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Abstract. In open multi-agent systems (MASs) we cannot assume agents
to be developed in a centralized fashion. Recent proposals of commitment-
based communication frameworks aim at increasing such openness. In-
teraction with agents whose behavior does not follow a universal stan-
dard raises the need for some means of protection for each agent. In this
work we propose an automata-based monitoring module that continu-
ously supports an agent during its life in a MAS. Such module includes
a Word Composer that observes exchanged messages and keeps track of
significant past interactions to express an agent’s input in the form of
time-stamped words, and a Word Analyzer that processes such words
and matches them against some properties expressed in linear temporal
logic which are supposed to hold throughout the interactions.

1 Introduction

Communication may be considered as playing a fundamental role in increasing
the openness of multi-agent systems (MASs), as interaction standards that need
not take agents’ internal architecture into account allow for systems populated
by heterogeneous, independently developed entities.

The most significant agent communication language (ACL) standard pro-
posed so far, FIPA ACL, despite some minor changes throughout the years,
has always been providing mental-state-based specifications. Among the issues
that rise from such an approach, the most compelling is probably the fact that
programmers are supposed to create software with a specific architecture imple-
menting such prescribed mental states.

To counter this limitation to MASs’ openness, some researchers have pro-
posed ACL standards with a commitment-based semantics [5, 15], according to
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which every communicative act is seen as the creation or the modification of a
commitment binding the agent to the others. While mental states are subjective
and private, commitments are objective and public, and can be stored in public
records for further reference.

These advantages come with a cost, dealing with different aspects of a com-
mitment based open MAS. Firstly, if agent interaction is expressed in terms of
public commitments, every agent needs to check whether such commitments are
fulfilled or not on the basis of the events that have occurred in the system. We
might assume such task to be performed by a centralized service to which all
agents subscribe, but as one of the commitment proposal’s main aims is to in-
crease openness in MASs, we might as well prescribe that each agent be provided
with a monitoring module. Moreover, openness means also that an agent cannot
rely on any assumption about the agents it interacts with other than a common
communication framework.

This raises the need for a way to protect the agent from potentially harmful
interactions which might end up with contradictory commitments (which would
inevitably lead to a violation of one of them) or with commitments to actions
that are not compatible with the agent’s characteristics or resources. The agent’s
monitoring module, thus, would also help keep its interactions in an open system
safe, by checking whether the events are compatible with the properties that are
part of the agent’s specifications.

We propose that such a module be implemented as a component comprised of
two submodules: a Word Composer elaborates exchanged messages in the form
of timestamped words, which are in turn processed by a Word Analyzer that,
exploiting finite state automata on infinite words, analyzes the state of the MAS
and checks whether some properties, expressed in linear temporal logic, hold.

We present our proposal in the remainder of this work, which is organized
as follows. Section 2 provides the theoretical background about the concepts
supporting commitment-based agent interactions and the monitoring module,
which is illustrated in detail in Section 3; in Section 4 some of the most significant
related work is referred to; finally, Section 5 concludes.

2 Background

Let us start with some linear temporal operators, their definitions, and some ab-
breviations, followed by a suitable content language to represent the commitment-
based domain the agents are working in. Then, we illustrate the theoretical
background on Büchi and alternating automata, which our monitoring module
is based on.

2.1 LTL±

The monitored properties are expressed using the notion of time as introduced by
Linear Temporal Logic with both past and future modalities (LTL±) [12]. In the
following we describe a propositional version of LTL, supposing that the atomic



propositions belong to a specific Content Language (CL). LTL± is a modal logic
in which modalities refer to time and, considered a set of atomic propositions
CL, its syntax is given over it in BNF as follows:

ϕ ::= true|p|¬ϕ|ϕ ∨ ϕ| Xϕ |G+ϕ |F+ϕ |Until(ϕ,ϕ)
Pϕ |G−ϕ |F−ϕ |Since(ϕ,ϕ) | WUntil(ϕ,ϕ) | Z+(ϕ,ϕ)

where the modal operators X, P, F+, F−, G+, G−, Until, Since, WUntil, Z+ are
called next(time), previous(time), eventually in the future, eventually in the past,
always in the future, always in the past, until, since, weak until and until and no
longer, respectively. The boolean operators ∧ and ⇒ are obtained, as usual, by
composing ∨ and ¬.

The semantics of LTL± is given on a Kripke structure M , that consists of
a tuple 〈S, R, L〉, where S is a finte set of states, R ⊆ S × S is the transition
relation, and L : S → 2CL is a labeling function that labels each state with the
propositions in CL that are true in that state. A path π = s0, s1, . . . is an
infinite sequence of states in S such that, ∀i ≥ 0, (si, si+1) ∈ R.

We give the semantics of LTL± formula on a Kripke structure M using the
following notation. Let πi in a path π = s0 s1, . . . be the suffix of π that starts
from si. If ϕ is a formula, M, π |= ϕ means that ϕ holds in the state initial
state s0 of the path π in the Kripke structure M . The relation |= is then defined
inductively as follows:

– M, π |= p iff p ∈ L(s0);
– M, π |= ¬ϕ iff M, π 2 ϕ;
– M, π |= ϕ1 ∨ ϕ2 iff M, π |= ϕ1 or M, π |= ϕ2;
– M, π |= Xϕ iff M, π1 |= ϕ;
– M, π |= Until(ϕ1, ϕ2) iff there exists k > 0 such that M, πk |= ϕ2 and, for

all 0 ≤ j < k, M, πj |= ϕ1;
– M, π |= Pϕ iff there is a path π∗ s. t. π1

∗ = π and M, π∗ |= ϕ;
– M, π |= Since(ϕ1, ϕ2) iff there is a path π∗ s. t. πn

∗ = π and there is a
0 ≤ k < n such that M, πk

∗ |= ϕ2 and, for all 0 ≤ j < k, M, πj
∗ |= ϕ1;

The rest of the temporal modalities can be expressed using the ones above as
follows: F+ϕ=Until(true, ϕ), G+ϕ= ¬F+¬ϕ, F−ϕ=Since(true, ϕ), G−ϕ= ¬F−¬ϕ,
WUntil(ϕ1, ϕ2)=G+ϕ1∨Until(ϕ1, ϕ2),
Z+(ϕ1, ϕ2)=WUntil(ϕ1, ϕ2)∧G+(ϕ2 ⇒G+¬ϕ1).

Notice that the operators X and P give also a quantitative notion of time,
since they can identify temporal instants in the domain of natural numbers.

Given an integer K > 1, we allow also a more concise form to express the
boolean combination of nested X (and P, respectively), in the following way:

– XKϕ (PKϕ) stands for K nested Xϕ (Pϕ) operators.
– F+

•Kϕ (F−•Kϕ) with • ∈ {<,≤} stands for
ϕ∨Xϕ ∨ . . .∨XK−1ϕ (ϕ∨Pϕ ∨ . . .∨PK−1ϕ) or
ϕ∨Xϕ ∨ . . .∨XKϕ (ϕ∨Pϕ ∨ . . .∨PKϕ)
for • =< and • =≤ respectively.



– G+
•Kϕ (G−•Kϕ) with • ∈ {<,≤} stands for

ϕ∧Xϕ ∧ . . .∧XK−1ϕ (ϕ∧Pϕ ∧ . . .∧PK−1ϕ) or
ϕ∧Xϕ ∧ . . .∧XKϕ (ϕ∧Pϕ ∧ . . .∧PKϕ)
for • =< and • =≤ respectively .

Notice that we are working using natural numbers as domain and, in this
scenario, past modalities do not add any expressive power with respect to clas-
sical LTL [11], but allow us to represent the required properties in a shorter and
more elegant fashion.

The LTL± temporal operators may be considered as the domain-independent
part of the language that allows for the description of the properties an agent
needs to monitor, while the context of the MAS where the agent is running
determines the domain the propositional atoms refer to. As our proposal deals
with MASs with a commitment-based communication framework, let us briefly
provide a language which is expressive enough to describe such type of interac-
tion. In this perspective, a message exchange is viewed as an action performed
by an agent to create or modify the commitments that bind it to other agents.

Events are reified, and each event token belongs to at least an event type. An
event brought about by an agent is called an action, and we write Done(e, x, τ)
to mean that event e of type τ is brought about by agent x. We use the
“m-dash” character as a shorthand for existential quantification. For instance,
Done(e,−, τ) is defined as ∃xDone(e, x, τ).

A commitment is a social state between agents comprised of four components:
an event e that has created the commitment, a debtor x which is the agent who
is committed, a creditor y which is the agent the debtor is committed to, and a
content u which represents the state of affairs the debtor is committed to bring
about, and the relevant predicate is Comm(e, x, y, u). By including event e in
the parameters of a commitment, we make it linkable to the event that generated
it for furhter reference. As we do not intend to depart from classical first-order
logic, we let the content of a commitment be represented by a term u, and we
write buc to refer to the relevant LTL± formula.

Intuitively, a commitment is fulfilled when its content, or, more precisely,
the LTL± formula corresponding to its content is true, and is violated when its
content is false. Allowing for more expressive contents including commitments
themselves would easily lead to situations in the likes of the “liar paradox”,
which are far from automatically manageable. Investigating the allowable extent
of content language expressiveness lies beyond the scope of this work. In our view,
an agent’s monitoring module gathers the truth values of the propositional atoms
included in a commitment’s content buc at all the needed states, as prescribed by
the temporal operators in buc. As soon as the module is able to calculate a truth
value for the whole formula, the agent knows whether the relevant commitment
has been fulfilled or violated. This process is described in detail in the next
section.

Agents create commitments by performing suitable tokens of commitment
manipulation action types, like make commitment (mc). The reader may refer
to [19] for further details about commitment manipulation. The effects of the



performance of a commitment manipulation action are illustrated in the form
of axioms. The scope of the validity of formulae is limited to the class of LTL±

models that fulfill the constraints imposed by such axioms. For instance, if an
agent (not necessarily x or y) performs an action of making a commitment with
x as debtor, y as creditor, and u as content, then the relevant commitment holds
until it is either fulfilled, or violated, after which it no longer exists:

Done(e,−,mc(x, y, u))⇒Comm(e, x, y, u)Z+Fulf (e, x, y, u)∨Viol(e, x, y, u).

In many cases, a possible content language CL that allows for a significant de-
scription of a domain must exploit first-order logic’s expressiveness. However, to
be able to write the properties to be monitored in the form of LTL± formulae,
we need to translate the first-order logic sentences into propositions. Current
propositional encodings (naive propositionalizations) result in extremely large
propositional encodings even for moderate applications. No more efficient solu-
tion has been found yet, even though some promising proposals can be found in
the literature [13]. For our purposes in this work, we assume that the monitor-
ing agent lives in a system where at each interaction a finite domain is in place,
and all the relevant identifiers are agreed upon by the participating agents. This
allows for the above-mentioned propositional encodings.

2.2 Finite Automata on Infinite Words

Let us remind here the definitions of classical and alternating Büchi automata
(BAs [17] and AAs [4], respectively), which consitute the basis for our monitoring
module. Formally, a BA A is a tuple 〈Σ,S, s0, δ, F 〉, where: Σ is the finite set
of the input symbols, S is a finite set of states, s0 ∈ S is the initial state,
δ : S×Σ → 2S is the transition relation, and F ⊆ S is the set of accepting states.
Differently from classical finite state automata on finite words, these automata
will accept infinite words, using the Büchi condition, i.e., a word w = a0, a1, . . .
(for each i ≥ 0, ai ∈ Σ) is accepted by a BA A if exists an infinite sequence
s = s0s1s2 . . . where, s0 is the initial state, for each i ≥ 0, δ(si, ai) = si+1 and
at least one state s ∈ F appears on π infinitely many times.

AAs can be defined as BAs with the only difference in the transition func-
tion that becomes δ : S × Σ → B+(S), where B+(S) is the positive boolean
combination of the elements in S, i.e., a boolean combination using ∧ and ∨
but not ¬. These automata allow two modalities: nondeterminism, also called
existential modality, and parallelism, also called universal modality. As seen in
the definition above, the former, given an input letter, allows the automaton to
fire the transition choosing where to move among different possible targets. A
word is accepted if at least one of these alternatives generates an acceptance run.
Symmetrically, the latter makes the automaton move with just one transition in
more than one state. This can be seen as the creation of as many copies of the
automaton as the states to reach with a universal branch. In this case a word is
accepted if it is accepted by all the generated copies.

LTL only with future modality is strongly correlated to BA and AA [4]. In
the following we will show how we exploit this correlation.



3 The Monitoring Module

Figure 1 provides an overview of the monitoring module we are proposing. It
is comprised of two submodules: the Word Composer (WCS) and the Word
Analyzer (WAS), which support an agent during its interactions in the MAS.
The WCS includes a sniffing functionality to get a copy of every message that the
agent exchanges. Among the sniffed messages, only those dealing with the atomic
propositions that appear in the monitored property are selected. Not only the
WCS processes the received data to prepare the input for the next component,
but, should the monitored property contain past tense operators, the WCS is
also in charge of keeping track of the relevant information for future evaluation
of the truth value of formulae of this kind. Subsection 3.2 provides more details
about the construction of the input in the form of a time-stamped word and
the processing of past-directed temporal operators. Once the input is ready, it
is sent to the WAS, which consists of an alternating automaton functioning as
a language acceptor. An unaccepted WCS word means that the state of the
MAS does not satisfy the property expressed by the monitored formula, and
such violation is notified to the agent. In accordance with the criticality level of
the task the agent is supposed to carry out, it will consider the notification from
the WAS as a warning or it will abandon the MAS.

Word Composer Word
Analyzer

Fig. 1. The monitoring module.

3.1 Managing Temporal Aspects

LTL± allows for the creation of formulae with an arbitrary nesting of past and fu-
ture tense operators. Nevertheless, the two temporal modalities can be processed
separately. Gabbay [8] shows that a formula with nested operators can always
be algorithmically broken down into subformulae only with future- and past-
directed operators. This procedure is performed at a cost of a non-elementary
blow up in the number of nested alternated modalities, and this complexity may
result in a significant impact on the dimensions of the automaton needed to
monitor the formula in worst case scenarios.

However, our approach mainly addresses formulae which are already sepa-
rated or have a rather small number of nestings, as these are easier to relate with.
Gabbay illustrates this technique by providing eight fundamental rules that are
to deal with all the possible nesting combinations of the Since and Until oper-
ators, which are taken by the author as primitive. By exploiting the relations
between these two operators and all the others, we can elaborate similar rules for
our temporal language, which may be implemented as a formula preprocessor.



Moreover, as illustrated in more detail in Section 3.2, past operators that
do not include any future operator can be processed into simple propositional
atoms. In fact, at every instant, the past can be iteratively evaluated on the basis
of the previous input, hence its truth value can always be available at the present
time as the value of propositional letters. This means that we do not need to
separate formulae in which past operators are embedded in future operators, but
only need to take care of the opposite nesting (future operators nested in past
operators).

Let us introduce an example of a simple formula to illustrate this approach:
G+(F−F+a ⇒ F+

<10b). In this formula the future tense operator F+ is placed
within the scope of the past tense operator F−. By exploiting the well known
equivalences F+a⇔ Until(true,a) and F− a⇔ Since(true,a) and Gabbay’s rule

Since(q,p∧ Until(B,A)) ⇔ (Since(q,p) ∧ Since(B,p) ∧ B ∧ Until(B,A)) ∨
(A ∧ Since(B ∧ q,p)) ∨
(Since(q,A ∧ q∧ Since(B,p) ∧ Since(q,p))),

F-F+aF+a
a a a

Fig. 2. Possible models for F−F+a.

By matching q, p, and B with true, and A with a, and by equivalences
Since(true,true) ⇔ true and true ∧ p ⇔ p, we obtain

F−F+a⇔ Until(true,a) ∨ a ∨ Since(true,a) ⇔ F+a ∨ a ∨ F−a.

More intuitively, F−F+a holds at present time tp if and only if there exists a
t < tp where F+a holds, which means that there must exist a t′ > t where a
holds. Nothing is said about t′ with respect to tp, so that we could have t′ > tp,
t′ = tp, or t′ < tp, which correspond to the three subformulae in the disjunction
we obtained by Gabbay’s rule. Some models for F−F+a are depicted in Figure
2, while a model for the complete example is in Figure 3.

+10

b a

Fig. 3. A sequence of events that satisfies the example.

The outmost G+ operator is not processed as part of the formula like the
other operators, but taken as a procedural directive that prescribes that the
monitoring task be continually performed.



3.2 The Word Composer

The input alphabet on which our monitoring module works is composed by
propositions, which are either sniffed CL formulae translated into propositions or
past subformulae evaluated on the basis of previously sniffed data and eventually
flagged with a truth value. As our temporal model has a starting point, the input
words are infinite on the right (in the future) but finite on the left (in the past),
which means that a past subformula always relies on a finite support. These
considerations have helped to prove the set of past-directed LTL± subformulae
to be a language accepted by a deterministic BA3 [16]. Our monitoring module
exploits these results and relies on deterministic BAs to compute the truth value
of past subformulae. In the following, we omit to represent these BAs and assume
that the results of their computation is kept in a finite memory.

Let us focus on the unbounded operator Since(a1, a2), with a1 and a2 either
present or past formulae (since we are working under the hypothesis of a sep-
arated form, we can ignore future-directed examples).The formula is true at a
certain instant if in the past a2 was true and since then a1 has been true. In order
to evaluate this formula at the present time, we would need to keep track of all
the previous literals back to the first a2 or, even worse, back to the origin of the
system. This problem can be overcome by evaluating Since at all instants, also if
its truth value is not immediately required, for future evaluation in combination
with other propositions describing the states of the system. More precisely, the
truth value of Since(a1, a2) is evaluated using the algorithm represented by the
flow diagram in Figure 4. An analogous function can be directly defined for G−

and F− or, alternatively, these operators can be expressed in terms of Since.

Since(a1,a2) Since(a1,a2) = F
Past_a2=F not a1 Since(a1,a2)=F

a1 && 
Past_a2Since(a1,a2)=T

Read a1 and 
a2's current 

values

Past_a2=a2

Y Y

NN

N

Y

Fig. 4. Flow diagram of the algorithm to evaluate Since(a1, a2)

Bounded operators, i.e. P and the boolean combination of P, require a finite
memory whose dimension is determined by the temporal constant (K) charac-
terizing them. While with P we are just interested in the previous instant, with
F−≤Kϕ we need the last K values of ϕ in order to be able to evaluate the formula.
Notice that if a bounded past operator is nested in another bounded past oper-
ator, its truth value needs as many memory bits as the sum of the two temporal
constants in order to be computed.

3 A deterministic BA is a BA such that the transition function is limited: δ : S×Σ →
S.



Taking these considerations into account, the example G+((a ∧ F−c) →
F+

<10b) can be seen as G+((a ∧ evalF(c)) → F+
<10b), with evalF(c) computed

using the algorithm represented in Figure 5.

not F_p(arg) F_p(arg) = F
Past_arg=F Past_arg F_p(arg)=TRead arg's 

current value

Past_arg=arg

Y Y

NN

Fig. 5. Flow diagram of the algorithm to evaluate F−(arg) (depicted as F p)

3.3 The Word Analyzer

To illustrate how the MWA works, let us first focus on its input. The words
composed as explained in Section 3.2 are timestamped, and the temporal dis-
tance between two adjacent literals (i.e. the numerical difference between the
relevant timestamps) is not constant, but depends on when each data item has
been sniffed. Our logic, on the contrary, is based on a model with a uniform
distribution of time between successive states. To overcome this lack of tempo-
ral uniformity between the events that create the literals in the word and the
flow of time in the system, we define an information preserving filling procedure.
The basic idea is the following: under the hypothesis of choosing a small enough
time unit4, at each instant the atomic propositions are assigned the value they
had the last time they were sniffed. Before the first sniffing, the propositions are
assigned an initialization value.

Fig. 6. An example of word filling

Figure 6 illustrates the filling procedure. The channel attached to the antenna
carries the sniffed values of the propositions, which fill the word (the linear struc-
ture below the channel) until the successive sniffing. Under this hypothesis, our
4 The time unit has to be small enough to guarantee no two changes of any atomic

proposition values occur in the same time unit.



input words are coherent with the AA model presented in Section 2.2. As al-
ready mentioned, a strong correlation between AA and LTL exists which can be
effectively exploited after the past subformulae elimination process (see Section
3.2) turns the monitored LTL± formula into an LTL sentence. A methodology to
translate an LTL formula into an AA is presented in [18]. It consists in interpret-
ing the subformulae with temporal operators as states, and the formula itself as
the initial state, and in defining a particular transition function that preserves
the composition relations between subformulae. We can exploit this approach
for our monitoring purposes, but the following drawback must be taken into
account. The concise operators built with a boolean combination of nested X
operators lead to as many subformulae as the elements in the set we obtain from
the transitive closure of the relation of being a subformula of the initial one. This
may cause the construction of an AA with a large number of states, negatively
impacting on the monitoring module’s performance. To overcome this limita-
tion, we follow the approach based on Alternating Modulo Counting Automata
(AMCAs), AAs enriched with a finite set of finite counters, as proposed in [16].

An AMCA is a tuple 〈Σ,S, s0, µ, δ, F 〉, where: Σ is a finite set of the input
symbols, S is a finite set of states, s0 ∈ S is the initial state, µ is a positive integer
such that Cnt = [0, . . . , µ] is a finite set of finite counters, δ : S × Σ × Cnt →
B+(S × Cnt) is the transition relation, F ⊆ S is the set of accepting states.
These automata do not add any expressive power to AAs, but they allow for
a more concise representation of bounded operators. Thus, following the idea
illustrated in [18], an LTL formula with metric operators can be translated into
an AMCA.

f

NOT(a AND evalF(c))

a AND evalF(c)|
      reset(t)

AND F+b

True False

NOT(b) AND 
t<10 | inc(t)

b AND 
t<10

NOT b 
OR t=10

Fig. 7. The AMCA for the formula in the example. AND states for ∧, OR for ∨, NOT
for ¬ and f is the formula G+((a ∧ evalF(c)) → F+

<10b).

To illustrate how an AMCA is generated from a formula, let us consider
the example, once past operators have been transformed into propositional let-
ters: (G+((a ∧ evalF(c)) → F+

<10b)). The resulting AMCA is in Figure 7. The
automaton has four states: the initial state representing the formula, the state
representing the temporal subformula F+

<10b and True and False, which indicate
termination in an acceptance and a non-acceptance state, respectively. The au-
tomaton cycles on the initial state as long as a ∧ evalF(c) is false. When this
subformula becomes true, the automaton duplicates itself and a copy keeps on
cycling on the initial state, while the other goes in F+

<10b to check whether the
consequent is satisfied. This second copy terminates after at most 10 time in-



stants in an acceptance state, if b is true by this deadline, in a non-acceptance
state otherwise.

Notice that nothing prevents the system from generating another copy for
F+

<10b while one is still active. Indeed, the automaton will produce a copy every
time a ∧ evalF(c) is true. Since the copies in F+

<10b will be active at most 10
time units, this means there may be as many as 10 active copies at the same
time. This is very costly, but it could be much worse when unbounded operators
F+ , G+ or Until are involved. For instance, with a slightly different formula
G+((a ∧ evalF(c)) → F+b), as before, every time a ∧ evalF(c) is true the
automaton generates a copy to check the consequent, but, in this case, F+b has
no constraint on termination, so that infinitely many copies of the automaton
may be created. This problem, which seems to seriously affect the feasibility of
our approach, can be efficiently overcome without loss of expressive power. In
many cases the duplication turns out to be unnecessary, especially in critical
systems, where ending in a non-acceptance states is to trigger the agent’s exit
from the system. Exiting the system at the first failure actually guarantees that
the maximum number of needed copies of the ACMA is C = N+ΣM

i=0Ki, where
N is the number of temporal subformulae, not including nested X operators,
which are as many as M , with Ki being the relevant level of nesting. In other
words, the monitoring module just needs one automaton for every temporal
operator, except for XKi , for which Ki copies are required. Let us provide a
more detailed account by analyzing each temporal operator.

– F+ϕ: when there is an active automaton waiting for ϕ to be true, a new copy
would be useless, in that it would also wait for the same condition.

– G+ϕ: the existing automaton keeps on being active as long as ϕ is true, and
this is exactly the same task that a new copy would perform.

– Until(ϕ,ψ): again, a second copy would have the same behavior of the existing
one, in that a state with ψ true would satisfy both, a state with ϕ true and
ψ false would keep them both active and waiting for the next instant to
perform a new evaluation, and a state in which both propositions are false
would lead both copies to a non-acceptance state.

– XKϕ: this operator is punctual, in that, the relevant truth value is determined
by a single state. Thus, if a new copy of the automaton is required, it is
to evaluate a state which lies on the outside of the scope of the currently
active automaton. No optimization is then possible. However, each copy will
be active for exactly K time instants, which means that no more than K
automata will be active at the same time.

– G+
•Kϕ: let us suppose that in the situation depicted in Figure 8, with an au-

tomaton launched at instant 1, a new copy is required at instant 2. Automata
1 and 2 aim at checking whether ϕ is going to be true at all K instants of the
intervals starting at 1 and 2, respectively. Resetting automaton 1’s counter
to zero at instant 2 is a way to achieve the same result without the need for
the creation of automaton 2.

– F+
•Kϕ: referring again to Figure 8, if at instant 2 automaton 1 is still active, it

means that ϕ has not become true yet. A new copy created at instant 2 would



look for an occurrence of ϕ in interval [2, 2 + K]. It should be noticed that
if K does not become true by 1 + K, automaton 1 ends in a non-accepting
state. Thus, the only interval that counts at instant 2 is [2, 1 + K], which
means that automaton 1 suffices for the monitoring purposes.

Notice that the upper limit proposed for the number of copies of the au-
tomaton holds only for critical systems, where the agent is supposed to quit
the monitoring process as soon as the first violation occurs. When the level of
criticality is not an issue and the monitoring process is performed for statistical
purposes, i.e., the monitoring module has to find all the violations and not only
the first one, the number of needed copies becomes C = U + ΣB

i=0Ki, where U
is the number of unbounded subformulae and B is the number of bounded ones.
The idea is that, since now we are interested in all the errors, when a bounded
operator is involved, we want to know where the error occurs within the its
scope, in order to associate the failure with the relevant event.

K
K

21

Fig. 8. Timeline to show the multiple copies.

3.4 An example

We experimented our monitoring technique on MASs using the JADE platform5.
The agent of a MAS in JADE communicates using a message transport system,
called Agent Communication Channel, that checks all the messages exchanged
in the platform, including the messages from and to remote platforms. An extra
module, called sniffer, is added to the MAS to analyze the exchanged messages.
The sniffer has a cyclic behavior and it can intercept all the messages sent
and received on the communication channel. In our case, it listens to all the
messages from and to the monitored agent. Let us consider an example with an
agent joining a MAS with a service provider. Before the agent’s deployment, we
can only verify the properties which deal solely with the agent’s behavior. Once
the agent joins the MAS, as we cannot make any assumption on the behavior of
the other agents, we need to rely on the monitoring module to ensure that also
more general properties involving all the entities in the MAS hold. For instance,
we may be interested in the fact that all the commitments made by the service
provider sp towards our agent x are fulfilled within 10 time units:

P(¬Comm(−, sp, x, u)) ∧ Comm(e, sp, x, u)⇒ F+
<10(Fulf(e, sp, x, u)),

where buc = φ. Taking the definition of fulfillment into account, after the propo-
sitionalization of the formulae we obtain:

P(¬Cu) ∧ Cu ⇒ F+
<10(Fu) and Fu ⇔ φ,

5 http://jade.tilab.com



that can be substituted by P(¬Cu) ∧ Cu ⇒ F+
<10(φ).

For the sake of simplicity we assume φ to be a propositional letter a ∈ CL.
As we have shown before, the automata for more complex formulae can be re-
cursively built. The task then boils down to monitor G+(evalP(¬Cu)∧Cu →
F+

<10a) by means of the relevant automaton, as illustrated in the following
pseudo-code. The first piece corresponds to the main program, comprised of
an infinite loop that, every time a literal in the word built by the WCS is pro-
cessed, it checks whether the propositions Cu and evalP(¬Cu) are true. If so,
the main program calls for the monitoring of a by the function corresponding
to the F+

<10 operator. Checking the condition not ActiveF guarantees that no
unnecessary call will be performed. The flow diagram of the main is represented
in Figure 9.

Cu && 
P(not(Cu))ActiveF=F not ActiveFRead Cu's 

current value

Y Y

NN

Compute 
evalP(not(Cu)) ActiveF=T

Run F(a,10)

Fig. 9. Flow diagram of the main; ‘Run’ calls the relevant evaluation function.

The activated function takes the parameter of the call as the proposition to
check, and it starts its run referring to the same literal in the word the main
program is referring to. A local counter time is initialized to zero. The function
is run at every new literal from the word, and it terminates when the relevant
subformula can be evaluated to true or false.

The flow diagram of the evaluating function called with the Run command
is depicted in Figure 10. It returns a success/failure value to the main (not
depicted in Figure 9), which triggers the relevant signal and sets ActiveF to false
to indicate that the evaluation function is no longer active.

not arg && 
time<MAX

F(arg, MAX) = T
time=0 time>=MAXRead arg's 

current value

YY

N

Increment time Output: Fail

Output: 
Success

N

Fig. 10. Flow diagram of F

4 Related Work

Great interest in monitoring techniques arose in software engineering, and in
particular in web services. Among the multitude of works in this field, particu-
larly related to our work is Dynamo [3], a monitoring framework to assist the
execution of workflow processes. Dynamo’s synchronous integration of business
and monitoring logics puts the execution of the business process on hold while
the monitoring process checks the validity of a rule. Moreover, in [2] the authors



proposed a temporal extension to allow for the monitoring of more complex
properties, both functional and non-functional. In this new version the authors
define temporal operators exploiting the characteristics of their input language,
hence, their semantics is defined on time-stamped words.

Dix et al. [7] propose adding a monitoring agent to a given MAS for debugging
purposes. Given a planning problem, the monitoring agent generates all other
possible plans to reach the same goal, then continuously checks and compares
the messages exchanged by the other agents with all the plans. Should any
incompatibility be detected, the monitoring agent generates an error file and
reports to the MAS designer.

Guessoum et al. [9] regard monitoring as a process relying on a graph. Each
node represents an agent in the MAS, and a weighted arc between two nodes
stands for the communication load between the relevant agents. For each node
there is a monitoring agent constantly updating the weights of the arcs the node
belongs to, and notifying a supervisor agent whenever a significant change in a
weight occurs. The supervisor thus has a general view on the communication in
the MAS, and may prescribe the replication of some agents to avoid overload.

Kaminka et al. [10] propose a system which, following a non-intrusive ap-
proach, bases the monitoring process on overhearing of routine communication
between agents which are members of a team aiming at the completion of a
specific plan. The team is supposed to be geographically distributed, and the
monitoring system sets off inference based on plan recognition against uncer-
tainty due to non-perfect overhearing.

When restricting the context to norms, which can be seen as a specific deontic
type of properties, several researchers, like Robles et al. [14] and Aldewereld et
al. [1], propose to add a governor agent to the system for monitoring purposes.
This approach requires much more structured interaction frameworks in the form
of electronic institutions, to the detriment of openness and flexibility. As shown
above, instead of one monitoring agent, we propose a simpler monitoring module
within each interacting agent.

Cranefield [6] presents hyMITL±, a rule language for specifying social ex-
pectations, and outlines an algorithm for rule compliance monitoring. hyMITL±

relies on a branching model of time and is more expressive than the language
we propose, which makes the monitoring process more complex a task. The cur-
rent status of our work calls for a detailed comparison of the two approaches to
establish the correct balance between expressiveness and efficiency.

5 Conclusions and Future Work

In this work we have proposed a monitoring module for analyzing the interaction
of a single agent in a MAS. Our monitoring system is based on automata theory
and takes advantage of research on model checking and web service monitoring
systems. Our monitoring module contains two main components: a Word Com-
poser, devoted to collect data from MAS communication and elaborate them in
order to evaluate immediately present and past components, and a Word An-



alyzer, that analyzes such results to monitor the system during its evolution.
There are still some interesting issues to tackle. First, we would like to enrich
the logic used to state the properties, in order to define new classes of moni-
toring problems (e.g.: dense time, data aggregation functions), then, we aim at
investigating the possibility to add a recovery mechanism, so that our monitor-
ing module not only can detect errors, but it may also suggest possible ways to
counter them.
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