
Wormsign: Predicting the Next Outbreak
By Joe Stewart, GCIH

It’s no secret that Internet worms are becoming more and more advanced. With each
incarnation, worms are able to disrupt the Internet as never before. Up to this point,
the damage has been relatively small in comparison to what a truly nasty worm could
do. Sure, the denial-of-service effect of Slammer put some companies out of
commission for a day or two and stopped some ATMs and other services from
working. But for the most part simply blocking UDP port 1434 on core routers
quickly contained it. The worm writer witnessed this, and you can bet the next worm
will not be so easily countered. That's why it is important to begin preparing now for
the next outbreak.

Worms have been around for a couple of decades, but their frequency of occurrence is
rapidly increasing due to two things: the population explosion of vulnerable hosts and
the knowledge needed to write a worm is more widely available; literally a few clicks
away from someone with the malice of forethought to write one. Much of the work
needed to write a worm is actually done for them, by legitimate security researchers.
Worms are an unwanted side effect of the full-disclosure policy of many security
institutions. However, the additional boost they get also becomes their weakness, as
the worm writers lose the element of surprise.

All of the worms in the past 3 years have
followed a particular pattern. They share
common factors that contributed to their
development. These factors are like pieces of a
puzzle. If all the pieces are not present, worm
emergence is unlikely in a given scenario.

Factor 1: Security Advisory
The first factor needed is an advisory released
by a vendor or an independent researcher. An
advisory is considered serious enough to be
republished by CERT and other institutions.

Factor 2: Exploit Code
The second factor is working exploit/proof-of-concept code, either by the researcher
or a third party. Worm writers could develop the exploit code themselves, but the time
invested in exploit development can be considerable; perhaps even more so than the
actual spreading code of the worm. It's easier to wait for someone else to do the initial
legwork. So far this seems to have been the case for each worm in the past five years.

Factor 3: Targets
A third and very important factor in worm propagation is target selection. Sometimes
a target may be several versions of the same vulnerable program. In these cases, the
worm must find common hooks in the code it is overflowing since the environment
where the worm gains control may change with each release. The program might even

Factors in Worm Development

run on multiple operating systems; in which case the worm code might need to be
radically different in order to execute on each platform. The more a worm has to adapt
to fit different versions, the more code it must contain. This bloat is detrimental to the
rapid propagation of the worm. It also requires greater expertise and a longer testing
cycle. Worm writers are then more likely to look for vulnerabilities in software that
that is single platform and prolific in major versions. For this reason IIS and MSSQL
have been prime targets in more than one worm. While Apache is more widely used
than IIS, it exists on so many platforms that writing a single buffer overflow exploit
that would be guaranteed to work on a large enough subset of them would be
extremely difficult.

Factor 4: Time
The final factor in worm development is, like any other software development project;
time. A worm writer needs time to code and test the worm before releasing it in the
wild. The length of time varies; however, the past four most notable worms, Code
Red, Nimda, Slapper and Slammer all had a gestation period of one to six months.
Below is a timeline of the development of all four worms.

The timeline extends into the future, because it is a good bet that all four worms will
still be alive and well at the end of 2003 and beyond. It is important to note that the
worm writer must try and release working code as soon as possible. The longer they
wait, the more systems that will have been upgraded or patched. There is a definite
time frame in which worms are viable. We need to look back in that time frame and
guess where the next attack will come from.

If we were to try and predict the next vector of worm infection, we should look at the
past six months' advisories and take note of how each one fits into the typical worm
mold. Here are some notable releases for the past six months taken from CERT:

• CA-2003-01 :Buffer Overflows in ISC DHCPD Minires Library
• CA-2003-02 :Double-Free Bug in CVS Server
• CA-2003-03 :Buffer Overflow in Windows Locator Service
• CA-2002-36 :Multiple Vulnerabilities in SSH Implementations
• A-2002-34: Buffer Overflow in Solaris X Window Font Service
• CA-2002-33: Heap Overflow Vulnerability in Microsoft Data Access Components

(MDAC)
• CA-2002-31: Multiple Vulnerabilities in BIND
• CA-2002-29: Buffer Overflow in Kerberos Administration Daemon
• A-2002-26: Buffer Overflow in CDE ToolTalk

These are serious flaws, but are they potential sources for new worms? Applying the
worm development factors to recent vulnerabilities, we can eliminate some or all of
them as new worm vectors. Below are the CERT advisories linked with the most
current information available (which is of course subject to change without notice):

Advisory Exploit Adequate Targets Time Since Advisory
Buffer Overflows in DHCPD Yes Yes 1 Month
Double-Free Bug in CVS No No 1 Month
Buffer Overflow in Windows
Locator Service

Private No 1 Month

Multiple Vulnerabilities in SSH
Implementations

No No 2 Months

Buffer Overflow in Solaris X
Window Font Service

Yes No 3 Months

Heap Overflow Vulnerability in
Microsoft Data Access Components
(MDAC)

No No 3 Months

Multiple Vulnerabilities in BIND No Yes 3 Months
Buffer Overflow in Kerberos
Administration Daemon

Yes No 4 Months

Buffer Overflow in CDE ToolTalk No No 6 Months

At the time of this writing, the only reasonable current worm vector is the DHCPD
vulnerability. It fills all the criteria need for worm development. If it were to be the
next worm, it may not be as prolific as an attack on IIS or MSSQL, but I believe there
are enough broadband users with a Linux firewall who are running vulnerable
versions of DHCPD to achieve critical mass. This doesn't necessarily mean there
“will” be a DHCPD worm. However, the elements necessary for a DHCPD worm are
present.

Conclusion
Because of the predictability of worm development, we should not be caught totally
unprepared. While there is little the average sysadmin can do to mitigate the effect of
a worm on the Internet as a whole, one should plan for protecting their own network
as best as possible. An outbreak on the Internet is an inconvenience; an outbreak on
your internal network is potentially devastating. In order to mitigate this risk, you
should do the following:

•

Employ a patch management solution to track software and versions within
the organization and follow major patch release mailing lists.

•

Perform regular vulnerability scans

• Ensure all security devices are in line with corporate security policy

• Deploy anti-virus on the desktop and the mail gateway

•

Have staff to monitor the network and alert you of problems 24 hours a day
This list could go on and on, as protecting your network against worms is essentially
just following general security “best practices”. However, one countermeasure - 24x7
monitoring, can be especially useful. If you don't have a 24-hour staff monitoring
your network, consider outsourcing this service to a managed security services
provider (MSSP). They will not only be able to alert you at the first sign of trouble,
but can do so at any time, day or night. You can also utilize their expertise in dealing
with the outbreak. In any event, make sure you have a plan in place, because it's not a
matter of if the next worm will strike, but when.

About the Author
Joe Stewart, GCIH, is a Senior Information Security Analyst with managed security
services provider LURHQ Corporation. He may be reached at jstewart@lurhq.com.

