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ABSTRACT 
A number of recent studies introduced meta-evolutionary 
strategies and successfully used them for solving problems in 
genetic programming. While individual results indicate 
possibilities of successes and failures (e.g., Kantschik, Dittrich et 
al., 1998, 1999), the emerging global picture suggests that the 
approach may have universal, domain-independent advantages 
over traditional methods. Trying to develop a general theoretical 
understanding of this concept, we use Price’s theorem to define 
fitness at a meta-level and show with two simple case studies 
(two-dimensional optimization and the Eight puzzle) that the 
ideology based on Price’s theorem can work at a meta-level in a 
similar manner for very different problems. Specifically, Pricean 
definition of fitness for reproductive operators appears to be 
practically useful and essential for performance and stability of a 
certain class of meta-evolutionary algorithms.   

Categories and Subject Descriptors 
I.1.2 [Computing Methodologies] Symbolic and Algebraic 
Manipulation – Algorithms. I.2 [Computing Methodologies] 
Artificial Intelligence – General. 

General Terms 
Algorithms, Measurement, Performance, Design, Theory, 
Verification. 

Keywords 
Evolvability, self-adaptive EAs, metaevolution, co-evolution, 
Price’s theorem. 

1. INTRODUCTION 
A traditional evolutionary computation scheme uses only a 
limited, fixed set of reproductive operators, such as mutation and 
crossover. This basic paradigm remains unchanged in the majority 
of studies that treat parameters of reproductive operators as 
dynamic, evolvable entities [3]. Self-adaptive parameters used in 
these studies included the mutation step [1, 11], mutation rates 
[2], crossover templates, or masks [10], and the like. 

In contrast, the key idea of a meta-evolutionary approach is to 
consider a search for a best evolutionary algorithm as an 
optimization problem to be solved by evolutionary computation. 
In a globalistic interpretation of this idea [5], a set of base-level 
evolutionary algorithms, each with its own set of parameters and 
opereators, are treated as the evolving population of individuals at 
the meta-level. An alternative paradigm [7] is to treat reproductive 
operators and primitives on their own as individuals subject to 
evolution. E.g., in this case, the population of operators can 
evolve in parallel with the base-level population, thereby adapting 
themselves locally, to the current base-level population, rather 
than globally, to the base-level problem as a whole. The present 
work is focused on this “local” meta-evolutionary approach. In 
this framework, reproductive operators that modify the meta-level 
population may be the same set of operators (if they can modify 
their own kind) – or yet another set of operators. Further 
elaboration leads to a multi-level meta-evolutionary architecture 
[6] with a hierarchy of populations evolving in parallel. In this 
architecture, higher-level individuals are used as operators to 
perform reproduction of immediately-lower-level individuals and, 
possibly, their own kind as well (Figure 1). 
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Task-level individuals: 
level 1 

Reproductive 
operators: level 2 

Reproductive 
operators: level n 

Figure 1. General organization of a 
meta-evolutionary architecture ([6]).

… 
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This general framework was defined and proved successful for a 
set of specific problems in genetic programming [6, 13]. While 
individual results indicate possibilities of successes and failures 
(e.g., [6]), the emerging global picture suggests that, at least for 
some classes of problems in evolutionary computation, a meta-
evolutionary approach has significant advantages over its more 
traditional counterparts. If this is the case, then a general 
theoretical analysis and an understanding of this phenomenon at a 
meta-level would be highly desirable from both theoretical and 
practical points of view. The present work addresses one of the 
key problems of this approach: the rational definition of fitness at 
a meta-level. 

2. ANALYSIS OF AN ABSTRACT CASE 
We start by considering a simple, abstract evolutionary scheme 
based on a fixed-size population of N individuals (first level), 
assuming that their fitness is given. We shall not assume a 
detailed knowledge of the entire fitness landscape: its smoothness, 
the top value, topology, etc. Our assumptions about the first-level 
evolutionary algorithm are the following. During each 
reproductive cycle, a set Y of N offsprings {yi} are produced that 
replace the entire parent population X of N parents {xi} (non-
overlapping strategy). Each offspring yi is produced by mutation 
of an individual xi ∈  X using a mutation operator g. At the 
beginning we shall assume that the operator g is defined by a 
fixed, deterministic function: y=g(x), and there are no other 
reproductive operators. Let f be any real-valued function defined 
for every x and y, and <f> its population average. One can think of 
x and y as genotypes, and of f(x) and f(y) as the corresponding 
phenotypes. Let w(x) be the number of children of x in Y. Then 
the following calculation leads to a generalized Price’s formula 
[4, 8] for the difference in the average population phenotype 
between X and Y: 
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where f'(x) = f(g(x)) is the value of f computed for a child of x, and 
we used the fact that <w(x)> = 1 due to the fixed population size 
N. The covariance term in the right hand side reflects the effect of 
selection, and the second term characterizes the net individual 
phenotype alteration by mutation. The formula (1) holds in 
general, given the above assumptions. Moreover, it can be used in 
a case when g is stochastic, and when w is the expected rather 
than actual number of children, as long as the averaging over X 
provides an efficient averaging over realizations of g and the 
selection rule. 
Now let f in (1) be the individual’s fitness, and consider a fitness-
proportional selection scheme, in which the range of fitness of X 
is linearly mapped onto the unit interval of the probability of 
selection, so that the minimal fitness value maps to zero, and the 
sum of all resultant probabilities is normalized to one. Then the 
expected number of children of x is 
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and it follows from (1), (2) that  
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Here all averages are taken over the parent population X. The 
quantity F(g) is the rate of growth of the average population 
fitness <f> due to the action of the operator g. Therefore, if the 
immediate goal at the first level is to increase the average fitness 
of the population from X to Y, then (3) can be taken as a measure 
of fitness of the mutation operator g. This choice makes sense 
when g itself is subject to evolution, the goal of which is to 
optimize the evolution of X. Indeed, it is easy to check that when 
there is a population of mutation operators G = {g}, all of which 
with equal probability are used for mutation of X, then  

( ) ( ) ( )
GXY

gFxfyf =− , 

where F(g) is given by (3). This result extends to a multi-level 
meta-evolutionary scheme. It is easy to check that when the rules 
of evolution of both populations X and G are the same, including 
the selection rule (2) with F substituted for f at the second level, 
then a similar to (3) formula (with F substituted for f ) will 
provide a definition of fitness at the third level that is consistent 
with the objective at the first level, and so on. In the present work, 
however, we shall limit our consideration to a two-level scheme. 
Therefore, we do not make any restricting assumptions about the 
rules of evolution at the second level. 
The idea that (3) is a good fitness definition for the second-level 
evolutionary algorithm implies one significant assumption that 
concerns the action of operators on the given landscape f. 
Specifically, we assume that the landscape f with respect to each 
operator g is “good” in the sense that all relevant statistical 
properties derived for f(x) and f(g(x)), x∈ X, remain robust with 
respect to the evolution of X, at least during a minimal number of 
generations required for relaxation of G to its optimum for the 
current X. In this sense, we assume that the evolution of G is ‘fast’ 
as compared to the evolution of X. This assumption implies 
certain restrictions on the landscape, as well as on the population 
dynamics (e.g., the relative frequencies of X and G updates). 
When this assumption holds for a meta-evolutionary scheme 
outlined above, then the fitness definition (3) can be expected to 
produce in general better results than its alternatives. 
In contrast, in the literature (e.g., [6]), the fitness F(g) of evolving 
(meta)operators is frequently taken in a different form, usually 
taking into account only the second term in the r.h.s. of (3). 
Therefore, as an example of an alternative to (3), we consider a 
“naïve” fitness definition that disregards the covariance term: 

( )
Xnaive ffgF −= ' ,      (4) 

where again f'(x) = f(g(x)). An interesting question is: how critical 
is the difference between (3) and (4) from a practical point of 
view? To address this question, we conduct a numerical study of 
the meta-evolutionary scheme defined above, using a two-
dimensional optimization problem.  

3. EXAMPLE I: 2-D OPTIMIZATION 
3.1 Model and Its Implementation 
In this relatively simple case study we used two populations 
A = {a} and B = {b} of 2-vectors (also viewed as complex 
numbers), with N = 60 individuals in each population. The first-
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level fitness was defined by the following function f of a complex 
argument z: 
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where θ  is the Heaviside theta function. This f defined by (5) is 
zero everywhere except a narrow strip that extends from 0 to 1 on 
the complex plane and is bounded by a logarithmic spiral. In a 
cross-section of this strip, the plot of f has a triangular profile with 
one vertical edge. This choice of f is motivated by the suitability 
of its features for a meta-evolutionary approach (due to its 
approximate scaling symmetry with shape parameters slowly 
changing along the spiral) and by the fact that most conventional 
optimization algorithms fail on this landscape (including all 
algorithms implemented in the optimization toolbox in Matlab6). 
The second-level individuals {b} are the mutation operators that 
act via addition on the first-level individuals {a}. The mutation of 
b’s themselves was done via their multiplication by normally 
distributed complex numbers c that were sampled anew every time 
when they were used. This approach produced better results than 
additive Gaussian mutations. In summary, the updating rules were 
the following (primed entities belong to the next generation): 

222 01.0,0,1
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The selection of parents aj and bk was fitness-proportional, given 
by (2), and the parent fitness at the second level was taken either 
in the form of Price’s formula (3) or the ‘naïve’ formula (4): the 
latter was used in control runs. In both cases, the fitness of every b 
∈  B was computed by averaging over the entire population A. The 
selection of b'k as a mutation operator for the first level was done 
with the uniform probability. At the end of each update cycle at 
each level, the N children replaced the entire parent population 
(non-overlapping scheme; see however below).  
It follows from the general analysis in the previous section that 
the relaxation of the second level should be fast enough as 
compared to the first level, in order for the second level to be able 
to follow changes in the population at the first level. Therefore, 
two second-level updates were performed per each first-level 
update (we found this choice performing better than one-to-one 
ratio of the update frequencies). 
The initial distributions of A and B were taken as symmetric 
Gaussians, with A centered at a0 = (2i/3)0.1 (marked by the star in 
Figure 3 A). B was centered at zero in one set of runs and at 
b0 = 0.01i(2i/3)0.1 in all the rest of runs. The standard deviation of 
the initial Gaussian distribution was set to 0.01 for A, 0.005 for B 
centered at zero, and 0.001 for B centered at b0 . 
After initialization, the algorithm proceeds with updates according 
to (6), with two second-level updates per one first-level update, 
and is terminated when all a’s have zero fitness (this event is 
considered as an escape). The best fitness achieved in the run is 
counted, together with the duration of the run. 

3.2 Results 
A substantial fraction of runs escaped very soon after start, 
typically within the first ten generations. Therefore, the escape 

probability was compared for the two versions of the algorithm 
(Price and ‘naïve’) on 100 runs for each version with B initially 
centered at zero and on 60 runs for Price and 100 runs for naïve 
formula with B centered at b0. The results are given in Table 1.  

 
Table 1. Percentage of successful starts in the four sets of runs 

Total 
runs B center Price ‘Naïve’ Wilcoxon P 

100+100 0 0.75 0.30 2e-10 
60+100 b0 0.82 0.38 9e-8 

 

 
Figure 2. Statistics of 60 runs: Price (solid gray) vs. 

‘naïve’ (clear) fitness formula used at the meta-level. A: 
Histogram of the best fitness achieved in a run. B: 
Histogram of the stable duration of a run measured in 
second-level generations. See also Table 2. 

 

Continued comparative testing of the performance of the two 
versions (60 runs each) resulted in the histograms (Figure 2) and 
data (Table 2) showing that, as expected from the theoretical 
analysis, overall performance of Price’s formula is significantly 
better than overall performance of the ‘naïve’ formula. At the 
same time, there is no significant difference between top ten runs 
of each version (Table 2), as well as between the sets of runs with 
successful starts. On the other hand, in this case none of the runs 
with successful starts provided an acceptable solution for the 
optimization problem (the maximal fitness was 0.915 achieved 
with Price’s formula after 1346 updates, while the absolute 
maximum of the landscape is 1.0). Could it be that the significant 
advantage of Price’s formula is limited to the initial phase, when a 
diffuse Gaussian cloud must focus on a narrow feature of the 
landscape? 
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Table 2. Overall comparison, original algorithm 

All 60+60 runs Price ‘Naïve’  P-value 
Mean best fitness 0.63 0.34 0.00005 

Mean run duration 598 306 0.00002 

Convergence rate x103 2.51 3.45 0.8 

% Successful starts 0.82 0.43 0.00002 

Top ten runs:    
Mean best fitness 0.86 0.83 0.08 

Mean duration 746 740 0.5 

Convergence rate x103 1.11 1.10 0.6 

 
In order to address this question, tuning of the parameters of the 
algorithm was performed. The modification consisted in an 
incrased ratio of the update frequencies: six updates at the second 
level to one update at the first level. In addition, elitism was used 
at the second level that lasted during each first-level generation 
(i.e., in each update cycle limited to the second level only, best 
representatives were selected among the parent and the offspring 
populations). Results (Table 3) are similar to the previous set of 
results (Table 2), with two essential differences: (a) the average 
best fitness in top ten runs increased from 0.8 to 0.97, and (b) a 
phenomenon of spontaneous collapse of the populations  to one 
point at both levels was observed, which prevented further 
convergence. The rate of collapse was significantly greater when 
‘naïve’ formula was used (collapse was observed with Price’s 
formula too, only with different values of parameters). 

 
Table 3. Overall comparison, modified algorithm 

All runs Price ‘Naïve’  P-value 
Number of runs 19 42 - 

Mean best fitness 0.85 0.36 0.001 

Mean run duration 355 220 0.008 

Convergence rate x103 3.13 8.74 0.6 

% Successful starts 0.89 0.36 0.0001 

Collapse probability, 
given a successful start 

0.00 0.27 0.025 

Top ten runs:    
Mean best fitness 0.97 0.97 0.45 

Mean duration 416 581 0.47 

Convergence rate x103 2.44 2.16 0.45 

 

One further modification of the algorithm included variable ratio 
of the update rates, when the decision was made based on the 
second-level fitness. While the result was a significant advantage 
of Price’s formula over the naïve formula, the comparison is 
difficult, because in this case the algorithm essentially depends on 
the definition of the second-level fitness. Needless to say that the 
same evolutionary scheme with its meta-level ‘frozen’ as the 
initially given Gaussian cloud is not capable of solving the given 
problem (typically its best-so-far fitness does not get above 0.4). 

 
Figure 3. An example of a run with Price’s formula 

solving the 2-D optimization problem. A: Trajectory of 
the first-level population following the spiral landscape. 
B: Trajectory of the second-level population: local 
adjustment of the direction and the size of mutation at the 
first level. C: Dots representing best-so-far and average 
fitness for each first-level generation (the best fitness for 
this run is 0.995, the global maximum is 1.0). A slightly 
modified algorithm was used in this case (see text). 
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The considered example is not unique among 2-D optimization 
problems that can be solved better with meta-evolution, and (we 
expect), in particular, with a Price-theorem-based meta-evolution. 
A possible alternative example may involve a quasi-periodic 
landscape, when the task for a meta-level at the initial stage would 
be to capture the period. Intuitively, a Price-based approach can 
be expected to have advantages in this case over a ‘naïve’ 
approach, in analogy with the case studied above. 

4. EXAMPLE II: THE EIGHT PUZZLE 
The Eight-Puzzle is traditionally used as a test bed for search 
algorithms. The puzzle can be solved exactly by mapping its 
entire state space [9]. Effective practical solutions are based on 
heuristics. Here this classical problem is used to test the generality 
of the above conclusions. The objective in evolution is to evolve a 
sequence of moves (script) that solves the puzzle. While it is not 
possible in this case to use exactly the above strategy (because 
most random mutations result in destruction of good results), the 
general ideology of the above approach still can be applied here in 
a more abstract sense. 

4.1 Method 
The initial configuration of the puzzle was one and the same for 
all experiments presented here (Figure 4 A). It was obtained by 
performing 1000 randomly generated moves, starting with the 
goal configuration (Figure 4 B). The best solution found 
automatically during the 100 runs (see below) consists of 24 
moves.  
First-level individuals are defined as sequences of moves (scripts) 
that can be applied to the initial configuration. Each script is 
represented as a string of characters that encode elementary moves 
(‘U’, ‘D’, ‘L’, and ‘R’). All scripts are legal as long as they 
produce trajectories confined within the square and have no kinks 
(i.e., ‘U’ followed by ‘D’, or ‘L’ followed by ‘R’, or vice versa: 
this syntactic constraint, although not necessary, is introduced in 
order to speed up the solution process by limiting the search 
space).  
Fitness of a script is defined as the negative Hamming distance 
from the goal, plus a linear penalty for the length of the script. 
More precisely, 
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  (7) 
Here the “correct position” of a tile is its position in the goal 
configuration, and the number of “wrong” positions is counted 
after the script has been applied to the initial configuration. 
Therefore, fitness of a script of a sensible length that solves the 
puzzle must be close to zero. 
Elementary modifications of scripts include insertion, attachment 
(appending at the end), and deletion of elementary moves. These 
elementary mutations are taken as building blocks for more 
complex reproductive operators (schemas). Like scripts, schemas 
are represented as sequences of moves. Three kinds of schemas 
are used in this study: (i) insertion schemas, (ii) attachment 
schemas, and (iii) deletion schemas. Insertion of a schema 
sequence is performed at a uniformly, randomly selected site in 
the script. Attachment is made always at the end of the script. In 
case of a deletion schema, a subsequence found in the script that 

exactly matches the schema is extracted from the script. If there 
are several matches, then one is selected randomly (again, with a 
uniform distribution). After a schema was applied to a script, all 
kinks are automatically removed from the result. A schema fails if 
there is no match (for deletions), or the resultant script is illegal 
(after removal of kinks). 

 
. Figure 4. Solving the Eight Puzzle. The objective is to 
transform the initial configuration (A) into the goal 
configuration (B). The best out of 100 runs solution 
consists of 24 moves. 1: Main algorithm, the mean of 100 
runs (solid line) plus-minus the standard deviation 
(dashed). 2: Control algorithm (fitness at meta-level is 
ignored). Again, solid line represents the mean over 100 
runs, dashed lines show the standard deviation. 

 
Available schemas are treated as the second-level population of 
individuals that co-evolve together with the population of scripts. 
New schemas are generated by applying schemas to schemas. The 
kind of the child schema (insertion, attachment or deletion) is 
inherited from the first parent (i.e., the one to which the second 
parent was applied as to a script).  
Unlike in the previous example, in this case a new schema is 
accepted only when it succeeds in improving fitness of at least 
one script. Therefore, the derivation of a Price’s formula (3) is not 
valid in this case. The ‘naïve’ formula (4) still makes sense and 
can be evaluated even based on one successful mutation, although 
(4) is already partially “taken into account” by the selection 
method (a new schema must improve at least one script). It is not 
practically feasible in this case to perform any fitness averaging 
over the entire population of available scripts in order to evaluate 
fitness of a schema (e.g., a sort of averaging is required for 
evaluation of the covariance term).  
The idea used in this part of the study is to ‘emulate’ the Pricean 
correction to fitness, i.e., the addition of the covariance term to 
(4), by replacing (4) with its inverse. The rationale for doing this 
is that, the higher is the change in the individual fitness of a script 
due to mutation, the lower must be the covariance of the two 
values of fitness (before and after the mutation), because of the 
limited range of fitness. Therefore, here fitness F of a schema is 
defined in terms of its effect on the fitness of a script as follows: 
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where f and f’ is fitness of a script before and after the mutation, 
and the average is taken over all explored successful mutations. 
The algorithm at both levels involved a tournament selection 
among children. In a control experiment, fitness of a schema was 
ignored (random tournament outcome). 

In brief, the main loop of the algorithm was the following. 

1. Randomly select a script and a schema. 
2. Apply the schema to the script, producing a child script, or 

fail. 
3. Eliminate kinks in the child, if any. 
4. If the child is already in the population of scripts, fail. 
5. Confirm that the child is a legal script, or fail. 
6. If the child is fitter than its parent script, update fitness of the 

schema. 
7. Compute best-so-far fitness in the population of scripts. 
8. Randomly select an opponent among the population of 

scripts. 
9. If the child is fitter than the opponent, replace the opponent 

with the child. 
10. Randomly select two schemas. 
11. Apply one to another, producing a child schema, or fail. 
12. Remove all kinks in the child, if any. 
13. Confirm novelty of the child, or fail. 
14. Estimate fitness of the child by trying it on up to 20 

randomly selected scripts (until one of them is improved), or 
fail. 

15. Randomly select an opponent among schemas.  
16. Replace the opponent by the child, iff the child is fitter. 
17. Stop, if solution found. 

Again, the control algorithm was different in that fitness of 
schemas was not estimated. In this case, instead of the 
tournament, the child schema was tried for its applicability on up 
to 20 randomly selected scripts, and if passed, it still could be 
rejected with a fixed probability. 

 

 
 

Figure 5. Histograms of the schema effect produced 
on the board configuration (measured as the Hamming 
distance) in two experiments represented in Figure 4. 

 

4.2 Results 
Results of the experiment and its control are represented in 
Figures 4, 5. All 100 runs of the main algorithm converged to a 
solution. Most (almost all) of 100 runs of the control algorithm 
did not. The nature of the difference between main algorithm and 
the control could be understood with the help of Figure 5 showing 
the hisograms of a measure of schema quality defined as the 
Hamming distance between the board configurations before and 
after the schema was applied (as a script). It is noticeable that a 
larger fraction of schemas generated during the main experiment, 
as compared to the control, produce smaller alterations of the 
board, and therefore, result on average in smaller changes of the 
fitness before and after mutation of a first-level individual, 
consistently with the objective function (8), and therefore, in the 
sense of an average over all possible scripts, those schemas result 
in a higher covariance of fitness before and after mutation. In 
conclusion, emulating the Pricean fitness (4) by (8) at a meta-level 
results in achieving a solution of the first-level problem, and may 
be vital for achieving a solution in this case. 
The method used here can be further improved in several ways to 
solve the bloat problem observed in both numerical experiments. 
Specifically, not only kinks but also loops in the space of states 
can be eliminated automatically. The Manhattan distance can be 
used to define fitness at the first level instead of the Hamming 
distance. Finally, a better approximation of Price’s formula 
specifically derived for this task can be used in the algorithm. 
Parameters of the meta-evolutionary algorithm used in this case 
can be optimized for better performance. These apparent 
“drawbacks”, however, may not compromise the presented results, 
as the goal was to compare two general approaches on a testbed 
that is not specifically designed to achieve higher performance. 

5. EXAMPLE III: BINARY DENDRITIC 
TREE RECONSTRUCTION 
As the third example, we consider a simplified version of a 
problem that emerges as a subtask in automated reconstruction of 
neuronal dendritic trees from their microphotographs [14, 15]. 
One particular difficulty here is the ambiguity of apparent 
intersections of dendritic branches. Disregarding many details of 
the real dendritic reconstruction, here we simply assume the 
following. Each skeletonized two-dimensional projection of a 
dendritic tree is given as a finite, non-oriented, planar graph that 
may only include real branching points and false intersections. 
Two examples are shown in Figure 6 A. The specific goal is to 
reduce a given graph to a binary tree by resolving intersections 
using a selected schema1. Elementary schemas that may be used to 
resolve intersections are depicted in Figure 6 B, other schemas 
may be constructed from these by adding conditions of matching 
(i.e. by mutating these schemas: see below). The goal of graph 
reduction is considered achieved when the graph has no 
unresolved intersections and is simply connected. An attempt fails 
when there are no matching sites for the selected schema, and the 
graph is not reduced to a binary tree. The task is to evolve a 
                                                                 
1 Here by a schema we mean an abstract template that can be used 

to match and to alter task-level graphs as well as other schemas. 
This notion comes from a more general notion of a schema 
introduced in [16-18] and should not be confused with other 
usage of the same term. 
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schema that successfully reduces any of a given set of graphs to a 
binary tree.  

The process of evolution starts with the population of individuals 
– action schemas depicted in Figure 6 B plus mutation schemas. 
The fitness of an action schema is computed as the success rate in 
reducing graphs to binary trees. Each attempt of reduction is 
performed with only one schema that is repeatedly applied to 
randomly selected sites where it matches the structure of the 
graph. Reproductive operators are mutation schemas that modify 
the original set by adding further conditions for matching. We 
consider two kinds of mutations (Figure 6 C, D). One of them 
adds a condition (dotted line in Figure 6 C) that there is a 
continuous path in the tree (which is to be reconstructed) that 
connects two terminals of the schema when they are bound to the 
graph. Another mutation adds a condition that there is no such 
path (crossed dotted line in Figure 6 D). 

 

 

 
 

Figure 6.  Problem space of the task of binary 
dendritic tree reconstruction from its skeletonized planar 
projection. A: sample tree projections; B: elementary 
schemas resolving intersections; C, D: mutated schemas. 

 

 

The first mutation is useful, because it produces a schema (Figure 
6 C) that successfully reduces the graphs in Figure 6 A and other 
similar graphs to binary trees with the rate 100%. In contrast, the 
result of the second mutation (Figure 6 D) does not guarantee a 
success: e.g., for the first graph in Figure 6 A its success rate is 
6.9%. 
Our preliminary numerical analysis based on this setup and a 
population of 6 action schemas shows that in order to select the 
right mutation (Figure 6 C over Figure 6 D), the mutation schema 
fitness should be evaluated based on (3) rather than based on (4). 
E.g., the value of (4) may not discriminate between the two 
mutation schemas, while the value of (3) would favor the first 
mutation. A more extensive study of this example is still ahead. 
While at this point we cannot make a general conclusion, the 
preliminary numerical result indicates that at least in some cases 
the definition (4) may be useful, if not vital, for this class of 
problems. 

6. CONCLUSIONS 
Results presented here support the general idea that meta-
evolution understood as co-evolution of reproductive operators 
may improve the performance of an evolutionary algorithm, if the 
fitness is appropriately defined at the meta-level(s). A general 

approach in designing an efficient fitness definition for operators 
can be successful when it is based on facts of the highest 
generality applicable to evolution, one of which is the Price’s 
theorem. Therefore, main steps in designing and using a meta-
evolutionary algorithm can be the following. 

(a) Define the space of main individuals, their 
representation, and their fitness. 

(b) Define the space of reproductive schemas, their 
representation, and their fitness based on Price’s 
formula. 

(c) Continue building up meta-levels of reproductive 
schemas with Price’s fitness for them, as long as 
this helps to improve the performance of the 
method. 

In this work, trying to develop a general theoretical understanding 
of this concept, Price’s theorem was used to define fitness at a 
meta-level and to show with three simple case studies that the 
ideology based on Price’s theorem can work at a meta-level in a 
similar way for very different problems. Specifically, it is found 
that Pricean definition of fitness for reproductive operators 
matters for performance and stability of meta-evolutionary 
algorithms. 
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