relation is complex and non-deterministic. These complex

relationships are accounted for in the causes function when it processes a sequence

of child intentions. There are also auxiliary causal relations necessary for physical

execution but not modeled in causes since they would not factor into intention

inference. In particular, several intentions listed above include unshown children for

visual processing routines that are interleaved with planning and execution, such as

190

inspecting the dock slots and LEDs after the drawer is opened and updating the

object matching.

A.2 Monroe County Corpus Causal Relations

The causal relations used in the Monroe County Corpus Domain [18] are para-

phrased below, with similar notation to Appendix A.1. Parameters are prefixed by

‘?’ and primitive operator names by ‘!’. Most of these causal relations have precon-

ditions that are not shown: the parent task can only cause its children when certain

preconditions are satisfied in the current state. Moreover, several parent tasks have

parameters that do not occur in the parameter lists of the children, and can only be

inferred by inspecting the accompanying state. This logic is included in this work’s

implementation of causes for the Monroe Domain, but omitted below for ease of

presentation.

(set-up-shelter ?loc)-->

((get-electricity ?loc)

(get-to ?leader ?loc)

(get-to ?food ?loc))

(fix-water-main ?from ?to)-->

((shut-off-water ?from ?to)

(repair-pipe ?from ?to)

(turn-on-water ?from ?to))

(clear-road-hazard ?from ?to)-->

((block-road ?from ?to)

(clean-up-hazard ?from ?to)

(unblock-road ?from ?to))

(clear-road-wreck ?from ?to)-->

((set-up-cones ?from ?to)

(clear-wreck ?from ?to)

(take-down-cones ?from ?to))

191

(clear-road-tree ?from ?to)-->

((set-up-cones ?from ?to)

(clear-tree ?tree)

(take-down-cones ?from ?to))

(plow-road ?from ?to)-->

((get-to ?driver ?plowloc)

(!navegate-snowplow ?driver ?plow ?from)

(!engage-plow ?driver ?plow)

(!navegate-snowplow ?driver ?plow ?to)

(!disengage-plow ?driver ?plow))

(quell-riot ?loc)-->

((declare-curfew ?town) (get-to ?p1 ?loc) (get-to ?p2 ?loc)

(!set-up-barricades ?p1) (!set-up-barricades ?p2)))

(provide-temp-heat ?person)-->

((get-to ?person ?shelter))

(provide-temp-heat ?person)-->

((generate-temp-electricity ?ploc) (!turn-on-heat ?ploc))

(fix-power-line ?lineloc)-->

((get-to ?crew ?lineloc) (get-to ?van ?lineloc)

(repair-line ?crew ?lineloc))

(provide-medical-attention ?person)-->

((get-to ?person ?hosp) (!treat-in-hospital ?person ?hosp))

(provide-medical-attention ?person)-->

((emt-treat ?person))

(clean-up-hazard ?from ?to)-->

((!call fema))

(clean-up-hazard ?from ?to)-->

((get-to ?ht ?from) (!clean-hazard ?ht ?from ?to))

(block-road ?from ?to)-->

((set-up-cones ?from ?to) (get-to ?police ?from))

(block-road ?from ?to)-->

((get-to ?police ?from) (set-up-cones ?from ?to))

(unblock-road ?from ?to)-->

((take-down-cones ?from ?to))

(get-electricity ?loc)-->

192

((generate-temp-electricity ?loc))

(repair-pipe ?from ?to)-->

((get-to ?crew ?from)

(set-up-cones ?from ?to)

(open-hole ?from ?to)

(!replace-pipe ?crew ?from ?to)

(close-hole ?from ?to)

(take-down-cones ?from ?to))

(open-hole ?from ?to)-->

((get-to ?backhoe ?from)

(!dig ?backhoe ?from))

(close-hole ?from ?to)-->

((get-to ?backhoe ?from)

(!fill-in ?backhoe ?from))

(set-up-cones ?from ?to)-->

((get-to ?crew ?from) (!place-cones ?crew))

(take-down-cones ?from ?to)-->

((get-to ?crew ?from) (!pickup-cones ?crew))

(clear-wreck ?from ?to)-->

((tow-to ?veh ?dump))

(tow-to ?veh ?to)-->

((get-to ?ttruck ?vehloc)

(!hook-to-tow-truck ?ttruck ?veh)

(get-to ?ttruck ?to)

(!unhook-from-tow-truck ?ttruck ?veh))

(clear-tree ?tree)-->

((get-to ?tcrew ?treeloc) (!cut-tree ?tcrew ?tree)

(remove-blockage ?tree))

(remove-blockage ?stuff)-->

((get-to ?crew ?loc)

(!carry-blockage-out-of-way ?crew ?stuff))

(remove-blockage ?stuff)-->

((get-to ?stuff ?dump))

(declare-curfew ?town)-->

((!call EBS) (!call police-chief))

(declare-curfew ?town)-->

((!call police-chief) (!call EBS))

193

(generate-temp-electricity ?loc)-->

((make-full-fuel ?gen) (get-to ?gen ?loc))

(!hook-up ?gen ?loc) (!turn-on ?gen))

(make-full-fuel ?gen)-->

((get-to ?gc ?ss) (add-fuel ?ss ?gc) (get-to ?gc ?genloc)

(!pour-into ?gc ?gen))

(make-full-fuel ?gen)-->

((get-to ?gen ?ss) (add-fuel ?ss ?gen))

(add-fuel ?ss ?obj)-->

((!pay ?ss) (!pump-gas-into ?ss ?obj))

(add-fuel ?ss ?obj)-->

((!pump-gas-into ?ss ?obj) (!pay ?ss))

(repair-line ?crew ?lineloc)-->

((shut-off-power ?crew ?lineloc)

(clear-tree ?tree)

(!remove-wire ?crew ?lineloc)

(!string-wire ?crew ?lineloc)

(turn-on-power ?crew ?lineloc))

(repair-line ?crew ?lineloc)-->

((shut-off-power ?crew ?lineloc)

(!remove-wire ?crew ?lineloc)

(clear-tree ?tree)

(!string-wire ?crew ?lineloc)

(turn-on-power ?crew ?lineloc))

(repair-line ?crew ?lineloc)-->

((shut-off-power ?crew ?lineloc)

(!remove-wire ?crew ?lineloc)

(!string-wire ?crew ?lineloc)

(turn-on-power ?crew ?lineloc))

(shut-off-power ?crew ?loc)-->

((!call ?powerco))

(turn-on-power ?crew ?loc)-->

((!call ?powerco))

(shut-off-water ?from ?to)-->

((!call ?waterco)))

(turn-on-water ?from ?to)-->

((!call ?waterco))

194

(emt-treat ?person)-->

((get-to ?emt ?personloc) (!treat ?emt ?person))

(stabilize ?person)-->

((emt-treat ?person))

(get-to ?person ?place)-->

((drive-to ?person ?veh ?place))

(get-to ?veh ?place)-->

((drive-to ?person ?veh ?place))

(get-to ?obj ?place)-->

((get-to ?veh ?objloc) (get-in ?obj ?veh)

(get-to ?veh ?place)

(get-out ?obj ?veh))

(get-to ?obj ?place)-->

((get-to ?veh ?objloc) (stabilize ?obj) (get-in ?obj ?veh)

(get-to ?veh ?place) (get-out ?obj ?veh))

(drive-to ?person ?veh ?loc)-->

((!navegate-vehicle ?person ?veh ?loc))

(get-in ?obj ?veh)-->

((!climb-in ?obj ?veh))

(get-in ?obj ?veh)-->

((get-to ?person ?objloc) (!load ?person ?obj ?veh))

(get-out ?obj ?veh)-->

((!climb-out ?obj ?veh))

(get-out ?obj ?veh)-->

((get-to ?person ?vehloc) (!unload ?person ?obj ?veh))

A.3 State Reconstruction in the Monroe Corpus

As described in Sect. 5.1.2, the Monroe County Corpus includes planning trees

of tasks and actions, but does not retain the initial and intermediate states that were

visited during the HTN planning process. The following is an example entry taken

verbatim from the corpus:

((PROVIDE-MEDICAL-ATTENTION PERSON-30029)

((GET-TO PERSON-30029 PARK-RIDGE)

195

((GET-TO DTRUCK1 STRONG)

((DRIVE-TO TDRIVER1 DTRUCK1 STRONG)

(!NAVEGATE-VEHICLE TDRIVER1 DTRUCK1 STRONG)))

((GET-IN PERSON-30029 DTRUCK1)

(!CLIMB-IN PERSON-30029 DTRUCK1))

((GET-TO DTRUCK1 PARK-RIDGE)

((DRIVE-TO TDRIVER1 DTRUCK1 PARK-RIDGE)

(!NAVEGATE-VEHICLE TDRIVER1 DTRUCK1 PARK-RIDGE)))

((GET-OUT PERSON-30029 DTRUCK1)

(!CLIMB-OUT PERSON-30029 DTRUCK1)))

(!TREAT-IN-HOSPITAL PERSON-30029 PARK-RIDGE))

The top-level goal in this example is:

(PROVIDE-MEDICAL-ATTENTION PERSON-30029).

Its immediate child tasks are:

(GET-TO PERSON-30029 PARK-RIDGE),

(!TREAT-IN-HOSPITAL PERSON-30029 PARK-RIDGE)

and the observable action sequence is:

(!NAVEGATE-VEHICLE TDRIVER1 DTRUCK1 STRONG),

(!CLIMB-IN PERSON-30029 DTRUCK1),

(!NAVEGATE-VEHICLE TDRIVER1 DTRUCK1 PARK-RIDGE),

(!CLIMB-OUT PERSON-30029 DTRUCK1),

(!TREAT-IN-HOSPITAL PERSON-30029 PARK-RIDGE)

The latter sequence is an example of what is used as input to the explain algorithm

during its empirical evaluation. Let us refer to the top-level goals in the examples

as the “original” or “ground-truth” top-level goals.

As seen in the example above, the initial and intermediate states used when

originally generating the HTN plan trees are not retained in the corpus. However,

these states often contain important information that is necessary to uniquely de-

termine parent tasks for an observed child sequence. Fortunately, the states can be

196

partially reconstructed as follows. Each operator in the domain definition includes

a list of preconditions, which specifies propositions that must be true in the state

immediately before the operator is applied. The actions also include add and delete

lists which specify propositions that become true or false in the state immediately

after the action is applied. For example, the (!navegate-vehicle ?person ?veh

?loc) operator has the following signature:

Operator :

(!navegate-vehicle ?person ?veh ?loc)

Preconditions :

(person ?person) (vehicle ?veh) (atloc ?veh ?vehloc)

(atloc ?person ?vehloc) (can-drive ?person ?veh)

(not (wrecked-car ?veh)

Delete list :

(atloc ?veh ?vehloc) (atloc ?person ?vehloc)

Add list :

(atloc ?veh ?loc) (atloc ?person ?loc)

The preconditions enforce constraints such as the ?person parameter actually

being a person, and the person and vehicle being collocated. The add and delete lists

change the person and vehicle location from the source to the destination. Leverag-

ing these descriptive operators, an automatic procedure can be used to traverse the

HTN plan tree in any test example, adding and removing propositions in each state

along the way, according to the planning operator definitions. This approach was

197

used as a pre-processing step to generate sequences of partial states to accompany

each testing example in the dataset. For instance, the following partial states were

reconstructed for the HTN plan tree example given above:

State 1 :

(PERSON, TDRIVER1) (VEHICLE, DTRUCK1)

Action 1 :

(!NAVEGATE-VEHICLE TDRIVER1 DTRUCK1 STRONG)

State 2 :

(ATLOC, TDRIVER1, STRONG) (VEHICLE, DTRUCK1)

(ATLOC, PERSON-30029, STRONG)

(PERSON, TDRIVER1) (ATLOC, DTRUCK1, STRONG)

Action 2 :

(!CLIMB-IN PERSON-30029 DTRUCK1)

State 3 :

(ATLOC, PERSON-30029, DTRUCK1) (ATLOC, TDRIVER1, STRONG)

(VEHICLE, DTRUCK1) (PERSON, TDRIVER1) (ATLOC, DTRUCK1, STRONG)

Action 3 :

(!NAVEGATE-VEHICLE TDRIVER1 DTRUCK1 PARK-RIDGE)

State 4 :

(ATLOC, PERSON-30029, DTRUCK1) (ATLOC, DTRUCK1, PARK-RIDGE)

(VEHICLE, DTRUCK1) (PERSON, TDRIVER1) (ATLOC, TDRIVER1, PARK-RIDGE)

Action 4 :

(!CLIMB-OUT PERSON-30029 DTRUCK1),

198

State 5 :

(ATLOC, PERSON-30029, PARK-RIDGE) (PERSON, TDRIVER1)

(ATLOC, DTRUCK1, PARK-RIDGE) (ATLOC, TDRIVER1, PARK-RIDGE)

(VEHICLE, DTRUCK1)

Action 5 :

(!TREAT-IN-HOSPITAL PERSON-30029 PARK-RIDGE)

Each state was paired with its corresponding low-level action, according to

the intention formalization described in Chapter 4, before being passed as input to

explain.

A.4 Anomalies in the Monroe Plan Corpus

There is a small collection of anomalous examples in the Monroe Plan Corpus,

where the parameters of child tasks apparently conflict with the parameters of their

parents. For example, the 1542nd example is:

((CLEAR-ROAD-TREE HENRIETTA-DUMP ROCHESTER-GENERAL)

((SET-UP-CONES HENRIETTA-DUMP ROCHESTER-GENERAL)

(!PLACE-CONES TCREW1))

((CLEAR-TREE TREE-10264971) (!CUT-TREE TCREW1 TREE-10264971)

((REMOVE-BLOCKAGE TREE-10264971)

(!CARRY-BLOCKAGE-OUT-OF-WAY TCREW1 TREE-10264971)))

((TAKE-DOWN-CONES HENRIETTA-DUMP ROCHESTER-GENERAL)

((GET-TO CCREW1 HENRIETTA-DUMP)

((GET-TO TTRUCK1 PITTSFORD-PLAZA)

((DRIVE-TO TTDRIVER1 TTRUCK1 PITTSFORD-PLAZA)

(!NAVEGATE-VEHICLE TTDRIVER1 TTRUCK1 PITTSFORD-PLAZA)))

((GET-IN CCREW1 TTRUCK1) (!CLIMB-IN CCREW1 TTRUCK1))

((GET-OUT CCREW1 TTRUCK1) (!CLIMB-OUT CCREW1 TTRUCK1)))

(!PICKUP-CONES CCREW1)))

199

The first GET-TO seeks to move CCREW1 to HENRIETTA-DUMP, but its sub-tree

apparently gets CCREW1 to PITTSFORD-PLAZA. The plaza is in Pittsford, not Henri-

etta; and it’s not in Rochester either, where ROCHESTER-GENERAL is. So these actions

do not seem to accomplish the top-level goal, and the propagation of parameters

from parent to children does not seem to match the method schema in the domain

definition. At least two other examples are similar: 1298 and 2114. They seem to

involve a common pattern of

(GET-TO

(GET-TO

GET-IN

GET-OUT))

where a crew simply gets in and out of a vehicle without navigating anywhere else.

A.5 RNN-specific Numerical Update Scheme

As described in Chapter 7, at a given point x(0) ∈ Γ(c), let z denote the tangent

vector to Γ(c). As shown in that chapter, if the Jacobian DF (c)(x(0)) is full rank,

then z is the unique (up to sign) unit vector satisfying

DF (c)(x(0))z = 0. (A.1)

The numerical step advances x(0) by a distance of θ∗ in the direction of z, resulting

in a new point x(θ∗) ∈ Γ(c). The update scheme accomplishes this by using Newton’s

method to solve

G(x(θ∗)) =

 0

θ∗

 (A.2)

200

for x(θ∗), seeded with x(0), where G : RN+1 → RN+1 is defined by

G(x)
def
=

 F (c)(x)

zT (x− x(0))

 . (A.3)

Eq. A.2 simultaneously maintains F (c)(x(θ∗)) = 0, which keeps x(θ∗) in Γ(c), and

enforces zT (x(θ∗)− x(0)) = θ∗, which moves the traversal forward by a distance of θ∗

in the tangent direction. This update is illustrated in Fig. 7.5.

As long as W is invertible, the step-size θ∗ can be determined rigorously with

strong formal guarantees. In particular, this section shows how to compute a θ∗

for which the numerical update is guaranteed to converge to the same point that

would have resulted from the mathematically ideal traversal : that is, the traversal

in which x(0) flows continuously along Γ(c), by a distance of θ∗, in the direction of

z. The conditions that θ∗ must satisfy for this to hold are provided by Theorem

6 below. For greater notational ease in the statement and proof of this theorem,

several auxiliary functions and quantities are defined as follows, some of which were

shown in Fig. 7.5.

First let λ denote the smallest singular value of DG(x(0))W̃−1, where DG is

the Jacobian of G and W̃ abbreviates W 0

0T 1

 . (A.4)

Next, given any ε > 0, define δi(ε) > 0 to be the largest δ such that for i ≤ N

and any x ∈ RN+1, if

|W̃i,:(x− x(0))| < δ, (A.5)

201

then

|σ′(W̃i,:x)− σ′(W̃i,:x
(0))| < ε. (A.6)

δi(ε) is used to determine a neighborhood around x(0) in which DG(x) remains close

to DG(x(0)), where “closeness” is measured by ε. Its computation is explained after

the statement of the theorem and illustrated in Fig. A.1.

Based on δi(ε), we can define several intermediate bounds used by the theorem:

• ∆i(ε)
def
= {x : |W̃i,:(x− x(0))| < δi(ε)},

• δ(ε) def
= mini δi(ε),

• ∆(ε)
def
= {x : ||W̃ (x− x(0))|| < δ(ε)},

• µ(ε)
def
= maxi maxx∈∆i(ε)

1
2
|σ′′(W̃i,:x)|,

• and ρ(ε)
def
= µ(ε)/(λ− ε).

Note that δi, δ, µ, and ρ are all positive for ε ∈ (0, λ).

Finally, define

Θ(ε)
def
=

1

||W̃z||
· δ(ε)

1 + ρ(ε)δ(ε)
, (A.7)

let

ε∗ = argmax
ε∈(0,λ)

Θ(ε), (A.8)

and let θ∗ = Θ(ε∗).

202

Theorem 6. Given fixed c and invertible W , let x(0) be any point in Γ(c). Suppose

DF (c)(x(0)) is full rank and z is the tangent vector spanning its null space. Then for

each θ ∈ [0, θ∗], there is a unique x(θ) ∈ ∆(ε∗) satisfying

G(x(θ)) =

 0

θ

 , (A.9)

and Newton’s method, when seeded with x(0) and used to solve Eq. (A.9), will con-

verge to x(θ). Moreover, the resulting bijection θ 7→ x(θ) is continuous on [0, θ∗].

In Theorem 6, each x(θ) solving Eq. (A.9) is a point in Γ(c) that lies a distance

of θ from x(0) in the direction of the tangent z. The fact that the map θ 7→ x(θ)

is a continuous bijection for all θ ∈ [0, θ∗] guarantees that the same x(θ) would

result from the mathematically ideal traversal where x flows continuously along Γ(c)

starting from x(0). The proof follows a common strategy of proving the IVT, based

on Newton’s method (e.g., [125, 140]). However, additional care is taken to keep

an explicit bound on the region of convergence as large as possible, capitalizing on

the specific characteristics of the network model studied here. In this proof the nth

iterate of Newton’s method is denoted x(n). Whereas we solve for x(θ∗) during fiber

traversal since it is the largest step-size with a formal guarantee, in this proof we

solve for x(θ), for an arbitrary θ ∈ [0, θ∗], to establish the guarantee.

Proof of Theorem 6. Let ρ∗, µ∗, δ∗,∆∗ abbreviate ρ(ε∗), µ(ε∗), δ(ε∗),∆(ε∗). By rear-

ranging Eq. (A.7), we get both

ρ∗||W̃z||θ∗ =
δ∗

δ∗ + 1/ρ∗
< 1 (A.10)

203

and

ρ∗||W̃z||θ∗

1− ρ∗||W̃z||θ∗
= ρ∗δ∗. (A.11)

Now consider any θ ∈ [0, θ∗]. Given Eq. (A.10), the left-hand side of Eq. (A.11) is

the closed form for a geometric series with ratio ρ∗||W̃z||θ∗. Combining with θ ≤ θ∗,

we have

1

ρ∗

∞∑
k=1

(ρ∗||W̃z||θ)k ≤ δ∗. (A.12)

Since r2k ≤ rk+1 for any positive r less than 1 and integer k ≥ 0, Eq. (A.12) implies

1

ρ∗

∞∑
k=0

(ρ∗||W̃z||θ)2k ≤ δ∗. (A.13)

We will bound the Newton iterates within ∆∗ using Eq. (A.13) as well as the

following bound on the derivatives of G. Let x be any point in ∆∗. Explicitly

differentiating G, we have

DG(x) =

 Σ′(x)W − I, −c

zT

 , (A.14)

where Σ′(x) abbreviates diagi≤N(σ′(W̃i,:x)). By adding and subtractingDG(x(0))W̃−1,

we have

DG(x)W̃−1 = DG(x(0))W̃−1 +

 (Σ′(x)− Σ′(x(0))) 0

0T 0

 . (A.15)

Since x ∈ ∆∗, we have

|W̃i,:(x− x(0))| ≤ ||W̃ (x− x(0))|| ≤ δ∗ ≤ δi(ε
∗) (A.16)

204

for all i ≤ N , which implies

max
i≤N
|σ′(W̃i,:x)− σ′(W̃i,:x

(0))| ≤ ε∗ < λ (A.17)

by the definition of δi and the constraint in Eq. (A.8) that ε∗ ∈ (0, λ). Therefore∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 (Σ′(x)− Σ′(x(0))) 0

0T 0


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ < ε∗ < λ, (A.18)

and combining with Eq. (A.15), we get

s∗ > λ− ε∗, (A.19)

where s∗ is the minimal singular value of DG(x)W̃−1.

We are now prepared to show that the Newton iterates converge. We will

prove by induction that

||W̃ (x(n+1) − x(n))|| ≤ (ρ∗||W̃z||θ)2n/ρ∗ (A.20)

for all iterates x(n). The induction relies on the formula for Newton iterations, which

can be expressed as 0

θ

−G(x(n)) = DG(x(n))(x(n+1) − x(n)). (A.21)

Eq. (A.21) is solved for x(n+1) on each iteration.

In the base case n = 0, writing Eq. (A.21) more explicitly, we have: 0

θ

 =

 DF (c)(x(0))

zT

 (x(1) − x(0)), (A.22)

205

which is solved by x(1) − x(0) = zθ, since z is a unit vector spanning the null space

of DF (c)(x(0)). Therefore

||W̃ (x(1) − x(0))|| = ||W̃z||θ = (ρ∗||W̃z||θ)20/ρ∗, (A.23)

and Eq. (A.20) is true with equality.

For the inductive case, suppose Eq. (A.20) is true for k ≤ n. Then we have

||W̃ (x(k) − x(0))|| ≤
k−1∑
j=0

||W̃ (x(j+1) − x(j))|| (A.24)

≤
k−1∑
j=0

(ρ∗||W̃z||θ)2j/ρ∗ (A.25)

≤ δ∗ (A.26)

where Eqs. (A.24-A.26) follow by the triangle inequality, the inductive hypothesis,

and Eq. (A.13), respectively. This shows that x(n) and x(n−1) are both in ∆∗.

Using x(n), x(n−1) ∈ ∆∗ we derive a recursive relation on the iterates as follows.

Recapitulating Eq. (A.21), the nth and (n + 1)th Newton iterates are computed

according to  0

θ

−G(x(n−1)) = DG(x(n−1))(x(n) − x(n−1)) (A.27)

 0

θ

−G(x(n)) = DG(x(n))(x(n+1) − x(n)). (A.28)

Subtracting (A.28) from (A.27) gives

G(x(n))−G(x(n−1)) = DG(x(n−1))(x(n) − x(n−1))−DG(x(n))(x(n+1) − x(n)).

(A.29)

206

By Taylor’s theorem [44], G(x(n))−G(x(n−1)) also satisfies

G(x(n))−G(x(n−1)) = DG(x(n−1))(x(n) − x(n−1)) +R(n−1), (A.30)

with second-order remainder term R(n−1). Substituting (A.29) into (A.30) and can-

celing terms leaves

−DG(x(n))(x(n+1) − x(n)) = R(n−1), (A.31)

and explicitly differentiating DG shows that for i ≤ N ,

R
(n−1)
i =

1

2
σ′′(W̃i,:x̃

(i,n))(W̃i,:(x
(n) − x(n−1)))2, (A.32)

where each x̃(i,n) is a weighted average of x(n) and x(n−1), and hence also in ∆∗. As

for i = N + 1, differentiation shows that R
(n−1)
N+1 = 0.

Inserting the product W̃−1W̃ = I in the left-hand side of Eq. (A.31) and

taking the norm of both sides, we have

||DG(x(n))W̃−1W̃ (x(n+1) − x(n))|| = ||R(n−1)||. (A.33)

From Eq. (A.19), this implies

(λ− ε∗)||W̃ (x(n+1) − x(n))|| ≤ ||R(n−1)||. (A.34)

To bound ||R(n−1)||, we first note that since each x̃(i,n) ∈ ∆∗, we have

maxi
1
2
σ′′(W̃i,:x̃

(i,n)) ≤ µ∗. Moreover, for any vector a, we have ||a||2 ≥ ||a2||, where

the exponent inside the norm is taken coordinate-wise. This is true because

(||a||2)2 =

(∑
i

a2
i

)2

=
∑
i

a4
i +

∑
i 6=j

a2
i a

2
j ≥

∑
i

a4
i = ||a2||2. (A.35)

207

Finally, ||R(n−1)|| = ||R(n−1)
1:N || since R

(n−1)
N+1 = 0. Therefore from Eqs. (A.32), (A.34),

and (A.35), we get

||W̃ (x(n+1) − x(n))|| ≤ µ∗

λ− ε∗
||W̃ (x(n) − x(n−1))||2 = ρ∗||W̃ (x(n) − x(n−1))||2.

(A.36)

Substituting from the inductive hypothesis on the right-hand side of Eq. (A.36), we

have

||W̃ (x(n+1) − x(n))|| ≤ ρ∗
(

(ρ∗||W̃z||θ)2n−1

)/ρ∗
)2

= (ρ∗||W̃z||θ)2n/ρ∗. (A.37)

Hence the induction goes through for all n. The consequence is that x(n) is a Cauchy

sequence, and therefore converges to a limit. It remains to show that the limit of

x(n) is in fact a solution x(θ) of

G(x(θ)) =

 0

θ

 (A.38)

that is unique in ∆∗, and that the associated map θ 7→ x(θ) is continuous.

To show that limn→∞ x
(n) is a solution of Eq. (A.38), we again take norms in

the Newton iteration formula, which gives∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 0

θ

−G(x(n))

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ ≤ ||DG(x(n))W̃−1|| · ||W̃ (x(n+1) − x(n))||. (A.39)

Since ||DG(x(n))W̃−1|| > λ − ε∗ > 0, whereas ||W̃ (x(n+1) − x(n))|| approaches 0, it

must be that ∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 0

θ

−G(x(n))

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (A.40)

208

also approaches 0 (and hence x(n) approaches a solution x(θ)).

For uniqueness, we take norms using the first-order Taylor theorem, which

shows for any x that

||G(x(θ))−G(x)|| = ||DG(x̃)W̃−1W̃ (x(θ) − x)|| (A.41)

≥ (λ− ε∗)||W̃ (x(θ) − x)||, (A.42)

where x̃ is a weighted average of x(θ) and x and hence in ∆∗. Therefore if ||G(x(θ))−

G(x)|| = 0, then it must be that ||W̃ (x(θ) − x)|| = 0. In other words, if G(x(θ)) =

G(x), then x(θ) = x.

Lastly, take any e > 0. To show continuity, we must find some d > 0, such

that for any θ̂ ∈ [0, θ∗],

|θ − θ̂| < d implies ||W (x(θ) − x(θ̂))|| < e. (A.43)

Taking x = x(θ̂) in Eq. (A.42), we obtain

||G(x(θ))−G(x(θ̂))|| ≥ (λ− ε∗)||W̃ (x(θ) − x(θ̂)||. (A.44)

Noting that ||G(x(θ)) − G(x(θ̂))|| = |θ − θ̂|, we find that setting d = e(λ − ε∗) is

sufficient.

The quantities δi(ε), µ(ε), and ρ(ε) can all be computed for any given ε with

elementary, albeit cumbersome, operations, based on the properties of σ. Since

σ′(r) = 1− σ2(r) for any r ∈ R, σ′ can be inverted as follows:

r = (σ′)−1(σ′(r)) = ±σ−1
(√

1− σ′(r)
)
. (A.45)

209

Figure A.1: Two examples of computing δi from ε, one in dashed lines and one in

dotted lines. First, σ′(W̃ix
(0))± ε is calculated (horizontal lines), representing end-

points of the range in which we want to bound σ′. Then, the calculated endpoints are

passed through (σ′)−1 (vertical lines), to obtain the endpoints of the corresponding

range in which we should bound W̃ix. These endpoints are subtracted from W̃ix
(0)

to obtain δi.

Using Eq. (A.45), δi(ε) can be computed as

δi(ε) = min

{∣∣∣∣±σ−1

(√
1− (σ′(W̃ix(0))± ε)

)
− W̃ix

(0)

∣∣∣∣ ,∞} , (A.46)

where the minimum is taken over all choices of ± that produce real-valued results

(e.g., the horizontal lines in Fig. A.1 that intersect the graph of σ′.). If none of the

choices do, then δi(ε) = ∞ signifies that any δi, no matter how large, satisfies the

definition of δi(ε) in Theorem 6. Two examples of this computation are illustrated

in Fig. A.1.

Differentiation shows that we can compute σ′′(r) directly as σ′′(r) = 2σ′(r)σ(r) =

2(1− σ2(r))σ(r). Moreover, the maximum of |σ′′(r)| over any interval either occurs

at one of the endpoints, or else is the global maximum of |σ′′(r)|, namely
√

16/27,

210

Figure A.2: Two examples of computing µ from δi(ε), one in dashed lines and one

in dotted lines. First, W̃ix
(0) ± δi is calculated to obtain the endpoints of ∆i. Then

each endpoint is passed through σ′′ to determine µ (vertical lines). 2µ is either the

greater of the two endpoints, or the global maximum of σ′′ if it is included in ∆i.

which occurs at r = σ−1(
√

1/3). So µ(ε) can be computed as

µ(ε) =
1

2


√

16/27 if σ−1(
√

1/3) ∈ ∆i(ε)

maxi

∣∣∣σ′′(W̃ix
(0) ± δi(ε))

∣∣∣ otherwise,

(A.47)

where the maxi is taken over each choice of sign for each i. This computation is

illustrated in Fig. A.2.

Once each δi and µ are computed, ρ can be computed directly from its defini-

tion. As for ε∗, it can be approximated reasonably well by evaluating Eq. (A.8) at

a modest number (16 in this work) of regularly spaced values of ε ∈ (0, λ), thereby

efficiently computing a step-size θ reasonably close to θ∗.

A corollary of Theorem 6 is that, while confined to ∆(ε∗), the directional fiber

cannot “double back” in the direction of −z (otherwise, there would be two distinct

x(θ) ∈ ∆(ε∗) for the same θ, contradicting the theorem). In other words, the new

211

tangent vector after the step should have a positive dot product with the previous

tangent vector before the step. This allows us to ensure that the numerical traversal

never inadvertently reverses direction from one step to the next. Specifically, we

can compute the new tangent vector after the step, denoted ẑ, by solving the linear

system  DF (x(θ))

zT

 ẑ =

 0

1

 (A.48)

for ẑ and then normalizing ẑ to unit magnitude. This ensures both that ẑ spans the

null space of DF (x(θ)), so that it is tangent to Γ(c) at x(θ), and also that zT ẑ > 0,

so that traversal continues in the right direction.

A.6 Counting Unique Fixed Points in Finite Precision

As described in Sect. 7.4.1.2, in order to accurately assess the performance of

traverse, it is important to accurately count the number of unique fixed points

found. Determining whether a point should be considered fixed, and whether two

fixed points should be considered identical or distinct, are non-trivial problems in

finite-precision arithmetic. The computed value of f(v) at “fixed points” was gen-

erally a few multiples of machine precision and rarely identically 0. Similarly, any

pair of “identical” fixed points were generally a few multiples of machine precision

apart, and rarely identically equal.

To decide whether a point should be considered fixed, a forward error analysis

212

of f yields the following upper bound:

|f(v)− f(v)| ≤ E(v), (A.49)

where

E(v)
def
= |W |ε(v) +Nε(|W ||v|) + 5ε(σ(Wv)) + ε(v) + max(ε(σ(Wv)), ε(v)), (A.50)

and where all operations (except matrix multiplication) are applied coordinate-wise,

and the inequality is true in every coordinate. The overbars denote the closest

finite-precision approximation to an infinite-precision value, and ε(·) denotes ma-

chine precision at a given finite-precision value. The coefficient of 5 bounds the

relative error of σ. Rather than inspecting the machine implementation of hyper-

bolic tangent, this coefficient was estimated empirically based on the evaluation

of σ(x) at 216 values of x uniformly sampled from [0, 1]. At a true fixed point v,

f(v) = 0, and |f(v) − f(v)| = |f(v) − 0| = |f(v)|, so any finite-precision point v

satisfying |f(v)| > E(v) can be rejected as certainly not fixed.

As a sanity check, histograms were computed of the relative errors at points

accepted and rejected as fixed according to this test. Specifically, define the relative

error RE as

RE(v)
def
= max

i
|fi(v)|/Ei(v), (A.51)

where the index i ranges over the coordinates of f (from 1 to N). The test rejects

v as certainly not within machine precision of a true fixed point if RE(v) > 1.

Otherwise it accepts v as potentially within machine precision of a true fixed point.

213

2-8 2-6 2-4 2-2 20100

101

102

#
 o

f
p
o
in

ts

N = 10

2-8 2-6 2-4 2-2 20100

101

102

103 N = 64

2-8 2-6 2-4 2-2 20100

101

#
 o

f
p
o
in

ts

2-8 2-6 2-4 2-2 20100

101

102

103

2-8 2-6 2-4 2-2 20100

101

102

#
 o

f
p
o
in

ts

2-8 2-6 2-4 2-2 20100

101

102

103

2-8 2-6 2-4 2-2 20100

101

102

#
 o

f
p
o
in

ts

2-8 2-6 2-4 2-2 20100

101

102

103

2-8 2-6 2-4 2-2 20

Relative Error

100

101

102

#
 o

f
p
o
in

ts

2-8 2-6 2-4 2-2 20

Relative Error

100

101

102

103

Figure A.3: Histograms of relative errors RE(v) at points found by fiber traversal.

Each and every fixed point was accepted as fixed by a large margin.

RE can be extremely large since E(v) is generally near machine precision, but when

v is not fixed f(v) can be much larger than machine precision.

Each panel in Fig. A.3 shows the relative errors at “fixed” points found by a

single fiber traversal on a single network. The left column contains panels for five

networks with N = 10 and the right column contains panels for five networks with

N = 64. The histograms show that each and every point identified by fiber traversal

was accepted as fixed, by a wide margin, demonstrating that the theoretical results

and error analysis are highly consistent.

Each panel in Fig. A.4 shows the results for the baseline solver described in

214

2-10 20 210 220 230 240 250100

101

102

103

#
 o

f p
oi

nt
s

N = 10

2-10 20 210 220 230 240 250100

101

102

103

104 N = 64

2-10 20 210 220 230 240 250100

101

102

103

#
 o

f p
oi

nt
s

2-10 20 210 220 230 240 250100
101
102
103
104
105

2-10 20 210 220 230 240 250100

101

102

103

#
 o

f p
oi

nt
s

2-10 20 210 220 230 240 250100
101
102
103
104
105

2-10 20 210 220 230 240 250100

101

102

103

#
 o

f p
oi

nt
s

2-10 20 210 220 230 240 250100

101

102

103

104

2-10 20 210 220 230 240 250

Baseline Relative Error

100

101

102

103

#
 o

f p
oi

nt
s

2-10 20 210 220 230 240 250

Baseline Relative Error

100
101
102
103
104
105

Figure A.4: Histograms of relative errors RE(v) at points found by the baseline

fixed point solver, colored according to whether they were accepted as fixed (white

bars) or rejected as not fixed (black bars).

Chapter 7 on a single network. As in Fig. A.3, the left column shows five networks

with N = 10 and the right shows five networks with N = 64. The baseline solver can

locate either fixed points or so-called “slow” points that are not fixed but are local

minima of ||f(v)||. Points accepted as fixed are shown in white and points rejected

as not fixed are shown in black. Although the distinction was typically clear cut,

there were some edge cases which call the fidelity of the error analysis into question

215

(middle panel on left, second panel from top on right). However, it is important to

note that these histograms are shown with a log-scale on the y-axis. When shown

normally, the edge cases are mostly invisible.

Nevertheless, some of the results in Sect. 7.4 rely on an accurate comparison

of fiber traversal with the baseline solver. In particular, the results therein rely on

the metrics |T −B| and |B−T |, where T is the set of fixed points found by traversal

and B is the set of points found by the baseline. |T − B| measures the number of

points that were found by the former but not the latter, and vice versa for |B − T |.

The edge cases in these histograms raise the question of whether allegedly larger

values of |T −B| than |B − T | are in fact artifacts of a flawed error analysis.

To dispel these concerns, the results were quantitatively inspected for each

questionable histogram. For example, consider the second histogram from top in

the right column of Fig. A.4. On this network, |T−B| and |B−T | were measured to

be 694 and 476, respectively. Let us assume an inordinate worst case and suppose

that every point in the histogram bins ranging all the way from RE = 20 to 220

was actually fixed and incorrectly classified as “not fixed” by the rejection test.

Additionally let us even suppose that each point in these bins was a distinct fixed

point with no duplicates. Even then, these bins contain only 86 points, which

cannot account for even half of the difference |T −B|−|B−T |. The same check was

performed on every network with size N ∈ {24, 32, 48, 64} (where it was claimed

that |T −B| was significantly larger than |B − T |), again using the generous cap of

220. On average, the number of points in the questionable bins was only 27.7% of

|T − B| − |B − T |. So we can be quite confident that the results reported in Sect.

216

7.4 are essentially correct.

As justified empirically in Sect. 7.4.1.2, given two points v(1) and v(2) that had

both been classified as fixed, they were considered duplicates only if

max
i
|v(1)
i − v

(2)
i | < 2−21. (A.52)

Based on this test, unique fixed points are extracted from a set with duplicates

as follows. First, an adjacency graph is formed, where two points are adjacent if

they were detected as duplicates. Next, the connected components of the graph

are identified. Finally, one representative unique fixed point is chosen from each

connected graph component.

217

Bibliography

[1] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aer-
obatics through apprenticeship learning. The Intl. Jrnl. of Robotics Research,
29(13):1608–1639, 2010.

[2] M. F. Afzal and A. A. Minai. Reliable storage and recall of aperiodic spa-
tiotemporal activity patterns using scaffolded attractors. In 2016 Intl. Joint
Conf. on Neural Networks, pages 2047–2054, July 2016.

[3] Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and Yoshua Bengio. A neural
knowledge language model. arXiv preprint arXiv:1608.00318, 2016.

[4] Sreeram VB Aiyer, Mahesan Niranjan, and Frank Fallside. A theoretical
investigation into the performance of the Hopfield model. IEEE Trans. on
Neural Networks, 1(2):204–215, 1990.

[5] Ron Alford, Vikas Shivashankar, Mark Roberts, Jeremy Frank, and David W
Aha. Hierarchical planning: Relating task and goal decomposition with task
sharing. In IJCAI, pages 3022–3029, 2016.

[6] Eugene L Allgower and Kurt Georg. Numerical path following. Handbook of
Numerical Analysis, 5(3):207, 1997.

[7] Daniel J Amit. Modeling brain function: The world of attractor neural net-
works. Cambridge University Press, 1992.

[8] John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass, Christian
Lebiere, and Yulin Qin. An integrated theory of the mind. Psychological
Review, 111(4):1036, 2004.

[9] Marcin Andrychowicz and Karol Kurach. Learning efficient algorithms with hi-
erarchical attentive memory. In 1st Workshop on Neural Abstract Machines &
Program Induction (NAMPI), Neural Information Processing Systems, 2016.

[10] Brenna Argall, Brett Browning, and Manuela Veloso. Learning mobile robot
motion control from demonstrated primitives and human feedback. In Robotics
Research, pages 417–432. Springer, 2011.

218

[11] D. Baldwin and J. Baird. Discerning intentions in dynamic human action.
Trends in Cog. Sciences, 5(4):171–178, 2001.

[12] João José Oliveira Barros, Vı́tor Manuel Ferreira dos Santos, and Filipe Miguel
Teixeira Pereira da Silva. Bimanual haptics for humanoid robot teleoperation
using ROS and V-REP. In Intl. Conf. on Auton. Robot Sys. and Competitions,
pages 174–179. IEEE, 2015.

[13] Mathias Bauer and Gabriele Paul. Logic-based plan recognition for intelligent
help systems. In Current Trends in AI Planning: EWSP, pages 60–73, 1993.

[14] R Ben-Yishai, R Lev Bar-Or, and H Sompolinsky. Theory of orientation
tuning in visual cortex. Proceedings of the National Academy of Sciences,
92(9):3844–3848, 1995.

[15] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. Robot
programming by demonstration. In Springer handbook of robotics, pages 1371–
1394. Springer, 2008.

[16] Aude Billard and Daniel Grollman. Imitation learning in robots. In Encyclo-
pedia of the Sciences of Learning, pages 1494–1496. Springer, 2012.

[17] Aude G Billard, Sylvain Calinon, and Rüdiger Dillmann. Learning from hu-
mans. In Springer Handbook of Robotics, pages 1995–2014. Springer, 2016.

[18] N. Blaylock and J. Allen. Generating artificial corpora for plan recognition.
In Intl. Conf. on User Modeling, pages 179–188. Springer, 2005.

[19] N. Blaylock and J. Allen. Hierarchical instantiated goal recognition. In AAAI
Workshop on Modeling Others from Observations, 2006.

[20] Jehoshua Bruck and Vwani P Roychowdhury. On the number of spurious mem-
ories in the Hopfield model. IEEE Trans. on Information Theory, 36(2):393–
397, 1990.

[21] Sandra Carberry. Techniques for plan recognition. User Modeling and User-
Adapted Interaction, 11(1-2):31–48, 2001.

[22] Eugene Charniak and Robert P Goldman. A bayesian model of plan recogni-
tion. Artificial Intelligence, 64(1):53–79, 1993.

[23] Eugene Charniak and Solomon Eyal Shimony. Cost-based abduction and map
explanation. Artificial Intelligence, 66(2):345–374, 1994.

[24] Antonio Chella, Haris Dindo, and Ignazio Infantino. A cognitive framework for
imitation learning. Robotics and Autonomous Systems, 54(5):403–408, 2006.

[25] Antonio Chella, Haris Dindo, and Ignazio Infantino. Learning high-level tasks
through imitation. In Intl. Conf. on Intelligent Robots and Sys., pages 3648–
3654. IEEE, 2006.

219

[26] Shui Nee Chow, John Mallet-Paret, and James A Yorke. Finding zeroes of
maps: Homotopy methods that are constructive with probability one. Math.
of Comp., 32(143):887–899, 1978.

[27] Michael Jae-Yoon Chung, Marcellus Forbes, Maya Cakmak, and Rajesh PN
Rao. Accelerating imitation learning through crowdsourcing. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 4777–
4784. IEEE, 2014.

[28] Michael Jae-Yoon Chung, Abram L Friesen, Dieter Fox, Andrew N Meltzoff,
and Rajesh PN Rao. A Bayesian developmental approach to robotic goal-based
imitation learning. PloS one, 10(11):e0141965, 2015.

[29] Gil Citro, Gordon Banks, and Gregory Cooper. Inkblot: a neurological diag-
nostic decision support system integrating causal and anatomical knowledge.
Artificial Intelligence in Medicine, 10(3):257–267, 1997.

[30] Helen Couclelis. The abduction of geographic information science: transport-
ing spatial reasoning to the realm of purpose and design. In Spatial Information
Theory, pages 342–356. Springer, 2009.

[31] Daniel Crevier. AI: The tumultuous history of the search for artificial intelli-
gence. Basic Books, 1993.

[32] Stanislas Dehaene and Jean-Pierre Changeux. A hierarchical neuronal net-
work for planning behavior. Proceedings of the National Academy of Sciences,
94(24):13293–13298, 1997.

[33] Gerald DeJong and Raymond Mooney. Explanation-based learning: An alter-
native view. Machine learning, 1(2):145–176, 1986.

[34] Travis DeVautl, Seth Forrest, Ian Tanimoto, Terence Soule, and Robert Heck-
endorn. Learning from demonstration for distributed, encapsulated evolution
of auton. outdoor robots. In Proc. of the Comp. Pub. of the Annl. Conf. on
Genetic and Evolutionary Computation, pages 1381–1382. ACM, 2015.

[35] Haris Dindo, Antonio Chella, Giuseppe La Tona, Monica Vitali, Eric Nivel,
and Kristinn R Thórisson. Learning problem solving skills from demonstra-
tion. In Intl. Conf. on AGI, pages 194–203. Springer, 2011.

[36] D. Doran, S. Schulz, and T. R. Besold. What Does Explainable AI Re-
ally Mean? A New Conceptualization of Perspectives. arXiv preprint
arXiv:1710.00794, 2017.

[37] Kutluhan Erol, Dana S Nau, and Venkatramana S Subrahmanian. Complex-
ity, decidability and undecidability results for domain-independent planning.
Artificial Intelligence, 76(1):75–88, 1995.

220

[38] Jerome Feldman. The neural binding problem (s). Cognitive neurodynamics,
7(1):1–11, 2013.

[39] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial intelligence, 2(3):189–208,
1972.

[40] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for
physical interaction through video prediction. In Advances in Neural Infor-
mation Processing Systems, pages 64–72, 2016.

[41] Tesca Fitzgerald, Ashok K Goel, and Andrea L Thomaz. Representing skill
demonstrations for adaptation and transfer. In AAAI Symposium on Knowl-
edge, Skill, and Behavior Transfer in Autonomous Robots, 2014.

[42] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM,
5(6):345, 1962.

[43] L. Fogassi, P.F. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, and G. Rizzolatti.
Parietal lobe: from action organization to intention understanding. Science,
308:662–667, 2005.

[44] Gerald B Folland. Advanced Calculus. Prentice Hall, 2002.

[45] Abram L Friesen and Rajesh PN Rao. Imitation learning with hierarchical
actions. In Intl. Conf. on Devel. and Learning, pages 263–268. IEEE, 2010.

[46] Christopher W Geib and Robert P Goldman. A probabilistic plan recognition
algorithm based on plan tree grammars. AI, 173(11):1101–1132, 2009.

[47] R. J. Gentili, H. Oh, D.-W. Huang, G. E. Katz, R. H. Miller, and J. A.
Reggia. Towards a multi-level neural architecture that unifies self-intended and
imitated arm reaching performance. In Proc. of the 36th Annu. Intl. Conf. of
the IEEE Engineering in Medicine and Biol. Society, pages 2537–2540. IEEE,
2014.

[48] Rodolphe J Gentili, Hyuk Oh, Javier Molina, James A Reggia, and José L
Contreras-Vidal. Cortex inspired model for inverse kinematics computation
for a humanoid robotic finger. In 2012 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society., volume 2012, page
3052. NIH Public Access, 2012.

[49] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory
& Practice. Elsevier, 2004.

[50] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning and
Acting. Cambridge University Press, 2016.

221

[51] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[52] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefen-
stette, Tiago Ramalho, John Agapiou, et al. Hybrid computing using a neural
network with dynamic external memory. Nature, 538(7626):471–476, 2016.

[53] P. Haikonen. The Cognitive Approach to Conscious Machines. Imprint Aca-
demic, 2003.

[54] Alex Hern. Stephen Hawking: AI will be ‘either best or worst thing’ for
humanity. The Guardian, October 2016.

[55] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[56] Chad Hogg, Ugur Kuter, and Hector Munoz-Avila. Learning methods to
generate good plans. In AAAI, 2010.

[57] Jun Hong. Goal recognition through goal graph analysis. Journal of Artificial
Intelligence Research, 15:1–30, 2001.

[58] John J Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proc. of the Natl. Acad. of Sci., 79(8):2554–2558,
1982.

[59] John J Hopfield and David W Tank. Neural comp. of decisions in optimization
problems. Biol. Cybernetics, 52(3):141–152, 1985.

[60] Osamu Hoshino, Noriaki Usuba, Yoshiki Kashimori, and Takeshi Kambara.
Role of itinerancy among attractors as dynamical map in distributed coding
scheme. Neural Networks, 10(8):1375–1390, 1997.

[61] D.-W. Huang, G. E. Katz, J. D. Langsfeld, R. J. Gentili, and J. A. Reggia. A
virtual demonstrator environment for robot imitation learning. In IEEE Intl.
Conf. on Technologies for Practical Robot Applications (TePRA), pages 1–6.
IEEE, 2015.

[62] D.-W. Huang, G. E. Katz, J. D. Langsfeld, H. Oh, R. J. Gentili, and J. A.
Reggia. An object-centric paradigm for robot programming by demonstration.
In Schmorrow, D. D., Fidopiastis, M. C. (eds.) Foundations of Augmented
Cognition 2015 LNCS, volume 9183, pages 745–756. Springer Intl. Publishing,
2015.

[63] Di-Wei Huang, Rodolphe J Gentili, Garrett E Katz, and James A Reggia.
A limit-cycle self-organizing map architecture for stable arm control. Neural
Networks, 85:165–181, 2017.

222

[64] Di-Wei Huang, Garrett E Katz, Joshua D Langsfeld, Hyuk Oh, Rodolphe J
Gentili, and James A Reggia. An object-centric paradigm for robot program-
ming by demonstration. In Intl. Conf. on Augmented Cog., pages 745–756.
Springer, 2015.

[65] M. Iacoboni, I. Molnar-Szakacs, V. Gallese, G. Buccino, J.C. Mazziotta, and
G. Rizzolatti. Grasping the intentions of others with ones own mirror neuron
system. PLoS Biol., 3(e79), 2005.

[66] Bart Jansen and Tony Belpaeme. A computational model of intention reading
in imitation. Robotics and Auton. Sys., 54(5):394–402, 2006.

[67] Garrett E Katz, Di-Wei Huang, Rodolphe Gentili, and James Reggia. Imita-
tion learning as cause-effect reasoning. In Intl. Conf. on AGI, pages 64–73.
Springer, 2016.

[68] Garrett E Katz, Di-Wei Huang, Rodolphe Gentili, and James Reggia. An
empirical characterization of parsimonious intention inference for cognitive-
level imitation learning. In Proc. of the Intl. Conf. on A. I., pages 83–89.
CSREA Press, 2017.

[69] Garrett E Katz, Di-Wei Huang, Theresa Huage, Rodolphe Gentili, and James
Reggia. A novel parsimonious cause-effect reasoning algorithm for robot imi-
tation and plan recognition. IEEE Trans. on Cog. and Devel. Sys., 2017.

[70] Garrett E Katz and James A Reggia. Identifying fixed points in recurrent
neural networks using directional fibers: Supplemental material on theoretical
results and practical aspects of numerical traversal. Technical Report CS-TR-
5051, Univ. of MD, College Park, December 2016.

[71] Garrett E Katz and James A Reggia. Using directional fibers to locate fixed
points of recurrent neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 2017. (accepted).

[72] Henry A Kautz and James F Allen. Generalized plan recognition. AAAI,
86(3237):5, 1986.

[73] R Baker Kearfott. Rigorous global search: continuous problems, volume 13.
Springer Science & Business Media, 2013.

[74] Steven G Krantz and Harold R Parks. The implicit function theorem: history,
theory, and applications. Springer Sci. & Business Media, 2012.

[75] John E Laird. Extending the SOAR cognitive architecture. Frontiers in Ar-
tificial Intelligence and Applications, 171:224, 2008.

[76] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. arXiv preprint arXiv:1504.00702, 2015.

223

[77] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre
Quillen. Learning hand-eye coordination for robotic grasping with deep learn-
ing and large-scale data collection. The International Journal of Robotics
Research, 2016.

[78] Nan Li, Subbarao Kambhampati, and Sungwook Yoon. Learning probabilistic
hierarchical task networks to capture user preferences. In International Joint
Conference on Artificial Intelligence, 2009.

[79] James MacGlashan and Michael L Littman. Between imitation and intention
learning. In IJCAI, pages 3692–3698, 2015.

[80] Edwin Mandfield. The diffusion of industrial robots in Japan and the United
States. Research Policy, 18(4):183–192, 1989.

[81] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome.
Context-dependent computation by recurrent dynamics in prefrontal cortex.
Nature, 503(7474):78–84, 2013.

[82] Ben Leon Meadows, Pat Langley, and Miranda Jane Emery. Seeing beyond
shadows: Incremental abductive reasoning for plan understanding. In AAAI
Workshop: Plan, Activity, and Intent Recognition, volume 13, page 13, 2013.

[83] A. Meltzoff and A. Moore. Imitation of facial and manual gestures by human
neonates. Science, 198(4312):75–78, 1977.

[84] Tom M Mitchell, Richard M Keller, and Smadar T Kedar-Cabelli.
Explanation-based generalization: A unifying view. Machine learning,
1(1):47–80, 1986.

[85] Anahita Mohseni-Kabir, Charles Rich, Sonia Chernova, Candace L Sidner,
and Daniel Miller. Interactive hierarchical task learning from a single demon-
stration. In Proceedings of the Tenth Annual ACM/IEEE International Con-
ference on Human-Robot Interaction, pages 205–212. ACM, 2015.

[86] David Z. Morris. Elon Musk says artificial intelligence is the ‘greatest risk we
face as a civilization’. Fortune, July 2017.

[87] Igor Mozetič. Hierarchical model-based diagnosis. International Journal of
Man-Machine Studies, 35(3):329–362, 1991.

[88] Dana Nau, T-C Au, Okhtay Ilghami, Ugur Kuter, Dan Wu, Fusun Yaman,
Héctor Muñoz-Avila, and J William Murdock. Applications of SHOP and
SHOP2. IEEE Intelligent Systems, 20(2):34–41, 2005.

[89] Dana S Nau, Malik Ghallab, and Paolo Traverso. Blended planning and act-
ing: Preliminary approach, research challenges. In Proceedings Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

224

[90] Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural program-
mer: Inducing latent programs with gradient descent. arXiv preprint
arXiv:1511.04834, 2015.

[91] João Pedro Neto, Hava T Siegelmann, and J Félix Costa. Symbolic processing
in neural networks. Journal of the Brazilian Computer Society, 8(3):58–70,
2003.

[92] H. Oh. A multiple representations model of the human mirror neuron sys-
tem for learned action imitation (doctoral dissertation). 2015. University of
Maryland, College Park.

[93] H. Oh, R. J. Gentili, J. A. Reggia, and J. L. Contreras-Vidal. Modeling
of visuospatial perspectives processing and modulation of the fronto-parietal
network activity during action imitation. In 2012 Annu. Intl. Conf. of the
IEEE Engineering in Medicine and Biol. Society, pages 2551–2554. IEEE,
2012.

[94] Erhan Oztop, Daniel Wolpert, and Mitsuo Kawato. Mental state inference
using visual control parameters. Cog. Brain Research, 22(2):129–151, 2005.

[95] Charles Sanders Peirce. The Essential Peirce: Selected Philosophical Writings,
volume 2. Indiana University Press, 1998.

[96] Yun Peng and James A Reggia. Diagnostic problem-solving with causal chain-
ing. International Journal of Intelligent Systems, 2(3):265–302, 1987.

[97] Yun Peng and James A Reggia. A probabilistic causal model for diagnostic
problem solving - part i: Integrating symbolic causal inference with numeric
probabilistic inference. IEEE Transactions on Systems, Man and Cybernetics,
17(2):146–162, 1987.

[98] Yun Peng, James A Reggia, et al. Abductive Inference Models for Diagnostic
Problem-Solving. Springer-Verlag New York, 1990.

[99] Gualtiero Piccinini. Some neural networks compute, others dont. Neural
networks, 21(2):311–321, 2008.

[100] David Poole. Explanation and prediction: an architecture for default and
abductive reasoning. Computational Intelligence, 5(2):97–110, 1989.

[101] Robert F Port and Timothy Van Gelder. Mind as Motion: Explorations in
the Dynamics of Cognition. MIT press, 1995.

[102] C Puente, MD López, J Rodrigo, and JA Olivas. Weighted graphs to model
causality. In Proc. of the Intl. Conf. on A. I., pages 297–301. CSREA Press,
2017.

225

[103] Mikhail I Rabinovich, Ramón Huerta, Pablo Varona, and Valentin S
Afraimovich. Transient cognitive dynamics, metastability, and decision mak-
ing. PLoS Comput. Biol., 4(5):e1000072, 2008.

[104] S. Raghavan and R. J. Mooney. Bayesian abductive logic programs. In Proc.
of the 10th AAAI Workshop on Statistical Relational A. I., pages 82–87, 2010.

[105] Scott Reed and Nando de Freitas. Neural programmer-interpreters. In 4th
International Conference on Learning Representations (ICLR), 2016.

[106] James A Reggia, Di-Wei Huang, and Garrett E Katz. Exploring the compu-
tational explanatory gap. Philosophies, 2(1):5, 2017.

[107] James A Reggia, Garrett E Katz, and Di-Wei Huang. What are the compu-
tational correlates of consciousness? Biologically Inspired Cognitive Architec-
tures, 17:101–113, 2016.

[108] James A Reggia, Derek Monner, and Jared Sylvester. The computational
explanatory gap. Journal of Consciousness Studies, 21(9-10):153–178, 2014.

[109] Raymond Reiter. The frame problem in the situation calculus: A simple
solution (sometimes) and a completeness result for goal regression. Artificial
intelligence and mathematical theory of computation: papers in honor of John
McCarthy, 27:359–380, 1991.

[110] Mohammad Taghi Saffar, Mircea Nicolescu, Monica Nicolescu, and Banafsheh
Rekabdar. Intent understanding using an activation spreading architecture.
Robotics, 4(3):284–315, 2015.

[111] Arthur Sard et al. The measure of the critical values of differentiable maps.
Bull. Amer. Math. Soc, 48(12):883–890, 1942.

[112] Paulo Shakarian and VS Subrahmanian. Geospatial Abduction: Principles and
Practice. Springer, 2011.

[113] Murray Shanahan. Robotics and the common sense informatic situation. In
ECAI, pages 684–688. PITMAN, 1996.

[114] Vikas Shivashankar, Ron Alford, Ugur Kuter, and Dana Nau. The GoDeL
planning system: a more perfect union of domain-independent and hierarchical
planning. In Proceedings of the Twenty-Third international joint conference
on Artificial Intelligence, pages 2380–2386. AAAI Press, 2013.

[115] Vikas Shivashankar, Krishnanand N Kaipa, Dana S Nau, and Satyandra K
Gupta. Towards integrating hierarchical goal networks and motion planners to
support planning for human-robot teams. 2014. [Online; http://www.cs.umd.
edu/~nau/papers/shivashankar2014towards.pdf; accessed 8-July-2014].

226

http://www.cs.umd.edu/~nau/papers/shivashankar2014towards.pdf
http://www.cs.umd.edu/~nau/papers/shivashankar2014towards.pdf

[116] Vikas Shivashankar, Ugur Kuter, Dana Nau, and Ron Alford. A hierarchical
goal-based formalism and algorithm for single-agent planning. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent
Systems, volume 2, pages 981–988. International Foundation for Autonomous
Agents and Multiagent Systems, 2012.

[117] Patrick Simen, MK van Vugt, Fuat Balci, David Freestone, and Thad Polk.
Toward an analog neural substrate for production systems. In Proceedings of
the International Conference in Cognitive Modeling. Citeseer, 2010.

[118] Parag Singla and Raymond J Mooney. Abductive markov logic for plan recog-
nition. In AAAI, 2011.

[119] Daniel Soudry and Yair Carmon. No bad local minima: Data indepen-
dent training error guarantees for multilayer neural networks. arXiv preprint
arXiv:1605.08361, 2016.

[120] David Sussillo and Omri Barak. Opening the black box: low-dimensional
dynamics in high-dimensional recurrent neural networks. Neural computation,
25(3):626–649, 2013.

[121] Jared Sylvester. Neurocomputational methods for autonomous cognitive con-
trol (doctoral dissertation). 2014. University of Maryland, College Park.

[122] Jared Sylvester and James Reggia. Engineering neural systems for high-level
problem solving. Neural Networks, 79:37–52, 2016.

[123] J.C. Sylvester, J.A. Reggia, S.A. Weems, and M.F. Bunting. Controlling
working memory with learned instructions. Neural Networks, 41(0):23–38,
2013. Special Issue on Autonomous Learning.

[124] Austin Tate. Generating project networks. In Proceedings of the 5th inter-
national joint conference on Artificial intelligence-Volume 2, pages 888–893.
Morgan Kaufmann Publishers Inc., 1977.

[125] Michael Taylor. The inverse function theorem via Newton’s method. http:

//www.unc.edu/math/Faculty/met/invfn.pdf. Accessed: 2016-11-21.

[126] D. Tecuci and B. Porter. Memory based goal schema recognition. In Proc. of
the 22nd Florida A.I. Research Society Conf., 2009.

[127] David S Touretzky. Boltzcons: Dynamic symbol structures in a connectionist
network. Artificial Intelligence, 46(1):5–46, 1990.

[128] David S Touretzky and Geoffrey E Hinton. A distributed connectionist pro-
duction system. Cognitive Science, 12(3):423–466, 1988.

[129] Reiko Tsuneto, Kutluhan Erol, James Hendler, and Dana Nau. Commitment
strategies in hierarchical task network planning. In NCAI, pages 536–542,
1996.

227

http://www.unc.edu/math/Faculty/met/invfn.pdf
http://www.unc.edu/math/Faculty/met/invfn.pdf

[130] Stanley Tuhrim, James Reggia, and Sharon Goodall. An experimental study
of criteria for hypothesis plausibility. Jrnl. of Experimental & Theoretical AI,
3(2):129–144, 1991.

[131] Michael Van Lent, William Fisher, and Michael Mancuso. An explainable
artificial intelligence system for small-unit tactical behavior. In Proceedings
of the National Conference on Artificial Intelligence, pages 900–907. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2004.

[132] Pablo Varona and Mikhail I Rabinovich. Hierarchical dynamics of informa-
tional patterns and decision-making. Proc. R. Soc. B, 283(1832), 2016.

[133] Deepak Verma and Rajesh PN Rao. Imitation learning using graphical models.
In European Conf. on Machine Learning, pages 757–764. Springer, 2007.

[134] Marc B Vilain. Getting serious about parsing plans. In AAAI, pages 190–197,
1990.

[135] Jacques Wainer and Alexandre de Melo Rezende. A temporal extension to the
parsimonious covering theory. Artificial Intelligence in Medicine, 10(3):235–
255, 1997.

[136] H. Wang, Q. Li, J. Yoo, and Y. Choe. Dynamical analysis of recurrent neural
circuits in articulated limb controllers for tool use. In 2016 Intl. Joint Conf.
on Neural Networks, pages 4339–4345, July 2016.

[137] Terry Winograd. Procedures as a representation for data in a computer pro-
gram for understanding natural language. Technical report, Massachusetts
Institute of Technology, 1971.

[138] Alexander N Wittig. Rigorous High-Precision Enclosures of Fixed Points and
Their Invariant Manifolds. PhD thesis, Michigan State University, 2012.

[139] Yan Wu, Yanyu Su, and Yiannis Demiris. A morphable template framework
for robot learning by demonstration. RAS, 62(10):1517–1530, 2014.

[140] Wang Xinghua. Convergence of Newton’s method and inverse function theo-
rem in Banach space. Mathematics of Computation of the American Mathe-
matical Society, 68(225):169–186, 1999.

[141] Qiang Yang, Rong Pan, and Sinno Jialin Pan. Learning recursive HTN-method
structures for planning. In Proc. of the ICAPS Workshop on AI Planning and
Learning, 2007.

[142] Yezhou Yang, Anupam Guha, Cornelia Fermüller, and Yiannis Aloimonos. A
cognitive system for understanding human manipulation actions. Advances in
Cognitive Sysytems, 3:67–86, 2014.

228

[143] Yezhou Yang, Yi Li, Cornelia Fermüller, and Yiannis Aloimonos. Robot learn-
ing manipulation action plans by “watching” unconstrained videos from the
world wide web. In AAAI, pages 3686–3693, 2015.

[144] Konstantinos Zampogiannis, Yezhou Yang, Cornelia Fermüller, and Yiannis
Aloimonos. Learning the spatial semantics of manipulation actions through
preposition grounding. In Robotics and Automation (ICRA), 2015 IEEE In-
ternational Conference on, pages 1389–1396. IEEE, 2015.

[145] Zhigang Zeng and Jun Wang. Multiperiodicity of discrete-time delayed neural
networks evoked by periodic external inputs. IEEE Trans. on Neural Networks,
17(5):1141–1151, 2006.

[146] Huaguang Zhang, Zhanshan Wang, and Derong Liu. A comprehensive review
of stability analysis of continuous-time recurrent neural networks. IEEE Trans.
on Neural Networks and Learning Sys., 25(7):1229–1262, 2014.

229

	Abstract
	Title Page
	Copyright
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem Statement
	Objectives
	Overview

	Background
	Imitation Learning
	Causal Inference
	Abductive Inference
	Automated Planning
	Plan Recognition

	Neural Network Transparency and Control

	The CERIL architecture
	A Running Example: Hard Drive Maintenance
	Recording Demonstrations
	Learning New Skills by Inferring Intentions
	Transferring Learned Skills to New Situations
	Post-Learning Imitation and Generalization
	Encoding Background Knowledge

	Causal Reasoning Algorithms for Inferring Intent
	Formalizing Causal Knowledge
	Formalizing Parsimonious Explanation
	Parsimonious Covering Algorithms
	Theoretical Results

	Experimental Validation
	Overall System Performance
	Imitation Learning Trials
	Monroe Plan Corpus Experiments

	Empirical Comparison of Parsimony Criteria
	Parsimony Criteria Considered
	Testing Data and Performance Metrics
	Learning Novel Intention Sequences in the Monroe Domain
	Results
	Discussion

	Causal explanation of planned actions
	CERIL's XAI Mechanism
	Causal Plan Graphs
	Justifying Actions with Causal Chains
	Graphical User Interface
	Initial Experimental Results
	Discussion

	Locating Fixed Points in Neural Networks
	Fixed Points of Neural Attractor Dynamics
	Theoretical Groundwork
	Notation
	Directional Fibers
	A Fiber-Based Fixed Point Solver
	The traverse Update Scheme

	Application to Recurrent Neural Networks
	Neural Network Model
	Applying traverse
	Topological Sensitivity of Directional Fibers

	Computer Experiments
	Experimental Methods
	Comparison with a Baseline Solver
	Comparison of Different Directional Fibers

	Discussion

	Discussion
	Summary
	Contributions
	Limitations and Future Work

	Appendix
	Dock Maintenance Causal Relations
	Monroe County Corpus Causal Relations
	State Reconstruction in the Monroe Corpus
	Anomalies in the Monroe Plan Corpus
	RNN-specific Numerical Update Scheme
	Counting Unique Fixed Points in Finite Precision

	Bibliography

