
Neural Networks 92 (2017) 17–28
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2017 Special Issue

Dual-memory neural networks for modeling cognitive activities of
humans via wearable sensors
Sang-Woo Lee a, Chung-Yeon Lee a, Dong-Hyun Kwak b, Jung-Woo Ha c, Jeonghee Kim c,
Byoung-Tak Zhang a,b,d,∗

a School of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
b Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, South Korea
c NAVER LABS, NAVER Corp., Bundang 13561, South Korea
d Surromind Robotics, 1 Gwanak-ro Gwanak-gu, Seoul 08826, South Korea

a r t i c l e i n f o

Article history:
Available online 20 February 2017

Keywords:
Dual memory architecture
Complementary learning systems
Lifelog dataset
Online learning
Deep neural networks
Hypernetworks

a b s t r a c t

Wearable devices, such as smart glasses and watches, allow for continuous recording of everyday life
in a real world over an extended period of time or lifelong. This possibility helps better understand
the cognitive behavior of humans in real life as well as build human-aware intelligent agents for
practical purposes. However, modeling the human cognitive activity from wearable-sensor data stream
is challenging because learning new information often results in loss of previously acquired information,
causing a problem known as catastrophic forgetting. Here we propose a deep-learning neural network
architecture that resolves the catastrophic forgetting problem. Based on the neurocognitive theory of
the complementary learning systems of the neocortex and hippocampus, we introduce a dual memory
architecture (DMA) that, on one hand, slowly acquires the structured knowledge representations and, on
the other hand, rapidly learns the specifics of individual experiences. TheDMA system learns continuously
through incremental feature adaptation and weight transfer. We evaluate the performance on two real-
life datasets, the CIFAR-10 image-stream dataset and the 46-day Lifelog dataset collected from Google
Glass, showing that the proposed model outperforms other online learning methods.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Wearable devices and the Lifelog dataset

Learning human behaviors in real-world settings is crucial for
understanding human cognition in real life as well as for build-
ing human-aware intelligent systems such as personalized digital
assistants. Recently, various types of wearable devices, including
smart watches and Google Glass, have become popular. These de-
vices can see and hear what the device user sees and hears; which
differentiates them from classical agents such as personal comput-
ers or smartphones. To simulate the real-world environment, we
collected a Lifelog dataset using Google Glass from three partic-
ipants over 46 days. This dataset has two properties. First, high-
level context is hidden in the raw data stream; e.g., an egocentric

∗ Corresponding author at:School of Computer Science and Engineering, Seoul
National University, Seoul 08826, South Korea.

E-mail address: btzhang@bi.snu.ac.kr (B.-T. Zhang).

http://dx.doi.org/10.1016/j.neunet.2017.02.008
0893-6080/© 2017 Elsevier Ltd. All rights reserved.
video recorded during a meeting includes various types of high-
level contexts, although the data is only a stream of pixels and
audio signals. Second, the data streams are often non-stationary;
e.g., the life patterns of a student during the holiday and school
term are different. We are interested in continually adapting the
context-aware activity recognizer rapidly from human behavior
gathered through wearable devices. Two algorithmic techniques
are required to manage this task. First, a deep learning method is
necessary to manage raw data efficiently. Second, an online learn-
ing algorithm is required to keep track of fast-changing life pat-
terns of user behavior.

1.2. Online learning of deep neural networks and catastrophic
forgetting

Online learning of deep neural networks (DNNs) that cover
a lifetime is challenging, but learning over long time periods is
fundamental to developing a real-time personalized recognizer.
Assume that you trained a neural network using a first training,
which was user data from the first week. Subsequently, a second

http://dx.doi.org/10.1016/j.neunet.2017.02.008
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2017.02.008&domain=pdf
mailto:btzhang@bi.snu.ac.kr
http://dx.doi.org/10.1016/j.neunet.2017.02.008

18 S.-W. Lee et al. / Neural Networks 92 (2017) 17–28
Fig. 1. Learning framework proposed in this work.

training dataset becomes available and is user data from the second
week. You can train the neural network with the second training
dataset; however, the information from the first training dataset
may be lost, especially when the data stream is non-stationary.
In short, when new data becomes available, the neural network
often forgets old data; this phenomenon is known as catastrophic
forgetting (Goodfellow, Mirza, Xiao, Courville, & Bengio, 2013).

Various approaches have been proposed for online learning
of DNNs. Recently, online fine-tuning of convolutional neural
networks (CNNs) using a simple online stochastic gradient descent
(SGD) was successful at inferring a visual tracking task (Nam &
Han, 2016). However, this ad hoc method does not guarantee the
retention of old data. Several studies have adopted an incremental
ensemble learning approach, whereby a weak learner is made
to use the online dataset, and these multiple weak learners are
combined to obtain a better predictive performance (Polikar, Upda,
Upda, & Honavar, 2001). Unfortunately, in our experiment, a
simple votingmethodwith weak learners trained from a relatively
small online dataset was unsuccessful; we presumed that a
relatively small online dataset is insufficient for learning highly
expressive representations of DNNs.

1.3. Complementary learning systems theory

To solve the problem of catastrophic forgetting, we apply
the concept of complementary learning systems (CLS) theory;
a framework based on the idea of a dual learning system
structure in the brain (McClelland, McNaughton, & O’Reilly, 1995;
O’Reilly, Bhattacharyya, Howard, & Ketz, 2014). According to
the CLS theory, there are two critical areas in the brain that
affect online learning: the neocortex and the hippocampus, with
complementary functions. From themachine learning perspective,
the neocortex is analogous to a deep neural module that can
gradually learn to extract structure from real-world sensor streams
(Guyonneau, VanRullen, & Thorpe, 2004). Further, corroborative
evidence from cognitive neuroscience shows that the behavior
of performance-optimized deep CNNs closely match the neural
responses in the higher visual cortex of the brain in monkeys
(Yamins et al., 2014). However, the key limitations introduced
by the idea of online learning are that the neocortex does not
rapidly learn a new concept in a single attempt nor does it process
data at the instance-level to weigh specific events appropriately.
In contrast, the hippocampus alleviates this problem by allowing
rapid and individuated storage to memorize a new instances
(Knierim & Neunuebel, 2016; Treves & Rolls, 1992). There is
evidence that the hippocampus allows general statistics of the
environment to be circumvented by weighting procedures such
that statistically unusual but significant events may be afforded a
privileged status (Bendor & Wilson, 2012; Carr, Jadhav, & Frank,
2011). However, a hippocampal systemalonewould be insufficient
for continuous learning because of limitations onmemory capacity
and generalization ability.

1.4. Dual memory architecture

To address the issues of a neocortex-like or hippocampal-like
system alone, we propose a dual memory architecture (DMA)
(Fig. 1). The DMA trains two memory structures: one is an ensem-
ble of DNNs, and the other consists of a shallow network that uses
hidden representations of the DNNs as input. These two memory
structures are designed to use different strategies. The ensemble
of DNNs learns new information to adapt its representation to new
data, whereas the shallow network aims tomanage non-stationary
distribution and unseen classes more rapidly.

Some additional techniques for online deep learning are
incorporated in this study. First, the transfer learning method
via weight transfer is applied to maximize the representation
power of each neural module in online deep learning (Yosinski,
Clune, Bengio, & Lipson, 2014). Second, themultiplicative Gaussian
hypernetwork (mGHN) and its online learning method are
developed. An mGHN concurrently adapts both structure and
parameters to the data stream using an evolutionary method and
a closed-form-based sequential update, which minimizes loss of
past data. The mGHN possesses two good properties for online
learning: it can learn from every new instance rapidly, even if the
new instance is from a new class and it can handle incremental
input features; a property that is essential when a new DNN is
constructed and new input features appear in the fast memory.

1.5. Structure and contribution of the paper

The remainder of this paper is organized as follows. Section 2
reviews previous studies. Particularly, Section 2.4 provides an
overview of various comparative models suggested for the online
learning of DNNs. Section 3 introduces the general concept of DMA.
Section 4 discusses the mGHN and its online learning method.
Section 5 presents experimental results for the online learning
of DNNs and analyzes the performance of the DMA. Section 5.1
explains the results for a non-stationary variant of the CIFAR-10
dataset, and Section 5.2 contains the description and the results for
theGoogleGlass Lifelog dataset. Section6discusses the implication
of the proposed architecture on other research fields, including CLS
theory, Bayesian optimization, and lifelong learning.

This study is an extension of our previouswork (Lee et al., 2016),
which contributed the following to relevant literature: (1) Problem
setup and review for the online learning of DNNs; (2) Proposal of
the DMA and the mGHN; and (3) Empirical analysis of various on-
line learningmethods on real-life datasets. Themain contributions
of this study are: (1) Proof of the online parameter learningmethod
of mGHNs; (2) Cognitive neuroscience perspective of DMA;
(3) Making the Lifelog dataset publicly available; and (4) Impli-
cations of DMA on other machine learning fields. Moreover, addi-
tional empirical analysis and literature review are discussed in this
study.

2. Related works

2.1. Deep learning and online learning

Deep learning algorithms, including CNNs and recurrent
neural networks (RNNs), deliver state-of-the-art performance
for various fields, including computer vision (He, Zhang, Ren,
& Sun, 2015; Noh, Hong, & Han, 2015), speech recognition

S.-W. Lee et al. / Neural Networks 92 (2017) 17–28 19
(Graves, Mohamed, & Hinton, 2013; Sainath, Vinyals, Senior, & Sak,
2015), and natural language processing (Sundermeyer, Schlüter,
& Ney, 2012; Sutskever, Vinyals, & Le, 2014), implying that
representation learningwith DNNs is essential for various context-
aware problems. Further, this type of deep learning technique
is also applicable for context-aware tasks in egocentric videos
(Bettadapura, Essa, & Pantofaru, 2015;Doshi, Kira, &Wagner, 2015;
Simonyan & Zisserman, 2014; Yu,Wang, Huang, Yang, & Xu, 2015).
Online learning is a classical area of study in machine learning.
Several studies have been conducted regarding online learning
methods, especially for convex optimization problems, some of
which have contributed to the development of the SGD method
for learning large-scale neural networks (Duchi, Hazan, & Singer,
2011; Zinkevich, 2003).

2.2. Comparative models of dual memory architecture

Relatively few studies to date have been conducted on training
deep networks online from data streams, due to the difficulty
in optimizing the extremely large non-convex search space of a
neural network (Bottou, 1998). We categorize these studies into
three approaches. The first approach is online fine-tuning, which
is online learning of an entire neural network based on SGD. In
this setting, a deep network is continuously fine-tuned with new
data as the data is accumulated. However, it is well-known that
learning neural networks requiremany epochs of gradient descent
over the entire dataset because the objective function space of
neural networks is complex. Recently, in Nam and Han (2016),
online fine-tuning of a CNN with simple online SGD was used
in the inference phase of visual tracking and made state-of-the-
art performance in the Visual Object Tracking Challenge 2015.
However, this technique does not guarantee the retention of old
data. The equation of this algorithm can be described as follows:

y = softmax(f (h{1}(x))) (1)

where f is a non-linear function of a deep neural network. This
equation is the same in the case of batch learning, where Batch
denotes the common algorithm that learns all the training data at
once, with a single neural network.

The second approach is last-layer fine-tuning. In this method,
only the last layer is fine-tuned, except the dataset of the first task.
For the first task, thewhole network is trained. According to recent
work on transfer learning, the hidden activation of deep networks
can be utilized as a satisfactory general representation for learning
other related tasks. Training only the last-layer of a deep network
often yields state-of-the-art performance on new tasks, especially
when the dataset of a new task is small (Donahue et al., 2014; Zeiler
& Fergus, 2014). This phenomenon makes online learning of only
the last-layer of deep networks promising, because online learning
of shallow networks is much easier than that of deep networks in
general. Recently, online SVM with hidden representations of pre-
trained deep CNNs using another large image dataset, ImageNet,
performed well in visual tracking tasks (Hong, You, Kwak, & Han,
2015). Mathematically, the last-layer fine-tuning is expressed as
follows:

y = δ(wTφ(h{1}(x))). (2)

The third approach is incremental bagging. A considerable
amount of research has sought to combine online learning and
ensemble learning (Oza, 2005; Polikar et al., 2001). One of the
simplest methods involves forming a neural network with some
amount of online dataset and bagging in inference. Bagging is an
inference technique that uses the average of the output probability
of each network as the final output probability of the entire model.
If deep memory is allowed to use more memory in our system,
a competitive approach involves using multiple neural networks,
especially when the data stream is non-stationary. In contrast
to our approach, transfer learning techniques were not used in
previous research. We refer to this method as naïve incremental
bagging. The equation of incremental bagging can be described as
follows:

y =
1
d

d
i

softmax(fd(h{d}(x))). (3)

2.3. Previous studies on online learning from data stream

Various studies have been conducted on online learning from
data streams during an entire lifetime. Carlson et al. (2010)
and Mitchell et al. (2015) proposed the Never-Ending Language
Learner (NELL), which extracts a variety of information from
the web and constructs a structured knowledge base. Chen,
Shrivastava, and Gupta (2013) extended the NELL to develop
the Never-Ending Image Learner (NEIL), which extracts both
language and visual information from theweb. Ha, Kim, and Zhang
(2015) presented a model of deep concept hierarchy that enables
progressive abstraction of concept knowledge at multiple levels in
an online manner. They tested their algorithm on several hundred
episodes of cartoon videos and showed that it can build vision-
language concept hierarchies from non-stationary data streams.
In our study, we attempt to extract abstracted concepts from the
continuous sensing data of wearable devices or video streams.

2.4. Complementary learning systems and other machine learning
algorithms

Recently, some machine learning algorithms related to CLS
theory have been proposed. A recently published study reviewed
the link between the core principles of the CLS theory and recent
themes in machine learning (Kumaran, Hassabis, & McClelland,
2016); we follow this perspective.

The first example is model-free episodic control, which is a
reinforcement learning method inspired by hippocampal episodic
control applied to difficult sequential decision-making tasks
(Blundell et al., 2016). In this method, a memorization strategy
is utilized for learning a value function directly from experience
without iterative estimation of the value function. This approach
not only makes the learning significantly faster than comparable
deep reinforcement learning algorithms, but also performs better
on some of the more challenging domains.

The second example is external memory utilization for the
neural network. Neural network researchers found that the
capability of a neural network alone is limited in solving complex
AI problems, including Q&A tasks. Thus, they have proposed
coupling neural networks with external memory resources that
correspond to hippocampal episodic memory. There are two
methods exploiting external memory for neural networks. One
method is the neural Turing machine (NTM) (Graves, Wayne, &
Danihelka, 2014), where the framework consists of an external
memory and an RNN controller that controls the reading from and
writing to an external memory. The intermediate computations of
the neural network are written to external memory, which can be
read in when the results are required. Studies have shown that the
NTM can learn the general concepts of a simple algorithm such as
copying and sorting. The other method is the memory network
(Weston, Chopra, & Bordes, 2014), where the external memory
stores knowledge in a vectorized form. The memory network is
mainly used for Q&A tasks and makes notable results (Sukhbaatar,
Weston, & Fergus, 2015). In typical Q&A applications, appropriate
vectorized knowledge (e.g., ‘Tom left the basketball’ and ‘Tom

20 S.-W. Lee et al. / Neural Networks 92 (2017) 17–28
Algorithm 1 Online Learning of Dual Memory Architecture
1: if new instances come then
2: if a new DNN is required then
3: Initialize a new DNN with a previously constructed DNN.
4: Train the new DNN with instances from storage.
5: Update the input feature and corresponding structure of

the shallow network.
6: end if
7: Update the parameters of the shallow network.
8: Put the new instances into storage.
9: Discard the oldest instances in storage.

10: end if

traveled to the garden’) is retrieved by the similarity of a vectorized
question (e.g., ‘Where is the basketball’) to find the right answer
(‘the garden’). However, these methods are criticized for their
lower performancewhen comparedwith simplermodels (Kim, Lee
et al., 2016).

3. Dual memory architectures

The dual memory architecture (DMA) is a framework designed
to learn continuously from data streams. The DMA framework is
illustrated in Fig. 2, and the online learning process of the DMA
is explained in Algorithm 1. The DMA consists of deep memory
and fast memory. The structure of deep memory consists of sev-
eral deep networks. Each of these networks is constructed when a
specific amount of data from an unseen probability distribution is
accumulated, thus creating a deep representation of data at a spe-
cific time. Examples of deep memory models include deep neural
network classifier, CNNs, deep belief networks (DBNs), and recur-
rent neural networks (RNNs). The fast memory consists of a shal-
low network. The input to the shallow network is a set of hidden
nodes from upper layers of the deep networks. Fast memory is up-
dated immediately from each new instance. Examples of shallow
networks include linear regressor, denoising autoencoder (Zhou,
Sohn, & Lee, 2012), and support vector machine (SVM) (Liu, Zhang,
Zhan, & Zhu, 2008) which can be learned online. The shallow net-
work is in charge of making inference in the DMA; deep memory
only generates the deep representation. The equation used for in-
ference can be described as:

y = δ(wTφ(h{1}(x), h{2}(x), . . . , h{k}(x))) (4)

where x is the input (e.g., a vector of image pixels), y is the tar-
get, φ and w are kernel and corresponding weight respectively, h
is values of the hidden layer of a deep network used for the input to
the shallow network, δ is an activation function of the shallow net-
work, and k is an index for the last deep network ordered by time.

Fast memory updates parameters of its shallow network
immediately from new instances. If a new deep network is
formed in the deep memory, the structure of the shallow network
is changed to include the new representation. Fast memory is
referred to as fast for two properties with respect to learning.
First, a shallow network learns faster than a deep network in
general. Second, a shallow network is better able to adapt to new
data through online learning than a deep network. If the objective
function of a shallow network is convex, a simple stochastic online
learning method, such as online SGD, can be used to guarantee a
lower bound to the objective function (Zinkevich, 2003). Therefore,
an efficient online update is possible. Unfortunately, learning
shallow networks in the DMA is more complex. During online
learning, deep memory continuously forms new representations
of a new deep network; thus, new input features appear in the
shallow network. This task is a kind of online learning with an
incremental feature set. In this case, it is not possible to obtain
Table 1
Notations.

Symbol Explanation

y Class (i.e., location, sub-location, or activity)
φ Kernel vector
φk kth kernel
h Hidden vector of DNNs
x Input vector (i.e., input pixel)

k Index of kernel set
d Index of small dataset
n Index of instance

µ̂, Σ̂ Empirical sufficient the statistics
µ̃, Σ̃ Approximated maximum likelihood solution of statistics

φk·(d,n) (d, n)th instance of kth kernel
µ̂k·d, Σ̂k·d Empirical sufficient statistics of φk over dth small dataset

statistics of old data at new features; i.e., if a node in the shallow
network is a function of h{k}, statistics of the node cannot be
obtained from the 1st–k − 1th online dataset. In this paper, we
explore online learning by shallow networks using an incremental
feature set in the DMA.

In learning deep memory, each deep neural network is trained
with a corresponding online dataset by its objective function. Un-
like the prevalent approach,we use the transfer learning technique
proposed by Yosinski et al. (2014) to utilize the knowledge from
an older deep network to form a new deep network. This transfer
technique initializes the weights of a newly trained deep network
Wk by theweights of themost recently trained deep networkWk−1.
Once the training of the deep network from its own online dataset
is complete, theweights of the network do not change even though
new data arrives. This is aimed at minimizing changes of input
in the shallow network in the fast memory. This original transfer
method assumes that the two networks have the same structure.
However, there are some extensions (Chen, Goodfellow, & Shlens,
2016; Wei, Wang, Rui, & Chen, 2016) that allow different widths
and number of layers between some networks.

The proposed DMA is a combination of the ideas of the three
previously proposed methods mentioned above. In DMA, a new
deep network is formed when a dataset is accumulated, as in
incremental bagging. However, the initial weights of new deep
networks are drawn from the weights of the older deep networks,
as in the online learning of neural networks. Moreover, a shallow
network in the fast memory is concurrently trained with deep
memory, which is similar to the last-layer fine-tuning approach.

4. Online learning of multiplicative-Gaussian hypernetworks

4.1. Multiplicative-Gaussian hypernetworks

In this section, we introduce a multiplicative Gaussian hyper-
network (mGHN) as an example of fast memory (Fig. 3). Table 1
summarizes the notation used in this section. mGHNs are shallow
networks that use a multiplicative function as an explicit kernel in
(5):

φ = [φ(1), . . . , φ(p), . . . , φ(P)
]
T ,

s.t., φ(p)(h) = (h(p,1) × · · · × h(p,Hp)),
(5)

where P is a hyperparameter of the number of kernel functions,
and × denotes scalar multiplication. h is the input feature of
mGHNs, and also represents the hidden activation of DNNs. The
set of variables of the pth kernel {h(p,1), . . . , h(p,Hp)} is randomly
chosen from h, where Hp is the order or the number of variables
used in the pth kernel. The multiplicative form is used for two
reasons, although an arbitrary form can be used. First, it is an
easy, randomized method to put sparsity and non-linearity into

S.-W. Lee et al. / Neural Networks 92 (2017) 17–28 21
Fig. 2. A schematic diagram of the dual memory architecture (DMA). With continuously arriving data stream instances, fast memory updates its shallow network
immediately. If a certain amount of data is accumulated, deep memory makes a new deep network with this new online dataset. Simultaneously, the shallow network
changes its structure corresponding to the deep memory.
Fig. 3. A schematic diagram of the multiplicative-Gaussian hypernetworks.
the model, which is a point inspired by Zhang (2008) and Zhang,
Ha, and Kang (2012). Second, the kernel can be controlled to be
a function of a few neural networks. mGHNs assume the joint
probability of target class y and φ is Gaussian as in (6):

p

y
φ(h)

= N

µy
µφ

,

Σyy Σyφ
Σφy Σφφ

, (6)

where µy, µφ, Σyy, Σyφ, Σφy, and Σφφ are the sufficient statistics
of the Gaussian corresponding to y and φ. Target class y is
represented by one-hot encoding. The discriminative distribution
is derived by the generative distribution of y and φ, and predicted
y is the real-valued score vector of the class in the inference.

E[p(y|h)] = µy +Σyφ ·Σ
−1
φφ · (φ(h)− µφ). (7)

The maximum likelihood solution of mGHNs can be updated
immediately from any amount of new instances by an online
update of the mean and covariance if the number of features does
not increase. Note that the distribution over y and φ over the first
and second datasets (d = 1 : 2) is as follows:

y
φ1

|d=1:2 ∼ N

µ̂y·1:2
µ̂1·1:2

,

Σyy·1:2 Σy1·1:2
Σ1y·1:2 Σ11·1:2

(8)

where µ̂·1:2, Σ̂·1:2 is the function of µ̂·1, µ̂·2, Σ̂·1, and Σ̂·2.

µ̂1·1 =
1
N1

N1
n=1

φ1·(d=1,n) (9)
µ̂1·2 =
1
N2

N2
n=1

φ1·(d=2,n) (10)

µ̂1·1:2 =
1

N1 + N2

N1
n=1

φ1·(d=1,n) +

N2
n=1

φ1·(d=2,n)

= αµ̂1·1 + (1− α)µ̂1·2 (11)

α =
N1

N1 + N2
(12)

Σ̂11·1 =
1
N1

N1
n=1

(φ1·(d=1,n) − µ̂1·1)(φ1·(d=1,n) − µ̂1·1)
T

=
1
N1

N1
n=1

φ1·(d=1,n)φ
T
1·(d=1,n)

+ µ̂1·1µ̂

T
1·1 (13)

Σ̂11·1:2 = αΣ̂11·1 + (1− α)Σ̂11·2 + α(1− α)(µ̂1·1

− µ̂1·2)(µ̂1·1 − µ̂1·2)
T . (14)

In ourmodel, the parameter of two datasets can be decomposed
into the parameter of each dataset, which we refer to as
instance-decomposability. This property allows our model to weigh
specific events appropriately, which we refer to as instance-scale
reweighting. For example, the model learns significantly r times
from recent events as opposed to the penalized previous events
by substituting α in (12) for following α′:

α′ =
N1

N1 + r · N2
. (15)

22 S.-W. Lee et al. / Neural Networks 92 (2017) 17–28
Algorithm 2 Structure Learning of mGHNs
repeat

if New learned feature h{k} comes then
Concatenate old and new feature (i.e., h← h

h{k}).

Discard a set of kernel φdiscard in φ (i.e., φ̂← φ − φdiscard).
Make a set of new kernel φk(h) and concatenate into φ (i.e.,
φ← φ̂

φk).

end if
until forever

4.2. Evolutionary structure learning

If the kth deep neural network is formed in the deep memory,
the mGHN in the fast memory receives a newly learned feature
h{k}, which consists of the hidden values of the new deep neural
network. As the existing kernel vector is not a function of h{k}, a
new kernel vector φk should be formed. The structure of mGHNs
is learned via an evolutional approach (Zhang et al., 2012), as
illustrated in Algorithm 2.

The core operations in the algorithm consist of discarding less-
important kernels and adding the new kernel. In our experiments,
the set of φdiscard was picked by selecting the kernels with the
lowest corresponding weights. From Eq. (7), φ is multiplied by
ΣyφΣ−1φφ to obtain E[p(y|h)], such that weight w(p) corresponding
to φ(p) is the pth column of ΣyφΣ−1φφ (i.e., w(p)

= (ΣyφΣ−1φφ)(p,:).)
The length of w(p) is the number of class categories, as the node
of each kernel has a connection to each class node. We sort φ(p) in
descending order of maxj |w

(p)
j |, where the values at the bottom of

the maxj |w
(p)
j | list correspond to the φdiscard set. The size of φdiscard

and φk are determined by α|φ| and β|φ| respectively, where |φ|
is the size of the existing kernel set, and α and β are predefined
hyperparameters.

4.3. Online learning on incremental features

As the objective function of mGHNs follows the exponential of
the quadratic form, second-order optimization can be applied for
efficient online learning. For the online learning of mGHNs with
incremental features, we derive a closed-form sequential update
rule to maximize likelihood based on studies of regression with
missing patterns (Little, 1992).

Suppose the first (k = 1) and the second (k = 2) kernel
vectors φ1 and φ2 are constructed when the first (d = 1) and the
second (d = 2) online datasets arrive. The sufficient statistics of
φ1 can be obtained for both the first and second datasets, whereas
information of only the second dataset can be used for φ2. Suppose
µ̂i·d and Σ̂ij·d are empirical estimators of the sufficient statistics
of the ith kernel vector φi and jth kernel vector φj corresponding
to the distribution of the dth dataset. If these sufficient statistics
satisfy the following equations:

φ|d=1 ∼ N(µ̂1·1, Σ̂11·1) (16)
φ1
φ2

|d=2 ∼ N

µ̂1·2
µ̂2·2

,

Σ̂11·2 Σ̂12·2

Σ̂21·2 Σ̂22·2

(17)

φ1|d=1,2 ∼ N(µ̂1·1:2, Σ̂11·1:2) (18)

the parametrization of maximum likelihood via the conditional
Gaussian distribution can be done as follows:

p(φ2|φ1)|d=2 = N(µ̂2|1·2, Σ̂22|1·2)

= N(µ̂2·2 + Σ̂21·2Σ̂
−1
11·2(φ1 − µ̂1·2),

× Σ̂22·2 − Σ̂21·2Σ̂
−1
11·2Σ̂12·2). (19)
Note the following properties of Gaussian:

E

x
y

=

µ

Aµ+ b

(20)

Cov

x
y

=

Λ−1 Λ−1AT

AΛ−1 L−1 + AΛ−1AT

(21)

where the probability of x and the conditional probability of y given
x are as follows:

p(x) = N(x|µ, Λ−1) (22)

p(y|x) = N(y|Ax+ b, L−1). (23)

Thus, the maximum likelihood solution represents φ as (24).
φ1
φ2

|d=1,2 ∼ N

µ̂1·1:2
µ̃2

,

Σ̂11·1:2 Σ̃12

Σ̃T
12 Σ̃22

, (24)

µ̃2 = µ̂2·2 + Σ̂T
12·2 · Σ̂

−1
11·2 · (µ̂1·12 − µ̂1·2),

Σ̃12 = Σ̂11·1:2 · Σ̂
−1
11·2 · Σ̂12·2,

Σ̃22 = Σ̂22·2 − Σ̂T
12·2 · Σ̂

−1
11·2 · (Σ̂12·2 − Σ̃12).

(24) can also be updated immediately from a new instance by
online update of the mean and covariance. Note that the proposed
online learning algorithm estimates a generative distribution of
φ, p(φ1, . . . , φk). When training data having φk is relatively small,
information of φk can be complemented by p(φk|φ1:k−1), which
helps create a more efficient prediction of y.

The alternative of this generative approach is a discriminative
approach. For example, in Liu et al. (2008), LS-SVM is directly
optimized to get the maximum likelihood solution over p(y|φ1:k).
However, equivalent solutions from the discriminativemethod can
also be produced by themethod of filling in themissing valueswith
0 (e.g., assumeφ2|d=1 as 0), which is notwhatwe desire intuitively.

µ̂y|x, Σ̂y|x = argmax p(y|φ1:k),

p(y|φ1:k) ∼ N(µ̂y|φ, Σ̂y|φ).
(25)

Moreover, (24) can be extended to sequential updates, when
there ismore than one increment of the kernel set (i.e.,φ3, . . . , φk),
because the equation of maximum likelihood of whole kernel
observation φobs can be decomposed as follows:

p(φobs) =

k
i=1

k
d=1

Nd
n=1

p(φi·(d,n)|φ1:(i−1)·(d,n)). (26)

5. Experiments

5.1. Non-stationary image data stream

We investigate the strengths and weaknesses of the proposed
DMA in an extreme non-stationary environment using a well-
known benchmark dataset. The proposed algorithm was tested
on the CIFAR-10 image dataset consisting of 50,000 training
images and 10,000 test images from 10 different object classes.
The performance of the algorithm was evaluated using a 10-
split experiment where the model is learned in a sequential
manner from 10 online datasets. In this experiment, each online
dataset consists of images of 3–5 image classes to make 10 online
datasets for an extremely changing environment. Fig. 4 shows the
distribution of the data stream. In particular, the first online dataset
contains 40% instances of classes 1 and 2 respectively, and 20%
instances of class 3. Meanwhile, the second online dataset contains
40% instances of class 1, and 20% instances of classes 2, 3, and
4 respectively. We used the Network in Network (NIN) model

S.-W. Lee et al. / Neural Networks 92 (2017) 17–28 23
Table 2
Properties of DMA and comparative models.

Many deep networks Online learning Dual memory structure

Online fine-tuning ✓

Last-layer fine-tuning ✓

Naïve incremental bagging ✓ ✓

DMA (our proposal) ✓ ✓ ✓

Incremental bagging w/transfer ✓ ✓

DMA w/last-layer retraining ✓ ✓

Batch
Fig. 4. Distribution of non-stationary data stream of CIFAR-10 in the experiment.

(Lin, Chen, & Yan, 2014), a kind of deep CNN, implemented using
the MatConvNet toolbox (Vedaldi & Lenc, 2015). In the NIN, the
conventional convolution linear filters are replaced by multi-layer
DNNs. This idea is utilized by various CNNs, including inception
networks (Szegedy et al., 2015), the winner of ImageNet Challenge
2014. In our learning phase, the learning rate is set to 0.25 and then
is reduced by a constant factor of 5 at some predefined steps. The
rate of weight decay is 5 × 10−4, and the rate of momentum is
0.9. The dropping learning rate strategy, weight decay, and rate of
momentum values are commonly used in deep learning (Bottou,
2012) and also are the default settings of CIFAR-10 learning in
MatConvNet toolbox.

We evaluate the performance of DMA with comparative
models. The properties of DMA and comparative methods are
listed in Table 2. Specifically, we propose two comparable learning
methods to clarify the concept of DMA. The first one is incremental
bagging with transfer. Unlike the naïve incremental bagging, this
method transfers the weights of the older deep networks to the
new deep network, as in DMA. The other is DMA with last-layer
retraining where a shallow network is retrained in a batchmanner.
Although this algorithm is not part of online learning, it is practical
because batch learning of shallow networks is much faster than
that of deep networks in general.

Fig. 5 illustrates 10-split experimental results on non-stationary
data. The models with only one CNN, which are online fine-
tuning and last-layer fine-tuning in this experiment, show inferior
results compared to other algorithms. These models did not adapt
to extreme non-stationary data streams in the experiment on
CIFAR-10. In the last-layer fine-tuning, a CNN trained by the first
online dataset was used. The model has deep representation for
discriminating only three image classes. Hence, the performance
does not increase significantly. In the case of online fine-tuning,
the model loses the previously seen information, which reduces
the performance of test accuracy as time progresses. Meanwhile,
incremental bagging increases its performance continuously with
the non-stationary data stream. Incremental bagging that uses
many networks outperforms online fine-tuning that uses only one
deep network. On the other hand, the proposed DMA outperforms
incremental bagging consistently. This result shows learning a
shallow network and deep networks concurrently is advantageous
compared to naïvely averaging the softmax output probability of
Fig. 5. Test accuracies of learning algorithms on non-stationary CIFAR-10 data
stream.

Fig. 6. Test accuracies of DMA on CIFAR-10 data stream under various settings.

each CNN. When the last layer is retrained for the whole dataset
using the batch learning scheme, the performance improves.
Nevertheless, the proposed online learning scheme of DMA works
reasonably, and the performance gap is not large.

Alternative configurations of the DMA were also explored in
our study to discover the characteristics of DMA (Fig. 6). First, we
analyze the effect of weight transfer in deep memory. The DMA
withweight transfer performsbetter than theDMAwithoutweight
transfer (+3.80%), as shown in Fig. 6. The performance gap is much
larger between incremental bagging with weight transfer and
the model without weight transfer (+4.89%), as shown in Fig. 5.

24 S.-W. Lee et al. / Neural Networks 92 (2017) 17–28
Table 3
Statistics of the Lifelog dataset of each subject.

Instances (s/day) Number of class
Training Test Location Sub-location Activity

A 105201 (13) 17055 (5) 18 31 39
B 242845 (10) 91316 (4) 18 28 30
C 144162 (10) 61029 (4) 10 24 65

Table 4
Top-5 classes in each label of the Lifelog dataset.

Location Sub-location Activity

Office (196839) Office-room (182884) Working (204131)
University (147045) Classroom (101844) Commuting (102034)
Outside (130754) Home-room (86588) Studying (90330)
Home (97180) Subway (35204) Eating (60725)
Restaurant (22190) Bus (34120) Watching (35387)

Part of the entire data is not sufficient for learning discriminative
representations in the weak learner for the whole class. In the
experiment, weight transfer alleviates this problem for both the
DMA and incremental bagging.

Second, we substitute our generative assumption over class y
and kernel φ to the discriminative counterpart suggested by Liu
et al. (2008). The performance of the two approaches does not
differ at the early phase of the learning. However, the performance
of the discriminative approach deteriorates as extreme non-
stationary data is encountered continuously. This result supports
our argument that a generative approach is one of the key points
of successful online learning of mGHNs.

Lastly, we discuss the effect of the number of kernel features in
the mGHN. The generative approach of mGHN needs more param-
eters compared to the discriminative approach. For example, the
number of parameters of the covariance matrix in our generative
approach is directly proportional to square of the number of ker-
nel features, whereas the number of parameters of the weight ma-
trix in the discriminative counterpart is directly proportional to the
number of kernel features. The performance of the DMA severely
decreases if the kernel size increase from 1000 to 4900 variables at
the end of training as shown in DMA with large # of kernel in Fig. 6.

5.2. Lifelog dataset

We collected a Google Glass Lifelog dataset recorded over 46
days from three participants. The 660,000 s of the egocentric video
stream data reflects the behaviors of the participants; including
indoor activities, such as ‘working in an office’ or ‘eating in a
restaurant’, and outdoor activities, such as ‘walking on the road’ or
‘waiting for the arrival of the subway car’. The subjects were asked
to notate what they were doing and where they were in real-time
by using a life-logging application installed on theirmobile phones.
The notated data was then used as labels for the classification task
in our experiments. In this study, the classification task of location,
sub-location, and daily activity are considered. For evaluation, the
dataset of each subject is separated into the training set and test set
in order of time. A frame image of each second is used and classified
as one instance. Table 3 summarizes the dataset statistics and
Table 4 presents the distribution of the five major classes in each
class type. We allowed the AlexNet features and the labels of class
types of the Lifelog dataset to be publicly available (version 1).1

Two kinds of neural networks were used to extract the
representations in this experiment. One is AlexNet, a prototype
network trained by ImageNet (Krizhevsky, Sutskever, & Hinton,

1 bi.snu.ac.kr/datasets/lifeome/.
Fig. 7. Averaged test accuracies of various learning algorithms on the Lifelog
dataset. The location, sub-location, and activity are classified separately for each
of the three subjects.

2012). The other is referred to as LifeNet, a network trained with
our Lifelog dataset. The structure of LifeNet is similar to AlexNet,
but the number of nodes in LifeNet is half that of AlexNet. Both
AlexNet and LifeNet were implemented using the MatConvNet
toolbox. We chose a 1000-dimensional softmax output vector of
AlexNet for representation of online deep learning algorithms, as
we assume the probability of an object’s appearance in each scene
to be highly related to the daily activity represented by each scene.

The performances on the Lifelog dataset were evaluated in a
10-split experiment. Each online dataset corresponds to each day
for the subjects B and C, respectively. However, for subject A, the
13 days of training data was changed into 10 online datasets by
merging 3 of the days into its next days. Each online dataset is
referred to as a day. LifeNets made from 3 groups of online Lifelog
datasets, with sets of consecutive 3, 4 and 3 days for each group.
In the entire learning of LifeNet, the learning rate is set to 0.0025,
the rate of weight decay is 5 × 10−4, and the rate of momentum
is 0.9. In the experiment, LifeNet is used for online fine-tuning and
incremental bagging, AlexNet for last-layer fine-tuning and both
the LifeNet and AlexNet are used for DMA.

Fig. 7 shows the experimental results from the Lifelog dataset.
The experiments consist of three subjects whose tasks are
classified into three categories. A total of nine experiments are
performed and their averaged test accuracies from a range of
learning algorithms are plotted. Unlike the previous result on
CIFAR-10, last-layer fine-tuning that uses oneAlexNet outperforms
other online deep learning algorithms that use many LifeNets.
However, these learning algorithms performworse than DMA that
uses numerous LifeNets and one AlexNet. This implies that usage
of pre-trained deep networks by a large corpus dataset is effective
on the Lifelog dataset. From the perspective of personalization, a
representation obtained by existing users or other large datasets
can be used togetherwith a representation obtained by a newuser.
However, DMA that uses both AlexNet and LifeNet works better
than last-layer fine-tuning,which implies again that usingmultiple
networks is necessary for online deep learning.

Figs. 8 and 9 show the accuracies by each subject and class
type respectively. In some experiments, at times the performance
of algorithms decreases with the incoming stream of data. While
learning a non-stationary data stream is a natural phenomenon,
it would occur in situations where the test data is more similar to
the training data encountered earlier than later during the learning
process. Although, such fluctuations can occur, on average,

http://bi.snu.ac.kr/datasets/lifeome/

S.-W. Lee et al. / Neural Networks 92 (2017) 17–28 25
Fig. 8. Averaged test accuracies of various learning algorithms on the Lifelog dataset. The result of each class type is evaluated separately for each participant.
however, the accuracies of algorithms increase steadily with the
incoming stream of data.

6. Discussion

Through the previous section, the online learnability of theDMA
over a non-stationary stream data was evaluated and discussed.
Moreover, the idea presented in our study can be utilized in other
research fields. This section discusses the implications of the DMA
to the CLS theory, Bayesian optimization, and online multi-task
learning.

6.1. Complementary learning systems theory and dual memory
architecture

We have previously mentioned that the DMA is inspired by
the CLS theory. This study not only first raises the catastrophic
forgetting problem, but also suggests the dual structure to solve the
problem; deepmemory corresponds to the neocortex,whereas fast
memory corresponds to the hippocampus. Further, the following
questions on missing links in the neurocognitive modeling of
CLS are in our interest: First, how can the neocortex as the
connectionist parametric model and the hippocampus as the
instance-based non-parametric model work together? Second,
what is the mechanism of neurocognitive data regeneration? Is it
a database-style memorization or does a more efficient algorithm
exist for preserving the information of data patterns?

Two properties of the DMA can be used to answer these ques-
tions. First, the parameter µ and Σ of an mGHN is decomposable
at each instance even though DNN and mGHN infer as one neu-
ral network. This instance-decomposability allows one-shot learn-
ing (Fei-Fei, Fergus, & Perona, 2006), learning information about
categories, fromone, or only a few training instances, and instance-
scale reweighting, learningwith over-weight andunder-weight in-
stances by their importance.

Second, mGHNs can recover old information using an analytic
method over the maximum likelihood solution from a pattern-
completion perspective. This property accordswith the interpreta-
tion of the CLS theory that there are areas for pattern classification
(dentate gyrus) and pattern generation (CA3) in the hippocampus.

6.2. Bayesian optimization

Bayesian optimization is a global black-box optimization
technique that can be effectively applied on functions whose
evaluation cost is expensive and distribution is unknown. To
determine the next search point, Bayesian optimization uses a
surrogate estimator of the real search space, which gives an
estimated score and its predictive uncertainty for each point. The
most typical algorithm for Bayesian optimization is the Gaussian
process (GPs) that models non-linear search space when the

26 S.-W. Lee et al. / Neural Networks 92 (2017) 17–28
Fig. 9. Averaged test accuracies of various learning algorithms on the Lifelog dataset. The result of each participant is evaluated separately for each of the class type.
speed of inference is high. However, the inference cost of GPs
become expensive when the size of the training data is large,
since GPs scale cubically with the number of observations. Snoek
et al. (2015) propose DNN-based modeling which alleviates this
problem, because theDNN is adaptable for large-scale data. In their
model, a Bayesian linear regressionmodel is added to the last layer
of the DNN. This existing method of DNN does not fit stream data
for the development of deep representations in an online manner.
Ourmethod can be applied to this kind of setting. TheDMAupdates
not only the mGHN, which can work as the regression model in
the last layer of DNN, but also the deep representation. To use
mGHNs as Bayesian models, the prior can be set so as to satisfy the
statistic of Gaussian parametersµ, Σ over class y and kernel φ. An
example structure of the Bayesian version of DMA is shown in Kim
et al.’s work (Kim, Jang, Han, & Choi, 2016), where effective deep
representations of a CNN pre-trained by ImageNet are selected
with the Bayesian least-square support vector machine (LS-SVM)
model to classify into a new task.

6.3. Online multi-task learning

Online multi-task learning refers to the learning of multiple
consecutive tasks with never-ending exploration and continuous
discovery of knowledge from data streams. This task has also
been referred to as continual learning or lifelong learning. This
learning is crucial for the creation of intelligent and flexible
general-purpose machines such as personalized digital assistants
and autonomous humanoid robots (Thrun & O’Sullivan, 1996).
Recently, some studies have proposed methods that maintain a
sparsely shared base of the shallow network for all task models
(Ruvolo & Eaton, 2013). However, these approaches cannot learn
deep shared representations over all tasks, which degrades the
performance of these models. Online deep learning has useful
properties from the perspective of lifelong learning because deep
neural networks showhigh performance in transfer andmulti-task
learning (Heigold et al., 2013; Yosinski et al., 2014). In the DMA
framework, online multi-task learning can be easily achieved by
allowing one mGHN for each task in the fast memory and shared
deep memory for all tasks. For the Lifelog dataset, this approach
can be applied to the shared deep representation for recognizing
location, sub-location, and activity.

7. Conclusion

We presented a dual-memory architecture (DMA) for deep
neural networks that learns from continuous user behavior
in everyday life using wearable devices. Our experimental
results showed that the proposed method overcomes catastrophic
forgetting in the learning of real non-stationary data. This property
was utilized for implementing an advanced personalized context
recognition system.

This success is an example of solving engineering problems
using inspiration drawn from theories in cognitive neuroscience,

S.-W. Lee et al. / Neural Networks 92 (2017) 17–28 27
in this case the CLS theory. Our DMA implementation was used
to discuss how a neural network model and an instance-based
method work together from the CLS theory perspective. We
also discussed two variants of the DMA that can potentially
contribute to othermachine learning fields. Onemodel is the novel
Bayesian optimization method having deep representation and
online learnability. The other model is a novel online multi-task
learner with evolving deep representation.

Acknowledgments

Sang-Woo Lee would like to thank Min-Oh Heo, Christina Beak,
Patrick Emaase, and Heidi Tessmer for helpful comments and edit-
ing. This work was supported by the Naver Corp. and partly by
the Korean government (IITP-R0126-16-1072-SW.StarLab, KEIT-
10060086-HRI.MESSI, KEIT-10044009-RISF, ADD-UD130070ID-
BMRR).

References

Bendor, D., &Wilson,M. A. (2012). Biasing the content of hippocampal replay during
sleep. Nature Neuroscience, 15, 1439–1444.

Bettadapura, V., Essa, I., & Pantofaru, C. (2015). Egocentric field-of-view localization
using first-person point-of-view devices. In IEEE winter conference on applica-
tions of computer vision (pp. 626–633).

Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J.Z., Rae, J.,
Wierstra, D., & Hassabis, D. (2016). Model-free episodic control. arXiv preprint
arXiv:1606.04460.

Bottou, L. (1998). Online learning and stochastic approximations. InOn-line learning
in neural networks (pp. 9–42). Cambridge University Press, (Chapter 2).

Bottou, L. (2012). Stochastic gradient descent tricks. InNeural networks: Tricks of the
trade (pp. 421–436). Springer.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., &Mitchell, T.M. (2010).
Toward an architecture for never-ending language learning. In Proceedings of the
Twenty-Fourth AAAI conference on artificial intelligence (pp. 1306–1313).

Carr, M. F., Jadhav, S. P., & Frank, L. M. (2011). Hippocampal replay in the awake
state: a potential substrate for memory consolidation and retrieval. Nature
Neuroscience, 14, 147–153.

Chen, T., Goodfellow, I., & Shlens, J. (2016). Net2net: Accelerating learning via
knowledge transfer. In International conference on learning representations.

Chen, X., Shrivastava, A., & Gupta, A. (2013). Neil: Extracting visual knowledge from
web data. In Proceedings of the IEEE international conference on computer vision
(pp. 1409–1416).

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014).
Decaf: A deep convolutional activation feature for generic visual recognition.
In Proceedings of the 31th international conference on machine learning
(pp. 647–655).

Doshi, J., Kira, Z., & Wagner, A. (2015). From deep learning to episodic memories:
Creating categories of visual experiences. In Proceedings of the third annual
conference on advances in cognitive systems ACS.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12,
2121–2159.

Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 594–611.

Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., & Bengio, Y. (2013). An empirical
investigation of catastrophic forgetting in gradient-based neural networks.
arXiv preprint arXiv:1312.6211.

Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. In IEEE international conference on acoustics, speech
and signal processing (pp. 6645–6649).

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turingmachines. arXiv preprint
arXiv:1410.5401.

Guyonneau, R., VanRullen, R., & Thorpe, S. J. (2004). Temporal codes and sparse
representations: a key to understanding rapid processing in the visual system.
Journal of Physiology-Paris, 98, 487–497.

Ha, J.-W., Kim, K.-M., & Zhang, B.-T. (2015). Automated construction of visual-
linguistic knowledge via concept learning from cartoon videos. In Proceedings
of the 29th AAAI conference on artificial intelligence (pp. 522–528).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385.

Heigold, G., Vanhoucke, V., Senior, A., Nguyen, P., Ranzato, M., Devin, M., & Dean, J.
(2013). Multilingual acoustic models using distributed deep neural networks.
In IEEE international conference on acoustics, speech and signal processing
(pp. 8619–8623).

Hong, S., You, T., Kwak, S., & Han, B. (2015). Online tracking by learning
discriminative saliency map with convolutional neural network. In Proceedings
of the 32th international conference on machine learning (pp. 597–606).

Kim, Y.-D., Jang, T., Han, B., & Choi, S. (2016). Learning to select pre-trained deep
representations with Bayesian evidence framework. In Proceedings of the IEEE
international conference on computer vision (pp. 5318–5326).

Kim, J.-H., Lee, S.-W., Kwak, D.-H., Heo,M.-O., Kim, J., Ha, J.-W., & Zhang, B.-T. (2016).
Multimodal residual learning for visual qa. arXiv preprint arXiv:1606.01455.
Knierim, J. J., & Neunuebel, J. P. (2016). Tracking the flow of hippocampal
computation: Pattern separation, pattern completion, and attractor dynamics.
Neurobiology of Learning and Memory, 129, 38–49.

Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classificationwith deep
convolutional neural networks. In Advances in neural information processing
systems (pp. 1097–1105).

Kumaran, D., Hassabis, D., & McClelland, J. L. (2016). What learning systems do
intelligent agents need? complementary learning systems theory updated.
Trends in Cognitive Sciences, 20, 512–534.

Lee, S.-W., Lee, C.-Y., Kwak, D.H., Kim, J., Kim, J., & Zhang, B.-T. (2016). Dual-memory
deep learning architectures for lifelong learning of everyday human behaviors.
In Proceedings of the international joint conference on artificial intelligence
(pp. 1669–1675).

Lin, M., Chen, Q., & Yan, S. (2014). Network in network. In International conference
on learning representations.

Little, R. J. (1992). Regression with missing x’s: a review. Journal of the American
Statistical Association, 87, 1227–1237.

Liu, X., Zhang, G., Zhan, Y., & Zhu, E. (2008). An incremental feature learning
algorithm based on least square support vector machine. In Proceedings of the
2nd annual international workshop on frontiers in algorithmics (pp. 330–338).

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are
complementary learning systems in the hippocampus and neocortex: insights
from the successes and failures of connectionist models of learning and
memory. Psychological Review, 102, 419.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A., Dalvi, B.,
Gardner, M., Kisiel, B., & Krishnamurthy, J. et al. (2015). Never-ending learning.
In Proceedings of the Twenty-Ninth AAAI conference on artificial intelligence
(pp. 2302–2310).

Nam,H., &Han, B. (2016). Learningmulti-domain convolutional neural networks for
visual tracking. In Proceedings of the IEEE international conference on computer
vision (pp. 4293–4302).

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic
segmentation. In Proceedings of the IEEE international conference on computer
vision (pp. 1520–1528).

O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketz, N. (2014). Complementary
learning systems. Cognitive Science, 38, 1229–1248.

Oza, N.C. (2005). Online bagging and boosting. In IEEE international conference on
systems, man and cybernetics (pp. 2340–2345).

Polikar, R., Upda, L., Upda, S. S., & Honavar, V. (2001). Learn++: An incremental
learning algorithm for supervised neural networks. IEEE Transactions on
Systems, Man, and Cybernetics Part C: Applications and Reviews, 31, 497–508.

Ruvolo, P.L., & Eaton, E. (2013). Ella: An efficient lifelong learning algorithm.
In Proceedings of the 30th international conference on machine learning
(pp. 507–515).

Sainath, T.N., Vinyals, O., Senior, A., & Sak, H. (2015). Convolutional, long short-term
memory, fully connected deep neural networks. In IEEE international conference
on acoustics, speech and signal processing (pp. 4580–4584).

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for
action recognition in videos. In Advances in neural information processing
systems (pp. 568–576).

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M.,
Prabhat, M., & Adams, R. (2015). Scalable Bayesian optimization using deep
neural networks. In Proceedings of the 32nd international conference on machine
learning (pp. 2171–2180).

Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-to-end memory networks.
In Advances in neural information processing systems (pp. 2440–2448).

Sundermeyer, M., Schlüter, R., & Ney, H. (2012). Lstm neural networks for language
modeling. In Interspeech (pp. 194–197).

Sutskever, I., Vinyals, O., & Le, Q.V. (2014). Sequence to sequence learning
with neural networks. In Advances in neural information processing systems
(pp. 3104–3112).

Szegedy, C., Liu,W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., & Rabinovich, A. (2015). Going deeperwith convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 1–9).

Thrun, S., & O’Sullivan, J. (1996). Discovering structure in multiple learning tasks:
The tc algorithm. In Proceedings of the 13th international conference on machine
learning (pp. 489–497).

Treves, A., & Rolls, E. T. (1992). Computational constraints suggest the need for
two distinct input systems to the hippocampal ca3 network. Hippocampus, 2,
189–199.

Vedaldi, A., & Lenc, K. (2015). Matconvnet – convolutional neural networks
for matlab. In Proceedings of the ACM international conference on multimedia
(pp. 689–692).

Wei, T., Wang, C., Rui, R., & Chen, C.W. (2016). Network morphism. In Proceedings of
the 33th international conference on machine learning.

Weston, J., Chopra, S., & Bordes, A. (2014). Memory networks. In International
conference on learning representations.

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014).
Performance-optimized hierarchical models predict neural responses in higher
visual cortex. Proceedings of the National Academy of Sciences, 111, 8619–8624.

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features
in deep neural networks? In Advances in neural information processing systems
(pp. 3320–3328).

Yu, H., Wang, J., Huang, Z., Yang, Y., & Xu, W. (2015). Video paragraph captioning
using hierarchical recurrent neural networks. arXiv preprint arXiv:1510.07712.

Zeiler, M.D., & Fergus, R. (2014). Visualizing and understanding convolu-
tional networks. In Proceedings of European conference on computer vision
(pp. 818–833).

http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref1
http://arxiv.org/1606.04460
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref4
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref5
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref7
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref12
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref13
http://arxiv.org/1312.6211
http://arxiv.org/1410.5401
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref17
http://arxiv.org/1512.03385
http://arxiv.org/1606.01455
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref24
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref26
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref29
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref31
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref35
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref37
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref40
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref42
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref47
http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref51
http://arxiv.org/1510.07712

28 S.-W. Lee et al. / Neural Networks 92 (2017) 17–28
Zhang, B.-T. (2008). Hypernetworks: A molecular evolutionary architecture for
cognitive learning and memory. IEEE Computational Intelligence Magazine, 3,
49–63.

Zhang, B.-T., Ha, J.-W., & Kang, M. (2012). Sparse population code models of word
learning in concept drift. In Proceedings of the 34th annual conference of cogitive
science society (pp. 1221–1226).
Zhou, G., Sohn, K., & Lee, H. (2012). Online incremental feature learning with
denoising autoencoders. In International conference on artificial intelligence and
statistics (pp. 1453–1461).

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the 20th international conference on machine
learning (pp. 928–936).

http://refhub.elsevier.com/S0893-6080(17)30037-0/sbref55

	Dual-memory neural networks for modeling cognitive activities of humans via wearable sensors
	Introduction
	Wearable devices and the Lifelog dataset
	Online learning of deep neural networks and catastrophic forgetting
	Complementary learning systems theory
	Dual memory architecture
	Structure and contribution of the paper

	Related works
	Deep learning and online learning
	Comparative models of dual memory architecture
	Previous studies on online learning from data stream
	Complementary learning systems and other machine learning algorithms

	Dual memory architectures
	Online learning of multiplicative-Gaussian hypernetworks
	Multiplicative-Gaussian hypernetworks
	Evolutionary structure learning
	Online learning on incremental features

	Experiments
	Non-stationary image data stream
	Lifelog dataset

	Discussion
	Complementary learning systems theory and dual memory architecture
	Bayesian optimization
	Online multi-task learning

	Conclusion
	Acknowledgments
	References

