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I. Background 
This note provides a perspective on a questions checklist to be used in reviewing applied 
research using analytics and statistical analysis. The paper will also emphasize applied research 
related to Industry 4.0. It expands on a paper providing similar guidelines with a general focus on 
information quality (Kenett and Shmueli, 2016a). The note is methodological. It covers aspects 
of study design, algorithmic and inferential methods in frequentism analysis, Bayesian methods 
in Bayesian analysis, selective inference aspects, severe testing properties and presentation of 
findings. Information quality is based on good responses to questions about a specific report such 
as what is the goal of the analysis, is the data resolution adequate for the stated or implicit goal, 
how is data from different sources integrated, has a generalization claim been made, on what 
basis? etc etc… 
A specific context for reviewing applied research is systems engineering and industrial 
applications and the growing interest in Industry 4.0. Specific analytic challenges in this area 
include: 1) Engineering design, 2) Manufacturing systems, 3) Decision support systems, 4) Shop 
floor control and layout, 5) Fault detection and quality improvement, 6) Condition-based 
maintenance, 7) Customer and supplier relationship management, 8) Energy and infrastructure 
management and 9) Cybersecurity and security. For more details see Kenett et al, (2016), chapter 
13 in Kenett et al (2020) and Zonnenshain and Kenett, 2020). 

Industry 4.0 offers wide opportunities for industry post COVID-19. Encouraging applied 
research in this area is therefore a forward-looking outlook on domains that could restructure for 
enhanced sustainability, competitiveness and productivity. 
In reviewing studies done in Industry 4.0 areas, one finds data collected actively or passively, 
models developed with empirical methods, first principles or as hybrid models. Industry, as 
opposed to science, is less concerned with reproducibility of results, but it should. The industrial 
cycle provides short term opportunities to try out new products of new process set ups and, based 
on the results, determine follow up actions. Deriving misleading conclusions can be however 
very costly and time consuming. 
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With this background, consider the role of classical statistical methods, versus new age statistical 
methods, in order to devise guidelines for a statistical evaluation of applied research. The 
emphasis here is on statistical evaluation as opposed to impact assessment, economic returns or 
business risks. To address this, let me first summarize some of the recent developments I am 
interested in accounting for. 
A much-debated document has been the ASA statement on p-values (Wasserstein and Lazar, 
2016). This statement formulates six principles for statistical analysis focused on the 
interpretation of p-values. Other approaches mentioned in the ASA statement, without critical 
appraisal, include: i) Confidence intervals, ii) Prediction intervals, iii) Estimation, iii) Likelihood 
ratios, iv) Bayesian methods, v) Bayes factor and vi) Credibility intervals. 

Are these guidelines useful to follow? A series of papers and blogs present contrarian and 
supporting views (e.g. Gelman and Loken, 2014, Amrhein and Greenland, 2018, Mayo, 2019, 
Ioannidis, 2019a, Anjum et al, 2020). In particular, Mayo (2018) has characterized these debates 
as “the statistics wars”. In several scientific domains such as psychology, much discussion has 
focused on misuses of the null hypothesis testing process (NHTP) and low powered studies. 
Does this imply that NHTP should not be used in industrial applications? Should studies that did 
not deliver on promised improvements be flagged as invalid? 

II. Statistical Analysis 
Efron and Hastie (2016) present a comprehensive review of statistical analysis over time. 
Classical statistics consists of an algorithmic and an inferential part. Frequentism (or 
“objectivism”) is based on the probabilistic properties of a procedure of interest as derived and 
applied to the output of a procedure of interest for observed data. This provides us with an 
assessment of bias and variance. The frequentists interpretation is based on a scenario where the 
same situation is repeated, endlessly. To achieve this, within the frequentism framework, several 
methods can be applied: 1) the plug-in substitution principle, 2) the delta methods Taylor series 
approximation, 3) the application of parametric families and maximum likelihood theory, 4) the 
use of simulation and bootstrapping computer intensive numerical methods and 5) pivotal 
statistics. These distinctions are important for reviewers to make.  The Neyman-Pearson lemma 
provides an optimum hypothesis testing algorithm where a black and white decision is made. 
You either reject the null hypothesis in testing for an alternative hypothesis, or not. This offers an 
apparently simple and effective way to conduct statistical inference. However, confidence 
intervals are considered by many as more informative, although they are as well the object of 
criticism in the ASA statement (Barnett and Wren, 2019). Alternatively, the statistical analysis 
can be conducted within a Bayesian framework by transforming a prior distribution on the 
parameters of interest, to a posterior, using the observed data. In computer age analytics one 
distinguishes between algorithms aiming at estimation, prediction or explanations of structure in 
the data. Estimation is assessed by accuracy of estimators, prediction by prediction error and 
explanations are based on variable selection using variance bias tradeoffs, penalized regression 
and regularization criteria.  

Mayo (2018) presents a new perspective on statistical inference based on the concept of severe 
testing, she labels it “error statistics philosophy”. For error statisticians, a claim, or research 
finding, is severely tested if it has been subjected to and passes a test that probably would have 
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found flaws, were they present (Mayo, 2018, p. xii). If little or nothing has been done to rule out 
flaws in inferring a claim, then it has not passed a severe test. Mayo identifies three types of 
models: Primary models, experimental models, and data models. Primary models break down a 
research question into a set of local hypotheses that can be investigated using reliable methods. 
Experimental models structure the particular models at hand and serve to link primary models to 
data models. Data models generate and model raw data, as well as checking whether the data 
satisfy the assumptions of the experimental models. Error statistical assessments pick up on the 
effects of data dredging, multiple testing, optional stopping and a host of biasing selection 
effects. Biasing selection effects are blocked in error statistical accounts because they preclude 
control of error probabilities. Error statistical accounts require–with justification– preregistration. 
Long-run performance requirements are only necessary and not sufficient for severity. Long-run 
behavior could be satisfied while the error probabilities do not reflect well-testedness in the case 
at hand. Tools that are typically justified because they control the probability of erroneous 
inferences in the long-run are given an inferential justification. It’s only when long-run relative 
frequencies represent the method’s capability to discern mistaken interpretations of data that the 
performance and severe testing goals line up. Mayo (2018) proceeds to presents a range of 
conceptual methods such as Bad Evidence, No Test (BENT), Probabilism, Performance, and 
Probativeness. Insevere tests yield BENT. Performance is about controlling the relative 
frequency of erroneous inferences in the long run of applications. Probabilism, views probability 
as a way to assign degrees of belief, support, or plausibility to hypotheses. Probativeness is 
scrutinizing BENT science by the severity criterion. In interpreting confidence intervals (CI), one 
needs to connect actual experiments with the idealized concepts. Specifically, ‘The set of all 
confidence intervals at different levels of probability. . . [yields a] confidence distribution” (Cox 
1958, p. 363). The severity logic is the counterfactual reasoning: Were μ less than the 0.995 
lower limit, then it is very probable (> 0.995) that our procedure would yield a smaller sample 
mean than 0.6. This probability gives, SEV, the severity (Mayo, 2018, p. 195). In general, the 
reported analysis should be able to pinpoint the sources of failed predictions and indicate what 
is/is not learned from negative results (Haig, 2020). Every reported inference should include 
what can't be reliably inferred, what potential mistakes were not probed or ruled out and what 
gaps would need checking in order to avoid various misinterpretations of results, Mayo (2018, p. 
437). 
Another aspect, to be evaluated in reviewing an applied research paper, is study design. Some 
studies are based on observational data and some on interventions, or experiments, designed by 
the researchers. There are many publications on statistical methods to design experimental 
interventions. The following illustration is adapted from Kenett and Zacks (2014). Interventions 
are determined by factor level combinations, the effects measures through responses. One 
particular aspect in this methodology is the use of blocking and randomization which aims at 
increasing the precision of the outcome and ensure the validity of the inference. Blocking is used 
to reduce errors. A block is a portion of the experimental material that is expected to be more 
homogeneous than the whole aggregate. For example, if the experiment is designed to test the 
effect of polyester coating of electronic circuits on their current output, the variability between 
circuits could be considerably bigger than the effect of the coating on the current output. In order 
to reduce this component of variance, one can block by circuit. Each circuit will be tested under 
two treatments: no-coating and coating. We first test the current output of a circuit without 
coating. Later we coat the circuit, and test again. Such a comparison of before and after a 
treatment, of the same units, is called paired comparison. Another example of blocking is the 
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boy’s shoes example (pp. 97 in Box et al, 1978). Two kinds of shoe soles’ materials are to be 
tested by fixing the soles on n pairs of boys’ shoes and measuring the amount of wear of the 
soles after a period of actively wearing the shoes. Since there is high variability between activity 
of boys, if m pairs will be with soles of one type and the rest of the other, it will not be clear 
whether any difference that might be observed in the degree of wear out is due to differences 
between the characteristics of the sole material or to the differences between the boys. By 
blocking by pair of shoes, we can reduce much of the variability. Each pair of shoes is assigned 
the two types of soles. The comparison within each block is free of the variability between boys. 
Furthermore, since boys use their right or left foot differently, one should assign the type of soles 
to the left or right shoes at random. Thus, the treatments (two types of soles) are assigned within 
each block at random. Other examples of blocks could be machines, shifts of production, days of 
the week, operators, etc. Generally, if there are t treatments to compare, and b blocks, and if all t 
treatments can be performed within a single block, we assign all the t treatments to each block. 
The order of applying the treatments within each block should be randomized. Such a design is 
called a randomized complete block design. If not, all treatments can be applied within each 
block, it is desirable to assign treatments to blocks in some balanced fashion. Such designs are 
called balanced incomplete block designs (BIBD). Randomization within each block is important 
also to validate the assumption that the error components in the statistical model are independent. 
This assumption may not be valid if treatments are not assigned at random to the experimental 
units within each block. 

Yet another aspect of statistical analysis, with a potential strong impact on the results, is selective 
inference. Selective inference is inference on a selected subset of the parameters that turned out 
to be of interest, after viewing the data. This selection leads to difficulties in reproducibility of 
results and needs to be accounted for and controlled in the statistical analysis. We can distinguish 
between out-of-study and in-study selection. The former is not evident in the published work and 
is due to publication bias, p-hacking or other forms of significance chasing. The in-study 
selection is however evident in the published work. This is due to selection by abstract, table, 
figure or highlighting results passing a threshold (Ioannidis, 2019b, Benjamini, 2019).  

Finally, findings have to be presented and generalized. Generalization can be achieved by a 
range of methods, some intuitive, some conceptual and some more formal, invoking, for 
example, causal arguments (Pearl, 2015, Kenett and Rubinstein, 2017]. Findings can be 
presented in different ways, including an approach based on alternative representations, some 
with meaning equivalence and some with surface similarity (Kenett and Rubinstein, 2017).  

III. Information Quality 
In Kenett and Shmueli (2016a), a set of guidelines to help reviewers assess information quality 
of an applied research paper are proposed. The information quality concept (InfoQ) presented in 
Kenett and Shmueli (2014, 2016b), is a general framework for planning, tracking and assessing 
information quality using four components and eight dimensions. InfoQ is defined as “the utility 
of a particular data set for achieving a given analysis goal by employing statistical analysis or 
data mining”, Kenett and Shmueli (2014, 2016b). InfoQ is affected by the data (X), the data 
analysis (f) and the analysis goal (g), as well as by the relationships between them. Utility is 
measured using specific metric(s) (U). By examining each of the components and their 
relationships, we can learn about the contribution of a given project. The eight InfoQ dimensions 
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are:  Data Resolution, Data Structure, Data Integration, Temporal Relevance, Generalizability, 
Chronology of Data and Goal, Operationalization, and Communication.  

A first step in assessing the information quality of a particular applied research study is to 
identify the study goal (g), utility (U), data (X) and analysis method (f). The report on the study 
should present this explicitly. Following that, one can move to assessing the eight information 
quality dimensions. Table 1, derived from Kenett and Shmueli (2016a). presents questions 
offered as a checklist to reviewers interested in assessing the information quality dimensions of a 
specific research study. 

 
Table 1: Questions for Reviewing Information Quality Dimensions   

Dimension Questions 
1. Data Resolution 1.1 Is the data scale used aligned with the stated goal? 

1.2 How reliable and precise are the measuring devices or data sources? 
1.3 Is the data analysis suitable for the data aggregation level? 

2. Data Structure 2.1 Is the type of the data used aligned with the stated goal? 
2.2 Are data integrity details (corrupted/missing values) described and handled 

appropriately? 
2.3 Are the analysis methods suitable for the data structure? 

3. Data Integration 3.1Are the data integrated from multiple sources? If so, what is the credibility of 
each source? 

3.2 How is the integration done? Are there linkage issues that lead to dropping 
crucial information? 

3.3 Does the data integration add value in terms of the stated goal? 
3.4 Does the data integration cause any privacy or confidentiality concerns? 

4. Temporal 
Relevance 

4.1 Considering the data collection, data analysis and deployment stages, is any 
of them time-sensitive? 

4.2 Does the time gap between data collection and analysis cause any concern? 
4.3 Is the time gap between the data collection and analysis and the intended 

use of the model (e.g., in terms of policy recommendations) of any concern? 
5. Chronology of 

Data & Goal 
5.1 If the stated goal is predictive, are all the predictor variables expected to be 

available at the time of prediction? 
5.2 If the stated goal is causal, do the causal variables precede the effects? 
5.3 In a causal study, are there issues of endogeneity (reverse-causation)? 

6. Generalizability 6.1 Is the stated goal statistical or scientific generalizability? 
6.2 For statistical generalizability in the case of inference, does the paper 

answer the question “What population does the sample represent?” 
6.3 For generalizability in the case of a stated predictive goal (predicting the 

values of new observations; forecasting future values), are the results 
generalizable to the to-be-predicted data? 

6.4 Does the paper provide sufficient detail for the type of needed 
reproducibility and/or repeatability, and/or replicability? 

7. Operationalization Construct operationalization: 
7.1 Are the measured variables themselves of interest to the study goal, or is 

their underlying construct?  
7.2 What are the justifications for the choice of variables? 
Strength of operationalizing results: 
7.3 Who can be affected (positively or negatively) by the research findings? 
7.4 What can the affected parties do about it? 
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8. Communication 8.1 Is the exposition of the goal, data and analysis clear? 
8.2 Is the exposition level appropriate for the readership of this journal? 
8.3 Are there any confusing details or statements that might lead to confusion or 

misunderstanding? 

IV.  Statistical Evaluation Checklist 
Our goal here is to set a framework for a reviewer considering aspects related to the statistical 
analysis of an applied research paper. These are structured in six parts: 

1. Study design 
2. Algorithmic and inferential methods in frequentism analysis 
3. Bayesian methods in Bayesian analysis 
4. Selective inference aspects 
5. Severe testing properties 
6. Presentation of findings 

Specific questions addressing these sections are listed in Table 2. 

Table 2: Questions for Reviewing Statistical Analysis in Applied Research   
Part Questions 

1. Study Design 1.1 Is the experimental set up clearly presented? 
1.2 Have aliasing and power consideration been taken into account? 
1.3 Is there reference to blocking, split plots and randomization? 

2. Algorithmic and 
Inferential 
methods 

2.1 Are the algorithmic and inferential methods uses clearly stated? 
2.2 Is the analysis aiming at estimation, predictive or explanatory goals? 
2.3 Is data and code available to replicate the analysis? 
2.4 Are outcomes of inferential analysis properly interpreted? 

3. Bayesian Analysis 3.1Are prior distributions justified using prior experience or data? 
3.2 What are the Bayesian methods used in the analysis? 
3.3 How are Bayes factors interpreted? 

4. Selective inference 4.1 Has the study neem pre-registered? 
4.2 Have any false discovery rate corrections been made? 
4.3 Is the presentation of findings affected by selective inference? 

5. Severe Testing 5.1 Have the findings been tested with an option of failing the test? 
5.2 Is the study a first or is it replicating previous studies? 
5.3 Have Probabilism, Performance, and Probativeness criteria been 

considered? 
5.4 What type of model is used in the analysis: Primary models, experimental 

models or and data models? 
5.5 If used, how are CI interpreted? 

6. Presentation of 
Findings 

6.1 How are the research findings presented? 
6.2 Have the research findings been generalized? 
6.3 Are there any causality arguments presented? 
6.4 In a causal study, are there issues of endogeneity (reverse-causation)? 

These questions provide guidelines to reviewers assigned the task of assessing the statistical 
analysis of an applied research paper. They are not meant to be prescriptive and are only deigned 
as a sort of review checklist.   
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V. Some final comments 
This final note is about evaluating the statistical merit of a data driven applies research study. A 
key group of stakeholders who should be able to perform such assessments are organizational 
data scientists. As a minimum, data scientists should understand the questions listed in Table 1 
and 2 so that they can plan and evaluate their work. For more on this aspect see Kenett and 
Redman (2019).   

Typically reports summarize findings without being specific as to how the data analysis 
was performed. However, data analysis pipelines affect the outcomes of statistical analysis, 
Botvinik-Nezer et al (2019). Part of this is the handling of missing data and outliers. These are 
usually not documented. For an exception see openml.org Vanschoren et al (2013). Reviewers of 
analysis uploaded to this platform would be able to fully replicate the study. We anticipate that 
the future will require a documentation of the data analysis pipeline, beyond current practice to 
put data and code under configuration control. 
The review and guidelines in this series aim at providing professional support to industrial 
statisticians and applied statisticians in general. Specifically, the questions in Tables 1 and 2 are 
designed to structure a discussion between the people involved in a study. Properly managed 
discussion usually contributes to enhancing the quality of the related work. Our goal is to 
percolate some of the knowledge and insights derived in the context of science in general to the 
industrial statistics context. 

 

References 
Amrhein, V and Greenland, S, Remove, rather than redefine, statistical significance. Nat 
Hum Behav 2, 4, 2018. 
Anjum RL, Copeland S and Rocca E, BMJ Evidence-Based Medicine ;25:6–8, 2020 

Barnett AG and Wren JD, Examination of CIs in health and medical journals from 1976 
to 2019: an observational study. BMJ Open 2019;9:e032506. doi:10.1136/bmjopen-2019-
032506 
Benjamini Y, Selective Inference: The Silent Killer of Replicability, Rietz Lecture, Joint 
Statistical Meetings, Denver, Colorado, 2019. 
Botvinik-Nezer R, Holzmeister F et al, Variability in the analysis of a single 
neuroimaging dataset by many teams, bioRxiv, 2019, 
https://www.biorxiv.org/content/10.1101/843193v1 
Box GEP, Hunter, W amd Hunter S, Statistics for Experimenters: An Introduction to 
Design, Data Analysis, and Model Building, John Wiley and Sons, 1978. 
Cox DR, Some Problems Connected with Statistical Inference, Annals of Mathematical 
Statistics 29(2), 357–72, 1958. 
Efron B and Hastie, T, Computer Age Statistical Inference: Algorithms, Evidence and 
Data Science, Cambridge University Press, 2016. 
Gelman, A and Loken, E, The Statistical Crisis in Science. American Scientist 2: 460-5, 
2014. 



8 
 

Haig BD, What can psychology's statistics reformers learn from the error-statistical 
perspective?, Methods in Psychology, https://doi.org/10.1016/j.metip.2020.100020, 2020. 

Ioannidis J, The importance of predefined rules and prespecified statistical analyses: do 
not abandon significance. JAMA 321:2067‐2068, 2019a. 

Ioannidis, J, What Have We (Not) Learnt from Millions of Scientific Papers with p-
values? The American Statistician, 73:sup1, 20-25, 2019b.    

Kenett RS and Rubinstein A, Generalizing Research Findings for Enhanced 
Reproducibility: A Translational Medicine Case Study, 2017. 
https://ssrn.com/abstract=3035070   
Kenett RS and Shmueli G, Helping Authors and Reviewers Ask the Right Questions: The 
InfoQ Framework for Reviewing Applied Research, Journal of the International 
Association for Official Statistics (with discussion), Vol. 32, pp. 11-35, 2016a.  

Kenett RS and Shmueli G, Information Quality: The Potential of Data and Analytics to 
Generate Knowledge. John Wiley and Sons, 2016b. 

Kenett RS and Shmueli G, On Information Quality, Journal of the Royal Statistical 
Society, Series A (with discussion), Vol. 177, No. 1, pp. 3-38, 2014 

Kenett RS, Zacks S and Amberti D, Modern Industrial Statistics: with applications in R, 
MINITAB and JMP 2nd Ed., John Wiley and Sons, 2014. 

Kenett RS and Redman,T,The Real Work of Data Science: Turning data into information, 
better decisions, and stronger organizations, John Wiley and Sons, 2019. 

Kenett RS, Swarz R and Zonnenshain, Systems Engineering in the Fourth Industrial 
Revolution: Big data, Novel Technologies, and Modern Systems Engineering, John 
Wiley and Sons, 2020.  
Kenett RS, Zonnenshain A and Fortuna G, A road map for applied data sciences 
supporting sustainability in advanced manufacturing: the information Quality 
dimensions, Procedia Manufacturing, 21, pp 141-148, 2016.  

Mayo D, P‐value thresholds: Forfeit at your peril. Eur J Clin Invest, 49: e13170, 2019. 
Mayo D, Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars, 
Cambridge University Press, 2018. 
Pearl J, Generalizing Experimental Findings, Journal of Causal Inference 3(2): 259–266, 
2015. 
Reis M. and Kenett RS, Assessing the Value of Information of Data-Centric Activities in 
the Chemical Processing Industry 4.0, AIcHe, Process Systems Engineering, 64, 11, pp 
3868-3881, 2018. 

Vanschoren J, van Rijn JN, Bischl B, and Torgo , OpenML: networked science in 
machine learning. SIGKDD Explorations 15(2), pp 49-60, 2013. 

Wasserstein R and Lazar N,The ASA’s Statement on p-Values: Context, Process, and 
Purpose, The American Statistician, 70, 129–133, 2016. 



9 
 

Zonnenshain A and Kenett RS, Quality 4.0—the challenging future of quality 
engineering, Quality Engineering, 2020. https://doi.org/10.1080/08982112.2019.1706744 

 


