
Pricing the ‘Free Lunch’ of Meta-Evolution

Alexei V. Samsonovich
Krasnow Institute for Advanced Study

George Mason University
Fairfax, VA 22030-4444

703-993-4385
asamsono@gmu.edu

Kenneth A. De Jong
Krasnow Institute for Advanced Study and

Computer Science Department
George Mason University, Fairfax, VA

703-993-4398
kdejong@gmu.edu

ABSTRACT
A number of recent studies introduced meta-evolutionary
strategies and successfully used them for solving problems in
genetic programming. While individual results indicate
possibilities of successes and failures (e.g., Kantschik, Dittrich et
al., 1998, 1999), the emerging global picture suggests that the
approach may have universal, domain-independent advantages
over traditional methods. Trying to develop a general theoretical
understanding of this concept, we use Price’s theorem to define
fitness at a meta-level and show with two simple case studies
(two-dimensional optimization and the Eight puzzle) that the
ideology based on Price’s theorem can work at a meta-level in a
similar manner for very different problems. Specifically, Pricean
definition of fitness for reproductive operators appears to be
practically useful and essential for performance and stability of a
certain class of meta-evolutionary algorithms.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies] Symbolic and Algebraic
Manipulation – Algorithms. I.2 [Computing Methodologies]
Artificial Intelligence – General.

General Terms
Algorithms, Measurement, Performance, Design, Theory,
Verification.

Keywords
Evolvability, self-adaptive EAs, metaevolution, co-evolution,
Price’s theorem.

1. INTRODUCTION
A traditional evolutionary computation scheme uses only a
limited, fixed set of reproductive operators, such as mutation and
crossover. This basic paradigm remains unchanged in the majority
of studies that treat parameters of reproductive operators as
dynamic, evolvable entities [3]. Self-adaptive parameters used in
these studies included the mutation step [1, 11], mutation rates
[2], crossover templates, or masks [10], and the like.

In contrast, the key idea of a meta-evolutionary approach is to
consider a search for a best evolutionary algorithm as an
optimization problem to be solved by evolutionary computation.
In a globalistic interpretation of this idea [5], a set of base-level
evolutionary algorithms, each with its own set of parameters and
opereators, are treated as the evolving population of individuals at
the meta-level. An alternative paradigm [7] is to treat reproductive
operators and primitives on their own as individuals subject to
evolution. E.g., in this case, the population of operators can
evolve in parallel with the base-level population, thereby adapting
themselves locally, to the current base-level population, rather
than globally, to the base-level problem as a whole. The present
work is focused on this “local” meta-evolutionary approach. In
this framework, reproductive operators that modify the meta-level
population may be the same set of operators (if they can modify
their own kind) – or yet another set of operators. Further
elaboration leads to a multi-level meta-evolutionary architecture
[6] with a hierarchy of populations evolving in parallel. In this
architecture, higher-level individuals are used as operators to
perform reproduction of immediately-lower-level individuals and,
possibly, their own kind as well (Figure 1).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.
.

Task-level individuals:
level 1

Reproductive
operators: level 2

Reproductive
operators: level n

Figure 1. General organization of a
meta-evolutionary architecture ([6]).

…

1355

This general framework was defined and proved successful for a
set of specific problems in genetic programming [6, 13]. While
individual results indicate possibilities of successes and failures
(e.g., [6]), the emerging global picture suggests that, at least for
some classes of problems in evolutionary computation, a meta-
evolutionary approach has significant advantages over its more
traditional counterparts. If this is the case, then a general
theoretical analysis and an understanding of this phenomenon at a
meta-level would be highly desirable from both theoretical and
practical points of view. The present work addresses one of the
key problems of this approach: the rational definition of fitness at
a meta-level.

2. ANALYSIS OF AN ABSTRACT CASE
We start by considering a simple, abstract evolutionary scheme
based on a fixed-size population of N individuals (first level),
assuming that their fitness is given. We shall not assume a
detailed knowledge of the entire fitness landscape: its smoothness,
the top value, topology, etc. Our assumptions about the first-level
evolutionary algorithm are the following. During each
reproductive cycle, a set Y of N offsprings {yi} are produced that
replace the entire parent population X of N parents {xi} (non-
overlapping strategy). Each offspring yi is produced by mutation
of an individual xi ∈ X using a mutation operator g. At the
beginning we shall assume that the operator g is defined by a
fixed, deterministic function: y=g(x), and there are no other
reproductive operators. Let f be any real-valued function defined
for every x and y, and <f> its population average. One can think of
x and y as genotypes, and of f(x) and f(y) as the corresponding
phenotypes. Let w(x) be the number of children of x in Y. Then
the following calculation leads to a generalized Price’s formula
[4, 8] for the difference in the average population phenotype
between X and Y:

() () ()
() ()() () ()() ()() ()
() ,'',cov

X

XXXX

XY

fffw

xfxgfxgfxwxgfxw

xfyfgF

−+≡

−+−=

−≡

 (1)
where f'(x) = f(g(x)) is the value of f computed for a child of x, and
we used the fact that <w(x)> = 1 due to the fixed population size
N. The covariance term in the right hand side reflects the effect of
selection, and the second term characterizes the net individual
phenotype alteration by mutation. The formula (1) holds in
general, given the above assumptions. Moreover, it can be used in
a case when g is stochastic, and when w is the expected rather
than actual number of children, as long as the averaging over X
provides an efficient averaging over realizations of g and the
selection rule.
Now let f in (1) be the individual’s fitness, and consider a fitness-
proportional selection scheme, in which the range of fitness of X
is linearly mapped onto the unit interval of the probability of
selection, so that the minimal fitness value maps to zero, and the
sum of all resultant probabilities is normalized to one. Then the
expected number of children of x is

()
()

ff

fxf
xw

XX

X

min

min

−

−
= , (2)

and it follows from (1), (2) that

() () .'
min

,'cov ff
ff

ffgF
X

−+
−

= (3)

Here all averages are taken over the parent population X. The
quantity F(g) is the rate of growth of the average population
fitness <f> due to the action of the operator g. Therefore, if the
immediate goal at the first level is to increase the average fitness
of the population from X to Y, then (3) can be taken as a measure
of fitness of the mutation operator g. This choice makes sense
when g itself is subject to evolution, the goal of which is to
optimize the evolution of X. Indeed, it is easy to check that when
there is a population of mutation operators G = {g}, all of which
with equal probability are used for mutation of X, then

() () ()
GXY

gFxfyf =− ,

where F(g) is given by (3). This result extends to a multi-level
meta-evolutionary scheme. It is easy to check that when the rules
of evolution of both populations X and G are the same, including
the selection rule (2) with F substituted for f at the second level,
then a similar to (3) formula (with F substituted for f) will
provide a definition of fitness at the third level that is consistent
with the objective at the first level, and so on. In the present work,
however, we shall limit our consideration to a two-level scheme.
Therefore, we do not make any restricting assumptions about the
rules of evolution at the second level.
The idea that (3) is a good fitness definition for the second-level
evolutionary algorithm implies one significant assumption that
concerns the action of operators on the given landscape f.
Specifically, we assume that the landscape f with respect to each
operator g is “good” in the sense that all relevant statistical
properties derived for f(x) and f(g(x)), x∈ X, remain robust with
respect to the evolution of X, at least during a minimal number of
generations required for relaxation of G to its optimum for the
current X. In this sense, we assume that the evolution of G is ‘fast’
as compared to the evolution of X. This assumption implies
certain restrictions on the landscape, as well as on the population
dynamics (e.g., the relative frequencies of X and G updates).
When this assumption holds for a meta-evolutionary scheme
outlined above, then the fitness definition (3) can be expected to
produce in general better results than its alternatives.
In contrast, in the literature (e.g., [6]), the fitness F(g) of evolving
(meta)operators is frequently taken in a different form, usually
taking into account only the second term in the r.h.s. of (3).
Therefore, as an example of an alternative to (3), we consider a
“naïve” fitness definition that disregards the covariance term:

()
Xnaive ffgF −= ' , (4)

where again f'(x) = f(g(x)). An interesting question is: how critical
is the difference between (3) and (4) from a practical point of
view? To address this question, we conduct a numerical study of
the meta-evolutionary scheme defined above, using a two-
dimensional optimization problem.

3. EXAMPLE I: 2-D OPTIMIZATION
3.1 Model and Its Implementation
In this relatively simple case study we used two populations
A = {a} and B = {b} of 2-vectors (also viewed as complex
numbers), with N = 60 individuals in each population. The first-

1356

level fitness was defined by the following function f of a complex
argument z:

() ()

() [] (),,loglog

,
2

201

*
3/23/2 xxxzw

wz
wz
wzzwzf

ii θ

θ

==








 +
−

+
−−−=

+

+

 (5)

where θ is the Heaviside theta function. This f defined by (5) is
zero everywhere except a narrow strip that extends from 0 to 1 on
the complex plane and is bounded by a logarithmic spiral. In a
cross-section of this strip, the plot of f has a triangular profile with
one vertical edge. This choice of f is motivated by the suitability
of its features for a meta-evolutionary approach (due to its
approximate scaling symmetry with shape parameters slowly
changing along the spiral) and by the fact that most conventional
optimization algorithms fail on this landscape (including all
algorithms implemented in the optimization toolbox in Matlab6).
The second-level individuals {b} are the mutation operators that
act via addition on the first-level individuals {a}. The mutation of
b’s themselves was done via their multiplication by normally
distributed complex numbers c that were sampled anew every time
when they were used. This approach produced better results than
additive Gaussian mutations. In summary, the updating rules were
the following (primed entities belong to the next generation):

222 01.0,0,1

,,,

====

+==′′+=′

yxyx

iyxccbbbaa kkkjj (6)

The selection of parents aj and bk was fitness-proportional, given
by (2), and the parent fitness at the second level was taken either
in the form of Price’s formula (3) or the ‘naïve’ formula (4): the
latter was used in control runs. In both cases, the fitness of every b
∈ B was computed by averaging over the entire population A. The
selection of b'k as a mutation operator for the first level was done
with the uniform probability. At the end of each update cycle at
each level, the N children replaced the entire parent population
(non-overlapping scheme; see however below).
It follows from the general analysis in the previous section that
the relaxation of the second level should be fast enough as
compared to the first level, in order for the second level to be able
to follow changes in the population at the first level. Therefore,
two second-level updates were performed per each first-level
update (we found this choice performing better than one-to-one
ratio of the update frequencies).
The initial distributions of A and B were taken as symmetric
Gaussians, with A centered at a0 = (2i/3)0.1 (marked by the star in
Figure 3 A). B was centered at zero in one set of runs and at
b0 = 0.01i(2i/3)0.1 in all the rest of runs. The standard deviation of
the initial Gaussian distribution was set to 0.01 for A, 0.005 for B
centered at zero, and 0.001 for B centered at b0 .
After initialization, the algorithm proceeds with updates according
to (6), with two second-level updates per one first-level update,
and is terminated when all a’s have zero fitness (this event is
considered as an escape). The best fitness achieved in the run is
counted, together with the duration of the run.

3.2 Results
A substantial fraction of runs escaped very soon after start,
typically within the first ten generations. Therefore, the escape

probability was compared for the two versions of the algorithm
(Price and ‘naïve’) on 100 runs for each version with B initially
centered at zero and on 60 runs for Price and 100 runs for naïve
formula with B centered at b0. The results are given in Table 1.

Table 1. Percentage of successful starts in the four sets of runs

Total
runs B center Price ‘Naïve’ Wilcoxon P

100+100 0 0.75 0.30 2e-10
60+100 b0 0.82 0.38 9e-8

Figure 2. Statistics of 60 runs: Price (solid gray) vs.

‘naïve’ (clear) fitness formula used at the meta-level. A:
Histogram of the best fitness achieved in a run. B:
Histogram of the stable duration of a run measured in
second-level generations. See also Table 2.

Continued comparative testing of the performance of the two
versions (60 runs each) resulted in the histograms (Figure 2) and
data (Table 2) showing that, as expected from the theoretical
analysis, overall performance of Price’s formula is significantly
better than overall performance of the ‘naïve’ formula. At the
same time, there is no significant difference between top ten runs
of each version (Table 2), as well as between the sets of runs with
successful starts. On the other hand, in this case none of the runs
with successful starts provided an acceptable solution for the
optimization problem (the maximal fitness was 0.915 achieved
with Price’s formula after 1346 updates, while the absolute
maximum of the landscape is 1.0). Could it be that the significant
advantage of Price’s formula is limited to the initial phase, when a
diffuse Gaussian cloud must focus on a narrow feature of the
landscape?

1357

Table 2. Overall comparison, original algorithm

All 60+60 runs Price ‘Naïve’ P-value
Mean best fitness 0.63 0.34 0.00005

Mean run duration 598 306 0.00002

Convergence rate x103 2.51 3.45 0.8

% Successful starts 0.82 0.43 0.00002

Top ten runs:
Mean best fitness 0.86 0.83 0.08

Mean duration 746 740 0.5

Convergence rate x103 1.11 1.10 0.6

In order to address this question, tuning of the parameters of the
algorithm was performed. The modification consisted in an
incrased ratio of the update frequencies: six updates at the second
level to one update at the first level. In addition, elitism was used
at the second level that lasted during each first-level generation
(i.e., in each update cycle limited to the second level only, best
representatives were selected among the parent and the offspring
populations). Results (Table 3) are similar to the previous set of
results (Table 2), with two essential differences: (a) the average
best fitness in top ten runs increased from 0.8 to 0.97, and (b) a
phenomenon of spontaneous collapse of the populations to one
point at both levels was observed, which prevented further
convergence. The rate of collapse was significantly greater when
‘naïve’ formula was used (collapse was observed with Price’s
formula too, only with different values of parameters).

Table 3. Overall comparison, modified algorithm

All runs Price ‘Naïve’ P-value
Number of runs 19 42 -

Mean best fitness 0.85 0.36 0.001

Mean run duration 355 220 0.008

Convergence rate x103 3.13 8.74 0.6

% Successful starts 0.89 0.36 0.0001

Collapse probability,
given a successful start

0.00 0.27 0.025

Top ten runs:
Mean best fitness 0.97 0.97 0.45

Mean duration 416 581 0.47

Convergence rate x103 2.44 2.16 0.45

One further modification of the algorithm included variable ratio
of the update rates, when the decision was made based on the
second-level fitness. While the result was a significant advantage
of Price’s formula over the naïve formula, the comparison is
difficult, because in this case the algorithm essentially depends on
the definition of the second-level fitness. Needless to say that the
same evolutionary scheme with its meta-level ‘frozen’ as the
initially given Gaussian cloud is not capable of solving the given
problem (typically its best-so-far fitness does not get above 0.4).

Figure 3. An example of a run with Price’s formula

solving the 2-D optimization problem. A: Trajectory of
the first-level population following the spiral landscape.
B: Trajectory of the second-level population: local
adjustment of the direction and the size of mutation at the
first level. C: Dots representing best-so-far and average
fitness for each first-level generation (the best fitness for
this run is 0.995, the global maximum is 1.0). A slightly
modified algorithm was used in this case (see text).

1358

The considered example is not unique among 2-D optimization
problems that can be solved better with meta-evolution, and (we
expect), in particular, with a Price-theorem-based meta-evolution.
A possible alternative example may involve a quasi-periodic
landscape, when the task for a meta-level at the initial stage would
be to capture the period. Intuitively, a Price-based approach can
be expected to have advantages in this case over a ‘naïve’
approach, in analogy with the case studied above.

4. EXAMPLE II: THE EIGHT PUZZLE
The Eight-Puzzle is traditionally used as a test bed for search
algorithms. The puzzle can be solved exactly by mapping its
entire state space [9]. Effective practical solutions are based on
heuristics. Here this classical problem is used to test the generality
of the above conclusions. The objective in evolution is to evolve a
sequence of moves (script) that solves the puzzle. While it is not
possible in this case to use exactly the above strategy (because
most random mutations result in destruction of good results), the
general ideology of the above approach still can be applied here in
a more abstract sense.

4.1 Method
The initial configuration of the puzzle was one and the same for
all experiments presented here (Figure 4 A). It was obtained by
performing 1000 randomly generated moves, starting with the
goal configuration (Figure 4 B). The best solution found
automatically during the 100 runs (see below) consists of 24
moves.
First-level individuals are defined as sequences of moves (scripts)
that can be applied to the initial configuration. Each script is
represented as a string of characters that encode elementary moves
(‘U’, ‘D’, ‘L’, and ‘R’). All scripts are legal as long as they
produce trajectories confined within the square and have no kinks
(i.e., ‘U’ followed by ‘D’, or ‘L’ followed by ‘R’, or vice versa:
this syntactic constraint, although not necessary, is introduced in
order to speed up the solution process by limiting the search
space).
Fitness of a script is defined as the negative Hamming distance
from the goal, plus a linear penalty for the length of the script.
More precisely,









⋅−








−=

scriptthe
oflength

positionswrongin
tilesofnumber

Fitness 0001.0 .

 (7)
Here the “correct position” of a tile is its position in the goal
configuration, and the number of “wrong” positions is counted
after the script has been applied to the initial configuration.
Therefore, fitness of a script of a sensible length that solves the
puzzle must be close to zero.
Elementary modifications of scripts include insertion, attachment
(appending at the end), and deletion of elementary moves. These
elementary mutations are taken as building blocks for more
complex reproductive operators (schemas). Like scripts, schemas
are represented as sequences of moves. Three kinds of schemas
are used in this study: (i) insertion schemas, (ii) attachment
schemas, and (iii) deletion schemas. Insertion of a schema
sequence is performed at a uniformly, randomly selected site in
the script. Attachment is made always at the end of the script. In
case of a deletion schema, a subsequence found in the script that

exactly matches the schema is extracted from the script. If there
are several matches, then one is selected randomly (again, with a
uniform distribution). After a schema was applied to a script, all
kinks are automatically removed from the result. A schema fails if
there is no match (for deletions), or the resultant script is illegal
(after removal of kinks).

. Figure 4. Solving the Eight Puzzle. The objective is to
transform the initial configuration (A) into the goal
configuration (B). The best out of 100 runs solution
consists of 24 moves. 1: Main algorithm, the mean of 100
runs (solid line) plus-minus the standard deviation
(dashed). 2: Control algorithm (fitness at meta-level is
ignored). Again, solid line represents the mean over 100
runs, dashed lines show the standard deviation.

Available schemas are treated as the second-level population of
individuals that co-evolve together with the population of scripts.
New schemas are generated by applying schemas to schemas. The
kind of the child schema (insertion, attachment or deletion) is
inherited from the first parent (i.e., the one to which the second
parent was applied as to a script).
Unlike in the previous example, in this case a new schema is
accepted only when it succeeds in improving fitness of at least
one script. Therefore, the derivation of a Price’s formula (3) is not
valid in this case. The ‘naïve’ formula (4) still makes sense and
can be evaluated even based on one successful mutation, although
(4) is already partially “taken into account” by the selection
method (a new schema must improve at least one script). It is not
practically feasible in this case to perform any fitness averaging
over the entire population of available scripts in order to evaluate
fitness of a schema (e.g., a sort of averaging is required for
evaluation of the covariance term).
The idea used in this part of the study is to ‘emulate’ the Pricean
correction to fitness, i.e., the addition of the covariance term to
(4), by replacing (4) with its inverse. The rationale for doing this
is that, the higher is the change in the individual fitness of a script
due to mutation, the lower must be the covariance of the two
values of fitness (before and after the mutation), because of the
limited range of fitness. Therefore, here fitness F of a schema is
defined in terms of its effect on the fitness of a script as follows:

1359

()
ff
ffF

−′
−′

= θ (8)

where f and f’ is fitness of a script before and after the mutation,
and the average is taken over all explored successful mutations.
The algorithm at both levels involved a tournament selection
among children. In a control experiment, fitness of a schema was
ignored (random tournament outcome).

In brief, the main loop of the algorithm was the following.

1. Randomly select a script and a schema.
2. Apply the schema to the script, producing a child script, or

fail.
3. Eliminate kinks in the child, if any.
4. If the child is already in the population of scripts, fail.
5. Confirm that the child is a legal script, or fail.
6. If the child is fitter than its parent script, update fitness of the

schema.
7. Compute best-so-far fitness in the population of scripts.
8. Randomly select an opponent among the population of

scripts.
9. If the child is fitter than the opponent, replace the opponent

with the child.
10. Randomly select two schemas.
11. Apply one to another, producing a child schema, or fail.
12. Remove all kinks in the child, if any.
13. Confirm novelty of the child, or fail.
14. Estimate fitness of the child by trying it on up to 20

randomly selected scripts (until one of them is improved), or
fail.

15. Randomly select an opponent among schemas.
16. Replace the opponent by the child, iff the child is fitter.
17. Stop, if solution found.

Again, the control algorithm was different in that fitness of
schemas was not estimated. In this case, instead of the
tournament, the child schema was tried for its applicability on up
to 20 randomly selected scripts, and if passed, it still could be
rejected with a fixed probability.

Figure 5. Histograms of the schema effect produced
on the board configuration (measured as the Hamming
distance) in two experiments represented in Figure 4.

4.2 Results
Results of the experiment and its control are represented in
Figures 4, 5. All 100 runs of the main algorithm converged to a
solution. Most (almost all) of 100 runs of the control algorithm
did not. The nature of the difference between main algorithm and
the control could be understood with the help of Figure 5 showing
the hisograms of a measure of schema quality defined as the
Hamming distance between the board configurations before and
after the schema was applied (as a script). It is noticeable that a
larger fraction of schemas generated during the main experiment,
as compared to the control, produce smaller alterations of the
board, and therefore, result on average in smaller changes of the
fitness before and after mutation of a first-level individual,
consistently with the objective function (8), and therefore, in the
sense of an average over all possible scripts, those schemas result
in a higher covariance of fitness before and after mutation. In
conclusion, emulating the Pricean fitness (4) by (8) at a meta-level
results in achieving a solution of the first-level problem, and may
be vital for achieving a solution in this case.
The method used here can be further improved in several ways to
solve the bloat problem observed in both numerical experiments.
Specifically, not only kinks but also loops in the space of states
can be eliminated automatically. The Manhattan distance can be
used to define fitness at the first level instead of the Hamming
distance. Finally, a better approximation of Price’s formula
specifically derived for this task can be used in the algorithm.
Parameters of the meta-evolutionary algorithm used in this case
can be optimized for better performance. These apparent
“drawbacks”, however, may not compromise the presented results,
as the goal was to compare two general approaches on a testbed
that is not specifically designed to achieve higher performance.

5. EXAMPLE III: BINARY DENDRITIC
TREE RECONSTRUCTION
As the third example, we consider a simplified version of a
problem that emerges as a subtask in automated reconstruction of
neuronal dendritic trees from their microphotographs [14, 15].
One particular difficulty here is the ambiguity of apparent
intersections of dendritic branches. Disregarding many details of
the real dendritic reconstruction, here we simply assume the
following. Each skeletonized two-dimensional projection of a
dendritic tree is given as a finite, non-oriented, planar graph that
may only include real branching points and false intersections.
Two examples are shown in Figure 6 A. The specific goal is to
reduce a given graph to a binary tree by resolving intersections
using a selected schema1. Elementary schemas that may be used to
resolve intersections are depicted in Figure 6 B, other schemas
may be constructed from these by adding conditions of matching
(i.e. by mutating these schemas: see below). The goal of graph
reduction is considered achieved when the graph has no
unresolved intersections and is simply connected. An attempt fails
when there are no matching sites for the selected schema, and the
graph is not reduced to a binary tree. The task is to evolve a

1 Here by a schema we mean an abstract template that can be used

to match and to alter task-level graphs as well as other schemas.
This notion comes from a more general notion of a schema
introduced in [16-18] and should not be confused with other
usage of the same term.

1360

schema that successfully reduces any of a given set of graphs to a
binary tree.

The process of evolution starts with the population of individuals
– action schemas depicted in Figure 6 B plus mutation schemas.
The fitness of an action schema is computed as the success rate in
reducing graphs to binary trees. Each attempt of reduction is
performed with only one schema that is repeatedly applied to
randomly selected sites where it matches the structure of the
graph. Reproductive operators are mutation schemas that modify
the original set by adding further conditions for matching. We
consider two kinds of mutations (Figure 6 C, D). One of them
adds a condition (dotted line in Figure 6 C) that there is a
continuous path in the tree (which is to be reconstructed) that
connects two terminals of the schema when they are bound to the
graph. Another mutation adds a condition that there is no such
path (crossed dotted line in Figure 6 D).

Figure 6. Problem space of the task of binary
dendritic tree reconstruction from its skeletonized planar
projection. A: sample tree projections; B: elementary
schemas resolving intersections; C, D: mutated schemas.

The first mutation is useful, because it produces a schema (Figure
6 C) that successfully reduces the graphs in Figure 6 A and other
similar graphs to binary trees with the rate 100%. In contrast, the
result of the second mutation (Figure 6 D) does not guarantee a
success: e.g., for the first graph in Figure 6 A its success rate is
6.9%.
Our preliminary numerical analysis based on this setup and a
population of 6 action schemas shows that in order to select the
right mutation (Figure 6 C over Figure 6 D), the mutation schema
fitness should be evaluated based on (3) rather than based on (4).
E.g., the value of (4) may not discriminate between the two
mutation schemas, while the value of (3) would favor the first
mutation. A more extensive study of this example is still ahead.
While at this point we cannot make a general conclusion, the
preliminary numerical result indicates that at least in some cases
the definition (4) may be useful, if not vital, for this class of
problems.

6. CONCLUSIONS
Results presented here support the general idea that meta-
evolution understood as co-evolution of reproductive operators
may improve the performance of an evolutionary algorithm, if the
fitness is appropriately defined at the meta-level(s). A general

approach in designing an efficient fitness definition for operators
can be successful when it is based on facts of the highest
generality applicable to evolution, one of which is the Price’s
theorem. Therefore, main steps in designing and using a meta-
evolutionary algorithm can be the following.

(a) Define the space of main individuals, their
representation, and their fitness.

(b) Define the space of reproductive schemas, their
representation, and their fitness based on Price’s
formula.

(c) Continue building up meta-levels of reproductive
schemas with Price’s fitness for them, as long as
this helps to improve the performance of the
method.

In this work, trying to develop a general theoretical understanding
of this concept, Price’s theorem was used to define fitness at a
meta-level and to show with three simple case studies that the
ideology based on Price’s theorem can work at a meta-level in a
similar way for very different problems. Specifically, it is found
that Pricean definition of fitness for reproductive operators
matters for performance and stability of meta-evolutionary
algorithms.

7. REFERENCES
[1] Back, T. and Hoffmeister, F. Basic Aspects of Evolution

Strategies. Statistics and Computing 4 (2): 51-63, 1994.
[2] Bedau, M. A. and Packard, N. H. Evolution of evolvability

via adaptation of mutation rates. Biosystems 69 (2-3): 143-
162, 2003.

[3] De Jong, K. A. An Analysis of the Behavior of a Class of
Genetic Adaptive Systems. Ph.D. Thesis, University of
Michigan, 1975.

[4] Frank, S. A. The Price equation, Fisher’s fundamental
theorem, and causal analysis. Evolution 51 (6): 1712-1729,
1997.

[5] Freisleben, B. Metaevolutionary approaches. In: Handbook
of Evolutionary Computation, pp. C7.2:1-8. IOP Publishing
Ltd and Oxford UP, 1997.

[6] Kantschik, W., Dittrich, P., Brameier, M., and Banzhaf, W.
Meta-evolution in graph GP. In: Poli, R., Nordin, P.,
Langdon. W. B., and Fogarty, T. C. (Eds.). Genetic
Programming, Second European Workshop, Proceedings of
EuroGP'99, pp. 15-28. Berlin: Springer-Verlag, 1998.

[7] Koza, J. Genetic Programming II: Automatic Discovery of
Reusable Programs. Cambridge, MA: MIT Press,
1994/1998.

[8] Price, G. R. Selection and covariance. Nature 227: 520-521,
1970.

[9] Reinefeld, A. Complete solution of the eight-puzzle and the
benefit of node ordering in IDA*. In Bajcsy, R. (Ed.). IJCAI-
93: Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence. Vol. 1, pp. 248-253.
Morgan Kaufmann: San Mateo, CA, 1993.

[10] Shinozawa, Y. and S. Okoma. The postprocessing of
character recognition by genetic algorithms. Transactions of

A B C D

1361

the Information Processing Society of Japan 40 (3): 1106-
1116, 1999.

[11] Schwefel, H.-P. Evolutionsstrategie und Numerische
Optimierung. Dissertation, Technische Universität Berlin,
1975.

[12] Kantschik, W., and Banzhaf, W. Linear-graph GP: a new GP
structure. In Foster, J. A., Lutton, E., Miller, J., Ryan, C., and
Tettamanzi, A. G. B. (Eds.). Genetic Programming: 5th
European Conference, Proceedings of EuroGP 2002, pp. 83-
92. Berlin: Springer-Verlag, 2002.

[13] Kantschik, W., Dittrich, P., Brameier, M. and Banzhaf, W.
Empirical analysis of different levels of meta-evolution.
Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99, Washington, DC. Vol. 3, pp. 2086-
2093. Piscataway, NJ: IEEE, 1999.

[14] Schmitt, S., Evers, J. F., Duch, C., Scholz, M. and
Obermayer, K. New methods for the computer-assisted 3-D
reconstruction of neurons from confocal image stacks.
NeuroImage 23: 1283-1298, 2004.

[15] Evers, J. F., Schmitt, S., Sibila, M. and Duch, C. Progress in
functional neuroanatomy: precise automatic geometric
reconstruction of neuronal morphology from confocal image
stacks. Journal of Neurophysiology 93: 2331–2342, 2005.

[16] Samsonovich, A. V. and De Jong, K. A. Meta-cognitive
architecture for team agents. In Alterman, R., and Kirsh, D.
(Eds.). Proceedings of the 25th Annual Meeting of the
Cognitive Science Society, pp. 1029-1034. Boston, MA:
Cognitive Science Society, 2003.

[17] Samsonovich, A. V. and De Jong, K. A. A general-purpose
computational model of the conscious mind. In K. Forbus, D.
Gentner, and T. Reigier (Eds.). Proceedings of the Twenty-
Sixth Annual Conference of the Cognitive Science Society,
pp. 382-383. Mahwah, NJ: Lawrence Erlbaum, 2004.

[18] Samsonovich, A. V. and Nadel, L. Fundamental principles
and mechanisms of the conscious self. Cortex 42 (5), 2005,
in press.

1362

